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Abstract

Many applications in fields as diverse as chemistry, mechanics, medicine, eco-
nomics, robotics, environment, ecology, meteorology, etc. are based on the no-
tion of system modeling. A system is a real process associating in a deterministic
way an output value to one or more input values. A model is a mathematical
object that allows the analysis of real phenomena and the prediction of results
at a given level of approximation. One of the difficulties of modeling is the
choice of the model and how to measure, predict or control the level of approx-
imation. The linear model, where the output is obtained by a weighted sum of
the inputs, is a simple model, based on a reduced number of parameters, but
describing the functioning of a system in a very approximate way, without the
level of approximation being known. Non-linear models are much more specific
but much more difficult to use, the level of approximation being even more dif-
ficult to measure. What we propose in this article is an imprecise linear model,
so the simplicity of representation and use is quite comparable to that of a lin-
ear model. This model is imprecise in the sense that the output is imprecise,
although the inputs are precise, thus potentially reflecting the inadequacy of a
linear model to represent the behavior of the system: the more imprecise the
output, the less likely a single linear model is to correctly describe the system.
This imprecise linear model can be seen as a convex set of conventional linear
models, the imprecise output of this model being the convex set of outputs that
would have been obtained by each linear model individually. This modeling is
based on non-monotonic real-valued concave set measures.

Key words: Imprecise linear system, Choquet integral, non-additive
aggregation, non-monotonic set functions

1. Introduction

Linear relationships between entities occupy a prominent place in a plethora
of subjects, as diverse as chemistry, mechanics, medicine, economics, robotics,
environment, ecology, meteorology, etc. Whether it is expressing the voltage as

Email addresses: Olivier.Strauss@lirmm.fr (Olivier Strauss),
Agnes.Rico@univ-lyon1.fr (Agnès Rico), Yassine.Hmidy@lirmm.fr (Yassine Hmidy)

Preprint submitted to Elsevier November 2, 2022



a function of the current in an electronic circuit [2] or the budget constraint of
a homo-economicus in a model of microeconomics [8], these questions require
knowledge of a precise proportionality relating the evolution of one variable
to another. Modeling a system, whether it is mechanical, economic, robotic,
chemical, biological, medical, etc., makes it possible to predict how this system
will behave when knowing the system inputs. For example, in medicine, this
allows for diagnostic assistance [18], in mechanics to predict the performance of
an assembly and thus optimize the manufacturing of objects [20], in chemistry
to develop new products without real tests thanks to simulation techniques
[6], in econometrics to improve predictive models [10], etc. In many of these
domains, linear models have a preponderant place because of their simplicity of
implementation, their efficiency and their predictive power. This prominence of
linear models has increased with the popularization of computers.

A linear model can be seen as a linear aggregation operation involving a set
of weights, the output of the model being a weighted sum of the inputs, the
weights being symptomatic of the system that we want to describe. In the field
of systems and signal processing, this set of weights is called a convolution kernel
or impulse response. One of the difficulties is to choose the weights that best
represent the system that we want to model. Several methods exist under the
generic term of linear regression, potentially including a prior information on the
input-output relations of the system and the ability of the model to describe the
system. This fitness is usually characterized by the distance between the output
predicted by the model and the actual output of the system on a benchmark
data-set used to identify (or learn) the system.

Of course, a linear model is only an approximation of the system behavior
to be described, linearity being rare in our world. Using a linear model means
to use an approximation of the real system that we want to control, predict,
... One of the problems we are often confronted with is that, although we are
aware that the linear model is an approximation of a real system, it is often
not easy to know how close the output predicted by the system is to the real
output. The identification of the weights characterizing the linear system is
usually based on an optimality criterion (a quadratic distance for example) but
nothing really allows to characterize the adequacy of this model to the real
system: no robust method is available to make use of this distance to predict
how close is the output of the model to the output of the system. However, there
are so called sensitivity analysis methods [21, 43] which allow estimation of the
influence of a variation of one of the system inputs on its output. Nevertheless,
this type of approach is beyond the scope of this article. More complex models
are proposed (non-linear models for example) which are less easy to use: a slight
gain in accuracy is generally made at the cost of a lesser simplicity of use of the
model.

Several approaches are proposed in the literature to describe a system in an
approximate way. Some authors focus on dealing with parametric models whose
imprecise parameters are specified by numerical intervals. On a theoretical level,
for example, Shary [41] proposes to consider solving ill-conditioned systems of
linear algebraic equations by intervalizing the parameters of the sought after
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system. They mention in a very relevant way the ambivalence of the mean-
ing of an interval in this context, which is known in the fuzzy literature under
the name of epistemic and ontic interpretation of the intervals [9]. On a more
applied level, Rinner and Weiss [39] propose using this interval-valued represen-
tation to deal with incomplete knowledge about a system to be supervised. In
[3], Boukezzoula et al. propose to refine this imprecise representation by using a
gradual number-based representation of the parameters. They propose different
regression methods for identifying this sophisticate representation [4]. In a com-
pletely different manner, in [24], Jaulin et al. propose to approximate a function
by an interval-based decomposition of the domain of the function to be approx-
imated. This representation leads to very interesting tools for approximately
represent imprecise non-linear input-output systems [25] with applications to
robotics [23]. In a recent article [5], an attempt to fuse the two previous ap-
proaches is proposed. In the field of decision theory, it has been proposed to
approximate a system using imprecision on the model itself. Walley [48] first
and then many other authors in multi-criteria decision making [7, 27, 49, 40]
or random sets approximation [17] have proposed the imprecise probability the-
ory to represent the fact that the probabilistic model is poorly known, it could
not be summarized by a distribution of weights. They propose to move to a
more complex model inducing an imprecision on the prediction generated by
the model. This can be applied in many fields such as artificial intelligence [26].
However, most of the work carried out to date to represent both a model and its
approximate power leads to complex representations that are not easy to use.

In recent work, Loquin et al, inspired by a particular case of imprecise prob-
ability theory, possibility measures, have proposed an imprecise model of a con-
volution kernel under the name of maxitive kernel [28]. A maxitive kernel can
be seen as a convex set of convolution kernels. The extension of the aggregation
operation (also called convolution) proposed by Loquin et al. allows to compute
the (convex) set of outputs that would have been obtained using this convex set
of convolution kernels [38]. One of the main advantages of this representation is
that its complexity is low enough to be comparable with that of classical linear
models. A disadvantage of this representation is that it only allows to represent
linear systems whose kernel is positive and normalized, i.e. linear systems whose
weights are positive and sum to one.

What we propose in this paper is to extend the work of Loquin et al. to
any convolution kernel, thus to any linear system. We end up with what we
call the macsum representation of a system, which can be interpreted as an
imprecise linear representation of a system whose imprecision can be predicted
and partially controlled.

After this introductory section, the article is organized as follows. Section
2 recalls settings we consider as well as few preliminary considerations and
notations. Section 3 presents the macsum operator as a signed generalization
of the maxitive operator. Section 4 shows how this operator can be used to
represent a convex set of linear operators, thus leading to an interval-valued
aggregation. In section 5, we propose an index of cardinality of this convex
set. A very simple algorithm is proposed in Section 6 for computing a macsum-
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based aggregation. Section 7 proposes an experiment that illustrates, through
a practical application, the properties described in the previous parts of the
article.We finally conclude in Section 8.

2. Theoretical background

2.1. Notations

• Ω = {1, . . . , N} ⊂ N.

• x : Ω→ R, is a function defined by a discrete subset of RN :
x = (x1, · · · , xN ) ∈ RN .

• d.e is the permutation that sorts the xi’s in increasing order:
xd1e ≤ xd2e ≤ · · · ≤ xdNe.

• b.c is the permutation that sorts the xi’s in decreasing order:
xb1c ≥ xb2c ≥ · · · ≥ xbNc.

• Adie (i ∈ Ω) is the coalition of Ω defined by Adie = {die, . . . , dNe}.

• Abic (i ∈ Ω) is the coalition of Ω defined by Abic = {bic, . . . , bNc}

2.2. Kernels and capacities

The aim of this section is to define the fundamental notions that will be
used throughout this article.

• A kernel of Ω is a discrete function ϕ : Ω→ R defined by ϕ = (ϕ1, · · · , ϕN ).

• The set of kernels of Ω is denoted K(Ω) ≡ RN .

• A set function is a function ϑ : 2Ω → R that associates a real value to any
subset of Ω.

• A set function ϑ of Ω is said to be concave or supermodular
if ∀A,B ⊆ Ω, ϑ(A ∪B) + ϑ(A ∩B) ≥ ϑ(A) + ϑ(B).

• A set function ϑ of Ω is said to be convex or submodular
if ∀A,B ⊆ Ω, ϑ(A ∪B) + ϑ(A ∩B) ≤ ϑ(A) + ϑ(B).

• A set function ϑ of Ω is said to be additive if ∀A,B ⊆ Ω,
ϑ(A ∪B) + ϑ(A ∩B) = ϑ(A) + ϑ(B).

• To a set function ϑ of Ω can be associated a complementary set function ϑc

defined by ∀A ⊆ Ω, ϑc(A) = ϑ(Ω) − ϑ(Ac), Ac being the complementary
set of A in Ω.

