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A Critical Exposition of Model Order Reduction Techniques: 
Application to a Slewing Flexible Beam

Stanislao Patalano1 · Alessandro Mango Furnari1 · Ferdinando Vitolo1  · Jean‑Luc Dion2 · Regis Plateaux2 · 

Frank Renaud2

Abstract
Complexity of dynamical systems are increasing more and more as well as their mathematical models. At the same time, 

simulation of system behaviour assumes a key role to assure the fulfillment of requirements as performances, quality, safety, 

and robustness. Therefore, due to model complexity, it is often very complex to assess a system behaviour but a reduction of 

model complexity could enhance the simulation aimed to specific characteristics of the system. Several useful model order 

reduction (MOR) techniques exist but each of them is often powerful for specific applications. This review paper deals with 

MOR by critically comparing the most popular MOR techniques from the fields of structural dynamics, numerical mathemat-

ics and systems and control. In particular, after different reduction techniques have been presented, a table summarizing their 

most important features is proposed, for comparison purpose. The motivation for such comparison stems from the fact that 

the insight obtained by the comparison allows to make a motivated choice for a particular model reduction technique, on 

the basis of the desired properties retained in the reduced model. Particular attention is paid on reduction techniques from 

the area of structural dynamics. Finally, the differences among some of the presented reduction techniques are illustrated, 

on a quantitative level, by means of their application to the case of a slewing flexible beam. In particular, in the application 

of the different reduction techniques, a consistent-mass finite element model, with only translational degrees of freedom, is 

employed as beam full model.

1 Introduction

In the last decades, simulation of the dynamical system has 

become a key activity for improving system characteristics 

as performances, quality, safety, robustness, etc. Simulation 

results are affected by the accuracy of mathematical model 

which tries to give a whole representation of the real sys-

tem behaviour. The whole representation is becoming an 

increasingly difficult and time-consuming activity due to a 

series of technological improvements. Such improvements, 

in fact, imply real-time big data analysis [1], machine learn-

ing [2], high speed communication and their integrations, 

making systems more and more complex as well as their 

mathematical models.

In such a context, mathematical model often needs to be 

reduced (DoF reduction) by using technique as MOR. There 

are several useful MOR techniques but each of them is gen-

erally highly performing for a specific application. Selection 

of the MOR technique is a crucial activity which affects 

the reduced model and its results. The first step in all MOR 

procedures is the selection of the most suitable techniques 
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for a given application. As there are still no tools to extricate 

among techniques and allowing univocal choice, the present 

work aims at providing some guidelines to assist analysts 

in this step. Here particular attention will be paid on reduc-

tion techniques from structural dynamics. Nevertheless, the 

discussion will be extended to reduction techniques from 

numerical mathematics and systems and control.

In order to compare different reduction techniques, sev-

eral features which may be more or less present in each 

reduction technique and which have been considered 

the most important in the area of structural dynamics are 

discussed. The first feature concerns the objective of the 

approximation. Namely, the reduction procedure could lead 

to a reduced model which preserves the input–output behav-

iour or the global behaviour of the full model. Generally, in 

the area of numerical mathematics and systems and control 

theory a reduced model which approximates the input–out-

put behaviour of the original system is sought, whereas an 

approximation of the global dynamics is sought in the struc-

tural dynamics community. Nevertheless, in some applica-

tions, like active vibration control, an input–output model 

of a mechanical system could be of interest.

Other important features concern the frequency range in 

which the accuracy of the reduced model is high and the 

preservation of the static response of the full model. As mat-

ter of fact, depending on the frequency contents of the input 

signal, the system response could be of interest only in some 

range of the frequency domain. This is why reduction tech-

niques from structural dynamics and numerical mathematics 

are generally frequency domain based (Fourier or Laplace 

domain based) techniques. Nevertheless, it is noted that in 

balanced truncation reduction (from systems and control) the 

behaviour in the frequency domain does not form the basis 

of the reduction procedure. Instead, the transfer of energy 

from the input to the output is used as a tool for model reduc-

tion, which can be considered as a time domain approach.

In some fields, like experimental modal analysis, it is 

very important that the coordinates of the reduced model 

are measurable coordinates. This is only ensured when the 

reduced coordinates are physical coordinates. Therefore, 

the nature of the reduced model coordinates is considered 

as another important feature of the reduction procedure. In 

particular, the reduced model coordinates can be: general-

ized coordinates, physical coordinates, hybrid coordinates 

or state coordinate.

It is known that, the main goal of model order reduction 

is to obtain, with the least computational burden, a reduced 

model which is as accurate as possible in the interested fre-

quency range and whose order is as low as possible. For 

this reason, the accuracy of the reduced model and the com-

putational burden associated with the reduction procedure 

are considered as other two important features of the reduc-

tion procedure. Here the accuracy of a reduced model is 

measured by means of the width of the frequency range in 

which the reduced model approximates the behaviour of the 

full model. Whereas, the computational burden represents 

the quantification of the difficulty of the reduced model com-

putation in terms of computer resources required, such as 

computational time or amount of memory. The importance 

of the computational burden is evident if we consider that, 

in the area of structural dynamics, finite element procedures 

generally lead to models of orders up to O(10
7) . Similarly, 

in the area of numerical mathematics, large-scale electri-

cal circuits lead to models of order up to O(10
7) . For these 

applications, it is clear as the need for numerically efficient 

model reduction procedures arises.

Another important feature is the level of automation of 

the reduction procedure, once a requirement on the qual-

ity of the reduced model is specified. This information is 

extremely important since, the less the reduction procedure 

is automatic, the more the accuracy of the reduced model 

depends on the analyst’s experience.

2  Model Order Reduction in Different Fields

In this section, the most significant reduction techniques 

from three different fields are first presented and then com-

pared. In particular, in Sect. 2.1 will be discussed three fami-

lies of reduction techniques from structural dynamics; they 

are: generalized coordinate reduction, physical coordinate 

reduction and hybrid coordinate reduction. In Sects. 2.2 

and 2.3 will be discussed the balanced truncation method, 

from systems and control, and the Krylov subspace projec-

tion method, from numerical mathematics, respectively. It is 

noted that, these methods are to be considered as the basic 

algorithms on which many other methods are built. In con-

clusion, in Sect. 2.4, a qualitative comparison among the 

aforementioned reduction techniques is carried out.

2.1  Structural Dynamics

In linear structural dynamics, the equations of motion of a 

mechanical system are written as a set of second-order linear 

ordinary differential equations, namely,

where, in MOR context, the vectors �(t) and � (t) ∈ ℝ
n are 

referred to as full order coordinates and full equivalent force 

vectors; the matrices � , � and � ∈ ℝ
n×n are, respectively, 

the mass, damping, and stiffness matrices of the full order 

model.

Model order reduction technique is usually introduced to 

reduce the size of the full model and leads to a reduced order 

model. Many model reduction schemes involve the form of 

coordinate transformation

(1)��̈(t) + � �̇(t) +��(t) = �(t)
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where � ∈ ℝ
n×m is the coordinate transformation matrix and 

�(t) ∈ ℝ
m is the reduced order coordinates vector. Since the 

transformation matrix � is generally time-invariant, the dif-

ferentiation of the previous equation with respect to time 

gives

Introducing these equations into the dynamic equations of 

equilibrium and premultiplying both sides by the transpose 

of transformation matrix � , lead to the reduced dynamic 

equations of equilibrium

The matrices �
R
 , �

R
 and �

R
∈ ℝ

m×m are, respectively, the 

mass, damping, and stiffness matrices of the reduced order 

model; the vector �
R
(t) is the reduced equivalent force vector. 

Clearly, they are defined as

Although the size m of the reduced model is much smaller 

than the size n of the full model, that is m ≪ n , the dynamic 

characteristics of the full model, within the interested fre-

quency range, may be retained in the reduced model.

Based on the type of coordinates retained as the reduced 

order coordinates, the existing MOR techniques, in the area 

of structural dynamics, fall into three basic categories: gen-

eralized coordinate reduction, physical coordinate reduction 

and hybrid coordinate reduction. Each category may include 

several subcategories [3].

2.1.1  Generalized Coordinate Reduction

In the context of this work, all the coordinates which are 

measurable coordinates, like position and angular coordi-

nates for example, are referred to as physical coordinates. 

All those coordinates which are not physical coordinates are 

generally referred to as generalized coordinates. The modal 

coordinates and the Ritz coordinates are two types of fre-

quently used generalized coordinates.

