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Abstract

Identification of a multi-input/single-output system enable the creation of a
mathematical model that as accurately as possible represents the input-output
relation induced by a physical system. When there is little information about
the physical laws related to the system or when the system is too complex,
methods such as parametric identification are used to define the system model.
In that case, preliminary assumptions can be made about the system leading to
a parametric aggregation function based model. This parametric model may be
learned by estimating the parameters of this aggregation function from a repre-
sentative set of inputs/outputs. A major difficulty is to design a model that is
relatively simple yet precise enough to meet the user’s needs. Linear models are
commonly used because they meet these two contradictory constraints. How-
ever, use of a linear model is often at the expense of the accuracy of input-output
relationship description.

In a recent paper, a new modeling approach was proposed, under the name
of macsum modeling [31], which aims at replacing the linear model concept by
a set of linear models. The obtained aggregation function leads to an interval-
valued output. This represents the lack of accuracy of the model to predict the
system output when the inputs are know. An interesting feature of this model
is that it is ruled by a single precise parametric vector whereas the output is
imprecise. Moreover, the vector dimension is equal to that of the input space.

In this paper, we propose a method to learn such a model so that it best
reflects the input-output relationship of the considered system. This method is
based, as in the case of linear modeling, on a regression method. This is par-
ticularly new approach because the macsum aggregation is based on a Choquet
integral and very few authors have proposed learning of an aggregation function
based on the Choquet integral.
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1. Introduction

Aggregation functions are quite commonly used to model the behavior of
a multi-input/single output (MISO) physical system. A physical system can
be seen as a process whereby known or measured inputs are transformed into
a potentially measurable output (e.g. weather prediction, medical diagnosis,
automatic driving systems, etc.). Use of an aggregation function is quite relevant
since it groups several input values to form a single output value. The most
common learning method involves determining an aggregation function as a
model that mimics the behavior of the considered system [14]. Most aggregation
functions used in this context are parametric, i.e. their behavior is regulated by
a set of values called “function parameters” or kernel of the function.

In many cases, the inherent lack of information on a system, or measuring
its inputs or output, makes it difficult to perfectly comprehend the input-output
relationship.

Several approaches have been proposed in the relevant literature to ac-
count for this weakness, with the aim of obtaining aggregation functions that
yield an interval-valued rather than a precise-valued output [11, 22, 1, 23, 3].
Among all these approaches, some authors have proposed to represent the
input-output relationship of a system by a convex set of aggregation functions
[35, 6, 21, 16, 18, 23, 32, 28, 17, 2]. The approach we propose in [31] is in this
category. It consists of representing a convex family of linear functions by an
interval-valued aggregation based on a set function, called the macsum opera-
tor, which is ruled by a single precise valued kernel. In the above-mentioned
article, we have assessed a large of properties of the macsum set function and
their consequences on the macsum (interval-valued) aggregation function. The
interval-valued output of this aggregation function turns out to be the convex
set of all single-valued outputs of the represented linear aggregation functions.
It thus can be viewed as an interval-valued linear aggregation.

The remaining question to address is “what value to give to the kernel for
this aggregation function to best represent the system behavior?”. We propose
to partly answer this question in this article. We show how it is possible to use,
as in any function learning, a regression method to estimate the kernel allowing
the aggregation function to best represent the considered system behavior. One
of the main difficulties of the proposed approach concerns the fact that the
aggregation function we propose is based on a Choquet integral.

Very few articles in the abundant literature on learning have proposed to
learn a model based on a Choquet integral. Among these few articles, one of
the most relevant to our proposed approach is that of Tehrani et al. [13] that
describes how to learn monotone nonlinear models based on a Choquet integral
for classification purposes. These authors modelled input-output relationship
using a capacity, scaling parameter and threshold. The learning process consists
of maximizing a log-likelihood to find optimal values of the Mœbius transform
of the capacity and the two parameters. High complexity is an issue regarding
this approach, (i.e. high number of parameters – 2N parameters, with N being
the number of inputs – of the model). This issue is addressed by focussing solely
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on the k-additive capacities and finding a suitable value for k [12]. In contrast
to this type of approach, Havens et al. [15] propose to learn a MISO model
based on a Choquet integral and a non-monotonic set function. They propose
to learn 2N weights associated with the capacity (with N being the number of
inputs) by proposing a matrix formulation of the problem and by performing a
least squares minimization, i.e. a method they call Choquet integral regression.

The approach we describe here can be compared to that of [15] since we
propose to learn the parameters of a non-monotonic set-function. However,
this set-function is ruled by a number of parameters equal to the number of
inputs. It also differs in that we do not consider using the Choquet integral
as a tool for learning monotonic nonlinear models but rather for learning a
convex set of linear models, i.e. a model that aims at representing an imprecise
input-output relationship. This difference makes the resulting model more easily
interpretable.

After this introduction, we propose, in Section 2, a set of notations and
definitions to facilitate reading of the article. We also position our work in
relation to the literature. In Section 3, we summarize a certain number of
important properties of the macsum operator that are necessary to understand
its use in system modeling. In Section 4, we introduce the operator-based
aggregation notion which is a generalization of linear aggregation notion. We
present a new formulation of the macsum aggregation function defined in [31].
Section 5 proposes a regression technique to adjust the parameter vector of the
macsum aggregation function based on a set of input-output pairs of the system
to model. In Section 6, we illustrate the properties of the obtained aggregation
function with an image processing experiment. We finally conclude in Section
7.

2. Preliminary aspects

2.1. Notations

• Ω = {1, . . . , N} ⊂ N.

• A vector of Ω is a function x : Ω → R defined by a discrete subset of RN

denoted x = (x1, · · · , xN ).

• A parametric function can be denoted fϕ(.) or f(., ϕ), with ϕ being a
vector of Ω called a kernel.

• The set of kernels of Ω is denoted K(Ω).

• A maxitive kernel of Ω is a kernel π ∈ K(Ω) such that ∀i ∈ Ω, πi ∈ [0, 1]
and maxi∈Ω πi = 1.

• ϕ ∈ K(Ω) being a kernel, we define two kernels, ϕ+ and ϕ−,
by ∀i ∈ Ω ϕ+

i = max(0, ϕi) and ϕ−i = min(0, ϕi).

• d.e is a permutation that sorts ϕ in increasing order:
ϕd1e ≤ ϕd2e ≤ · · · ≤ ϕdNe.
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• b.c is a permutation that sorts ϕ in decreasing order:
ϕb1c ≥ ϕb2c ≥ · · · ≥ ϕbNc.

• IR is the set of real intervals.

[y] = [y, y] is a real interval whose lower bound is y and upper bound is y.

2.2. Definitions

• Let X = {xk}k∈{1,..,M} be a set of vectors of RN and Y = {yk}k∈{1,..,M}
be a set of real numbers. We define a dataset as being a set of pairs
X × Y =

{
xk, yk

}
k∈{1,..,M}.

• A binary relation R over sets X and Y is a new set of ordered pairs (x, y)
with x ∈ X and y ∈ Y such that xRy, which means that x is in relation
with y.

• To a binary relationR is associated a graph GR which is a subset of RN×R
containing all the pairs of R-related elements. That is to say (x, y) ∈ GR
if and only if xRy.