• If a set function ϑ is concave (rsp. convex) then ϑc is convex (rsp. con-
cave).
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• A capacity is a normalized increasing set function υ : 2Ω → R+ with
υ(∅) = 0. Normalized means υ(Ω) = 1 and increasing means that ∀A ⊆
B ⊆ Ω, υ(A) ≤ υ(B). To a capacity υ is associated its complementary
capacity υc: ∀A ∈ Ω, υc(A) = 1− υ(Ac).

• A maxitive kernel of Ω is a discrete function π : Ω → [0, 1] defined by
π = (π1, · · · , πN ) ∈ [0, 1]N such that maxi∈Ω πi = 1.

• The set of maxitive kernels of Ω is denoted Km(Ω) ⊆ K(Ω).

• To a maxitive kernel can be associated a capacity Ππ defined by ∀A ⊆ Ω
Ππ(A) = maxi∈A πi. This function is called a possibility measure when
π is interpreted as a possibility distribution [13]. Its complementary set
function Πc

π(A) = 1 − Ππ(Ac) = 1 − maxi∈Ac πi is called a necessity
measure in the context of confidence measures (possibility theory).

• A summative kernel of Ω is a discrete function ρ : Ω → (R)+ defined
by ρ = (ρ1, · · · , ρN ) ∈ (RN)+ such that

∑
i∈Ω ρi = 1.

• The set of summative kernels of Ω is denoted Ks(Ω) ⊆ K(Ω).

• To a summative kernel can be associated an additive set function Pρ de-
fined by ∀A ⊆ Ω, Pρ(A) =

∑
i∈A ρi. Pρ is called a probability measure

in the context of confidence measure. The complementary set function P cρ
of Pρ is Pρ itself since
P cρ (A) = Pρ(Ω)− Pρ(Ac) =

∑
i∈Ω ρi −

∑
i∈Ac ρi =

∑
i∈A ρi.

• This can be generalized to any kernel: let ϕ = (ϕ1, · · · , ϕN ) be an un-
normalized (

∑
i∈Ω ϕi 6= 1) or signed (i.e. ∃i, j ∈ Ω such that ϕi.ϕj < 0)

kernel. The additive set function associated to ϕ is Pϕ(A) =
∑
i∈A ϕi.

• A maxitive kernel π ∈ Km(Ω) is said to dominate a summative kernel
ρ ∈ Ks(Ω) if ∀A ⊆ Ω, Ππ(A) ≥ Pρ(A). [12]

• The set of summative kernels dominated by a maxitive kernel π, denoted
as M(π), is defined by:
M(π) = {ρ ∈ Ks(Ω) : ∀A ⊆ Ω Πc

π(A) ≤ Pρ(A) ≤ Ππ(A)}. This definition
refers to the core of a capacity. The core of a capacity υ denoted asM(υ) is
the set of probability measures that it dominates. When υ is concave, this
can be written M(υ) = {P ∈ P(Ω) : ∀A ⊆ Ω, υc(A) ≤ P (A) ≤ υ(A)},
where P(Ω) is the set of probability measures defined on Ω.

2.3. Choquet-based aggregation

The Choquet integral is a way to aggregate real values with respect to a
capacity. The basic Choquet integral has been defined to extend the notion of
expectation to non-additive confidence measures (also called capacity) [11].

Let x ∈ RN . The literature generally reports two ways for computing the
discrete Choquet integral of x with respect to the capacity υ: y = Cυ(x) [33].
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y = Cυ(x) =

N∑
k=1

xdke.(υ(Adke)− υ(Adk+1e)),with AdN+1e = ∅. (1)

y = Cυ(x) =

N∑
k=1

(xdke − xdk−1e).υ(Adke),with xd0e = 0. (2)

Those formulas need the values of x to be positive. The asymmetric Choquet
integral, denoted Čυ(x), has been defined to generalize the Choquet integral
for signed real values: Čυ(x) = Cυ(x+) − Cυc(x−), with x+ = max(x, 0) and
x− = max(−x, 0).

Proposition 2.1. (see [34] corollary C4, p. 381) Equations (1) and (2) can be
used to compute the asymetric Choquet integral.

The Choquet integral with respect to υc, the conjugate operator of υ, can
be computed easily by remembering that Čυc(x) = −Čυ(−x).

2.4. Recent advances in non-monotonic set functions and integrals

Choquet capacities are increasing and normalized, i.e. monotonic. Choquet
integral has been defined to extend expectation to non-additive confidence mea-
sures. However, as shown by the seminal work of Murofushi et al. [46], except
when set functions have to be interpreted as confidence measures, monotonicity
is inessential. A non-monotonic set function (also called fuzzy measure) is a
function µ : 2Ω → R such that µ(∅) = 0.

Several work, including [16, 33, 47, 36] proposed to extend Choquet integral
to non-monotonic set functions. In particular, in [47], Waegenære and Wakker
shown that Expressions (1) and (2) can be used to compute the Choquet integral
w.r.t. a non-monotonic set function. Among the properties mentioned in [46]
we have that the non-monotonic Choquet integral is homogeneous positive that
is to say Čµ(λ.x) = λ.Čµ(x) with λ ≥ 0. Moreover Čµ is comonotically additive,
which means that if f and g are two comonotonic measurable functions, we have
Čµ(f + g) = Čµ(f) + Čµ(g).

2.5. Representing a convex set of linear aggregations by a maxitive aggregation

A linear aggregation, also called a weighted mean, is a function that as-
sociates to each vector x ∈ RN a real value y computed as: y = Eρ(x) =∑
k∈Ω ρk.xk, where ρ ∈ Ks(Ω) is a summative kernel of Ω. When ρ is inter-

preted as a probability distribution, then the value y is called the expectation
of x. Let Pρ be the additive set function associated to ρ, then Eρ(x) = ČPρ(x).

In [29], Loquin et al. propose a new aggregation, under the name of max-
itive expectation, denoted Eπ, where π ∈ Km(Ω) is a maxitive kernel of Ω.
The goal of this representation is to deal with the idea that the appropriate
summative kernel to be used to aggregate the information of x is imprecisely
known. Contrarily to the linear aggregation, Eπ leads to an imprecise expecta-
tion Eπ(x) = [y, y] = [ČΠcπ

(x), ČΠπ (x)]. It has been shown in [32] Theorem 1
that:
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Proposition 2.2. ∀π ∈ Km(Ω), ρ ∈M(π)⇔ ∀x ∈ RN ,Eρ(x) ∈ Eπ(x).

Therefore, the maxitive aggregation Eπ(x) of x w.r.t. the maxitive kernel
π can be seen as the convex set of all additive aggregations Eρ(x) of x w.r.t.
a summative kernel ρ ∈ M(π). This has many potential applications in signal
processing [31], image processing [30, 14, 15], statistics [28], etc.

However, in most domains except statistics, the fact that this modeling can
only represent convex sets of weighted sums w.r.t. a summative kernel can be
perceived as very restrictive. For example, in signal processing, high-pass filters
cannot be represented by using a summative kernel based aggregation since
the weights are signed. The same acts, in image processing, with interpolation
operations, since, except for the nearest neighbor and linear interpolations, most
interpolation kernels are signed [44].

To circumvent this problem, in [45] Rico and Strauss have proposed a signed
extension to the concept of maxitive kernels. This method is based on consid-
ering separately the positive and negative part of a summative kernel. A signed
maxitive kernel can be seen as a pair of two maxitive kernels (π+, π−), one rep-
resenting a convex set of positive parts and the other one a convex set of negative
parts of summative kernels. To a maxitive kernel is associated a particular non-
monotonic set function µπ+,π− that is still normalized (i.e. µπ+,π−(Ω) = 1) but
that is not increasing w.r.t. union in Ω. Aggregating x w.r.t. µπ+,π− requires
the use of an extension of the Choquet integral as proposed in [47]. This ex-
tension is relevant in the context of signal processing but insufficient to deal
with any application since only kernels summing to one can be represented. For
example, in image processing, kernels summing to 0 are used to estimate the
gradient of an image, which is one of the fundamental building blocks in image
processing. The gradient of an image can be used for edge detection, interest
points localization, image editing, seamless image stitching, etc.

What we propose in this article is a new way for representing a convex set
of linear kernel-based aggregations that can work with any kind of kernels.

3. Generalizing the maxitive domination

In this section, we propose to extend the work of Loquin et al. to any
kernel-based linear application.

We define an operator as being a concave kernel-based set function µϕ :
2Ω → R, with ϕ ∈ K(Ω) (µϕ(∅) = 0) where, ∀A ⊆ Ω, the value of µϕ(A) only
depends on the N values of the kernel ϕ. As for capacities, we can associate
to µϕ a complementary operator µcϕ: µcϕ(A) = µϕ(Ω) − µϕ(Ac), Ac being the
complementary set of A in Ω [33].

The additive set function presented in Section 2.2 is a good example of an
operator: a set function Pϕ defined by: ∀A ⊆ Ω, Pϕ(A) =

∑
k∈A ϕk can be

defined for any kernel ϕ ∈ K(Ω). Moreover, because P is additive, we have
P cϕ = Pϕ.