Modal coordinate reduction is one of the most widely 

used model reduction techniques for linear and weakly non-

linear structural dynamic systems. It is actually a combina-

tion of mode superposition and modal truncation methods. 

Mode superposition method transforms the full, large size 

of the finite element model from physical coordinates in 

physical space to modal coordinates in modal space using 

the eigenvector matrix of this system. The modal trunca-

tion scheme removes those modal coordinates or modes that 

have unimportant contributions to the system responses. 

(2)�(t) = ��(t)

�̇(t) = � �̇(t), �̈(t) = � �̈(t)

(3)�
R
�̈(t) + �

R
�̇(t) +�

R
�(t) = �

R
(t)

�
R
= �

T
��, �

R
= �

T
��,

�
R
= �

T
��, �

R
(t) = �

T
� (t)

Generally, only a few modes have a significant effect on the 

system dynamic characteristics within the frequency range 

of interest. The number of modal coordinates retained is, 

thus, much smaller than that of physical coordinates. The 

coordinates transformation takes the form

where the eigenvector matrix �
m
∈ ℝ

n×m is defined by the m 

eigenvectors of the full model corresponding to the frequen-

cies of interest, whereas the vector �
m
(t) contains m modal 

coordinates. Generally, we are interested in the dynamic 

characteristics of the model at its low-frequency range. Thus, 

if the m lower frequencies are of interest, the eigenvector 

matrix takes the form

where �
1
�

2
…�

m
 are the first m eigenvectors of the full 

model. If the eigenvector matrix �
m

 is normalized with 

respect to the mass matrix, substituting Eq. (4) in Eq. (1) and 

premultiplying the latter by the transpose of the eigenvector 

matrix, lead to the following reduced model

where �
m
 is, for proportionally damped systems, a diagonal 

matrix, and �
m
= diag(�2

1
�

2
2
…�

2
m
) is a diagonal matrix 

containing the first m eigenvalues of the full model. In the 

literature, this procedure is generally referred to as the mode 

superposition method or mode displacement method.

Mode superposition methods share a common property 

consisting on using a small number of free vibration modes 

to represent the dynamics of the structure with some reduced 

number of generalized degrees of freedom. This operation 

therefore reduces the size of the system to be solved and 

could result in important computational gains. However, 

when mode displacement method is employed to reduce the 

size of a model, there are some important drawback on the 

expansion procedures used in practice. First, to ensure that 

the dynamic responses computed have enough accuracy, all 

the modes whose frequencies are up to at least two or three 

times the highest exciting frequency should be retained in 

the summation as specified by the Rubin’s rule [4]. There-

fore, the number of modes required to be included in the 

mode superposition is usually high, which leads to a very 

expensive computational effort in the eigenvalue analysis. 

Second the eigenbasis ignores important information related 

to the specific loading characteristics, such that the com-

puted eigenvectors can be nearly orthogonal to the applied 

loading and therefore do not participate significantly in the 

solution [5]. Moreover, these methods generally do not pro-

pose the computation of an error bound for the response. 

Consequently, the success of the methods is established on 

the basis of a posteriori error comparisons. Typically, either 

the errors on the eigenfrequencies and eigenvectors or the 

(4)�(t) = �
m
�

m
(t)

(5)�
m
=

[

�
1
�

2
…�

m

]

(6)�̈
m
(t) + �

m
�̇

m
(t) + �

m
�

m
(t) = �

T

m
� (t)
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errors on the input–output representation are used to show 

the success of the applied method [6].

To accelerate the convergence of the low-frequency 

reduction the mode acceleration method was proposed 

[7–9]. This technique improves the original mode superpo-

sition method by adding different vectors to the expansion 

procedure [10, 11]. The system response is represented as 

in Eq. (4) but with a correction term, namely

The first term at the right-hand side of Eq. (7) is the same 

as that in mode superposition. The second term represents 

the static correction of truncated modes. With the introduc-

tion of the correction term, the number of normal modes 

required in the mode superposition is significantly reduced 

if the same accuracy of responses is required. The conver-

gent condition of the mode acceleration is that all exciting 

frequencies are contained in the frequency band of the kept 

modes [9, 12].

Actually, it is not always necessary to employ the eigen-

vectors of the full model in the transformation from physi-

cal coordinates to generalized coordinates. If the loads are 

known, for example, the approximately chosen Ritz vectors 

can be used as a good representation of the system response. 

They are an attractive alternative of mode superposition 

method when a model is subjected to fixed spatial distribu-

tion of dynamic loads and the eigenvectors of the model 

are not the best choice of basis, e.g., eigenvectors that are 

orthogonal to the loading are not excited even if their fre-

quencies are contained in the loading frequency bandwidth 

[11]. Therefore, Ritz vector methods can be regarded as a 

generalized mode superposition approach in which the exact 

eigenvectors are replaced by more generally defined Ritz 

vectors [8].

The Ritz vector method has the similar transformation as 

modal reduction in Eq. (4). The generalized coordinates in 

the Ritz vector method are referred to as Ritz coordinates. 

The construction of the Ritz vectors is generally more com-

putationally efficient than the exact eigenvectors. However, 

the dynamic equations of motion of the reduced model 

obtained from Ritz vector methods are generally coupled 

while they are usually uncoupled in the modal coordinate 

reduction [3].

Load-dependent Ritz vectors (LDRVs) are a particular 

and efficient class of Ritz vectors in which loading informa-

tion on the structure is used to generate the vectors. In the 

LDRV method, the first Ritz vector is the static deformation 

of a structure due to a particular applied load pattern. Addi-

tional orthogonal vectors can be computed using inverse 

iteration and Gram–Schmidt orthogonalization. The Ritz 

(7)�(t) = �
m
�

m
(t) +

[

�
−1 −

m
∑

i=1

�
i
�

T

i

�
2

i

]

� (t)

vectors generated by this scheme automatically include static 

correction. Because the Ritz vectors are created based on a 

specific load pattern, few Ritz vectors are typically needed 

to achieve the same level of accuracy in response analy-

sis under that excitation. However, the Ritz vectors have to 

be regenerated if the load pattern changes. Therefore, the 

reduced model obtained from the Ritz vector method is load-

dependent. Different load-patterns have different reduced 

models. This is a weakness of the LDRV method.

The external load vector � (t) is often represented by a 

superposition of the spatial matrix � (loading patterns) and 

the time-dependent vector �(t) , namely,

where

and r denotes the total number of loading patterns. For many 

types of loading, the number of loading patterns is small. 

Assume that m general Ritz vectors are obtained and denoted 

by �1,�2,… ,�
m

 , and be �
m
= �−1� ∈ ℝ

n×m the matrix 

containing them. The physical coordinates �(t) ∈ ℝ
n may be 

represented by the Ritz coordinates �
m
(t) ∈ ℝ

m , as

Introducing this coordinate transformation into Eq. (1) and 

premultiplying the resultant equation by the transpose of 

�
m
 give

in which the system matrices of the reduced model are 

defined as

Clearly, the reduced model dynamic equations of equilib-

rium in Eq. (11) are dependent on the particular choice of 

Ritz vectors �
m
 . For ease of exposition, we discuss only the 

single loading pattern case remanding to other work (like 

[13]) for a more detailed discussion of Ritz vector reduction 

techniques. Therefore, in the following � is a n-dimensional 

vector, denoted by � , and �(t) is a scalar function, denoted 

by h(t).

One of the most popular LDRV method is the WYD algo-

rithm. It was first developed by Wilson et al. [11], in which 

the LDRVs were derived by a Krylov sequence. The method, 

further developed by Nour-Omid and Clough [14, 15] and 

Leger and Clough [16], employs a special Krylov sequence, 

(8)�(t) = ��(t) =

r
∑

i=1

�
i
h

i
(t)

(9)� =
[

�1 �2 … �
r

]

, �(t) =
{

h1(t) h2(t)… h
r
(t)
}T

(10)�(t) = �
m
�

m
(t)

(11)�
R
�̈

m
(t) + �

R
�̇

m
(t) +�

R
�

m
(t) = �

R
�(t)

�
R
= �

T

m
��

m
, �

R
= �

T

m
��

m
,

�
R
= �

T

m
��

m
, �

R
= �

T

m
�
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see also Balmès [17]. It starts with the static solution of 

Eq. (1) for a given load pattern:

This vector is mass normalized by

The inertia term neglected is considered in the successive 

steps to generate new Ritz vectors:

The Gram–Schmidt mass orthogonalization and normaliza-

tion are employed for these vectors:

This process is repeated until enough Ritz vectors have 

been generated or no more independent Ritz vector can be 

generated by the process. The LDRVs generated using the 

above procedure are referred to as WYD vectors. The static 

completeness condition for the generated Ritz vector set is 

satisfied automatically.