• A set function is a function µ : 2Ω → R that maps any subset of Ω onto a
real value. To a set function µ is associated its complementary set function
µc: ∀A ⊆ Ω, µc(A) = µ(Ω)− µ(Ac). Moreover, µ(∅) = µc(∅) = 0.

• A set function µ is concave or supermodular if ,
∀A,B ⊆ Ω, µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B).

• A set function µ is convex or submodular if ,
∀A,B ⊆ Ω, µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B).

• A set function µ is additive if ,
∀A,B ⊆ Ω, µ(A∪B)+µ(A∩B) = µ(A)+µ(B). By definition, an additive
set function is both concave and convex.

• A set function µ is maxitive if , ∀A,B ⊆ Ω, µ(A∪B) = max (µ(A), µ(B)).

• The asymmetric discrete Choquet integral w.r.t. a set function µ [25],
denoted Čµ, is defined by:

Čµ(x) =

N∑
k=1

x(k).(µ(A(k))− µ(A(k+1))) =

N∑
k=1

(x(k) − x(k−1)).µ(A(k)),

with (.) being the permutation that sorts elements of x in increasing or-
der: x(1) ≤ x(2) ≤ · · · ≤ x(N) with x(0) = 0 and A(i) (i ∈ Ω) being the ith

coalition of Ω defined by A(i) = {(i), . . . , (N)} with A(N+1) = ∅.

• A capacity is a set function υ : 2Ω → R+, monotonic w.r.t. set inclusion:
∀A ⊆ B ⊆ Ω, υ(A) ≤ υ(B) and such that υ(Ω) = 1.
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2.3. Related work

A MISO1 real system S is a process that generates an output y ∈ R from
any given input vector x ∈ RN . It can be seen as a binary relation R of RN ×R
whose graph is denoted GR. The goal of learning a model of this system is to
determine its output for any input vector as accurately as possible. In other
words, the goal is to know every pair of GR given we already know a subset of
M pairs of GR denoted X × Y.

The most commonly used method involves proposing a parametric model
in the form of a parametric aggregation function fϕ that outputs a real value
y = fϕ(x) for any element x ∈ RN . Learning this function, based on the X ×Y
dataset, simply involves finding a kernel ϕ̂ ∈ K(Ω) such that, given any element
(x, y) ∈ GR, this function would provide an estimate ŷ = fϕ̂(x) that is as close
as possible to y. This so-called regression process usually consists of minimizing
a distance d w.r.t. ϕ. This can be written as [14]:

ϕ̂ = argmin
ϕ

(
M∑
k=1

d
(
fϕ(xk), yk

))
.

However, in many cases, the use of a single function is insufficient to model
the overall complexity of a real system. This is why several scientists have tried
to introduce the notion of imprecision in the modeling of MISO systems. What
these new aggregation functions represent and how their authors propose to
learn these functions is the subject of this section. We subdivide the approaches
proposed in the relevant literature into three categories, depending on whether
they intend to focus on a defect in the acuity of the prediction, in the structural
accuracy of the data, or in the consistency of the system.

2.3.1. Prediction uncertainty

This first category includes methods to assess the uncertainty concerning
the ability of a model to accurately forecast the output of a system. This can
be ascribed to random variations in the system output measurements. Such an
approach is a major focus of the scientific community since the emergence of
inferential statistics and its implication in learning processes [14]. The difficulty
of accurately representing a system can be expressed by replacing the precise
output value yield of the model by an interval-valued output. Most methods
outlined in the literature aim at creating a confidence interval of the model
output values. The article of Efron [11] provides a good survey of most existing
methods. In a less classical way, Jaulin and al. propose methods that involve
creating guaranteed intervals using interval analysis [22].

2.3.2. Data imprecision

The second category groups methods that choose, as a model, an aggrega-
tion function that produces intervals. This kind of modeling seems appropriate

1multi input - single output
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since it is highly relevant to use imprecise data in many areas where there is
data measurement imprecision (inputs or outputs) for a system. An approach
widely used to learn the parameters of such a model involves designing a linear
regression that tends to minimize the distance between the midpoint of the de-
sired output and that of the interval-valued output of the model [1, 23]. Other
approaches have been described based on adding, to the previous approach, a
second regression that aims to minimize the distance between the spread of the
desired interval-valued outputs and that of the interval valued output of the
model [3].

2.3.3. System incoherence

The third category includes methods that attempt to design a model that
accounts for the incoherence of a system. A system is said to be incoherent
when it generates different outputs for the same input. Such a situation can oc-
cur when a system is not translational invariant (spatially, e.g. camera retina,
temporally, e.g. disintegration process, etc.) or because some unknown (un-
measured) inputs modify the system behavior. In this case, the imprecision
is intrinsic to the system. It thus makes sense that the model should reflect
this imprecision. The system incoherence can be addressed by replacing the
modeling using a single aggregation function by a modeling using a set of ag-
gregation functions. Moreover, this set of functions would intuitively seem to
be convex, i.e. if two aggregation functions f1 and f2 belong to the considered
set, then ∀α ∈ [0, 1] α.f1 + (1 − α).f2 also belongs to the set. The output of
such a model would intuitively seem to be convex i.e. if xRy1 and xRy2 then
∀α ∈ [0, 1] xR(α.y1 + (1− α)y2).

The main approach proposed in the literature, to address the incoherence,
consists of considering a parametric function whose parameter is imprecise.
Learning this kind of models involves regression analysis [35], which is a data-
based functional relationship [6, 21, 16, 18, 23]. The learning process for interval-
valued parameters has also been formulated as a linear [19] or quadratic [33]
programming problem.

An extension of this crisp approach has also been proposed with the kernel
being composed of fuzzy numbers [32, 28, 17] or fuzzy intervals [2]. These
fuzzy parameters are learned by minimizing a cost that is a fuzzy version of the
quadratic cost [5]. Recently, artificial neural networks have been modified to
perform fuzzy regression, with the back-propagation algorithm being adapted
to the case where the weights are fuzzy numbers [30, 26].

2.4. Imprecise linear approach

Our proposed approach is in this third category, with the aim of representing
incoherence within the system by focusing on linear systems. A system is said to
be linear if, for any pair ((x, y), (x′, y′)) ∈ GR×GR, we have (x+x′, y+y′) ∈ GR
i.e (x + x′)R(y + y′). In that case, the aggregation function fϕ reduces to a
sum of elements of the input vector x weighted by elements of the kernel ϕ:
y = fϕ(x) =

∑N
i=1 xi.ϕi.
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Imprecise linear approches provide a way to deal with incoherent systems
while keeping the simplicity of a linear model. An imprecise linear model of a
MISO system has an imprecise kernel. It can be formulated as:

[y] = f[ϕ](x) = {fψ(x) |ψ ∈ [ϕ]}, (1)

with [y] ∈ IR, [ϕ] ∈ IRN and x ∈ RN . [y] is the interval of all outputs that
would have been obtained by considering fψ(x) with ψ ∈ [ϕ]. The linearity of
the aggregation function f induces that, with [ϕ] being convex, the output of
f[ϕ](x) is also convex, i.e. is an interval of R.