The maxitive set function proposed in [29] does not comply with our defini-
tion of an operator since it is only defined for maxitive kernels.
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3.1. The macsum operator

What we propose here is an extension of the work of [45] i.e. define a new
set function that can be associated to any kernel of ϕ ∈ K(Ω). The aim of
this extension is to represent a convex set of kernels to account for imprecise
knowledge in a linear aggregation. The extension we propose under the name
of macsum operator is an operator denoted ν that associated to any kernel
ϕ ∈ K(Ω) a set function νϕ as follows:

∀A ⊆ Ω, νϕ(A) = max
i∈A

ϕ+
i + min

i∈Ω
ϕ−i − min

i∈Ac
ϕ−i , (3)

where Ac is the complementary set of A in Ω, ϕ+ = max(0, ϕ)
and ϕ− = min(0, ϕ).

As the max operator is an increasing set function while the min operator is
a decreasing set function, we propose the following definition:

Definition 3.1. The max over the empty set of a positive function is equal to
0: maxi∈∅ ϕ

+
i = 0 and the min over the empty set of a negative function is

equal to 0: mini∈∅ ϕ
−
i = 0.

This definition is in compliance with : ∀A ⊆ B ⊆ Ω,
maxi∈∅ ϕ

+
i ≤ maxi∈A ϕ

+
i ≤ maxi∈B ϕ

+
i and mini∈B ϕ

−
i ≤ mini∈A ϕ

−
i ≤ mini∈∅ ϕ

−
i

since – in line with the standard axiomatic set theory – the empty set is a subset
of every subset of Ω. It is also in line with the usual convention, whereby the
sup (resp. inf) over an empty family is the smallest (resp. largest) element,
when ϕ is a signed kernel (i.e. ∃i, j ∈ Ω / ϕi ≤ 0 and ϕj ≥ 0).

As a consequence: νϕ(Ω) = maxi∈Ω ϕ
+
i + mini∈Ω ϕ

−
i = α+ α,

with α = maxi∈Ω ϕ
+
i and α = mini∈Ω ϕ

−
i .

The complementary set function of νϕ, denoted νcϕ, is given by:

∀A ⊆ Ω, νcϕ(A) = min
i∈A

ϕ−i + α−max
i∈Ac

ϕ+
i . (4)

This simply comes from the definition of a complementary set function:

νcϕ(A) = νϕ(Ω)− νϕ(Ac) = α+ α−
(

max
i∈Ac

ϕ+
i −min

i∈A
ϕ−i + α

)
= min

i∈A
ϕ−i + α−max

i∈Ac
ϕ+
i = min

i∈A
ϕ−i + min

i∈Ac

(
α− ϕ+

i

)
.

Thus νϕ(Ω) = νcϕ(Ω) = α+ α.

Moreover, νϕ(∅) = maxi∈∅ ϕ
+
i + mini∈Ω ϕ

−
i −mini∈Ω ϕ

−
i = 0

and νcϕ(∅) = mini∈∅ ϕ
−
i + maxi∈Ω ϕ

+
i −mini∈Ω ϕ

+
i = 0.

The term macsum comes from the fact that νϕ can be expressed as a
sum of two maxitive set functions: νϕ(A) = maxi∈A ϕ

+
i + α − mini∈Ac ϕ

−
i =

maxi∈A ϕ
+
i + maxi∈Ac

(
α− ϕ−i

)
.
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Lemma 3.1. ∀A,B ⊆ Ω, maxi∈A∪B ϕi+maxi∈A∩B ϕi ≤ maxi∈A ϕi+maxi∈B ϕi.

Proof. Let τ = maxi∈A∪B ϕi + maxi∈A∩B ϕi −maxi∈A ϕi −maxi∈B ϕi.
Let us prove τ ≤ 0.
Let a = maxi∈A ϕi, b = maxi∈B ϕi and c = maxi∈A∩B ϕi.
By construction maxi∈A∪B ϕi = max(a, b) and c ≤ a, b.
We can consider without any loss of generality that a ≤ b, therefore maxi∈A∪B ϕi =
b. Thus c ≤ a ≤ b which implies τ = b+ c− a− b = c− a ≤ 0. �

Lemma 3.2. ∀A,B ⊆ Ω, mini∈A∪B ϕi+mini∈A∩B ϕi ≥ mini∈A ϕi+mini∈B ϕi.

Proof. Let τ = mini∈A∪B ϕi + mini∈A∩B ϕi −mini∈A ϕi −mini∈B ϕi
Let us prove τ ≥ 0.
Let a = mini∈A ϕi, b = mini∈B ϕi and c = mini∈A∩B ϕi.
By construction mini∈A∪B ϕi = min(a, b) and a, b ≤ c.
We can consider without any loss of generality that a ≤ b, therefore mini∈A∪B ϕi =
a. Thus a ≤ b ≤ c, then τ = a+ c− a− b = c− b ≥ 0. �

Proposition 3.3. νϕ is concave and thus νcϕ is convex.

Proof. The proof is trivial considering Lemmas 3.1 and 3.2. Let A,B ⊆ Ω.
Let τ = νϕ(A ∪B) + νϕ(A ∩B)− νϕ(A) + νϕ(B).
τ = τ1−τ2, with τ1 = maxi∈A∪B ϕ

+
i +maxi∈A∩B ϕ

+
i −maxi∈A ϕ

+
i −maxi∈B ϕ

+
i ,

and τ2 = mini∈(A∪B)c ϕ
−
i + mini∈(A∩B)c ϕ

−
i −mini∈Ac ϕ

−
i −mini∈Bc ϕ

−
i .

τ2 = mini∈Ac∩Bc ϕ
−
i + mini∈Ac∪Bc ϕ

−
i −mini∈Ac ϕ

−
i −mini∈Bc ϕ

−
i .

Due to Lemma 3.1, τ1 ≤ 0 and due to Lemma 3.2, τ2 ≥ 0. Thus τ = τ1− τ2 ≤ 0
and therefore νϕ is concave. Proving νcϕ being convex can be done in the same
way. �

Remark 1. The macsum operator defined by Expression (3) is an extension
of the one proposed by Loquin et al. [29] since if π ∈ Km(Ω) is a maxitive
kernel, then νπ = Ππ is a maxitive aggregation fonction defined by: ∀A ⊆ Ω,
νπ(A) = Ππ(A) = maxi∈A πi.

3.2. Domination of the macsum operator over additive operators

First, let us defineM(ϕ) as being the core of a kernel ϕ ∈ K(Ω) by extending
the notion of core of a maxitive kernel proposed by Loquin et al. [29]:

M(ϕ) =
{
ψ ∈ K(Ω) / ∀A ⊆ Ω, νcϕ(A) ≤ Pψ(A) ≤ νϕ(A)

}
. (5)

Remark 2. This definition coincides with the one of [29] when ϕ is a maxitive
kernel.

Remark 3. To be inline with the work of [29], let ψ,ϕ ∈ K(Ω), if ψ ∈ M(ϕ)
we say that ϕ dominates ψ because the macsum operator based on ϕ dominates
the additive operator base on ψ. ψ belongs to the convex set represented by ϕ.
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Remark 4. Since νcϕ(Ω) = νϕ(Ω), if ψ ∈M(ϕ),
then Pψ(Ω) =

∑
i∈Ω ψi = maxi∈Ω max(0, ϕi) + mini∈Ω min(0, ϕi).

Now, two questions of instrumental interest arise, especially in the context
of signal processing:

• let ϕ ∈ K(Ω) be a kernel of Ω, is there a simple way to check whether a
kernel ψ ∈ K(Ω) belongs or not to M(ϕ)?

• let ψ ∈ K(Ω) be a kernel of Ω, is there a simple way to define a kernel
ϕ ∈ K(Ω) such that ψ ∈M(ϕ)?

In [29], Loquin et al. have used some known properties defined in the con-
text of possibility theory [13] to partially answer to those questions by defining
particular relations between maxitive and summative kernels. Let us briefly
recall some useful Lemma in this paper.

Lemma 3.4. (weak domination) Let ρ ∈ Ks(Ω) be a summative kernel of Ω,
then the maxitive kernel π̆ ∈ Km(Ω), defined by ∀i ∈ Ω, π̆i =

∑
j∈Ω min(ρi, ρj),

dominates ρ, i.e. ρ ∈M(π̆).

Lemma 3.5. (strong domination) Let ρ ∈ Ks(Ω) be a summative kernel of Ω,
then the maxitive kernel π̊ ∈ Km(Ω), defined by ∀i ∈ Ω, π̊i =

∑
j∈Ai ρj, where

Ai = {j ∈ Ω/ρj ≤ ρi}, dominates ρ i.e. ρ ∈M(̊π).

As shown in [29], π̆ is said to weaker dominate ρ than π̊ sinceM(̊π) ⊆M(π̆).

What we propose here is to use Lemma 3.4 and 3.5 to define also weak and
strong domination relations between two kernels of K(Ω).

