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An efficient approach to closed-loop shape control of deformable
objects using finite element models

A. Koessler1, N. Roca Filella1, B.C. Bouzgarrou1, L. Lequièvre1 and J.-A. Corrales Ramon2

Abstract— Robots are nowadays faced with the challenge
of handling deformable objects in industrial operations. In
particular, the problem of shape control, which aims at giving
a specific deformation state to an object, has gained interest
recently in the research community. Among the proposed
solutions, approaches based on finite elements proved accurate
and reliable but also complex and computationally-intensive.

In order to mitigate these drawbacks, we propose a scheme
for shape control that does not require to run a real-time
simulation or to solve an implicit optimization problem for
computing the control outputs. It is based on a partition
of the nodal coordinates that allows deriving a control law
directly from tangent stiffness matrices. This formulation is
also coupled with the introduction of reduced finite element
models. Simulation and experimental results in the context of
linear deformable object manipulation demonstrate the interest
of the proposed approach.

I. INTRODUCTION

Robotic manipulation of deformable objects is a blooming
field in robotics research. This can be explained by its
numerous applications in the fields of manufacturing, service
industry or surgery for instance, where robots are facing
objects that are inherently deformable such as elastic bodies,
ropes, clothes or living tissues. Those objects come in
different topologies (linear, planar, three-dimensional) and
with different deformation behaviours (isometric, elastic,
elastoplastic) [1]. As described in [2], methods developed
for rigid object manipulation cannot fulfill industrial expecta-
tions, since the state of deformation of the manipulated object
needs to be taken into account at every step of the robotic
task: system modeling, motion planning, robot control and
state perception. This justifies the many contributions aimed
at deformable objects that have been proposed on those
topics over the last decade, as shown by recent surveys such
as [1], [3].

Shape control: One particular problem we wish to
tackle in this paper is the problem of shape control (or
shape servoing) of deformable objects. It consists in driving
the actuators of a robotic system so that the manipulated
deformable object reaches a given target shape. Solving this
problem is necessary in contexts where the success of the
task relies on the final deformation state of the manipulated
object. Industrial applications are draping processes, multi-
layer product assembly or cable routing for instance.
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Contributions on this subject all seek to answer a core
question: how to quantify the interaction between the dis-
placement or force exerted by the actuators and the change
in shape of the object? The mathematical definition of
this problem is often referred to as deformation Jacobian
estimation. The methods to answer this question can be
separated in two main categories, depending on their reliance
on a deformation model.

Model-free approaches: The first category regroups
methods where the deformation Jacobian is numerically
estimated from sensor measurements. We can think of the
works [4], [5], [6] for instance. In model-free approaches, the
control problem is generally formulated in sensor measure-
ment space. These methods take full advantage of machine
learning to quantify the interaction [7] and reuse learned
trajectories [8], but adaptive control [9] or predictive control
[10] can also be used to improve model accuracy. These
methods avoid the step of mechanical identification of the
manipulated object, but quality of initial estimates for the
interaction remains crucial, and loss of generality or over-
training in specific configurations remain hazards for learned
models.

Model-based approaches: Even though popular older
works are known, as evidenced by the review [11], model-
based shape servoing gets less attention than its model-
free counterpart nowadays. Non-mechanical models such as
templates [12] are computationally inexpensive and well
suited to visual servoing, but their results guarantee the
visual convergence of some points over the surface of the
object; consequently, the mechanical constraints related with
its material properties are not taken into account. In some
cases, low-complexity mechanical models can be used, such
as catenaries for isometric linear objects [13]. In contrast,
finite element models (FEM), which are based on discrete or
continuum mechanical equations, can handle many materials
and shapes of objects. These advantages justify the research
interest on FEM-based methods. Shaping of objects using a
mass-spring model and torque control is described in [14],
with an emphasis on motion planning to reach a given
shape. We also can mention the contributions of [15] and
[16] which have in common their open-loop structure and
their formulation of the control law as the solution to an
optimization problem. In both approaches, resolution of the
finite element problem at each time step is required, which
is the major drawback of the method, since it is resource-
consuming and involves mechanical expertise. However, very
precise results can be obtained from such mechanical models.