One of the weaknesses of this type of model is that it is impossible to rep-
resent a set of linear functions with the same gain2. This gain is equal to the
sum of the kernel elements.

In [31], we propose such an imprecise linear model. The macsum aggregation
function we define outputs the set of real values that should have been obtained
by considering a convex set of linear functions having the same gain. This set
is completely defined by a single kernel ϕ ∈ K(Ω). In the following section, we
summarize the basic principles of this aggregation function whose input vector
and kernel are precise but whose output is interval valued.

3. Aggregation operators

This section includes many proposals from previous studies [31].
Let ϕ ∈ K(Ω) be a kernel.We define an operator as being a kernel-based set

function, i.e. a set function µϕ : 2Ω → R that maps any subset A ⊆ Ω onto a
real value, with this value being obtained by systematic computation involving
the values of the kernel ϕ.

As in the linear case, µϕ(Ω) = µcϕ(Ω) value could be considered as the gain
of the aggregation operator µϕ, as we call it hereafter.

The most common operator is the linear operator λϕ defined by:

∀A ⊆ Ω, λϕ(A) =
∑
i∈A

ϕi.

Being additive, its complementary operator equals the operator:

∀A ⊆ Ω, λcϕ(A) =
∑
i∈Ω

ϕi −
∑
i∈Ac

ϕi =
∑
i∈A

ϕi.

The macsum operator νϕ and its complementary operator νcϕ, introduced
in [31], are defined as ∀A ⊆ Ω:

νϕ(A) = max
i∈A

ϕ+
i + min

i∈Ω
ϕ−i − min

i∈Ac
ϕ−i , (2)

νcϕ(A) = min
i∈A

ϕ−i + max
i∈Ω

ϕ+
i −max

i∈Ac
ϕ+
i . (3)

2The gain of a linear function is the multiplicative coefficient by which a constant input
would be multiplied.
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As shown in [31], the macsum operator is a concave set function and its
complementary is a convex set function.

Hereafter, it should be noted that if ϕ ∈ K(Ω) is a maxitive kernel, then νϕ is
equivalent to a possibilty measure [8], i.e. a maxitive capacity, usually denoted
Πϕ, and νcϕ is equivalent to a necessity measure, usually denoted Nϕ. This stems
from the fact that, where ϕ is a maxitive kernel, ϕ+ = ϕ and ϕ− = 0, with 0
being the vector whose elements are all zero. Moreover Πϕ(Ω) = Nϕ(Ω) = 1.

Let ϕ,ψ ∈ K(Ω) be two kernels of Ω, then we say that the kernel ϕ domi-
nates the kernel ψ iff ∀A ⊆ Ω, νcϕ(A) ≤ λψ(A) ≤ νϕ(A) (i.e. the set function
νϕ dominates the set function λψ).

We define the core of a kernel ϕ as the subset M(ϕ) ∈ K(Ω) of the kernels
of Ω that are dominated by ϕ:

M(ϕ) = {ψ ∈ K(Ω) / ∀A ⊆ Ω, νcϕ(A) ≤ λψ(A) ≤ νϕ(A)}.

The two following properties – proven in [31] – are mandatory w.r.t. the learning
application we propose:

• ∀ϕ ∈ K(Ω), ∃ψ ∈ K(Ω) such that ψ ∈M(ϕ), i.e. M(ϕ) 6= ∅.

• ∀ψ ∈ K(Ω) ∃ϕ ∈ K(Ω) such that ψ ∈M(ϕ).

4. Operator-based aggregation

This section reviews some important results of [31]. Operator-based ag-
gregations are set functions that output interval-valued results. The macsum
aggregation and the linear aggregation are two examples of such aggregations.

4.1. Interval-valued aggregation

Let ϕ ∈ K(Ω) be a kernel of Ω, µϕ a concave operator and x ∈ RN a
real vector, then we define Aµ : RN × K(Ω) → IR as being a µ-interval-valued
aggregation function. It associates, to any vector x ∈ RN , a real interval [y] ∈ IR
via the weighting sequence defined by the kernel ϕ ∈ K(Ω) by: [y] = [y, y] =

Aµ(x,ϕ) with y = Aµ(x,ϕ) = Čµcϕ(x) and y = Aµ(x,ϕ) = Čµϕ(x), where Č
stands for the asymmetric Choquet integral.

4.2. Linear aggregation

Let ϕ ∈ K(Ω) be a kernel of Ω, then the linear aggregation is defined by
using the linear operator λϕ. Since λϕ = λcϕ, Čλcϕ = Čλϕ thus Aλ(x,ϕ) =
Aλ(x,ϕ) = y and therefore Aλ(x,ϕ) = [y, y] is a degenerate interval, i.e. a real
value.

Proposition 4.1. The linear aggregation amounts to calculating the sum of the
vector x values weighted by the vector ϕ values: Aλ(x,ϕ) =

∑N
i=1 xi.ϕi.

The proof of this property is trivial. It is based on the fact that the Choquet
integral reduces to a simple integral when the used measure is linear.
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4.3. Macsum aggregation

Let ϕ ∈ K(Ω) be a kernel of Ω, the macsum aggregation is defined by using
the macsum operator νϕ: Aν(x,ϕ) = [y] = [y, y] = [Čνcϕ(x), Čνϕ(x)].

The values of y and y are given by [31]:

y = Čνϕ(x) =

N∑
k=1

(x(k) − x(k−1)).

(
N

max
i=k

ϕ+
(i) +

N
min
i=1

ϕ−i −
k−1
min
i=1

ϕ−(i)

)
, (4)

y = Čνcϕ(x) =

N∑
k=1

(x(k) − x(k−1)).

(
N

min
i=k

ϕ−(i) +
N

max
i=1

ϕ+
i −

k−1
max
i=1

ϕ+
(i)

)
, (5)

where (.) is a permutation that sorts vector x in increasing order
(x(1) ≤ x(2) ≤ · · · ≤ x(N)), x(0) = 0.

The following lemma was proved by Rico and Dubois in [10] by using the
Mœbius transform of a possibility measure associated with a discrete possibility
distribution to give another form to the discrete Choquet integral w.r.t. this
possibility measure.

Lemma 4.2. Let π be a maxitive kernel of K(Ω). Let Ππ be the maxitive
capacity (possibility measure) defined by ∀A ∈ Ω, Ππ(A) = maxi∈A πi, then

ČΠπ (x) =

N∑
k=1

(x(k) − x(k−1)).Ππ(A(k)) =

N∑
k=1

(x(k) − x(k−1)).
N

max
i=k

π(i)

=

N∑
k=1

(πbkc − πbk+1c)
k

max
i=1

xbic, and

ČΠcπ
(x) =

N∑
k=1

(x(k) − x(k−1)).Π
c
π(A(k)) = x(N) −

N∑
k=1

(x(k) − x(k−1)).
k−1
max
i=1

π(i)

=

N∑
k=1

(πbkc − πbk+1c)
k

min
i=1

xbic

where (.) is a permutation that sorts vector x in increasing order (x(1) ≤ x(2) ≤
· · · ≤ x(N)), x(0) = 0, b.c is a permutation that sorts kernel π in decreasing
order (1 = πb1c ≥ πb2c ≥ · · · ≥ πbNc) and πbN+1c = 0.