Proposition 3.6. (general weak domination) Let ψ ∈ K(Ω) be a kernel of
Ω, then the kernel ϕ̆ ∈ K(Ω) defined by ∀i ∈ Ω, ϕ̆i =

∑
j∈Ω min(ψ+

i , ψ
+
j ) +∑

j∈Ω max(ψ−i , ψ
−
j ), where ψ+ = max(0, ψ) and ψ− = min(0, ψ) dominates ψ

i.e. ψ ∈M(ϕ̆).

Proof. Let us define α+ =
∑
i∈Ω ψ

+
i and α− =

∑
i∈Ω ψ

−
i . Let ρ+ and ρ−

be two kernels defined by: ∀i ∈ Ω, ρ+
i = ψ+

i /α
+ and ρ−i = −ψ−i /α−. By

construction ρ+ and −ρ− are summative in the sense of Loquin [29] (i.e. positive
and normalized). Thus, according to Lemma 3.4, two maxitive kernels π and τ
can be defined by:

∀i ∈ Ω, πi =
∑
j∈Ω min(ρ+

i , ρ
+
j ) and τi =

∑
j∈Ω min(−ρ−i ,−ρ

−
j ),

such that ∀A ⊆ Ω,

Ππ(A) = max
i∈A

πi ≥ Pρ+(A) =
∑
i∈A

ρ+
i and

Πτ (A) = max
i∈A

τi ≥ P(−ρ−)(A) = −Pρ−(A) = −
∑
i∈A

ρ−i .
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Let us define two kernels ϕ̆+ and ϕ̆−, such that

∀i ∈ Ω, ϕ̆+
i = α+.πi =

∑
j∈Ω

min(ψ+
i , ψ

+
j ) and

ϕ̆−i = α−.τi =
∑
j∈Ω

max(ψ−i , ψ
−
j ).

By construction ∀i ∈ Ω, ϕ̆+
i ≥ 0 and ϕ̆−i ≤ 0.

Let us define ϕ̆ = ϕ̆+ + ϕ̆−.
Let us consider the two operators ∨ and ∧ that associate two set functions

∨φ and ∧φ to each φ ∈ K(Ω) as follows:
∀A ⊆ Ω, ∨φ(A) = maxi∈A φi and ∧φ(A) = mini∈A φi.

We have, ∀A ⊆ Ω,

∨ϕ̆+ (A) = max
i∈A

ϕ̆+
i = α+ max

i∈A
πi ≥ α+.Pρ+(A) =

∑
i∈A

α+.ρ+
i = Pψ+(A) and

∧ϕ̆− (A) = min
i∈A

ϕ̆−i = α−max
i∈A

τi ≤ −α−.Pρ−(A) =
∑
i∈A
−α−.ρ−i = Pψ−(A).

Considering that ∧ϕ̆−(Ω) = mini∈Ω ϕ̆
−
i =

∑
i∈Ω ψ

−
i = α−, we also have:

∧cϕ̆−(A) = ∧ϕ̆−(Ω)− ∧ϕ̆−(Ac) ≥ Pψ−(Ω)− Pψ−(Ac) = Pψ−(A).

Now, ∀A ⊆ Ω,

νϕ̆(A) = max
i∈A

ϕ̆+
i + min

i∈Ω
ϕ̆−i − min

i∈Ac
ϕ̆−i

= ∨ϕ̆+(A) + ∧cϕ̆−(A) ≥ Pψ+(A) + Pψ−(A),

and therefore νϕ̆(A) ≥ Pψ(A). �

Proposition 3.7. (general strong domination) Let ψ ∈ K(Ω) be a kernel of Ω,
then the kernel ϕ̊ ∈ K(Ω) defined by ∀i ∈ Ω, ϕ̊i =

∑
j∈A+

i
ψ+
j +

∑
j∈A−i

ψ−j ,

where ψ+ = max(0, ψ), ψ− = min(0, ψ), A+
i =

{
j ∈ Ω / ψ+

j ≤ ψ
+
i

}
and A−i ={

j ∈ Ω / ψ−j ≥ ψ
−
i

}
dominates ψ i.e. ψ ∈M(ϕ̊).

The proof of Proposition 3.7 follows the same pattern as the proof of Propo-
sition 3.6.

Proof. As previously, we define two kernels ρ+ and ρ− by: ∀i ∈ Ω, ρ+
i = ψ+

i /α
+

and ρ−i = −ψ−i /α−, with α+ =
∑
i∈Ω ψ

+
i and α− =

∑
i∈Ω ψ

−
i . As previously,

ρ+ and −ρ− are summative kernels.
As proposed in Lemma 3.5, we can define two maxitive kernels π and τ by:

∀i ∈ Ω, πi =
∑
j∈A+

i

ρ+
j , with A+

i =
{
j ∈ Ω / ρ+

j ≤ ρ
+
i

}
=
{
j ∈ Ω / ψ+

j ≤ ψ
+
i

}
,

τi =
∑
j∈A−i

−ρ−j , with A−i =
{
j ∈ Ω / −ρ−j ≤ −ρ

−
i

}
=
{
j ∈ Ω / ψ−j ≥ ψ

−
i

}
,
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such that, ∀A ⊆ Ω,

Ππ(A) = max
i∈A

πi ≥ Pρ+(A) =
∑
i∈A

ρ+
i , and

Πτ (A) = max
i∈A

τi ≥ P−ρ−(A) = −
∑
i∈A

ρ−i .

Let us define the two kernels ϕ̊+ and ϕ̊− by:
ϕ̊+ = α+.π (i.e. ∀i ∈ Ω, ϕ̊+

i =
∑
j∈A+

i
ψ+
j ) and

ϕ̊− = −α−.τ (i.e. ∀i ∈ Ω, ϕ̊−i =
∑
j∈A−i

ψ−j ).

Let ϕ̊ = ϕ̊+ + ϕ̊−.
Let us consider the two previously defined operators ∨ and ∧ that associate

two set functions ∨φ and ∧φ to each φ ∈ K(Ω) as follows:
∀A ⊆ Ω, ∨φ(A) = maxi∈A φi and ∧φ(A) = mini∈A φi.

By construction we have, ∀A ⊆ Ω:
νϕ̊(A) = ∨ϕ̊+(A) + ∧ϕ̊−(Ω)− ∧ϕ̊−(Ac) = ∨ϕ̊+(A) + ∧cϕ̊−(A).

Following the same scheme as in the previous proof, we can deduce:
∨ϕ̊+(A) ≥ Pψ+(A) and ∧cϕ̊−(A) ≥ Pψ−(A) and thus νϕ̊(A) ≥ Pψ(A) �

Finally, we have the following property:

Proposition 3.8. ∀ϕ ∈ K(Ω), M(ϕ) is not empty.

Proof. To prove Proposition 3.8, it is enough to be able to associate to each
kernel ϕ ∈ K(Ω) a kernel ψ ∈ K(Ω) such that ψ ∈ M(ϕ). This proof is based
on constructing ψ such that ϕ strongly dominates ψ as suggested in Proposition
3.7.

If ϕ is the kernel that strongly dominates ψ then: ϕi =
∑
j∈A+

i
ψ+
j +∑

j∈A−i
ψ−j , where ψ+ = max(0, ψ), ψ− = min(0, ψ), A+

i =
{
j ∈ Ω / ψ+

j ≤ ψ
+
i

}
and A−i =

{
j ∈ Ω / ψ−j ≥ ψ

−
i

}
.

We can suppose, without any loss of generality, that ϕ is sorted in increasing
order: ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕN . Let ϕ+ = max(0, ϕ) and ϕ− = min(0, ϕ) –

i.e. ϕ = ϕ+ + ϕ−. Then, if ϕ strongly dominates ψ, ϕ+
i =

∑i
j=1 ψ

+
i and

ϕ−i =
∑N
j=i ψ

−
i .

Based on this, we can built iteratively the values of ψ+ and ψ−:

∀i ∈ {2, . . . N}, ψ+
i = ϕ+

i −
i−1∑
j=1

ψ+
j = ϕ+

i − ϕ
+
i−1, with ψ+

1 = ϕ+
1 , and

∀i ∈ {N − 1, . . . 1}, ψ−i = ϕ−i −
N∑

j=i+1

ψ−j = ϕ−i − ϕ
−
i+1, with ψ−N = ϕ−N .

This guarantees that the so-constructed ψ = ψ+ + ψ− belongs to M(ϕ) and
thus M(ϕ) 6= ∅. �
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4. Representing a convex set of linear aggregations

In this section, we define two operator-based aggregations of the function
x ∈ RN w.r.t. a kernel ϕ ∈ K(Ω): the linear aggregation denoted zϕ(x) and
the macsum aggregation denoted zϕ(x).

The linear aggregation is simply a weighted sum defined by:

zϕ(x) =
∑
i∈Ω

ϕi.xi = ČPϕ(x). (6)

The macsum aggregation is defined by:

zϕ(x) =
[
zϕ(x),zϕ(x)

]
=
[
Čνcϕ(x), Čνϕ(x)

]
. (7)

This extend the work of Loquin et al. since:

Proposition 4.1. Let ϕ ∈ K(Ω), ∀ψ ∈ M(ϕ), ∀x ∈ RN , zψ(x) ∈ zϕ(x).