More FEM-based approaches can be found in the neigh-



boring research field of soft robotics [17], where the es-
timation of the deformation Jacobian is also of crucial
relevance for controlling end-effector pose accurately. Unlike
in deformable objects manipulation, model-based closed-
loop control of soft robots has recently been addressed in
[18], [19]. The real-time tracktability of FEM simulation in
these works is allowed by proper orthogonal decomposition
techniques, in order to reduce the dimension of state-space
equations for control. Nonetheless, these works still rely on
the computationally-intensive real-time FEM simulation, and
accounting for reduction errors makes the control problem
more complex.

Contribution: In the proposed work, we wish to intro-
duce a method for shape control based on a finite element
formulation, which is an accurate and versatile method.
Through a novel expression of the control problem, we show
how to get rid of the need for real-time simulation of the
system in the control algorithm. The control problem is then
solved using straightforward linear control techniques that
enable control loop closure. The efficiency of the proposed
control law is validated experimentally, in the context of
manipulation of a linear elastic product. In this case study,
we will prove that using hand-made FE models with very
low node count is sufficient to obtain good results.

II. FINITE ELEMENT-BASED CONTROL LAW

In this section, we present the mechanical finite element
model that is used in order to derive a closed-loop control
law. This presented formulation is valid under the hypothesis
that inertial effects are negligible (quasi-static motion).

A. Finite element modeling and notations
Finite element method is a widely used mathematical

method in engineering, especially in the field of structural
analysis [20]. It consists in discretizing a body in small
elements, forming a mesh consisting of nodes and vertices.
In the following, we consider that the shape control problem
is resolved when the nodes of the mesh are able to reach a
given position in space.

The basic formula for finite element analysis is the static
equilibrium equation, which is often written down as

Kgu = f (1)

where Kg is the global stiffness matrix of the structure, u is
the vector of nodal displacements and f is the vector of ex-
ternal nodal forces. This formula encapsulates the important
idea that FEM provides a way to link nodal displacements to
nodal forces through the concept of stiffness matrix assembly
(see for instance section 3.3. of [20]). However, it is not
valid in the general case, where large displacements and
large deformations can arise. Since we seek a more generic
approach, we will write the static equilibrium equation in the
local formulation

K(u)∆∆∆u = ∆∆∆f (2)

where K is the locally valid tangent stiffness matrix (which
depends on node coordinates) linking a small nodal displace-
ment ∆∆∆u with a small variation in external nodal forces ∆∆∆f.

B. Partition between nodes for control

To serve the purpose of shape control, the robot must be
given a goal shape and the capability to exert mechanical
actions on the body. In the finite element model, this trans-
lates as different properties that distinguish nodes between
each other in terms of control and perception. For control
purposes, there will be three types of nodes:

• Driven nodes (subscript d) are the nodes which are
bound to the end-effector or the gripper of the robot.
They can be imposed a given force or displacement and
undergo actions that modify the state of the structure;

• Target nodes (subscript t) are the nodes whose goal
position u∗

t is specified. They define the target shape
of the object;

• Free nodes (subscript f ) are nodes which are neither
driven nor target nodes. They do not play a role for
control but add precision to the model.

This partition turns (2) into the following system of equa-
tions:

Kdd∆∆∆ud +Kdt∆∆∆ut +Kd f ∆∆∆u f = ∆∆∆fd (3)
Ktd∆∆∆ud +Ktt∆∆∆ut +Kt f ∆∆∆u f = ∆∆∆ft (4)
K f d∆∆∆ud +K f t∆∆∆ut +K f f ∆∆∆u f = ∆∆∆f f . (5)

The main idea behind this partition is that it allows straight-
forward definition of the control problem. While it has not
been already reported this way to our knowledge, it can be
related to the partition presented in [21] for soft robot control
or [22] for soft robot compliance analysis. From (3)-(5),
one can see which quantities are computed by the control
law, which ones need to be estimated or perceived. From
this, shape control can be achieved through force or position
servoing. We will focus on the latter: the driven nodes are
imposed a position, ∆∆∆ud is the control output and a control
law h under the form ∆∆∆ud = h(∆∆∆ut ,∆∆∆u f ) should be found so
that ut converges towards u∗

t . We will now synthesize this
control law h.