Lemma 4.2 provides a relevant bases for formulating the macsum operator
based aggregation given in Expressions (4) and (5).

Proposition 4.3.

y = Čνϕ(x) =

N∑
k=1

(
ϕ+
bkc − ϕ

+
bk+1c

)
.

k
max
i=1

xbic +

N∑
k=1

(
ϕ−dke − ϕ

−
dk+1e

)
.
k

min
i=1

xdie,

where b.c is a permutation that sorts ϕ in decreasing order (ϕb1c ≥ ϕb2c ≥
· · · ≥ ϕbNc), with ϕbN+1c = 0 and d.e is a permutation that sorts ϕ in increasing
order (ϕd1e ≤ ϕd2e ≤ · · · ≤ ϕdNe) with ϕdN+1e = 0.
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Proof. We have three cases:
1) ∃i, j ∈ Ω such that ϕi > 0 and ϕj < 0,
2) ∀i ∈ Ω, ϕi ≥ 0,
3) ∀i ∈ Ω, ϕi ≤ 0.

Case 1) ∃i, j ∈ Ω such that ϕi > 0 and ϕj < 0.
Thus mini∈Ω ϕ

+
i = 0, maxi∈Ω ϕ

−
i = 0, α < 0 and α > 0.

Let us define two maxitive kernels π+ and π− by ∀i ∈ Ω, π+
i = 1

α .ϕ
+
i and

∀i ∈ Ω, π−i = 1
α .ϕ
−
i .

By construction mini∈Ω π
−
i = mini∈Ω π

+
i = 0 and maxi∈Ω π

−
i = maxi∈Ω π

+
i = 1.

Moreover b.c sorts π+ in decreasing order (1 = π+
b1c ≥ π+

b2c ≥ · · · ≥ π+
bNc = 0)

and d.e sorts π− in decreasing order (1 = π−d1e ≥ π
−
d2e ≥ · · · ≥ π

−
dNe = 0).

Let (.) be a permutation that sorts x in increasing order (x(1) ≤ x(2) ≤ · · · ≤
x(N)), with x(0) = 0. Let us rewrite Čνϕ(x):

y = Čνϕ(x) =

N∑
k=1

(
x(k) − x(k−1)

)
.
N

max
i=k

ϕ+
(i) + α.x(N) −

N∑
k=1

(
x(k) − x(k−1)

)
.
k−1
min
i=1

ϕ−(i),

= α.

N∑
k=1

(
x(k) − x(k−1)

)
.
N

max
i=k

π+
(i) + α.x(N) − α.

N∑
k=1

(
x(k) − x(k−1)

)
.
k−1
max
i=1

π−(i),

= α.

N∑
k=1

(
x(k) − x(k−1)

)
.
N

max
i=k

π+
(i) + α.

(
x(N) −

N∑
k=1

(
x(k) − x(k−1)

)
.
k−1
max
i=1

π−(i)

)
.

Due to Lemma 4.2, we have:

N∑
k=1

(
x(k) − x(k−1)

)
.
N

max
i=k

π+
(i) =

N∑
k=1

(
π+
bkc − π

+
bk+1c

)
.

k
max
i=1

xbic, and

x(N) −
N∑
k=1

(
x(k) − x(k−1)

)
.
k−1
max
i=1

π−(i) =

N∑
k=1

(
π−dke − π

−
dk+1e

)
.
k

min
i=1

xdie.

Thus,

y = Čνϕ(x) = α.

N∑
k=1

(
π+
bkc − π

+
bk+1c

)
.

k
max
i=1

xbic + α.

N∑
k=1

(
π−dke − π

−
dk+1e

)
.
k

min
i=1

xdie,

=

N∑
k=1

(
α.π+
bkc − α.π

+
bk+1c

)
.

k
max
i=1

xbic +

N∑
k=1

(
α.π−dke − α.π

−
dk+1e

)
.
k

min
i=1

xdie,

=

N∑
k=1

(
ϕ+
bkc − ϕ

+
bk+1c

)
.

k
max
i=1

xbic +

N∑
k=1

(
ϕ−dke − ϕ

−
dk+1e

)
.
k

min
i=1

xdie.
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Case 2) ∀i ∈ Ω, ϕi ≥ 0.

Thus α.x(N) −
∑N
k=1

(
x(k) − x(k−1)

)
.mink−1

i=1 ϕ
−
(i) = 0. As previously, let π+ be

the maxitive kernel such that: ∀i ∈ Ω, π+
i = 1

α .ϕ
+
i . Thus,

y = Čνϕ(x) = α.

N∑
k=1

(
π+
bkc − π

+
bk+1c

)
.

k
max
i=1

xbic =

N∑
k=1

(
ϕ+
bkc − ϕ

+
bk+1c

)
.

k
max
i=1

xbic.

Case 3) ∀i ∈ Ω, ϕi ≤ 0.

Thus
∑N
k=1

(
x(k) − x(k−1)

)
.maxNi=k ϕ

+
(i) = 0. As previously, let π− be the max-

itive kernel such that: ∀i ∈ Ω, π−i = 1
α .ϕ
−
i . Thus,

y = Čνϕ(x) = α.

N∑
k=1

(
π−dke − π

−
dk+1e

)
.
k

min
i=1

xdie =

N∑
k=1

(
ϕ−dke − ϕ

−
dk+1e

)
.
k

min
i=1

xdie.

Proposition 4.4.

y = Čνcϕ(x) =

N∑
k=1

(
ϕ+
bkc − ϕ

+
bk+1c

)
.
k

min
i=1

xbic +

N∑
k=1

(
ϕ−dke − ϕ

−
dk+1e

)
.

k
max
i=1

xdie,

where b.c is a permutation that sorts ϕ in decreasing order (ϕb1c ≥ ϕb2c ≥
· · · ≥ ϕbNc), with ϕbN+1c = ϕbNc and d.e is a permutation that sorts ϕ in
increasing order (ϕd1e ≤ ϕd2e ≤ · · · ≤ ϕdNe) with ϕdN+1e = ϕdNe.

Proof. The proof is trivial by considering Čνcϕ(x) = −Čνϕ(−x).

4.4. The macsum aggregation can be viewed as an imprecise linear aggregation

Proposition 4.5. Let ϕ ∈ K(Ω) be a kernel of Ω, then ∀x ∈ RN ,
ψ ∈M(ϕ) ⇐⇒ Aλ(x,ψ) ∈ Aν(x,ϕ).

Proof. By construction, ψ ∈ M(ϕ)⇔ ∀A ⊆ Ω, νcϕ(A) ≤ λψ(A) ≤ νϕ(A). Due

to [34] Theorem 3, this implies that ∀x ∈ RN , Čνcϕ(x) ≤ Čλψ (x) ≤ Čνϕ(x).

Proposition 4.6. ∀ϕ ∈ M(Ω), ∀ψ ∈ M(Ω), λψ(Ω) = νϕ(Ω), i.e. λψ and νϕ
have the same gain α.