Moreover, ∀y ∈ zϕ(x), ∃ψ ∈M(ϕ) such that y = zψ(x).

Proof. The fact that ∀ψ ∈ M(ϕ), ∀x ∈ RN , zψ(x) ∈ zϕ(x) is simply a refor-

mulation of the Schmeidler-Denneberg theorem [11] in a more particular case.
Indeed, whereas this theorem has been proven for any concave set function, we
here use it only for kernel-based set functions. Now lets prove that ∀y ∈ zϕ(x),

∃ψ such that y = zψ(x). We have Čνϕ(x) =
∑N
k=1 xdke.(νϕ(Adke)−νϕ(Adk+1e))

and Čνcϕ(x) =
∑N
k=1 xdke.(ν

c
ϕ(Adke)−νcϕ(Adk+1e)) as zϕ(x) =

[
zϕ(x),zϕ(x)

]
=[

Čνcϕ(x), Čνϕ(x)
]

is a convex set, and y ∈ zϕ(x) we then have y = λzϕ(x) +

(1− λ)zϕ(x) with λ ∈ [0, 1] therefore y = λČνcϕ(x) + (1− λ)Čνϕ(x) and

y = λ
∑N
k=1 xdke.(ν

c
ϕ(Adke)−νcϕ(Adk+1e))+(1−λ)

∑N
k=1 xdke.(νϕ(Adke)−νϕ(Adk+1e))

which gives that
y =

∑N
k=1 xdke.(λ((νcϕ(Adke)− νcϕ(Adk+1e)) + (1− λ)((νϕ(Adke)− νϕ(Adk+1e))).

Thus we have that ψ = {ψdke}k∈Ω is a kernel such that
ψdke = λ((νcϕ(Adke)− νcϕ(Adk+1e)) + (1− λ)((νϕ(Adke)− νϕ(Adk+1e))

and finally y =
∑N
k=1 ψdke.xdke = zψ(x) as the sum is commutative. �

Corollary. Let φ, ϕ ∈ K(Ω), such that M(ϕ) ⊆M(φ),
then ∀x ∈ RN zϕ(x) ⊆ zφ(x) since zϕ(x) = {ψ ∈M(ϕ),zψ(x)}.

Remark 5. The operator defined in Expression (3) may seem to come out of
nowhere. In fact its construction is based on an attempt to dominate a linear
operator as done in [45]. Let us consider a kernel ψ and the linear operator
Pψ. Let us consider ψ+ = max(ψ, 0) and ψ− = min(ψ, 0). A weight Pψ(A) =∑
i∈A ψi =

∑
i∈A ψ

+
i +

∑
i∈A ψ

−
i is associated to each set A ⊆ Ω. Thus, when

considering a linear aggregation based on a Choquet integral, the term
∑
i∈A ψ

+
i

can be considered as a positive weight, and
∑
i∈A ψ

−
i as a negative weight. The

macsum operator considers dominating the positive part by a maxitive operator
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defined by positive weights defined by ϕ+ (i.e.
∑
i∈A ψ

+
i ≤ maxi∈A ϕ

+
i ) and

dominating the negative part by a maxitive operator defined by negative weights
defined by ϕ−. For this last part, this is obtained by rewriting

∑
i∈A ψ

−
i =

α−
∑
i∈Ac ψ

−
i , with α =

∑
i∈Ω ψ

−
i

(i.e.
∑
i∈A ψ

−
i ≤ maxi∈Ac(α− ϕ−i )).

5. Macsum kernel granularity

The term granularity was introduced by Pawlak [37] who defined the gran-
ularity of a rough set as its power of resolution. This notion was extended by
Loquin [31] to express the cardinal of the core of a maxitive kernel, i.e. a mea-
sure of its non-resolution power. In [31] the granularity γ of a maxitive kernel

π ∈ Km(Ω) (i.e the cardinal of its core) is defined as: γ(π) =
∑N
i=1 πi. There-

fore, with the less specific maxitive kernel being the vacuous kernel $ defined
by ∀i ∈ Ω, $i = 1, and the most specific maxitive kernel being the Krœnecker
impulse δk (k ∈ Ω) defined by δk = 1 and ∀i ∈ Ω/k, δi = 0, then ∀π ∈ Km(Ω),
γ(π) ∈ [1, N ].

In this section, we propose to extend this notion of granularity to macsum
kernels in order to characterize the cardinal of the core of a macsum-based set
function.

Proposition 5.1. Let ϕ ∈ K(Ω), let α = maxi∈Ω ϕi and α = mini∈Ω ϕi, then if
ψ ∈ M(ϕ),

∑
i∈Ω max(0, ψi) = α and

∑
i∈Ω min(0, ψi) = α. Moreover, ∀i ∈ Ω,

ϕi > 0⇒ ψi ≥ 0 and ϕi < 0⇒ ψi ≤ 0.

Proof. Let i ∈ Ω. By construction νcϕ({i}) ≤ Pψ({i}) = ψi ≤ νϕ({i}).
– If ϕi > 0, then νcϕ({i}) = mink∈{i} ϕ

−
k +α−maxk∈{i}c ϕ

+
k = α−maxk∈{i}c ϕ

+
k

Thus 0 ≤ νcϕ({i}) ≤ ψi.
– If ϕi < 0, then νϕ({i}) = maxk∈{i} ϕ

+
k +α−mink∈{i}c ϕ

−
k = α−mink∈{i}c ϕ

−
k

Thus ψi ≤ νϕ({i}) ≤ 0.
Let A = {i ∈ Ω / ϕi ≥ 0}, νϕ(A) = maxi∈A ϕ

+
i + α − mini∈Ac ϕ

−
i =

maxi∈Ω ϕ
+
i = α, and νcϕ(A) = mini∈A ϕ

−
i + α−maxi∈Ac ϕ

+
i = α.

Since Pψ(A) =
∑
i∈Ω max(0, ψi) and νcϕ(A) ≤ Pψ(A) ≤ νϕ(A)

thus
∑
i∈Ω max(0, ψi) = α.

In the same manner we have νϕ(Ac) = νcϕ(Ac) = α
and thus Pψ(Ac) =

∑
i∈Ω min(0, ψi) = α.

Proposition 5.2. Let ϕ ∈ K(Ω), ψ ∈M(ϕ)⇔ ∀λ ∈ R∗, λ.ψ ∈M(λ.ϕ).

Proof. ϕ ∈ K(Ω) means ∀A ∈ Ω, νcϕ(A) ≤ Pψ(A) ≤ νϕ(A).
Let φ = λ.ϕ.

– If λ > 0,

λνϕ(A) = λmax
i∈A

ϕ+
i + λmin

i∈Ω
ϕ−i − λ min

i∈Ac
ϕ−i ,= max

i∈A
λϕ+

i + min
i∈Ω

λϕ−i − min
i∈Ac

λϕ−i ,

= max
i∈A

φ+
i + min

i∈Ω
φ−i − min

i∈Ac
φ−i = νφ(A).
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The same goes for νc: λνcϕ(A) = νcφ(A).
– If λ < 0,

λνϕ(A) = λmax
i∈A

ϕ+
i + λmin

i∈Ω
ϕ−i − λ min

i∈Ac
ϕ−i ,= min

i∈A
(λϕ+

i ) + max
i∈Ω

(λϕ−i )−max
i∈Ac

(λϕ−i ),

= min
i∈A

φ−i + max
i∈Ω

φ+
i −max

i∈Ac
φ+
i = νcφ(A).

The same goes for νc: λνcϕ(A) = νφ(A).

Thus νcϕ(A) ≤ Pψ(A) ≤ νϕ(A)⇔ νcφ(A) ≤ Pλ.ψ(A) ≤ νφ(A).

Definition 5.1. Let ϕ ∈ K(Ω), then its granularity is defined as:
– γ(ϕ) = 1

α .
∑
i∈Ω max(0, ϕi) + 1

α

∑
i∈Ω min(0, ϕi), if α > 0 and α < 0,

– γ(ϕ) = 1
α

∑
i∈Ω max(0, ϕi), if α > 0 and α ≥ 0,

– γ(ϕ) = 1
α

∑
i∈Ω min(0, ϕi), if α ≤ 0 and α > 0,

– γ(ϕ) = 0, if α = α = 0.

Proposition 5.3. Let ϕ, φ ∈ K(Ω), if maxi∈Ω ϕi = maxi∈Ω φi and mini∈Ω ϕi =
mini∈Ω φi and ∀i ∈ Ω we have max(0, ϕi) ≤ max(0, φi) and min(0, ϕi) ≥
min(0, φi), then M(ϕ) ⊆M(φ) and γ(ϕ) ≤ γ(φ).

Proof. As ∀i ∈ Ω, max(0, ϕi) ≤ max(0, φi) and min(0, ϕi) ≥ min(0, φi) ,
then we have: ∀A ⊆ Ω, νcϕ(A) ≥ νcφ(A) and νϕ(A) ≤ νφ(A). Thus, if ψ ∈M(ϕ)
then ψ ∈M(φ), i.e. M(ϕ) ⊆M(φ).