C. Velocity control law synthesis

From now on, we will drop small variations ∆∆∆ for dotted
time derivatives, which explains why this is actually a
velocity-based control law. Under the assumption that target
and free nodes are submitted to zero or constant external
forces (eg. weight), we have ḟt = ḟ f = 0 and (3)-(5) become

Kdd u̇d +Kdt u̇t +Kd f u̇ f = ḟd (6)
Ktd u̇d +Ktt u̇t +Kt f u̇ f = 0 (7)
K f d u̇d +K f t u̇t +K f f u̇ f = 0. (8)

From this system of equations, we want to link control law
output u̇d to controlled quantity u̇t . Only two of the three
equations are needed to do this. Since measuring ḟd would
need a costly dedicated sensor, we will only combine (7) and
(8) to obtain the following relation:

Kd u̇d +Kt u̇t = 0 (9)



where Kd = Ktd −Kt f K−1
f f K f d and Kt = Ktt −Kt f K−1

f f K f t .
Since our goal is to drive the error et = u∗

t −ut towards 0, we
seek to impose the following error equation with first-order
dynamics:

ėt +Gpet = 0. (10)

This relation ensures exponentially stable convergence to-
wards zero if Gp is a positive definite matrix.

Remarking that ėt =−u̇t and substituting (9) into (10), we
have

K−1
t Kd u̇d +Gpet = 0 (11)

and isolating control law output we obtain the control law

u̇d =−K+
d KtGpet (12)

where the superscript + denotes the pseudo-inverse of a
matrix. This control law computes velocities of driven nodes
such that the coordinates of target nodes converge towards
their goal values. We find here a control law that follows the
principle of pseudo-inverse allocation coined in [21].

D. Perception and estimation of nodal coordinates

For real implementation of this control law, all nodal coor-
dinates must be known, as they are used in the computation
of the error et , but also of the matrices Kd and Kt . In the
general case, it is impossible to resolve this problem through
perception only, since nodes may be hidden within the object,
vision may be partial or occluded, etc. Literature overcomes
this by solving implicitely the whole FE problem. However,
the whole shape of an object can be deduced from few known
nodal coordinates, as they define boundary conditions that
allow solving the local equilibrium problem.1 Consequently,
we can introduce a novel partition of the nodes:

• Perceived nodes (subscript p) are nodes whose coordi-
nates can be measured;

• Estimated nodes (subscript e) are nodes whose co-
ordinates cannot be measured, and should hence be
computed.

Given this partition, static local equilibrium equation can
be written as

Kppu̇p +Kpeu̇e = ḟp (13)

Kepu̇p +Keeu̇e = ḟe. (14)

The derivative of effort is nonzero for driven nodes, which
are generally perceived (through proprioception in the actu-
ation chain). Consequently, ḟp is usually non null while ḟe is.
Taking only the second line, the following relation can then
be obtained:

u̇e = K−1
ee Kepu̇p. (15)

Provided an initial estimate can be given (through measure-
ment or offline simulation), estimated node velocity can then
be integrated numerically at each time step k as

ue[k+1] = ue[k]+ u̇e[k]∆t (16)

1This is not true when instabilities such as buckling occur, but we deem
them unlikely to happen in usual object manipulation.

where u̇e[k] is computed thanks to (15). The use of real
updated values u̇p in the computation is expected to provide
precise enough estimated values ue, so that the estimated FE
model remains truthful to real object shape.