The proof is straightforward since νcϕ(Ω) ≤ λψ(Ω) ≤ νϕ(Ω) and νcϕ(Ω) = νϕ(Ω).

Proposition 4.7. Let ϕ ∈ K(Ω) be a kernel of Ω, let x ∈ RN be a constant
vector (i.e. ∀i ∈ Ω, xi = c), then ∀ψ ∈ M(ϕ),Aλ(x,ψ) = Aν(x,ϕ) = α.c,
with α =

∑
i∈Ω ψi = maxi∈Ω ϕ

+
i + mini∈Ω ϕ

−
i .

Proof. With x being a constant vector, it can be rewritten as c.χΩ, where χΩ

is the characteristic function of Ω defined by: ∀k ∈ Ω, χΩk = 1. Due to the
property of the Choquet integral, with µ being a set function, Čµ(c.χΩ) =
c.Čµ(χΩ) = c.µ(Ω).
Thus, Aλ(c.χΩ,ψ) = c.λψ(Ω) = c.α and Aν(c.χΩ,ϕ) = c.

[
νcϕ(Ω), νϕ(Ω)

]
=

c.[α, α] = c.α.

11



Remark 1. ∀ψ ∈M(Ω) λψ(Ω) = νϕ(Ω), i.e. λψ and νϕ have the same gain.

Proposition 4.8. The macsum aggregation can be viewed as an imprecise linear
aggregation since,
∀ϕ ∈ K(Ω), ∀x ∈ RN and ∀β ∈ R, Aν(β.x,ϕ) = β.Aν(x,ϕ).

Proof. When β ≥ 0, this property is known as positive homogeneity in [7].
Now note that if β < 0, then Čνϕ(β.x) = β.Čνcϕ(x).

Thus Aν(β.x,ϕ) = [β.Čνϕ(x), β.Čνcϕ(x)] = β.[Čνcϕ(x), Čνϕ(x)] = β.Aν(x,ϕ).

5. Learning a macsum relation

Let us consider a MISO system that outputs a real value y ∈ R for any input
x ∈ RN . We can assume that the link between x and y is due to an underlying
unknown function g: g(x) = y. Now let us suppose that we have collected
a dataset of X × Y =

{
(xj , yj)

}
j=1...M

of M input-output pairs. Assuming

that these M pairs are representative of the mapping g : RN → R, it may be
possible to find a function ĝ whose behavior is as close as possible to g. This is
what is called learning g and the dataset X × Y is called the learning dataset.
The regression approach consists of supposing that g behaves like a particular
parametric function denoted fψ(.) where ψ is a set of parameters. Therefore

the aim is to find ψ̂ such that ∀j = 1 . . .M , fψ̂(xj) is as close as possible
to yj w.r.t. a particular distance. The most commonly used distance is the
quadratic norm for different reasons. The main reason in this context is that
learning often involves deriving the distance and the quadratic distance is easy
to derive. The quadratic distance can be expressed as L({yj , fψ(xj)}j=1...M ) =∑M
j=1||yj−fψ(xj)||22. Finding parameters that minimize the quadratic distance

is usually referred to as solving the least squares problem and denoted:

ψ̂ = argmin
ψ

L({yj , fψ(xj)}j=1...M ). (6)

5.1. Linear regression

In many cases, input-output relationship is supposed to be linear, either
globally or locally. Linear systems are characterized by two main properties:
homogeneity and additivity. Homogeneity means that a change in inputs results
in a change in outputs – which seems to be a nice property for systems – wich
can be obliterated in case of saturation (e.g. with digitization) or hysteresis
(e.g. mechanical systems). Additivity can be mathematically expressed as:
∀x1,x2 ∈ RN , g(x1 + x2) = g(x1) + g(x2). We therefore also have ∀x ∈ RN ,
∀β ∈ R, g(β.x) = β.g(x).

A third property, i.e. shift invariance, can be mandatory for linear systems.
Shift invariance means that the system characteristics do not change with time
(or space). This last characteristic is rather challenging in signal processing
because some hidden variables change the system behavior with time or space

12



(e.g. heat for electronic circuit), or because the signal has been measured by
different sensors with slightly different proprieties (e.g. pixel sensors for image
acquisition through a retina).

The first two properties are perfectly taken into account by modeling the
system via the additive aggregation proposed in Section 4.2. The parametric
function f boils down to fψ(.) = Aλ(.,ψ), where ψ ∈ K(Ω) is a kernel that
gathers all of the N parametric values.

Considering the quadratic distance, learning a linear representation of the
unknown function g based on the X × Y dataset consists of finding ψ̂ solving
the least square problem expressed in Equation (6). This technique is known
as linear regression. Such minimization can be obtained by a gradient descent,

but can also be obtained directly by: ψ̂ = X†.Y , where X is the matrix
[
xji

]
(j = 1 . . .M being the row index and i = 1 . . . N being the column index), Y
the column matrix [yj ] (j = 1 . . .M) and X† being the Moore-Penrose pseudo-
inverse of X.

In this context, the shift invariance property is associated with the fact that
the value of ψ̂ after convergence of the estimator is unique, whatever the subset
of X × Y considered.

On the contrary, if the shift invariance is not fulfilled, it means that there
are potentially several ψ̂ values that can be considered for modeling the system
behavior, depending on time, location or other external factors that cannot be
included in the modeling. This means that the same input value can lead to
different outputs, or that the same output value can be caused by different input
values. This multiple mapping can be regarded as random or imprecise process.
Here we propose to account for shift variance by considering a (convex) set of
kernels instead of a single kernel.

5.2. Towards imprecise linear regression

Let us now suppose that the shift invariance is not fulfilled but homogeneity
and linearity are fulfilled at least locally (e.g. for the same pixel, at the same
temperature or during a limited time period). Let us also suppose that all
possible linear representatives of the unknown system have the same gain and
that the set of representatives is convex (see Section 2.3.3). This situation
can be perfectly handheld by considering the macsum operator νϕ: as shown
in Section 4.4, the macsum operator can be considered as an imprecise linear
operator whose elements are linear operators having the same gain.

Learning this imprecise operator thus boils down to estimating ϕ̂ that best
represents this convex set of linear operators. Two major issues remain to be
addressed.

1– What can the equivalent of least squares be in this imprecise learning
context?

2– How to address the leaning phase, i.e. what is the relevant method to
minimize this ad hoc new cost function?

13



5.2.1. The cost function

The goal of learning a macsum relation is to find a kernel ϕ̂ ∈ K(Ω) that
ensures that the value Aν(xj ,ϕ) as close as possible to yj ∀j ∈ {1, . . . ,M}.
Since Aν(xj ,ϕ) is an interval, the question that should be addressed is what
does it mean for a real interval to be close to a real value? Different extensions
of distances have been proposed to answer this question that are reviewed in
[29]. Most of those solutions lead to distances that are either not relevant
for this problem or too non-linear to be used in an efficient iterative learning
process. Here we would like to propose a simple, obvious and easy to use learning
solution. ConsideringM(ϕ) as a convex set of kernels, [y

j
, yj ] = Aν(xj ,ϕ) can

be considered as a convex set of outputs for linear aggregation. Making this set
as close as possible to yj can be viewed as making both bounds y

j
and yj as

close as possible to yj . This leads to the extension of the quadratic distance we
propose:

L({yj , [yj , yj ]}j=1...M ) =

M∑
j=1

||yj − yj ||
2
2 +

M∑
j=1

||yj − yj ||22,

=

M∑
j=1

(
2.y2

j − 2.yj .yj − 2.yj .yj + yj
2 + y2

j

)
.