Now, let α = maxi∈Ω ϕi = maxi∈Ω φi and α = mini∈Ω ϕi = mini∈Ω φi. Let
us suppose that α > 0 and α < 0. Since

∑
i∈Ω max(0, ϕi) ≤

∑
i∈Ω max(0, φi)

and
∑
i∈Ω min(0, ϕi) ≥

∑
i∈Ω min(0, φi), then

1
α

∑
i∈Ω max(0, ϕi)+

1
α

∑
i∈Ω min(0, ϕi) ≤ 1

α

∑
i∈Ω max(0, φi)+

1
α

∑
i∈Ω min(0, φi)

and thus γ(ϕ) ≤ γ(φ). The cases where either α = 0 or α = 0 are trivial.

Proposition 5.4. Let ψ ∈ K(Ω), the kernel ϕ̊ ∈ K(Ω), defined in Proposition
3.7, is the most specific kernel such that ψ ∈ M(ϕ̊), i.e. ∀φ ∈ K(Ω), if ψ ∈
M(φ) then γ(φ) ≥ γ(ϕ̊).

Proof. Let ϕ̊ be the kernel defined by ∀i ∈ Ω, ϕ̊i =
∑
j∈A+

i
max(0, ψj) +∑

j∈A−i
min(0, ψj), whereA+

i =
{
j ∈ Ω / ψ+

j ≤ ψ
+
i

}
andA−i =

{
j ∈ Ω / ψ−j ≥ ψ

−
i

}
.

LetB+
i =

{
j ∈ Ω ψj > 0 and ψ+

j ≤ ψ
+
i

}
andB−i =

{
j ∈ Ω / ψj < 0 and ψ−j ≥ ψ

−
i

}
.

We have ∀i ∈ Ω,
∑
j∈B+

i
ψj =

∑
j∈A+

i
max(0, ψj) and

∑
j∈B−i

ψj =
∑
j∈A−i

min(0, ψj)

thus ϕ̊i =
∑
j∈B+

i
ψj +

∑
j∈B−i

ψj .

By construction we have
∀i ∈ Ω, νϕ̊(B+

i ) = maxj∈B+
i
ϕ̊+
j = ϕ̊+

i since {j / ψj ≤ 0} ⊆ (B+
i )c and

∀i ∈ Ω, νcϕ̊(B−i ) = minj∈B−i
ϕ̊−j = ϕ̊−i since {j / ψj ≥ 0} ⊆ (B−i )c.

Now, let us suppose that ∃φ ∈ K(Ω) such that ψ ∈ M(φ) and γ(φ) < γ(ϕ̊).
We know from Proposition 5.1 that since ψ ∈M(φ) and ψ ∈M(ϕ̊), then
α = maxi∈Ω φi = maxi∈Ω ϕ̊ =

∑
i∈Ω max(0, ψi) and

α = mini∈Ω φi = mini∈Ω ϕ̊ =
∑
i∈Ω min(0, ψi).
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The inequality γ(φ) < γ(ϕ) is equivalent to
1
α

∑
i∈Ω max(0, φi)+

1
α

∑
i∈Ω min(0, φi) <

1
α

∑
i∈Ω max(0, ϕ̊i)+

1
α

∑
i∈Ω min(0, ϕ̊i).

The above inequality is of the form a+ b < c+ d where a, b, c, d are positive
real values. Hence we have either a < c or a ≥ c which implies b < d. So
within our context (α ≤ 0), we have either

∑
i∈Ω max(0, ϕ̊i) >

∑
i∈Ω max(0, φi)

or
∑
i∈Ω min(0, ϕ̊i) <

∑
i∈Ω min(0, φi).

– If
∑
i∈Ω max(0, ϕ̊i) >

∑
i∈Ω max(0, φi) then ∃k ∈ Ω such that

max(0, ϕ̊k) > max(0, φk). This property is due to the structural separation of
negative and positive values in the kernels (i.e. ∀i ∈ Ω, ψi ≤ 0⇔ φi ≤ 0⇔ ϕ̊i ≤
0 and conversely). As, νϕ̊(B+

k ) = ϕ̊+
k =

∑
j∈A+

k
max(0, ψj) and νφ(B+

k ) = φ+
k

we have νϕ̊(B+
k ) > νφ(B+

k ). Consequently, we have νφ(B+
k ) <

∑
i∈B+

k
ψi thus

ψ /∈M(φ).
– If

∑
i∈Ω min(0, ϕ̊i) ≤

∑
i∈Ω min(0, φi). The same goes when considering k ∈ Ω

such that min(0, ϕ̊k) ≤ min(0, φk), leading to the conclusion that νcφ(B−k ) ≥∑
i∈B−k

ψi thus ψ /∈M(φ).

So by contraposition we can conclude that ψ ∈M(φ)⇒ γ(φ) ≥ γ(ϕ̊).

Proposition 5.5. Let ψ ∈ K(Ω), the kernel ϕ ∈ K(Ω), defined by ∀i ∈ Ω if
ψi ≥ 0, ϕi =

∑
k∈Ω max(ψk, 0) else ϕi =

∑
k∈Ω min(ψk, 0), is the least specific

kernel such that ψ ∈M(ϕ), i.e. ∀φ ∈ K(Ω), if ψ ∈M(φ) then γ(φ) ≤ γ(ϕ).

Proof. Lets first prove that ψ ∈M(ϕ).
Let P(Ω) = 2Ω be the power set of Ω and let P+(Ω) = {A ⊆ Ω|∀i ∈ A ψi ≥ 0},
P−(Ω) = {A ⊆ Ω|∀i ∈ A ψi < 0}, and P±(Ω) = {A ⊆ Ω|∃i ∈ A ψi ≥ 0 and
∃j ∈ A ψi < 0}. By construction, these three subsets form a partition of P(Ω).
Let A+ = {i ∈ Ω / ψi > 0}, A− = {i ∈ Ω / ψi < 0} and A ⊆ Ω. Let
α =

∑
k∈Ω min(ψk, 0) = mink∈Ω ϕk and α =

∑
k∈Ω max(ψk, 0) = maxk∈Ω ϕk.

– If A ∈ P±(Ω) and Ac ∈ P±(Ω) we have:
νϕ(A) = maxi∈A ϕ

+
i + mini∈Ω ϕ

−
i −mini∈Ac ϕ

−
i = α+ α− α = α and

νcϕ(A) = mini∈A ϕ
−
i + maxi∈Ω ϕ

+
i −maxi∈Ac ϕ

+
i = α+ α− α = α.

Thus, since by construction α ≤
∑
i∈A ψi ≤ α, νcϕ(A) ≤ Pψ(A) ≤ νϕ(A).

– If A ∈ P−(Ω) and Ac ∈ P±(Ω) we have: νϕ(A) = α−α = 0,
∑
i∈A ψi ≤ 0.

Now, since A ∈ P−(Ω), A+ ⊆ Ac, νcϕ(A) = α+ α− α = α and
∑
i∈A ψi ≥ α.

Thus, νcϕ(A) ≤ Pψ(A) ≤ νϕ(A).

– If A ∈ P+(Ω) and Ac ∈ P±(Ω) we have: νϕ(A) = α,
∑
i∈A ψi ≤ α.

Now, since A ∈ P+(Ω), A− ⊆ Ac, νcϕ(A) = α− α = 0 and
∑
i∈A ψi ≥ 0.

Thus, νcϕ(A) ≤ Pψ(A) ≤ νϕ(A).

– If A ∈ P−(Ω) and Ac ∈ P+(Ω) we have: νϕ(A) = α, νcϕ(A) = α and∑
i∈A ψi = α, thus νcϕ(A) = Pψ(A) = νϕ(A).

Cases where (A ∈ P±(Ω) and Ac ∈ P+(Ω)) or (A ∈ P±(Ω) and Ac ∈ P−(Ω))
or (A ∈ P+(Ω) and Ac ∈ P−(Ω)) can be proved in the same way as above.
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Case where A ∈ P+(Ω) and Ac ∈ P+(Ω) (which implies ∀i ∈ Ω, ψi ≥ 0) as
well as case where A ∈ P−(Ω) and Ac ∈ P−(Ω) (which implies ∀i ∈ Ω, ψi ≤ 0)
are trivial.

Thus ψ ∈M(ϕ).

Now let us suppose that ∃φ ∈ K(Ω) such that ψ ∈M(φ) and γ(φ) > γ(ϕ).
We know from Proposition 5.1 that with ψ ∈ M(φ) and ψ ∈ M(ϕ) then:
α = maxi∈Ω φi = maxi∈Ω ϕi and α = mini∈Ω φi = mini∈Ω ϕi.
Therefore γ(φ) > γ(ϕ) implies that ∃k ∈ Ω such that max(0, φk) ≥ max(0, ϕk)
(i.e. φk ≥ α) or that ∃k ∈ Ω such that min(0, φk) ≤ min(0, ϕk) (i.e. φk ≤ α),
which contradicts the hypothesis. Thus, γ(φ) ≤ γ(ϕ).