To let the Ritz vectors span the configuration space 

at a desired frequency and to efficiently capture possible 

dynamic deformations for the desired frequency range, the 

quasi-static Ritz vector method is introduced. It extends the 

above LDRV methods by employing a quasi-static proce-

dure. In details, the first QSRV is chosen as a quasi-static 

mode corresponding to the loading pattern � by solving the 

following quasi-static equilibrium equation [13]

where �
c
 is referred to as the centering frequency [18], since 

it is usually chosen at the midpoint of the frequency range 

of interest or excitation frequency. Applying normalization, 

the first QSRV is given by

For i = 2, 3,… , m , the quasi-static recurrence procedure is 

given by

(12)�̄
1
= �−1�

(13)�
1
=

�̄
1

(

�̄
T

1
� �̄

1

)1∕2

(14)�̂
i
= �

−1
��

i−1 i = 2, 3,… , m

(15)�̄ i = �̂ i −

i−1
∑

j=1

(

�
T
j
� �̂ i

)

� j

(16)�
i
=

�̄
i

(

�̄
T

i
� �̄

i

)1∕2

(17)�̄
1
=

(

� − 𝜔
2

c
�
)

−1

�

(18)�
1
=

�̄
1

(

�̄
T

1
� �̄

1

)1∕2

(19)�̂
i
=

(

� − 𝜔
2

c
�
)

−1

��
i−1

This quasi-static recurrence is continued until a given 

criterion is satisfied. Note that if �
c
= 0 , then the QSRV 

algorithm reduces to the WYD algorithm. Thus, the tuning 

parameter, �
c
 , extends the flexibility and generality of the 

LDRV methods, which allows the Ritz vectors to best repre-

sent both the deformation shape and the frequency content of 

the dynamic response. As a result, improved computational 

efficiency and response accuracy are expected.

In the above procedure, only one centering frequency is 

employed. However, more than one centering frequency can 

be employed in the QSRV algorithm. Using multiple center-

ing frequencies makes the technique more robust for general 

cases. This procedure is discussed in [13].

To determine how many LDRVs are necessary for a given 

problem, a participation factor, pi , was defined by Wilson 

et al. [11] and Nour-Omid and Clough [14] to measure the 

significance of one particular Ritz vector, �
i
 , in the total 

response

This participation factor is computed for each Ritz vector 

and is used to terminate the vector generation process when 

its value drops below some threshold. However, since it 

does not take dynamic effects into account, this is a purely 

static measure and only suitable for low-frequency problems. 

In [13], the modal assurance criterion (MAC) is used as a 

measure for the participation factor, having the form

where

is the frequency response due to the loading pattern, � , and 

Ω is a specified frequency. At the maximum value of one, the 

Ritz vector exactly matches the frequency response deforma-

tion shape, while the minimum value of zero denotes that the 

Ritz vector is orthogonal to the frequency response defor-

mation and hence not likely to contribute significantly to 

the reduced model response. The frequency parameter, Ω , 

is chosen to represent a dominant frequency of the loading 

pattern, �.

(20)�̄ i = �̂ i −

i−1
∑

j=1

(

�
T
j
� �̂ i

)

� j

(21)�
i
=

�̄
i

(

�̄
T

i
� �̄

i

)1∕2

(22)pi = �
T
i
�

(23)pi =

|||
�

T
i
�
|||

[(
�

T
i
� i

)(
�

T
�

)]1∕2

(24)� =
(

� − Ω
2�

)−1

�
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2.1.2  Physical Coordinate Reduction

In the physical coordinate reduction, the reduced model is 

obtained by removing part of the physical coordinates of the 

full model. Thus, the coordinates of the reduced model actu-

ally belong to a subset of the full model. Each coordinate has 

its physical meaning. This is the most straightforward model 

reduction among the three categories. The condensation 

technique for the deletion of unwanted degrees of freedom 

was first proposed by Guyan and Irons [19, 20]. Because the 

dynamic effect is ignored in the condensation, this method 

is usually referred to as static condensation. Since the late 

1960s, this technique has been widely used in many static 

and dynamic problems. In this technique, the total degrees of 

freedom are first divided into the master and slave degrees of 

freedom. Then, the relationship, called dynamic condensa-

tion matrix, of the responses or mode shapes between these 

two sets of degrees of freedom is defined by dynamic con-

densation schemes. Using the dynamic condensation matrix, 

the system matrices of a full model can be condensed to the 

size spanned only by the master degrees of freedom. Also, 

the measured data from a modal test can be expanded to the 

size of the full finite element model. This approach has been 

included in many textbooks in the areas of structural dynam-

ics and mechanical vibrations like [21–24]. Today, it is still 

one of the most popular condensation methods.

The Guyan condensation matrix is derived from the static 

response problem. There exist two main modifications to 

improve the accuracy of Guyan condensation. One is the 

generalized Guyan condensation, which is Guyan conden-

sation combined with the generalized inverse of stiffness 

matrix. The other is the quasi-static condensation, which 

is a combination of Guyan condensation and the frequency 

shifted technique. A combination of the latter two methods 

is also possible.

The static equation of equilibrium, that is,

was used in the derivation of Guyan condensation. Assume 

that the total degrees of freedom of the full model are cat-

egorized as the master degrees of freedom and the slave 

degrees of freedom, which are respectively, the kept degrees 

of freedom and the deleted degrees of freedom. They are 

simply referred to as the masters and slaves and indicated 

by m and s, respectively. With this arrangement, the static 

Eq. (25) may be partitioned as

where �
s
∈ ℝ

s is the displacement vector corresponding 

to the slaves, which are to be condensed, and �
m
∈ ℝ

m is 

the vector corresponding to the masters, which are to be 

(25)�� = �

(26)

[

�
mm

�
ms

�
sm

�
ss

]{

�
m

�
s

}

=

{

�
m

�
s

}

retained. From Eq. (26), the vector �
s
 may be expressed in 

terms of �
m
 as

Clearly, the displacements at the slaves consist of two parts 

due to the linearity of this model. One part results from the 

displacements at the masters and is called attached displace-

ments. Another part results from the external forces acting 

on the slaves and is called relative displacements.

The external forces at the slaves were assumed to be zero 

by Guyan [19], that is, �
s
= � . Actually, this assumption is 

only necessary for deriving the relation of the displacements 

between the masters and slaves. Letting �
s
= � on the right-

hand side of Eq. (27) leads to

�
G
∈ ℝ

s×m is referred to as the Guyan condensation matrix 

and is defined as

Equation (28) is the relation of displacements between the 

masters and slaves. The corresponding condensation matrix 

is a load-independent matrix because the external forces at 

the slaves were ignored in the derivation. Using the conden-

sation matrix in Eq. (29), the displacement vector � may be 

expressed as

where the coordinate transformation matrix �
G
∈ ℝ

n×m 

relates the responses at all the degrees of freedom to those 

at the masters and is defined as

where � is an m × m identity matrix.

The condensation matrix provides the means to reduce 

the stiffness matrix. This condensation is usually used in 

the static problem to eliminate unwanted degrees of freedom 

such as the internal degrees of freedom in finite element 

models. Nevertheless, the static condensation technique is 

also used to reduce the size of dynamic problems. In par-

ticular, the condensation matrix may be obtained from the 

dynamic equations when the dynamic effects are ignored. 

Hence, error is introduced when the dynamic problem is 

considered. The magnitude of these errors depends on the 

natural properties of the full model and how many and what 

degrees of freedom are selected as the masters.

In Guyan condensation, only the under part of the stiff-

ness matrix, that is �
sm

 and �
ss

 , is used in the condensation 

matrix. This means that the condensation matrix is inde-

pendent of the stiffness concerning the masters. The gener-

alized Guyan condensation implements all elements of the 

stiffness matrix into the condensation matrix. Letting

(27)�
s
= −�

−1

ss
�

sm
�

m
+�

−1

ss
�
s

(28)�
s
= �

G
�

m

(29)�
G
= −�

−1

ss
�

sm

(30)� = �
G
�

m

(31)�
G
=

[

�

�
G

]

=

[

�

−�
−1

ss
�

sm

]
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in Eq. (26), we have

Letting � = � in Eq. (33), we obtain

where

is the generalized Guyan condensation matrix. The super-

script + denotes the generalized inverse of the matrix, 

namely

The generalized Guyan transformation matrix is given by

The generalized Guyan condensation usually has much 

higher accuracy than Guyan condensation. However, the 

computational work of the former is higher than the latter.