Thus learning a macsum relation based on this extension of the quadratic
distance can be formulated as:

ϕ̂ = argmin
ϕ

L({yj ,Aν(xj ,ϕ)}j=1...M ). (7)

5.2.2. Gradient descent

Equation (7) can be solved using a gradient descent algorithm. A gradient
descent algorithm is based on finding a local minimum of a differentiable function
by repeated updating steps in the direction opposite that of the gradient of the
function at the current point. This can be achieved globally (for all the learning
set at each iteration) or element-by-element of the X ×Y dataset. If the global
approach is chosen, the method can be summarized by the following process:

ϕt+1 = ϕt − β.∇L({yj ,Aν(xj ,ϕ)}j=1...M ),

where ∇L({yj ,Aν(xj ,ϕt)}j=1...M ) is the gradient of the distance L when the
ϕt value is considered. ϕt is the value of the estimate of ϕ at iteration t and
β is a positive constant value ensuring the convergence of this iterative pro-
cess. Considering that the chosen quadratic distance is locally convex and
with an appropriate choice of β, the sequence ϕ0,ϕ1, . . . ,ϕt, . . . converges
towards the least square solution. When the element-by-element solution is
chosen, then the method follows the same process but we have to replace
∇L({yj ,Aν(xj ,ϕ)}j=1...M ) by∇L(yj ,Aν(xj ,ϕ)) and repeat each stepM times.
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Let us now consider ∆k, i.e. the kth element of ∇L({yj ,Aν(xj ,ϕt)}j=1...M ).
We have:

∆k =
δL({yj ,Aν(xj ,ϕ)}j=1...M )

δϕk
,

=

M∑
j=1

(
δAν(xj ,ϕ)

2

δϕk
+
δAν(xj ,ϕ)

2

δϕk
− yj .

δAν(xj ,ϕ)

δϕk
− yj .

δAν(xj ,ϕ)

δϕk

)
,

=

M∑
j=1

(
2.(Aν(xj ,ϕ)− yj).

δAν(xj ,ϕ)

δϕk

)
+

M∑
j=1

(
2.(Aν(xj ,ϕ)− yj).

δAν(xj ,ϕ)

δϕk

)
.

To implement this gradient descent algorithm, the upper and lower bounds of
the macsum aggregation operator must be differentiated w.r.t. each component
of the sought after kernel.

5.3. Differentiating the macsum aggregation
To make the derivation of the macsum aggregation w.r.t. each component

of the kernel easier, we propose to rewrite Aν(x,ϕ) = Čνcϕ(x) and Aν(x,ϕ) =

Čνϕ(x) in a simpler form:

Proposition 5.1.

Čνϕ(x) =

N∑
k=1

ϕ+
bkc.

(
k

max
i=1

xbic −
k−1
max
i=1

xbic

)
+

N∑
k=1

ϕ−dke.

(
k

min
i=1

xdie −
k−1
min
i=1

xdie

)
,

(8)

where b.c is a permutation that sorts ϕ in decreasing order (ϕb1c ≥ ϕb2c ≥
· · · ≥ ϕbNc) with ϕbN+1c = 0 and d.e is a permutation that sorts ϕ in increasing
order (ϕd1e ≤ ϕd2e ≤ · · · ≤ ϕdNe) with ϕdN+1e = 0 and with max0

i=1 xbic = 0 =

min0
i=1 xdie.

Proof. Equation (4.3) gives:

Čνϕ(x) =

N∑
k=1

(
ϕ+
bkc − ϕ

+
bk+1c

)
.

k
max
i=1

xbic +

N∑
k=1

(
ϕ−dke − ϕ

−
dk+1e

)
.
k

min
i=1

xdie.

Let us rewrite:
N∑
k=1

(
ϕ+
bkc − ϕ

+
bk+1c

)
.

k
max
i=1

xbic =

N∑
k=1

ϕ+
bkc

k
max
i=1

xbic −
N∑
k=1

ϕ+
bk+1c

k
max
i=1

xbic

=

N∑
k=1

ϕ+
bkc

k
max
i=1

xbic −
N+1∑
k=2

ϕ+
bkc

k−1
max
i=1

xbic

=

N∑
k=1

ϕ+
bkc

k
max
i=1

xbic −
N∑
k=1

ϕ+
bkc

k−1
max
i=1

xbic − ϕ+
bN+1c.

N
max
i=1

xbic + ϕ+
b1c.

0
max
i=1

xbic

=

N∑
k=1

ϕ+
bkc.

(
k

max
i=1

xbic −
k−1
max
i=1

xbic

)
,
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since ϕ+
bN+1c = 0, and

N∑
k=1

(
ϕ−dke − ϕ

−
dk+1e

)
.
k

min
i=1

xdie =

N∑
k=1

ϕ−dke
k

min
i=1

xdie −
N∑
k=1

ϕ−dk+1e

k
min
i=1

xdie

=

N∑
k=1

ϕ−dke
k

min
i=1

xdie −
N+1∑
k=2

ϕ−dke.
k−1
min
i=1

xdie

=

N∑
k=1

ϕ−dke
k

min
i=1

xdie −
N∑
k=1

ϕ−dke
k−1
min
i=1

xdie − ϕ−dN+1e.
N

min
i=1

xdie + ϕ−d1e.
0

min
i=1

xdie

=

N∑
k=1

ϕ−dke.

(
k

min
i=1

xdie −
k−1
min
i=1

xdie

)
,

since ϕ−dN+1e = 0.

Thus,

Čνϕ(x) =

N∑
k=1

ϕ+
bkc.

(
k

max
i=1

xbic −
k−1
max
i=1

xbic

)
+

N∑
k=1

ϕ−dke.

(
k

min
i=1

xdie −
k−1
min
i=1

xdie

)
.

Proposition 5.2.

Čνcϕ(x) =

N∑
k=1

ϕ+
bkc.

(
k

min
i=1

xbic −
k−1
min
i=1

xbic

)
+

N∑
k=1

ϕ−dke.
(

k
max
i=1

xdie −
k−1
max
i=1

xdie

)
,

(9)

with min0
i=1 xbic = 0 = max0

i=1 xdie.

Proof. Proving Proposition 5.2 is straighforward by considering the equality:
Čνcϕ(x) = −Čνϕ(−x) and the fact that sorting x in ascending order is equivalent
to sorting −x in descending order.