Remark 6. ∀ϕ ∈ K(Ω), γ(ϕ) ∈ [0, N ].

6. Computing the macsum aggregation

This section aims at proposing a simple algorithm for computing y = [y, y] =
z(x).

6.1. Formulæ

Proposition 6.1.

y = z(x) = Čνϕ(x) =

N∑
k=1

xbkc.(αk − αk−1) +

N∑
k=1

xdke.(βk − βk−1),

y = z(x) = Čνϕ(x) =

N∑
k=1

xdke.(αk − αk−1) +

N∑
k=1

xbkc.(βk − βk−1),

with αk =
N

max
i=N−k+1

ϕ+
bic, and βk =

k
min
i=1

ϕ−die,

where d.e is the permutation that sorts the instances of x in increasing order
and b.c is the permutation that sorts the instances of x in decreasing order.

Proof. Let us first consider y.
y = Čνϕ(x) =

∑N
k=1(xdke − xdk−1e).νϕ(Adke),with xd0e = 0,

νϕ(Adke) = maxi∈Adke ϕ
+
i −mini∈Acdke ϕ

−
i + mini∈Ω ϕ

−
i ,

Adke = {dke, . . . dNe} and Acdke = {d1e, . . . dk − 1e}.
Thus νϕ(Adke) = maxNi=k ϕ

+
die −mink−1

i=1 ϕ
−
die + mini∈Ω ϕ

−
i with, by convention,

min0
i=1 ϕ

−
die = 0.

Therefore y can be rewritten as:

y = Čνϕ(x) =
∑N
k=1(xdke − xdk−1e).

(
maxNi=k ϕ

+
die −mink−1

i=1 ϕ
−
die + mini∈Ω ϕ

−
i

)
.

Let us decompose this sum:
y = Čνϕ(x) =

∑N
k=1(xdke−xdk−1e).maxNi=k ϕ

+
die+

∑N
k=1(xdke−xdk−1e).mini∈Ω ϕ

−
i −
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∑N
k=1(xdke−xdk−1e).mink−1

i=1 ϕ
−
die = y′+y”, with y′ =

∑N
k=1(xdke−xdk−1e).maxNi=k ϕ

+
die

and y” =
∑N
k=1(xdke − xdk−1e).mini∈Ω ϕ

−
i −

∑N
k=1(xdke − xdk−1e).mink−1

i=1 ϕ
−
die.

First note that: xdke = xbN−k+1c.
So by making a change in index: k′ = N − k + 1 → k = N − k′ + 1 we get:
y′ =

∑N
k′=1

(
xbk′c − xbk′+1c

)
.maxNi=N−k′+1 ϕ

+
bic.

Now, let αk = maxNi=N−k+1 ϕ
+
bic, then:

y′ =
∑N
k=1

(
xbkc − xbk+1c

)
.αk =

∑N
k=1 xbkc. (αk − αk−1).

Second, note that:
∑N
k=1(xdke − xdk−1e) = xdNe.

Thus, y” = xdNe.mini∈Ω ϕ
−
i −

∑N
k=1(xdke − xdk−1e).mink−1

i=1 ϕ
−
die.

Let us now rearrange the expression of y”.
y” = xdNe.minNi=1 ϕ

−
die−xdNe.minN−1

i=1 ϕ−die+xdN−1e.minN−1
i=1 ϕ−die−· · ·+xd1e.min1

i=1 ϕ
−
die.

y” =
∑N
k=1 xdke.

(
minki=1 ϕ

−
die −mink−1

i=1 ϕ
−
die

)
.

Now let βk = minki=1 ϕ
−
die, then:

y” =
∑N
k=1

(
xdke − xdk+1e

)
.βk =

∑N
k=1 xdke. (βk − βk−1).

Therefore, y = y′ + y” =
∑N
k=1 xbkc.(αk − αk−1) +

∑N
k=1 xdke.(βk − βk−1).

y can be computed in the same way by simply remembering that y =

Čνcϕ(x) = −Čνϕ(−x). Thus the algorithms are the same, we simply have to
exchange the permutation that sorts the instances of x in decreasing order by
the permutation that sorts the instances of x in increasing order and vice versa.

�

The values of αk and βk can be computed recursively.

Proposition 6.2. Let α, β ∈ RN be defined by ∀k ∈ Ω, αk = maxNi=N−k+1 ϕ
+
bic

and βk = minki=1 ϕ
−
die, then, let α0 = 0 and β0 = 0, αk = max(αk−1, ϕ

+
bkc) and

βk = min(βk−1, ϕ
−
dke).

The proof is trivial and follows directly from the definition α and β.

The algorithm for computing y is provided in Algorithm 1, while the algo-
rithm for computing y is provided in Algorithm 2.

6.2. Algorithms

Computing the upper and lower values of the interval-valued output of an
maxitive operator based aggregation is provided by the Algorithm 2 to compute
y and Algorithm 1 to compute y.
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Algorithm 1: Computation of y

Input: x = {xi}i=1...N , ϕ = {ϕi}i=1...N

Output: y
sort (x, ϕ) w.r.t. x in decreasing order ;
α = 0, β = 0 ;
y = 0 ;
for k = 1 . . . N do

β = α ;
α = max(α,ϕk) ;
y = y + (α− β).xk ;

sort (x, ϕ) w.r.t. x in increasing order (i.e. reverse the sorting) ;
α = 0, β = 0 ;
for k = 1 . . . N do

β = α ;
α = min(α,ϕk) ;
y = y + (α− β).xk ;

Algorithm 2: Computation of y

Input: x = {xi}i=1...N , ϕ = {ϕi}i=1...N

Output: y

sort (x, ϕ) w.r.t. x in increasing order ;
α = 0, β = 0 ;
y = 0 ;

for k = 1 . . . N do
β = α ;
α = max(α,ϕk) ;
y = y + (α− β).xk ;

sort (x, ϕ) w.r.t. x in decreasing order (i.e. reverse the sorting) ;
α = 0, β = 0 ;
for k = 1 . . . N do

β = α ;
α = min(α,ϕk) ;
y = y + (α− β).xk ;
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7. Experiment

In this section, we propose to illustrate the properties of the macsum op-
erator via an experiment that consists of deriving a digital signal. A digital
signal is generally a continuous signal that has been sampled and quantified
(i.e. mapped onto a countable set of values). Being sampled, a digital signal is
not continuous and thus cannot be derived. Therefore, deriving a digital signal
must be understood as estimating, at each sampling location, the value of the
derivative of the original continuous signal.

The estimation of this derivative can be seen as the succession of three
steps: first reconstructing a continuous signal based on the samples of the digital
signal, then deriving this continuous signal and finally sampling the result of this
derivation. The reconstruction step is essential since it enables us to transform
a quantized sampled integer-valued signal into a real-valued continuous signal.
It is performed by convoluting the original digital signal with a (summative)
kernel that allows us to estimate the value of the real signal at any location
outside the sampling locations.

As explained by J. Shen and S. Castan in [42] in the context of image pro-
cessing, this three steps procedure can be achieved in one step by convoluting
the input digital signal by the sampled derivative of the chosen reconstruction
signal. In their paper, the authors propose the exponential filter for being a
good candidate since it can be derived and, as a reconstruction operator, it lows
the effect of noise and quantization on the obtained continuous signal.

The Shen-Castan derivating kernel is obtained by deriving then sampling
the reconstruction kernel κ defined by:

∀x ∈ R, κ(x) = − 2

ln(β)
.β|x|, (8)

with β ∈]0, 1[ being a smoothing factor: the bigger β the smoother the output
reconstructed signal.

A conventional Dirac sampling of this reconstruction kernel leads to a dis-
crete kernel ρ defined by:

∀k ∈ Z, ρk =
1− β
1 + β

.β|k|, (9)

with 1−β
1+β being a normalisation factor that makes the discrete kernel ρ sum-

mative in the sense of Loquin [31], i.e. limK→∞
∑K
k=−K ρk = 1 (see [42]) since

sampling a summative kernel should lead to a discrete summative kernel.
Deriving the kernel κ leads to the continuous kernel η defined by:

∀x ∈ R, η(x) = 2.sign(x).β|x| = −sign(x). ln(β).κ(x). (10)

And therefore, sampling this derivation leads to the derivation kernel ψ
defined by:

∀k ∈ Z, ψk = −sign(k). ln(β).ρk = −sign(k). ln(β).
1− β
1 + β

.β|k| = −sign(k).γ.β|k|,

(11)
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with γ = ln(β). 1−β1+β .
Let us now consider computing y the discrete signal that is the derivative of

x. This derivation can be obtained by convoluting x with ψ: y = x ? ψ, ? being
the convolution. This operation can be written [29]:

yn = (x ? ψ)n =

N∑
k=1

xk.ψ
n
k = ČPψn

k
(x), (12)

ψn being the kernel ψ translated in n and truncated on Ω defined by: ψnk =
ψn−k, k ∈ {1, . . . , N}. Remark that this assumes that un-sampled values of the
underlying unknown signal whose sampled values are x are null. It is interesting
to note that Pψnk (Ω) = βn−N − βn ∈ [βN − 1, 1− βN ] can be positive, negative
or even null. This may sound strange in the decision theory context.