To make the reduced model close to the full model in 

any given frequency range the frequency shift technique has 

been applied to many dynamic problems. Usually, the gen-

eral eigenproblem of a full undamped model, referred to as 

the full eigenproblem, is given by

where � and � are the eigenvalue (square of natural fre-

quency) and the corresponding eigenvector (mode shape) of 

the full model, respectively. If an eigenvalue shift is applied 

to the general eigenproblem (38), we have

where the dynamic stiffness matrix � and eigenvalue with 

shift �̄� are given by

where q is the value of the eigenvalue shift. Equation (39) 

may be rewritten in a partitioned form as

The second equation of Eq. (41) leads to

(32)�
m
=

[

�
mm

�
sm

]

, �
s
=

[

�
ms

�
ss

]

(33)�
m
�

m
+�

s
�

s
= �

(34)�s = �Gg �m

(35)�Gg = −�
+

s
�m

(36)�
+

s
=

(

�
T

s
�

s

)−1

�
T

s

(37)�Gg =

[

�

�Gg

]

=

[

�

−�
+

s
�m

]

.

(38)(� − ��)� = �

(39)

(

� − �̄��

)

� = �

(40)� = (� − q�), �̄� = 𝜆 − q

(41)

([

�
mm

�
ms

�
sm

�
ss

]

− �̄�

[

�
mm

�
ms

�
sm

�
ss

]

)

{

�
m

�
s

}

=

{

�

�

}

(42)�
s
= −(�

ss
− �̄��

ss
)−1(�

sm
− �̄��

sm
)�

m

Letting �̄� = 0 in Eq. (42), the following relation of the eigen-

vector between the masters and slaves is obtained

where the condensation matrix �
G
∈ ℝ

s×m is defined as

The corresponding coordinate transformation matrix �
G

 is 

given by

The condensation described above is referred to as quasi-

static condensation, and the matrix defined in Eq. (44) is 

called the quasi-static condensation matrix [25]. Clearly, the

dynamic effect at the frequency � =

√

q is included exactly

in the condensation matrix. Moreover, if we set the eigen-

value shifting value q = 0 in Eq. (44), the classical Guyan 

condensation will be obtained. Because the dynamic influ-

ence is considered in the condensation matrix, this conden-

sation is actually a dynamic condensation.

The frequency shifting technique may also be imple-

mented into the generalized Guyan condensation matrix 

defined in Eq. (35). With this application, the condensation 

matrix is given by

and the corresponding coordinate transformation matrix �
G

 

is

For convenience, Eq. (46) is called the generalized quasi-

static static condensation matrix, and the method is called 

generalized quasi-static Guyan condensation.

2.1.3  Hybrid Coordinate Reduction: Fixed Interface Method

It is known that (see for example [3]) the accuracy of Guyan 

condensation may be improved by increasing the low-

est natural frequency of the slave model.1 Some ways to 

pursue this goal are: optimal selection of master degrees 

of freedom, increase of the number of master degrees of 

freedom and use of frequency shift technique. When the 

hybrid coordinate reduction is employed, the effects of the 

modes at the lowest frequency range of the slave model are 

(43)�
s
= �

G
�

m

(44)�G = −�
−1

ss
�sm = −(�ss − q�ss)

−1(�sm − q�sm)

(45)�G =

[

�

�G

]

=

[

�

− (�ss − q�ss)
−1(�sm − q�sm)

]

(46)�Gg = −(�s − q�s)
+(�m − q�m)

(47)�Gg =

[

�

�Gg

]

=

[

�

− (�s − q�s)
+(�m − q�m)

]

1 The slave model is the full model with all its masters grounded.
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included in the condensation and the cut frequency2 change 

from the lowest natural frequency to the higher-order natural 

frequency. This is another way to increase the accuracy of 

Guyan condensation.

Fixed interface component mode synthesis (see Bamp-

ton and Craig [26]) is a typical hybrid coordinate reduc-

tion because the coordinates of the reduced model consist 

of some physical coordinates of the full model and part of 

the modal coordinates of the model with interface degrees of 

freedom fixed. One feature of this method is that it employs 

a “mixed” function base that consists of two different classes 

of shape functions, namely, (1) static response functions and 

(2) admissible functions that are linearly independent of the 

functions of class one [27]. Of course, the mode shape of 

the slave model satisfies the requirement and is a good selec-

tion. The Guyan condensation matrix may be used for the 

function base of class one. In order to take into account 

the contribution of the slaves, a second class of admissible 

shape functions associated with a finite number p ( p ≪ s ) 

of additional coordinates can be introduced. In the particular 

case that the modal admissible function �̃ is defined by the 

following eigenproblem

the transformation of slave coordinates �
s
 to the modal coor-

dinate takes the following form

where the matrix �̃
p
∈ ℝ

s×p consists of the lowest p mode 

shapes of the slave model and the vector � ∈ ℝ
p contains the 

modal coordinates. The eigenvector of the full model may 

thus be expressed as

where the transformation matrix �
a
∈ ℝ

n×(m+p) is given by

Many other hybrid coordinate reduction schemes are avail-

able in the literature.

2.2  Systems and Control: Balanced Truncation

In system analysis and control engineering context, MOR 

aims at obtaining a reduced model whose input–output 

behaviour is preserved as much as possible. In this context, 

(48)�
ss
�̃ = �

ss
�̃�̃

(49)�s = �G �m + �̃p �

(50)

{

�
m

�
s

}

= �
a

{

�
m

�

}

(51)�a =

[

� �

�G �̃p

]

balanced truncation is the most popular method, since it not 

only leads to a reduced model with a well approximated 

input–output behaviour, but it also preserves stability and 

provides an error bound, which gives a direct measure of 

the reduced model quality.

The balanced realization method was proposed by Moore 

and it is based on the observability and controllability of a 

system. Later, the stability preservation property was found 

by Pernebo and Silverman, whereas the error bound was 

derived by Enns and Glover [28–31].

The concepts of observability and controllability origi-

nated in control engineering. In simple terms, a system 

is observable if the states of the system may be deduced 

from the output. Similarly, a system is controllable if an 

input exists that enables the states of the system to attain 

any arbitrary value. The observability and controllability 

measures provide a numerical indication of how much each 

state is observable and controllable. The states that are least 

observable and controllable may be deleted from the system, 

since they give a small contribute to the desirable system 

behaviour. The resulting balanced model is in a form that 

is convenient for model order reduction in system analysis 

and control engineering. Recently, this method has been suc-

cessfully implemented to finite element models with local 

nonlinearities [32].

Control design and system analysis typically work with 

the first-order differential equations in state-space, namely,

where the order of the model is given by the dimension of 

the state vector �(t) , which will be considered to be n.

In balanced truncation, a reduced model is obtained in 

two steps. First, a so-called balanced realization is found, in 

which the states are ordered according to their contribution 

to the input–output behaviour. Second, a reduced model is 

obtained on the basis of this balanced realization by discard-

ing the states with the smallest influence.

For linear, asymptotically stable have negative real part), 

time-invariant systems [33], the controllability and observ-

ability Gramians are defined as

These two Gramians are conveniently calculated from the 

algebraic Lyapunov equations:

(52)
�̇(t) = ��(t) + ��(t)

�(t) = ��(t) + ��(t)

(53)

�
c
=

∞

∫
0

e
�t
��

T
e
�T

t
dt

�
o
=

∞

∫
0

e
�T

t
�

T
� e

�t
dt

2 The cut frequency is the upper bound of the valid frequency range 

of the reduced model.
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which makes balanced truncation computationally feasible. 

Nonetheless, solving the Lyapunov equations is computa-

tionally costly, such that balanced truncation is limited to 

systems of orders up to O(10
3) [6, 28, 34].

If a system is controllable, observable, asymptotically 

stable, and

then it is called a balanced realization. The Hankel singular 

values, calculated as the square roots of the eigenvalues of 

(�
c
�

o
) , namely,

are ordered as 𝜎i > 𝜎j for i < j . Since the controllable and 

observable Gramians represent how an individual state con-

tributes to the system controllability and observability, if 

results �
i
= 0 , the corresponding state is uncontrollable or 

unobservable. Moreover, form Eq. (55) it is clear that the 

realization is balanced in the sense that states that are easy 

to control are also easy to observe.