Proposition 5.3. ∀k ∈ {1, ..., N}, let be l the index such that blc = k and u
the index such that due = k, then:

δAν(x,ϕ)

δϕk
=
(

l
max
i=1

xbic −
l−1

max
i=1

xbic

)
+

(
u

min
i=1

xdie −
u−1
min
i=1

xdie

)
,

and

δAν(x,ϕ)

δϕk
=

(
l

min
i=1

xbic −
l−1
min
i=1

xbic

)
+
(

u
max
i=1

xdie −
u−1
max
i=1

xdie

)
.

with min0
i=1 xbic = 0 = max0

i=1 xdie.
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Proof. First remember that ∀k ∈ Ω, ϕ+
k = max(ϕk, 0) and ϕ−k = min(ϕk, 0) and

thus ϕk = ϕ+
k + ϕ−k and δϕk = δϕ+

k + δϕ−k . Therefore,

δAν(x,ϕ)

δϕk
=
δAν(x,ϕ)

δϕ+
k

.
δϕ+

k

δϕk
+
δAν(x,ϕ)

δϕ−k
.
δϕ−k
δϕk

,

δAν(x,ϕ)

δϕk
=
δAν(x,ϕ)

δϕ+
k

.
δϕ+

k

δϕk
+
δAν(x,ϕ)

δϕ−k
.
δϕ−k
δϕk

.

Considering δϕk
δϕ+
k

=
δϕ+
k

δϕ+
k

+
δϕ−k
δϕ+
k

= 1 as well as δϕk
δϕ−k

=
δϕ+
k

δϕ−k
+

δϕ−k
δϕ−k

= 1, thus:

δAν(x,ϕ)

δϕk
=
δAν(x,ϕ)

δϕ+
k

+
δAν(x,ϕ)

δϕ−k
and

δAν(x,ϕ)

δϕk
=
δAν(x,ϕ)

δϕ+
k

+
δAν(x,ϕ)

δϕ−k
.

Now, proving Proposition 5.3 is straighforward by differentiating Equations (8)
and (9) w.r.t. ϕ+

k and ϕ−k .

Let δy ∈ RN be the gradient of y w.r.t. ϕ and δy ∈ RN be the gradient of y

w.r.t. ϕ: ∀k ∈ Ω, δy
k

=
δAν(x,ϕ)
δϕk

and δyk = δAν(x,ϕ)
δϕk

, computing the derivatives

of both Aν(x,ϕ) and Aν(x,ϕ) can easily be achieved using Algorithm 1.

6. Experiments

The experiment we describe, in the image processing context, aims to high-
light the properties of both the macsum aggregation operator and our proposed
learning process.

Most image processing techniques suppose that the point spread function
(PSF) of each sensor that composes a camera retina (also called physical pixels)
is space translation invariant. Hence, each element of the retina is supposed to
similarly measure the amount of light that irradiates it. However, this transla-
tion invariance is usually only approximate. By construction, the PSF of each
pixel can have fluctuations [20], i.e. the way each retina element integrates the
irradiance can vary. This variation is usually unnoticeable to the user since prior
retina calibration avoids fluctuation of the measured intensities (by moving the
camera, the variation cannot be perceived). However, this can have highly im-
pact the deconvolution or image reconstruction (super-resolution, tomography,
etc.) processes [4, 27]. In addition, lenses often cause unintended and unde-
sired vignetting effects whereby the image is sharper at the center than on the
edges. This phenomenon can be characterized by a pixel PSF whose specificity
decreases with the distance to the center of the image. This is very notice-
able in plenoptic or omnidirectional imaging and optical microscopy. Figure (1)
presents an example of such a phenomenon.
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Algorithm 1: Computation of δy, δy

Input: x = {xi}i=1...N , ϕ = {ϕi}i=1...N

Output: δy, δy

set ι = {1, . . . , N};
sort (ϕ, ι) w.r.t. ϕ in increasing order ;
x1 = xι1 , x1 = xι1 ;
for k = 2 . . . N do

xk = min(xk−1, xιk) ;
xk = max(xk−1, xιk) ;

for k = 1 . . . N do
δy
ιk

= xk ;

δyιk = xk ;

for k = 2 . . . N do
δy
ιk

= δy
ιk
− xk−1 ;

δyιk = δyιk − xk−1 ;

reverse the order of the elements of ι ;
x1 = xι1 , x1 = xι1 ;
for k = 2 . . . N do

xk = min(xk−1, xιk) ;
xk = max(xk−1, xιk) ;

for k = 1 . . . N do
δy
ιk

= δy
ιk

+ xk ;

δyιk = δyιk + xk ;

for k = 2 . . . N do
δy
ιk

= δy
ιk
− xk−1 ;

δyιk = δyιk − xk−1 ;

Figure 1: Image acquired by a non-shift invariant sensor.
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Figure 2: Four out of the 2000 images used for this experiment.

downsampled
pixel

Figure 3: Downsampling the 3rd image of Figure (2)

This experiment aims to mimick a vignetting effect. We used 1000 600×600
natural images sourced from the CLEF3 project (see Figure (2)). Each of the
1000 images was downsampled 7-fold, i.e. a 85× 85 image was associated with
each 600 × 600 imag (see Figure (5)). The value of each pixel of the 85 × 85
image is obtained by aggregating a 7 × 7 patch of the 600 × 600 image. This
aggregation is performed by convolution with a 7 × 7 kernel that is supposed
to be the PSF of the pixel under consideration (see Figure (3)). The specificity
of the PSF associated with each pixel of the 85 × 85 image decreases with the
distance of the pixel to the center of the image. Figure (4) plots the two extreme
values of the downsampling kernel: Figure (4).a the PSF used for central values,
Figure (4).b the PSF used for border values.

In compliance with the theory we promote, every PSF is signed (i.e. has
positive and negative values) and integrated to 1.9.

3https://www.imageclef.org/
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a) b)

Figure 4: PSF used for image downsampling: central (a) and border (b).

Figure 5: Images depicted in Figure (2) after downsampling

In this experiment, we propose to learn the kernel associated with down-
sampling within both additive and macsum aggregation modeling. Downsam-
pling with the additive model consists of computing the mean of each patch of
the original image weighted by a kernel ψ (referred to here as precise down-
sampling). Downsampling with the macsum model consists of computing the
interval-valued aggregation of each patch of the original image weighted by a
kernel ϕ (referred to here as imprecise downsampling).

We use 30 randomly chosen images to learn the kernel and the 970 remaining
images to characterize the result. The idea is to evaluate the extent to which
this imprecise model is able to predict the closeness of the model to the truth
as well as how the learning process is able to come up with a kernel that, when
associated with the macsum operator, is able to represent the set of kernels used
to downsample the original images.

We arbitrarily performed 1000 iterations of the learning algorithm for both
models (additive and macsum). Let ψ̂ be the additive and ϕ̂ be the macsum
kernel obtained by the learning algorithms (see Figure (6)). Let {Ik}k=1...1000

be the set of the 1000 600 × 600 original images, {Fk}k=1...1000 be the set of
the 1000 85 × 85 downsampled images, {F̂k}k=1...1000 be the set of the images

obtained by downsampling the Ik with ψ̂ and {[F k, F k]}k=1...1000 be the interval
valued images obtained by using the macsum downsampling with the kernel ϕ̂.

To evaluate the closeness of the kth predicted precise downsampled image
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F̂k to the true downsampled image Fk, we use the mean L1 distance, over the
970 test images, as defined by:
L1(F̂k, Fk) = 1

7225

∑85
i=1

∑85
j=1 |F̂k(i, j)− Fk(i, j)|.