In most applications using signal derivation, one of the main difficulties
is to define both shape and parameter of the kernel that is optimal for this
application. Assuming, with the authors, that the Shen-Castan kernel is optimal
for this application, the remaining problem is the smoothing parameter β. This
choice is generally made in a rather arbitrary way or could be based on visual
analyses (or by computers) of results (of segmentation, for example) on the basis
of a bank of representative signals of the problem to solve.

First note that the granularity (in the sense of Loquin or Shannon) of the
Shen-Castan kernel increases with β, i.e. the bigger β, the smoother the recon-
structed continuous signal. On the other hand, the smoother the reconstruction,
the less sensitive the algorithm will be to fast variations in the signal.

In this experiment, we propose to compute the derivative of a digital signal
obtained by sampling (sampling frequency 100Hz) and quantizing the composite
signal whose equation is:
s(t) = sin(21.t) + sin(12.t+ 5) + sin(−4.t+ 3) + 10.(1 + t)−1.
The digital signal {xk}k=1...N resulting from sampling is pictured in Figure (1).

The imprecision of the interval-valued derivatives can be used to define
thresholds for detecting local maxima, like in [22] or use a posteriori crite-
ria, other than frequency criteria, to define the optimal candidate to be the
derivation of x (see e.g. [19]).

Now, let us assume that some previous experiments have shown that β =
0.8 can be considered as a choice that achieves a good compromise between
the quality of the reconstruction obtained by the Shen-Castan kernel and the
sensitivity of the derivation algorithm. To account for the arbitrary aspect of
this choice, we propose to calculate an imprecise derivative of this signal by
using three approaches: the macsum approach, proposed in this paper, the
transfer of variance used to compute uncertainty in measurement [35, 1] and an
interval-valued method based on a Monte Carlo approach [43].

• For the macsum approach, we use Proposition 3.7 to define, for each n ∈ Ω,
ϕ̊n, the kernel with the smallest granularity that dominates ψn (i.e. ψn ∈
M(ϕ̊n)) while using Proposition 3.6 to define ϕ̆n that weakly dominates
ψn.
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• For the variance transfer approach, we suppose that β is a Gaussian ran-
dom variable of mean 0.8 and variance 0.004 (a bigger value would lead
to too imprecise signals) and we compute, for each value of the output
signal, the variance of its estimate; we consider the one-sigma interval.

• For the Monte Carlo based approach, we suppose that the value of β
comes within the [0.7, 0.9] interval and we compute both maximum and
minimum values by randomly choosing 1000 values of β in this interval.

There is no question here of considering these three approaches in a competitive
sense (which would not be logical), but the idea is simply to gain insight into
the purpose of each method.

Figures (2), (3) and (4) show the results of this experiment. Details of those
Figures are plotted in Figure (5). On each figure is plotted (in black) the result
of deriving the original signal x(t) by using a precise kernel with β = 0.8. For the
interval-valued signal, the upper values {yn}n=1...N are plotted in blue, while
the lower values {y

n
}n=1...N are in red. The mean imprecision of the interval

valued signal is actually the mean average value of the difference between yn
and y

n
.

On Figure (2) the results of the macsum approach using ϕ̊, (solid lines)
and ϕ̆ (dashed lines) are superimposed. Since, by construction ψ ∈ M(ϕ̊) ⊆
M(ϕ̆), ψ ∈ M(ϕ̊) ⊆ M(ϕ̆), zψnk (x) ∈ [zϕ̊nk (x),zϕ̊nk (x)] ⊆ [zϕ̆nk (x),zϕ̆nk (x)],

i.e. the output using ϕ̊ is included int that using ϕ̆. We also have γ(ϕ̊) = 10 ≤
γ(ϕ̆) = 18. This illustrates that the higher the granularity of the kernel, the
less precise the interval-valued reconstructed signal. The mean imprecision of
the reconstructed imprecise signal is 1.06 for the strong domination approach
and 1.89 for the weak domination approach. It is interesting to note that the
ratio of mean imprecision (weak/strong) is close to the ratio of granularity of
the used kernels. This would warrant further investigation.

On Figure (3) the results of the variance transfer approach are plotted. The

variance transfer consists of computing, for each k, n ∈ Ω, the value of
∂ψnk
∂β and

using it to transfer the variance of β (here σ2
β = 0.004) to the variance of ψnk then

to the variance of yn. The variance transfer method leads to very qualitatively
different results. Indeed, by hypothesis, we reconstruct an imprecise signal
whose upper and lower bounds are symmetrical with respect to the precise
signal. This is easier to compare when looking at Figure (5).a and Figure (5).b.
In Figure (5).a the higher the value of the precise signal, the closer it is to the
upper bound of the imprecise signal (and reverse for the lower bound). The
macsum approach better accounts for the dissymmetry of the variation in the
reconstructed value when there is a variation in the β parameter. Moreover, the
mean imprecision within this approach is 1.94, although the variance of the β
parameter is assumed to be very small.

On Figure (4) the results of the Monte Carlo approach are plotted. The
mean imprecision within this approach is 0.70, i.e. the convex set of recon-
structed values is much more specific than the two previous methods. Note, by
comparing Figure (5).a and Figure (5).c, that the asymmetry of the interval-

22



0 1 2 3 4 5 6 7 8 9 10

-20

0

20

40

60

80

100

120

Figure 1: The signal to be derivated.

valued reconstructed signal with respect to the precise signal is very similar to
what we obtain with the macsum method. Moreover, all signals obtained us-
ing the Monte Carlo approach are within the interval obtained by the macsum
approach with the strong domination (and thus also with the weak domination).

The comparison between those three approaches is rather limited. In fact,
each method has different endpoints with different advantages and drawbacks.
With the macsum approach, the granularity of the kernel cannot be completely
controlled, thus making it difficult to control the specificity of the reconstructed
imprecise signal. Whereas with the two other approaches, the definition of σ2

β

for the transfer approach and [β, β] for the Monte Carlo approach allows us to
get as close as required to the value obtained by using the precise approach.
However, the macsum approach has the advantage of having a reduced com-
putation time compared to the Monte Carlo approach, and a controlled and
less arbitrary specificity compared to the variance transfer approach (σ2

β = 0.01
would result in a completely meaningless result). In addition, the macsum ap-
proach computes the exact requested interval, while the Monte Carlo approach
only gives an interior approximation of this interval. Moreover, the macsum
approach requires N parameters (as with the precise approach) while the other
approaches requires 2.N values ((ψk, σψk) for variance transfer and (ψ

k
, ψk) for

Monte Carlo approach).

8. Conclusion

In this paper, we are interested in a new way of representing a relation be-
tween the inputs and outputs of a system, or, to be more precise, in a new
representation of a function linking N inputs to one output. The classical ap-
proach is based on the notion of accurate representation: defining a parametric
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Figure 2: Precise derivative (black) and imprecise derivatives (blue upper, red lower) of the
signal depicted in Figure (1) with β = 0.8 obtained with ϕ̊ (solid) and ϕ̆ (dahed).
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Figure 3: Precise derivative (black) and imprecise derivative (blue upper, red lower) of the
signal depicted in Figure (1) with β = 0.8 obtained by transferring a σ2

β = 4.10−6 variance of

β to the variance of the output.
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Figure 4: Precise derivative (black) and imprecise derivative (blue upper, red lower) of the
signal depicted in Figure (1) with β = 0.8 for the precise derivative and β ∈ [0.7, 0.9] for the
imprecise derivative obtained by using a Monte Carlo simulation.
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Figure 5: Details of Figure (2) (a), Figure (3) (b) and Figure (4) (c).
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model and trying, by an optimization process, to find the values of the param-
eters of the model that best fits its behaviour. One of the most used models is
the linear model. It has the advantage of being simple to set up and use, but
the disadvantage of leading to a description of the functioning of the system
that is too approximate, without it being possible to predict or control this
approximation.

The approach we have proposed in this article exploits an interesting new
avenue. Instead of trying to describe a system precisely, we propose to represent
it by imprecise linear modeling, i.e. a convex set of linear models. Within this
model, a system is associated with a set of weights, as in a linear model, but we
obtain the description of a convex set of linear relations. One major limitation
of this approach is that, due to the simplicity of the modeling, it may be hard
to control the extent to which the interval-valued output is close to the output
of the system to be represented. However, thanks to the granularity concept,
we can know a priori the accuracy of the output of a macsum model with two
different kernels.

We believe that this approach can allow extending the notion of domination,
widely used in decision theory, to many other domains. We have mainly given
examples in signal processing. However, the macsum approach can be used to
make approximate representations in any domain where the linear representa-
tion is relevant and where it would be interesting to model how well it describes
a real aggregation process.

One important remaining question, that will be our main track for future
work, is how to identify a system? i.e. how to learn the weights of a macsum
representation of a function with benchmark values as in the classical approach?
Finally, this modeling can suffer from lack of specificity (i.e. representing a too
wide set of linear relations). Thus another path of investigation would be to
tighten these boundaries, if needed, to get a more accurate approximation while
keeping the simplicity of the model.
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