Generally, the requirements in Eq. (55) are very difficult 

to satisfy. A balanced transformation was introduced by 

Moore to make the controllability and observability Grami-

ans diagonal and equal, as shown in Eq. (55). The balanced 

transformation takes the form

in which �
b
 is a n × n square matrix and the elements of �̄(t) 

are referred to as balanced coordinates. Using the transfor-

mation (56), the system (52) become

in which the matrices are given by

The matrix � can be partitioned as

where �
m

 and �
s
 are respectively the largest and smallest 

Hankel singular values. Rearranging the balanced coordi-

nates as two groups �̄
m
(t) ∈ ℝ

m and �̄
s
(t) ∈ ℝ

s , according 

to the partition (58), the system (57) may be rewritten as

(54)
��

c
+�

c
�

T
+ ��

T
= �

�
T
�

o
+�

o
� + �

T
� = �

(55)�
c
= �

o
= � = diag(�1 �2 … �

n
)

�
i
=
√

�
i
(�

c
�

o
) i = 1, 2,… , n

(56)�(t) = �
b
�̄(t)

(57)
̇̄�(t) = �̄ �̄(t) + �̄ �(t)

�(t) = �̄ �̄(t) + �̄ �(t)

�̄ = �
−1

b
��

b
, �̄ = �

−1

b
�, �̄ = ��

b
, �̄ = �.

(58)� =

[

�
m

�

� �
s

]

(59)

{

̇̄�
m
(t)

̇̄�
s
(t)

}

=

[

�̄
mm

�̄
ms

�̄
sm

�̄
ss

] {

�̄
m
(t)

�̄
s
(t)

}

+

[

�̄
m

�̄
s

]

�(t)

�(t) =
[

�̄
m
�̄

s

]

{

�̄
m
(t)

�̄
s
(t)

}

+ �̄ �(t).

So far, a balanced realization is found, but no model 

reduction has been performed yet. However, the balanced 

realization gives a representation in which the states are 

ordered according to their contribution to the input–output 

behaviour. The ignorance of the uncontrollable or unobserv-

able states will not affect the input–output properties. There-

fore, after the omission of the states corresponding to the 

smaller Henkel singular values in the balanced coordinates, 

the input–output properties of the reduced model is approxi-

mately equal to those of the original system. Based on this, 

the reduced model in balanced coordinates is given by [35]

where the output �̃(t) is an approximation of the output �(t) 

of the full model, and the quality of this approximation 

can be assessed by means the definition of an error bound. 

Moreover, it is proven that when �
m
 and �

s
 have no diago-

nal entries in common, namely when results 𝜎
m
> 𝜎

m+1
 , the 

reduced model is asymptotically stable [6, 29]. A detailed 

analysis of balanced truncation and error bound definition 

lies outside the scope of this work, but more details can be 

found in [30, 31].

2.3  Numerical Mathematics: Krylov Subspace 
Projection

Typical applications of Krylov subspace projection for 

model order reduction are large electronic circuits with large 

linear subnetworks of components (see e.g. [36, 37]) and 

micro electro-mechanical systems (MEMS). For an appli-

cation in structural vibrations, see e.g. [38]. The main goal 

of Krylov subspace methods is to find an approximation, in 

some range of the frequency domain, of the transfer func-

tion (TF) of the original system. In particular, a so-called 

moment expansion of the transfer function is considered 

and reduction focuses on matching the first coefficients 

(moments) of this expansion.

One of the basic and earliest reduction methods involv-

ing the usage of Krylov subspace is Asymptotic Waveform 

Evaluation (AWE), proposed by Pillage and Rohrer in 1990 

[39, 40]. However, the main focus of AWE is on finding a 

Padé approximation of the transfer function, rather than on 

the construction of a Krylov subspace. Nevertheless, there 

is a close relation between the Padé approximations and 

Krylov subspace methods. Later, in 1995, in [41] a method 

called Padé Via Lanczos (PVL) was proposed and the rela-

tion between the Padé approximation and Krylov subspace 

was shown. In 1998, a new reduction technique, PRIMA, 

was introduced in [37], that uses the Arnoldi algorithm 

instead of Lanczos to build the reduction bases. These and 

later developments of Krylov based reduction techniques 

(60)
̇̄�
m
(t) = �̄

mm
�̄

m
(t) + �̄

m
�(t)

�̃(t) = �̄
m
�̄

m
(t) + �̄ �(t)
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focus not only on the improvement of the accuracy of the 

approximation, but also on the preservation of the properties 

of the system to be reduced.

For the sake of simplicity, a strictly proper3 SISO system 

is considered (although all methods discussed here can be 

extended to MIMO systems),

where � ∈ ℝ
n×1 and � ∈ ℝ

1×n are respectively column and 

row vectors.

The problem with AWE is that practical experience indi-

cates that applicability of the method stops once eight or 

more moments are matched. Being the order of the reduced 

model equal to the number of moments matched, it cannot 

be higher than eight or so.

Iterative projection methods have long been used in 

linear system solutions and have recently become popular 

for model order reduction [42–45]. Methods based on this 

concept truncate the solution of the original system in an 

appropriate basis. To illustrate the concept, consider a basis 

transformation � ∈ ℝ
n×n that maps the original state vector 

�(t) ∈ ℝ
n as follows

where results, �
m
∈ ℝ

m and �
s
∈ ℝ

s . The basis transforma-

tion � can then be written as

and its inverse as

Since results

we conclude that

is an oblique projection along the kernel of �
m

 onto the 

m-dimensional subspace that is spanned by the columns of 

the matrix �
m
 [46].

Equations (62) through (64), lead to

If we substitute Eq. (68) into the Eq. (61), we obtain

(61)
�̇(t) = ��(t) + � u(t)

y(t) = � �(t)

(62)

{

�
m
(t)

�
s
(t)

}

= ��(t)

(63)� =

[

�
T

m

�
T

s

]

(64)�
−1 = [�

m
�

s
]

(65)�
T

m
�

m
= �

(66)� = �
m
�

T

m

(67)�
m
(t) = �

T

m
�(t)

(68)�(t) = �
m
�

m
(t) + �

s
�

s
(t)

that is still an exact expression. The approximation occurs 

when we would delete the terms involving �
s
(t) , namely

in which case we obtain a projection of the original system

To produce a good approximation to the original system, 

the neglected term �
s
�

s
(t) must be sufficiently small. This 

has implications for the choice of the subspaces colsp (�
m
)4 

and colsp (�
m
) , which depends on the goal of the reduction 

procedure. In case of Krylov subspace based methods, the 

aim is to approximate the input–output behaviour of the full 

model. This is done by matching the moments of the original 

transfer function. This means that the reduced-order trans-

fer function corresponding to system (71) has the moment 

matching property. To ensure the satisfaction of the moment 

matching property, one can choose �
m
 and �

m
 such that the 

columns of these matrices span the so-called Krylov sub-

space [6].

Given a matrix �̂ ∈ ℝ
n×n and a vector � ∈ ℝ

n , the 

k-dimensional Krylov subspace K
k
(�̂, �) is defined as

If an approximation of the system transfer function is to be 

found, the matrices �
m
 and �

m
 are chosen as follows:

If �
m
 and �

m
 are built in the way defined in (73) and (74), 

the model reduction method is called a two-sided method. 

If only one of the projection matrices ( �
m
 or �

m
 ) is built in 

that way, the method is called one-sided. Application of the 

two-sided method results in a reduced model that matches 

the first 2m moments of the original transfer function. In 

case of one-sided methods, m moments are matched. Besides 

the difference in the number of moments matched, the choice 

to use one- or two-sided methods influences also some other 

properties of the reduced system [6].

The process of constructing the reduction matrices, 

�
m

 and �
m

 , is not straightforward and requires the use of 

(69)

�̇m(t) = �
T
m
��m �m(t) +�

T
m
��s �s(t)

+ �
T
m
� u(t)

y(t) = ��m �m(t) + ��s �s(t)

(70)�(t) ≈ �
m
�

m
(t)

(71)
�̇m(t) = �

T
m
��m �m(t) +�

T
m
� u(t)

y(t) = ��m �m(t)

(72)K
k
(�̂, �) = span(�, �̂ �, �̂2

�,… , �̂k−1
�)

(73)colsp (�
m
) = K

m
((s0 � − �)−1, (s0 � − �)−1

�)

(74)colsp (�
m
) = K

m
((s0 � − �)−T , (s0 � − �)−T

�
T )

4 colsp (�̂) denotes the vector space spanned by the columns of the 

matrix �̂.