To evaluate the closeness of the kth predicted imprecise downsampled image
[F k, F k] to the true downsampled image Fk, we use the mean, over the 970 test
images, of four extensions of the L1 distance:

• the Hausdorff extension defined by: LH1 ([F k, F k], Fk) = supG∈[Fk,Fk] L1(G,Fk),

• the natural extension defined by: LN1 ([F k, F k], Fk) = infG∈[Fk,Fk] L1(G,Fk),

• the mean distance to the center defined by:
LC1 ([F k, F k], Fk) = L1( 1

2 (F k + F k), Fk),

• and the Saulnier extension proposed in [29] denoted LS1 ([F k, F k], Fk).

The Saulnier extension can be expressed as:

LS1 ([F k, F k], Fk) =
1

72252

85∑
i=1

85∑
j=1

85∑
i′=1

85∑
j′=1

|F̃k(i, j)−Fk(i, j)|−∆Fk(i, j)+∆Fk(i′, j′),

with F̃k(i, j) = 1
2 .
(
F k(i, j) + F k(i, j)

)
and ∆Fk(i, j) = 1

2 .
(
F k(i, j)− F k(i, j)

)
.

The purpose of this distance is to integrate, in a single value, both the distance
of a precise vector to the center of the interval-valued vector (like the mean
distance to the center) as well as the predictive power of the interval width, i.e.
the correlation between the distance to the center of the interval and the width
of the interval.

Those distances and extensions can be used to characterize the convergence
of the learning algorithms. As can be seen in Figure (7), in both experiments
(precise and imprecise learning) the convergence seems very fast (< 30 iterations
for the additive and macsum learning). We can also consider the convergence
of the macsum learning through the extended distances – Hausdorff, Saulnier
and natural extensions – (see Figure (8)). In that case, the convergence is
instead obtained after around 150 iterations. How fast the algorithms converge
naturally depends on the images used for the learning process. It was never
more than 60 iterations in the multiple trials we performed, where the learning
image dataset was modified.

Here it is of particular interest to assess the ability of the learned macsum
aggregation to predict its own output error.

First question: Does kernel ϕ̂ dominate all the kernels used to downsam-
ple the image?. To answer this question, we used a MonteCarlo process that
consists of randomly selecting one kernel ψ among those used for the downsam-
pling and one 7 × 7 set A and testing whether λψ(A) ∈ [νcϕ̂(A), νϕ̂(A)] or not.
We performed this procedure 100000 times and 100% of the tests were positive.
This rate also equals 100% if we consider the learned additive kernel ψ̂ (i.e.
test whether λψ̂(A) ∈ [νcϕ̂(A), νϕ̂(A)] or not) when repeating the additive and
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a) b)

Figure 6: After the learning process, the kernel ψ̂ (a) and the kernel ϕ̂ (b)
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Figure 7: Convergence of the additive learning (a) and the macsum learning (b) processes
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Figure 8: Convergence of the macsum learning process through extended distances

22



0 50 100 150 200 250

0

50

100

150

200

250

mean spread

m
ea

n
 d

is
ta

n
ce

 t
o

 t
h

e 
ce

n
te

r

Figure 9: Correlation between the mean spread and the mean distance to the center

macsum learning processes 300 times.

Second question: Are the downsampled images Fk included in the imprecise
images [F k, F k]?. To answer this question, we counted the number of pixels
(i, j) of each test image, such that Fk(i, j) ∈ [F k(i, j), F k(i, j)]. We obtained a
rate of 91% of pixels of the downsampled images that were in the range of the
predicted imprecise values of the corresponding downsampled image.

Third question: Is the imprecision of the imprecise predicted downsampled
image a marker of the ability of the macsum operator associated wit the learned
kernel ϕ̂ to correctly predict the output?. To answer this third question, we
computed, for each of the 1970 test images, the mean distance to the cen-
ter: εk = LC1 ([F k, F k], Fk) and the mean spread of the interval-valued image

δk = 1
7225

∑85
i=1

∑85
j=1

1
2 (F k(i, j)−F k(i, j)). As can be noted in Figure (9), those

two values are highly correlated. The Pearson correlation coefficient between ε
and δ is 0.98. The Pearson correlation coefficient between δ and all the other
distances ranges from 0.98 to 0.99. This is also illustrated in Figure (10) where
there is clearly a high resemblance between the image of the mean spread in
Figure (10)(a) and the image of the distance to the center in Figure (10)(b). The
error quantification ability shown in [24] with maxitive-kernel operator based
aggregation seems to apply to the macsum operator based aggregation.

Finally, it would be of interest to determine the closeness of the predicted
downsampled images to the true downsampled images. When considering the
precise downsampling by using λψ̂ as the aggregation operator, the mean L1

distance computed on all the test images is 41.6. When considering the imprecise
downsampling by using νϕ̂ as the aggregation operator, the mean LH1 value is
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a) b)

Figure 10: Image of the spread (a) and the distance to the center (b) for the 2nd image of
Figure (5)

183.7, the mean LS1 is 77.4, the mean LC1 is 46.2 and the mean LN1 is 2.4.

7. Conclusion

Linear regression is a fairly convenient method to use to learn parameters
of an aggregation function when the system under consideration is consistent.
When this consistency is not satisfied, e.g. because of translation invariance,
it could be interesting to replace an aggregation based on a function by an
aggregation based on a coherent set of functions. Here we proposed to represent
a system by an aggregation function based on the macsum operator and to
perform a linear regression in order to find the optimal parameter vector in
the sense of a quadratic distance. This technique aims at learning the model
of an approximately linear system whose gain is known to be invariant but
whose behavior varies by translation (temporal, spatial, etc). The experiment
proposed in Section 6 illustrates the validity of such an approach in this context.

This is very preliminary work. Indeed, very few authors have proposed to
learn an aggregation relation that uses a Choquet integral, and even fewer if we
consider non-monotonic and non-normalized set functions.

A follow-up of this work could lead to multiple possible tracks, some being
applicative – finding areas in which the macsum aggregation function could be
used – others theoretical – determining wether, as in the linear case, the knowl-
edge of the kernel representing a system shed greater light on the functioning
of the system. Our regression approach is based on a simple quadratic distance
between the bounds of the predicted interval and the value of the output of
the learning base. It could be interesting to minimize a distance more in line
with the nature of the problem, i.e. an extension of the quadratic distance or
of the L1 distance, such as the Saulnier extension. It could also be relevant to
consider the imprecision of the measurements of both inputs and outputs of a
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real system by using a pseudo-distance between intervals, for the learning pro-
cess, and a macsum model whose input vector would be intervallistic. Finally,
it would be interesting to see if it would not be advantageous to consider other
set functions or other integrals such as generalized forms of the Choquet [36] or
Sugeno integrals [9].
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similarity filtering. Phd thesis, École normale supérieure de Cachan, March
2013.

[5] P. Diamond. Fuzzy least squares. Information Sciences, 46(3):141–157,
1988.

[6] P. Diamond and H. Tanaka. Fuzzy regression analysis, pages 349–387.
Springer US, Boston, MA, 1998.
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