3 A strictly proper system is a system whose output does not explic-

itly depend on the input, that is, �(t) = �(�(t), t).
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special techniques. Because of round-off errors, the vectors 

building a Krylov subspace may quickly become linearly 

dependent. To avoid this problem, one usually constructs an 

orthogonal basis of the appropriate Krylov subspace. This 

can be achieved using e.g. Arnoldi or Lanczos algorithms. 

The classical Arnoldi algorithm generates a set �
m
 of ortho-

normal vectors, i.e.

that form a basis for a given Krylov subspace. The Lanczos 

algorithm finds two sets of basis vectors, �
m
 and �

m
 , that 

span an appropriate Krylov subspace and have the property

Two sets of basis vectors �
m
 and �

m
 for Krylov subspaces 

may also be computed using a two-sided Arnoldi algorithm 

(see [47]). In this case, both �
m
 and �

m
 are orthonormal,

As a result, each of the above mentioned techniques gener-

ates a Krylov subspace. The choice of the subspace depends 

on the type of algorithm and the expansion point s
0
 around 

which the approximation is of interest. We conclude observ-

ing that, so far, there have been no proven a priori error-

bounds for the Krylov based reduction techniques [48].

2.4  Qualitative Comparison and Summary Table

In this section a qualitative comparison of the reduction 

techniques discussed in this work is carried out. A first 

important difference exists between reduction methods 

developed in the area of structural dynamics and those 

developed in the other fields, due to the form used to repre-

sent the original system. In particular, the state-space form 

is used in the fields of numerical mathematics and systems 

and control, whereas a second-order form is exploited in 

structural dynamics when no damping is taken into account 

or when proportional damping is considered. This impor-

tant difference makes all reduction methods developed in 

the area of structural dynamics generally not suitable to be 

applied in other fields. On the other hand, any model that 

can be written in the first-order form can be handled by the 

reduction techniques from numerical mathematics and sys-

tems and control, although asymptotic stability is assumed 

in the latter.

From a computational point of view, the methods from 

systems and control have the highest cost. In these methods, 

the computational complexity is mainly due to the solution 

of Lyapunov’s two equations [see Eq. (54)], which are of 

the size of the original high-order model. This computa-

tional complexity seriously hinders the applicability of bal-

anced truncation to systems of very high order. Moreover, 

a full coordinate transformation has to be computed, before 

(75)�
T

m
�

m
= �

(76)�
T

m
�

m
= �

(77)�
T

m
�

m
= �, �

T

m
�

m
= �

reduction can be performed by means of truncation. As a 

result, the total computational cost associated to balanced 

truncation is very high [6].

The computational cost for reduction techniques from the 

fields of structural dynamics and numerical mathematics is 

significantly lower. First, these methods do not require the 

computation of a full coordinate transformation. Instead, 

only the reduction space is computed, which is given by 

only m basis vectors. Furthermore, the computations are 

less costly since the required matrix operations are relatively 

cheap when compared to those needed for the solution of 

Lyapunov equations. In the mode displacement techniques 

from structural dynamics, only the most important eigen-

values and eigenvectors need to be computed. Since the fre-

quency domain of interest is typically known beforehand, 

efficient iterative methods can be used to find the natural 

frequencies in this range [6]. It is also noted that, among the 

reduction techniques from the field of structural dynamics, 

those that do not require the solution of any eigenproblem 

have a more less computational burden.

The Krylov subspace based moment matching techniques 

from numerical mathematics also have a small numerical 

cost. Namely, the application of the Arnoldi or Lanczos 

methods only requires the solutions of linear sets of equa-

tions or matrix–vector multiplications. Therefore, moment 

matching methods by Krylov subspaces can be applied to 

systems of very high order. Here, it is noted that the cost of 

two-sided moment matching methods are twice as high as 

the cost of one-sided methods, as two sets of basis vectors 

need to be obtained in the former [6].

A final general difference can be found in the level of 

automation of the model reduction techniques from the 

different fields. It is known that, only balanced truncation 

method is fully automatic when a requirement on the qual-

ity of the reduced model is given. Namely, the existence of 

an a priori error bound allows for the automatic choice of 

the reduction order. On the other hand, the methods from 

structural dynamics and numerical mathematics lack such 

an error bound. Even when the reduction order is chosen 

beforehand, the methods from structural dynamics and 

numerical mathematics are heuristic. Nevertheless, the 

level of automation differs among the reduction techniques 

discussed in this work. For example, modal truncation tech-

niques are dependent on the frequency range of interest, 

which needs to be specified a priori. Similarly, the reduction 

procedure in moment matching techniques from numerical 

mathematics is dependent on the choice of expansion points. 

However, the computational procedure in modal truncation 

and moment matching is fully automatic as soon as a choice 

is specified for the frequency range of interest and the expan-

sion points, respectively. It is known that all methods which 

involve DOF condensation need the user’s choice of master 

DOF. Therefore, for these methods the level of automation 
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is very low. Furthermore, thanks to the definition of a par-

ticipation factor measuring the significance of one particular 

Ritz vector in the total system response, the level of automa-

tion of Ritz vector methods may be considered high, even 

though this parameter does not form an error bound for the 

reduced model.

The first step in all model order reduction procedures is 

the selection of the most suitable technique for a given appli-

cation. To provide some guidelines to assist analysts in this 

step, in Table 1 a comparison of the reduction techniques 

discussed in this work is presented. More generally, this 

table should provide a view about the strengths and weak-

nesses of each reduction technique.

Along the rows of the table are listed the reduction tech-

niques discussed in this work, whereas along the columns 

are listed several features which may be more or less present 

in each reduction technique and which have been considered 

the most important in the area of structural dynamics.

Balanced truncation and Krylov subspace projection have 

been grouped in other methods, although each of them form 

a family of reduction techniques. These two methods belong 

to the fields of systems and control and numerical mathemat-

ics, respectively. Therefore, a more detailed discussion of 

such methods lies outside the scope of this work. It is also 

noted that, among the Krylov subspace projection methods 

the synthesis shown in the table is referred to the asymptotic 

waveform evaluation method.

Table 1  Synthesis of several 

reduction techniques
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As mentioned in the introduction of this work, the accu-

racy of a reduced model is measured by means of the width 

of the frequency range in which the reduced model approxi-

mates the behaviour of the full model. Here, the higher 

accuracy has been assigned to balanced truncation reduc-

tion since, as seen in the previous section, it deletes only the 

states that give a small contribute to the desirable system 

behaviour. Whereas, the lower accuracy has been assigned 

to static and quasi-static condensation techniques since they 

lead to a reduced model whose valid frequency range could 

be very narrow if the master DOF are not properly chosen. 

As will be shown at the end of this work, asymptotic wave-

form evaluation also has a low level of accuracy.

The discussion above, concerning the accuracy of the 

reduced model, the computational burden and the level of 

automation of the reduction procedure, is summarized in the 

last three columns of the table, respectively. These features 

are measured on a scale from one to five, represented by 

means of a dot inside a circle. In particular, the blank circle 

indicates a very low level of that feature and the solid black 

circle indicates a very high one. It is noted that, the com-

parison of the accuracy and computational burden of each 

reduction technique is performed considering the same order 

of the reduced model. Moreover, it is noted that the letters G, 

P and H in the previous column suggest that the coordinates 

of the reduced model are generalized coordinates, physical 

coordinates and hybrid coordinates, respectively, whereas 

the letter S indicates that the original model is represented in 

the state space, and therefore the input and output variables 

are not involved in the model reduction process (reduction 

only involves the internal description of the system).

In order to explain how the information contained in this 

table is read, the quasi-static Ritz vector method is consid-

ered as example. This method preserves the global system 

behaviour and the static response. It is able to approximate 

the full model behaviour in any interested frequency range. 

The coordinates of the reduced model are generalized coor-

dinates. Moreover, the accuracy of the reduced model is 

high, the computational burden is low and the level of auto-

mation is high.

In conclusion, this table does not claim to be an exhaus-

tive synthesis of all reduction techniques discussed in 

this work. However, it aims to represent an incentive, for 

researches working in the area of model order reduction, in 

summarizing the results of the great amount of reduction 

techniques (from different fields) existing in the literature. 

This could provide a useful tool for all those researchers 

who are new in this area and want to take advantage of the 

benefits of model order reduction.

3  Quantitative Comparison of Techniques: 
Application to a Slewing Flexible Beam

In this section some of the reduction techniques reported 

in Table 1 are applied to a FE model of the slewing flex-

ible beam depicted in Fig. 1. In particular, mode displace-

ment reduction will be employed in Sect. 3.2.1, Ritz vector 

methods in Sect. 3.2.2, Guyan condensation methods in 

Sect. 3.2.3, hybrid coordinate reduction in Sect. 3.2.4 and 

asymptotic waveform evaluation in Sect. 3.2.5. The pur-

pose of this section is to verify the information provided in 

Table 1. The system frequency response will be employed to 

measure the accuracy of different reduced models.

3.1  A Simple FE Model of a Slewing Flexible Beam

Since lightweight and flexible components have been widely 

used in many engineering structures, their dynamic analysis 

have drawn the attention of many researchers in the last dec-

ades. The rotating beam represents the simpler case of such 

structures and, therefore, many mathematical models have 

been developed in the literature.

Here a simple finite element consistent-mass model with 

only translational DOF is considered to model the dynamical 

behaviour of the slewing flexible beam depicted in Fig. 1. 

This figure shows a system made up of a flexible beam 

clamped to a rotating rigid hub.

The following hypothesis have been employed in order to 

get a simple linear model:

• The beam significant vibration develops into the plane of

its rigid motion.

• The amplitude of the applied torque �(t) is small enough

and its frequencies are away from the beam natural fre-

quencies, so that the small displacement hypothesis can

be used to model the beam transversal displacements

y(x, t) from its undeformed configuration.

• The angular velocity of the rigid body system is small

enough compared to the lowest natural frequency of the

flexible beam, so that the dynamic stiffening effect could

not be taken into account as well as the non-linear terms

Fig. 1  Slewing flexible beam
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into the translational (along the beam transversal direc-

tion) and rotational equilibrium statements of the beam 

could be neglected [49].

• The angular velocity of the rigid body system is small

enough, so that any aerodynamic force can be neglected.

• The damping due to the beam vibration is a Rayleigh

damping.

• The beam is an Euler–Bernoulli beam.

• The hub moment of inertia is large enough, so that the

rigid body system dynamics is independent from the

beam transversal elastic dynamics.

Under the above hypothesis, a non-rotating cantilever 

beam undergoing a triangular load distribution, represent-

ing the effect of the beam rigid body motion (inertial force), 

could be used in place of the slewing flexible beam in Fig. 1 

to model its dynamics. A finite element model of such sys-

tem is shown in Fig. 2.

Its dynamic equation is

where we consider a Rayleigh damping and the equivalent 

load vector � (t) due to the trapezoidal load distribution has 

the form

The system transfer function W(s) ∈ ℂ between the applied 

torque �(t) and the beam tip displacement y(L, t) from the 

undeformed configuration [that is given by the last element 

of the nodal displacement vector z(t)] is given by

where h is a row vector with all zero entries except the last 

that is set to 1. The corresponding frequency response is 

shown in Fig. 3, where a 50-DOF finite element model has 

been employed as the beam full model.

3.2  Comparison of Some Reduced FE Models

Employing the following coordinate transformation

where � is a 50 × m rectangular matrix (with m < 50 ), the 

reduced model transfer function W
R
(s) ∈ ℂ is given by

(78)��̈(t) + � �̇(t) +��(t) = �(t)

(79)� (t) = � �(t)

(80)W(s) = �
(

s
2 � + s� +�

)−1

�

(81)�(t) = ��(t)

In the following sections the magnitude frequency 

responses of the TFs of the beam reduced models obtained 

by means of the aforementioned techniques is selected to 

check their accuracy.

3.2.1  Modal Truncation

Here modal truncation reduction is applied to the beam 

FE model in Eq. (78). Different cases of selection of mode 

shapes retained in the reduced model are considered, as 

listed in Table 2. In Figs. 4, 5, 6, 7, 8 and 9 the correspond-

ing frequency responses are shown. It is observed that:

• The system static gain is generally not preserved;

• The reduced model is near to the full model at the fre-

quencies corresponding to the retained modes;

(82)W
R
(s) = ��

(

s
2 �

R
+ s�

R
+�

R

)−1

�T�.

Fig. 2  Finite element model of the rotating beam in Fig. 1

Fig. 3  Bode diagram of the beam transfer function W(s) between the 

applied torque �(t) and the beam tip displacement y(L,  t) from the 

undeformed configuration

Table 2  Cases for selection 

of mode shapes in modal 

truncation reduction

Case Retained modes

1 1

2 2

3 3

4 1 and 2

5 1 and 3

6 2 and 3

7 1, 2 and 3

8 2, 3 and 4
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Fig. 4  Magnitude Bode diagrams of the full model TF and three TFs 

of reduced models defined in Cases 1 through 3 in Table 2

Fig. 5  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 4 in Table 2

Fig. 6  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 5 in Table 2

Fig. 7  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 6 in Table 2

Fig. 8  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 7 in Table 2

Fig. 9  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 8 in Table 2
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• Between two frequencies corresponding to two retained

modes, a good accuracy of the reduced model is gener-

ally not guaranteed;

• Retaining just the first three modes (Case 7) in the

reduced model, its response has high accuracy in a wide

range of frequencies.

In Table 1 the reduction procedure has been considered of 

medium level of automation because, although the reduction 

methods from structural dynamics are heuristic, in modal 

truncation reduction the computational procedure is fully 

automatic as soon as a choice is specified for the frequency 

range of interest. Moreover, the computational burden has 

been considered of medium level due to the eigenproblem 

solution involved in the reduction procedure, which is com-

putationally expensive when compared to the dynamic stiff-

ness matrix inversion involved in Guyan condensation and 

Ritz vector methods.

3.2.2  Quasistatic Ritz Vector Method

Here the QSRV algorithm is applied to the beam FE model 

in Eq. (78). Different cases of selection of centering fre-

quencies and the corresponding number of Ritz vectors in 

the recurrence group are considered, as listed in Table 3. In 

Figs. 10, 11, 12, 13, 14 and 15 the corresponding frequency 

responses are shown.

It is observed that, setting the centering frequencies to 

the system natural frequencies and employing one Ritz vec-

tor in each corresponding recurrence group, the reduced 

model obtained has the same accuracy as the reduced model 

obtained using modal truncation reduction. Nevertheless, the 

generation of Ritz vectors is less computationally expensive 

than the computation of eigenvectors. Moreover, increasing 

the number of Ritz vectors in a recurrence group, the valid 

frequency range of the reduced model close to the corre-

sponding centering frequency becomes wider. This is shown 

in Fig. 15 where two Ritz vectors have been employed in 

the recurrence group corresponding to the fourth natural 

frequency. It is observed that with just one vector more, the 

accuracy of the reduced model is much higher than that of 

the reduced model obtained in Case 8 in Table 2 (whose 

frequency response is shown in Fig. 9).

In Table 1 the reduction procedure has been considered 

of high level of automation since, as for modal truncation 

reduction, the computational procedure is fully automatic 

as soon as a choice is specified for the frequency range of 

interest. Moreover, the definition of a participation factor pi 

for each Ritz vector allows to automatically terminate their 

generation procedure as soon as the value of pi drops below 

a given threshold. In conclusion, it is noted that the static 

response can always be preserved just adding one static Ritz 

vector (that is a QSRV with a centering frequency set to 

zero) for each loading pattern �
i
.

Table 3  Cases for selection of centering frequencies and the corre-

sponding number of Ritz vectors in the recurrence group

Case Centering frequency [rad/s]–N. of Ritz vectors

1 63.11–1

2 395.52–1

3 1107.50–1

4 63.11–1 and 395.52–1

5 63.11–1 and 1107.50–1

6 395.52–1 and 1107.50–1

7 63.11–1, 395.52–1 and 1107.50–1

8 395.52–1, 1107.50–1 and 2170.20–2

Fig. 10  Magnitude Bode diagrams of the full model TF and three TFs 

of reduced models defined in Cases 1 through 3 in Table 3

Fig. 11  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 4 in Table 3
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3.2.3  Guyan Condensation Methods

Here the quasistatic Guyan condensation and generalized 

quasistatic Guyan condensation are applied to the beam FE 

model in Eq. (78). Different cases of selection of centering 

frequencies and masters are considered for quasistatic Guyan 

condensation and generalized quasistatic Guyan condensa-

tion, as listed in Tables 4 and 5, respectively. In Figs. 16, 17, 

18, 19, 20, 21, 22, 23 and 24 the corresponding frequency 

responses are shown.

Fig. 12  Magnitude Bode dia-

grams of the full model TF and 

reduced model TF defined in 

Case 5 in Table 3

Fig. 13  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 6 in Table 3

Fig. 14  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 7 in Table 3

Fig. 15  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 8 in Table 3

Table 4  Cases for selection of centering frequencies and masters in 

Guyan condensation

Case Centering frequency [rad/s] Master DOF

1 0 5

2 0 15

3 0 50

4 0 25 50

5 0 1 through 20

6 0 15, 35 and 50

7 200 50

8 400, 600, 1100 and 2100 50
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From Fig. 16 it is clear that the accuracy of the reduced 

model highly depends on the analyst’s choice of masters. In 

particular, it is evident that when the 50th node is chosen as 

master the slave model is stiffer than when the 5th or 15th 

is chosen. This means that the frequency range where the 

reduced model is near to the full model is wider in Case 3 

than in Cases 1 and 2. Figure 18 shows that a 3-DOF model 

can be much more accurate than a 20-DOF model if the 

Table 5  Cases for selection of centering frequencies and masters in 

generalized Guyan condensation

Case Centering frequency (rad/s) Master DOF

9 0 5

10 0 1 and 2

11 200 50

12 400, 800 and 1400 50

Fig. 16  Magnitude Bode diagrams of the full model TF and three TFs 

of reduced models defined in Cases 1 through 3 in Table 4

Fig. 17  Magnitude Bode diagrams of the full model TF and two TFs 

of reduced models defined in Cases 3 and 4 in Table 4

Fig. 18  Magnitude Bode diagrams of the full model TF and two TFs 

of reduced models defined in Cases 5 and 6 in Table 4

Fig. 19  Magnitude Bode diagrams of the full model TF and two TFs 

of reduced models defined in Cases 3 and 7 in Table 4

Fig. 20  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 8 in Table 4
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masters are correctly chosen. For this reason, as reported in 

Table 1, Guyan condensation methods have a very low level 

of automation. Figure 17 shows that the valid frequency 

range of the reduced model grows when the number of mas-

ters is increased. Figure 19 shows that quasistatic Guyan 

condensation may leads to a reduced model with a very 

low accuracy. In particular the reduced model has the same 

behaviour of the full model solely at the centering frequency 

(200 Hz in Case 7).

An improvement to quasistatic Guyan condensation, 

which allows to shift the valid frequency range of the 

reduced model, is proposed in this work. It consists in con-

sidering multiple centering frequencies in the reduction pro-

cedure. This leads to the following transformation matrix

where �
G
(�

i
) is the quasistatic Guyan condensation matrix 

at the shifting frequency �
i
 , and r is the number of shifting 

frequencies. The main drawback of this reduction procedure 

is that the physical meaning of the reduced coordinates is 

lost. Stated differently, the reduced coordinates are no longer 

a subset of the full coordinates. An example of this reduc-

tion procedure is shown in Figure 20, where four centering 

frequencies have been employed.

Figure 21 shows that, choosing the same master DOF, 

generalized Guyan condensation leads to a reduced model 

which has higher accuracy than the reduced model obtained 

by Guyan condensation. As shown in Fig. 22, even when 

the first two nodes are chosen as masters (which is the worst 

choice) the accuracy of the reduced model is high. The same 

improvement as in Eq. (83), which allows to shift the valid 

frequency range of the reduced model, is proposed for gen-

eralized quasistatic Guyan condensation. This leads to the 

following transformation matrix

(83)�
G
=

[

� � ⋯ �

�
G
(�

1
) �

G
(�

2
) ⋯ �

G
(�

r
)

]

Fig. 21  Magnitude Bode diagrams of the full model TF and two TFs 

of reduced models defined in Cases 1 and 9 in Tables 4 and 5, respec-

tively

Fig. 22  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 10 in Table 5

Fig. 23  Magnitude Bode diagrams of the full model TF and two 

TFs of reduced models defined in Cases 7 and 11 in Tables 4 and 5, 

respectively

Fig. 24  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 12 in Table 5
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where �Gg(�i) is the generalized quasistatic Guyan con-

densation matrix at the shifting frequency �
i
 , and r is the 

number of shifting frequencies. An example of this reduction 

procedure is shown in Fig. 24 where three centering frequen-

cies have been employed. Furthermore, it is also observed 

that all Guyan condensation procedures may preserve the 

full model static gain.

(84)�Gg =

[

� � ⋯ �

�Gg(�1
) �Gg(�2

) ⋯ �Gg(�r)

]

3.2.4  Craig–Bampton

Two cases of application of fixed interface reduction to the 

beam FE model in Eq. (78) are considered, in which the 

50th node is set as master. The number of retained modes 

of the slave model are one and two in the first and second 

case, respectively (as listed in Table 6). In Figs. 25 and 26 

the corresponding frequency responses are shown.

The level of automation of this reduction procedure is low 

since fixed interface method is based on Guyan condensa-

tion. Nevertheless, increasing the number of the eigenvectors 

employed, the valid frequency range of the reduced model 

is extended. This makes the level of automation of fixed 

interface method higher than that of Guyan condensation. 

Figures 25 and 26 show that the valid frequency range of the 

reduced model becomes wider when the number of eigen-

vectors employed is increased. It is also observed that the 

static response of the full model is always preserved. Fur-

thermore, the computational burden has been considered of 

medium level due to the eigenproblem solution of the slave 

model involved in this reduction procedure.5

Table 6  Cases for selection of masters and number of eigenvectors of 

the slave model in fixed interface method

Case Master DOF Number 

of retained 

modes

1 50 1

2 50 2

Fig. 25  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 1 in Table 6

Fig. 26  Magnitude Bode diagrams of the full model TF and reduced 

model TF defined in Case 2 in Table 6

Table 7  Cases for selection 

of the reduced model order in 

asymptotic waveform evaluation

Case Reduced 

model 

order

1 1

2 2

3 3

4 4

Fig. 27  Magnitude Bode diagrams of the full model TF and four TFs 

of reduced models defined in Cases 1 through 4 in Table 7

5 Generally, the slave model has almost the same dimension as the 

full model.
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3.2.5  Asymptotic Waveform Evaluation

Using asymptotic waveform evaluation reduction, four 

reduced beam models are obtained, with the expansion point 

is set to zero. They are listed in Table 7. In Fig. 27 are shown 

the corresponding frequency responses.

From this figure we observe that the accuracy of the 

reduced model in Case 1 is very low. More generally, con-

sidering the same order of the reduced model, asymptotic 

waveform evaluation leads to a reduced model with lower 

accuracy than that of the reduced models obtained by means 

of the above reduction procedures. In Table 1 asymptotic 

waveform evaluation has been considered of medium level 

of automation since, although this reduction method is heu-

ristic, the computational procedure is fully automatic as 

soon as a choice is specified for the expansion point. It is 

also observed that the static gain of the full model is always 

preserved.

4  Conclusion

In this work general model order reduction techniques from 

the fields of structural dynamics, numerical mathematics and 

systems and control have been first briefly reviewed and then 

compared. Such comparison may facilitate the choice of a 

particular reduction technique, on the basis of the desired 

properties retained in the reduced model. Particular atten-

tion has been paid on reduction technique from structural 

dynamics.

A qualitative comparison among the aforementioned 

reduction methods has been presented. It has been based 

on the following aspects: first-order form versus second-

order form; input–output behaviour versus global behaviour; 

automatic versus user-dependent model reduction, as well as 

the computational burden and the accuracy of the reduced 

model. Here, an important difference is due to the fact that 

the global dynamics is taken into account in the reduction 

techniques from structural dynamics, whereas reduction 

techniques from numerical mathematics and systems and 

control aim at the approximation of the input–output behav-

iour. This difference makes all reduction methods developed 

in the area of structural dynamics generally not suitable to 

be applied in other fields, whereas any model that can be 

written in the first-order form can be handled by the reduc-

tion techniques from numerical mathematics and systems 

and control.

In Table 1 all the reduction techniques discussed in this 

work have been summarized. In this table, several features, 

which may be more or less present in each reduction tech-

nique and which have been considered to be the most impor-

tant in the area of structural dynamics, are listed along its 

columns.

Finally, the differences among some of the hereby pre-

sented reduction techniques have been illustrated on a quan-

titative level by means of their application to the case of 

a slewing flexible beam. A consistent-mass finite element 

model, with only translational degrees of freedom, has been 

employed (as full model) in the application of the differ-

ent reduction techniques. The frequency response has been 

employed to measure the accuracy of different reduced mod-

els. In conclusion, by analyzing the frequency responses of 

different reduced models, it has been verified that the results 

obtained are in good agreement with the information pro-

vided in the summary table.
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