E. Remarks on actuation and perception dimensions

In order to use efficiently the proposed controller, the
choice for type of nodes has to be adapted to the use case.
Apart from the obvious consideration that enough actuation
degrees must be available to reach certain shapes, there is
a need to specify the target nodes in a coherent manner.
If the task requires to position multiple nodes, then user-
defined values u∗

t must define a physically feasible solution.
Through pseudo-inverse computation, the control law (12)
can only minimize a global error on all target nodes, but not
the local error on each of the target nodes.

Regarding perception, a fair hypothesis is that the position
of every driven node is known through proprioception in
the actuation chain. This means that the shape of the object
could be known in theory from those sole measurements,
by solving equilibrium equations (1) or (2), but it relies on
good knowledge of manipulated object deformation model.
In contrary, perceiving additional nodes, through vision for
instance, allows to robustify the control process with regards
to modeling errors. This is especially interesting when using
reduced FE models with low element count and simple
kinematics, which is the direction we will explore in our
case study.

III. CASE STUDY

The application in which we will showcase our contri-
bution consists in manipulating a thin sheet of vulcanized
rubber with a robot, as shown on Fig. 1. To this end, we
propose a reduced finite element model of the elastic object
and a ROS implementation for our controller to be run on a
UR5 robot.

A. Object FE model

The object we manipulate shows a typical elastic behavior
with large displacements due to bending under its own
weight. To make modeling easier, we will not consider
shearing and torsion, so that the shape can be fully described
in the longitudinal plane of symmetry of the object. Hence,
we see the rubber sheet as a linear object (in the sense of
Sanchez’s classification [1]) deforming in a 2D plane.

Given that the object exhibits bending stiffness, the logical
choice would be to use beam elements in the FE modeling.
However, they introduce an angular coordinate which is
tricky to perceive, so we settled on using even simpler 1D
rod elements. For a perfectly elastic behavior, the elemental
stiffness matrix of the 1D rod element i in a local frame
(Oi,Xi,Yi) is

Ki =
EiAi

`0i

[
1 −1
−1 1

]
(17)

where Ei denotes the Young’s modulus of the material,
Ai the cross-section area of the object and `0i the element’s



Fig. 1: Picture of the experimental setup.

length at rest. Elemental matrices are translated to the global
(O,X ,Y ) frame and assembled to obtain the locally-valid
tangent stiffness matrix of the structure :

K = assemblei
(
R(θi)KiR(θi)

T ) (18)

where R is the usual 2×2 rotation matrix and θi the angle
between the x-axes of local element frame and global frame.
These rotations introduce reliance on nodal coordinates,
since for an element i linking nodes j and j + 1 we use
the relation θi = atan2(uy

j+1 −uy
j,u

x
j+1 −ux

j) to compute the
θi angle.

B. Hardware and software implementation
To actuate the system, a UR5 robot from Universal Robots

company is used. Its motions are controlled through a dedi-
cated ROS driver that provides a joint velocity interface. The
control loop was programmed based on ROS Control and its
main loop structure is highlighted on Fig. 2. Programs are
available on GitHub2.

One can see two interactions with other programs: user-
made goal specification and sensor data acquisition. For the
latter, we use the proprioception of the UR5 robot and a
vision system. Vision perception is performed with an Intel
RealSense D435 RGB-D camera which allows to measure
node coordinates through point tracking. The algorithm that
performs tracking is programmed using Python and OpenCV.
Due to image acquisition which is time-consuming, the loop
rate is capped to 30 Hz in our implementation.

2Repository link: github.com/adkoessler/mrod ur ip controllers

Get u∗
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Fig. 2: Schematic representation of the controller.

IV. EXPERIMENTAL VALIDATION

Following controller description, we perform shape control
experiments on the real system. The proposed experiments
evaluate the impact of modeling errors, compute the level
of precision that can be expected experimentally and show
to which extent the estimation of non-perceived coordinates
can be trusted.

Setup: The object is a 60 cm-long sheet of rubber. We
settle on dividing it in 11 nodes and 10 elements, making
the model low-dimensional but still capable to represent
deformations faithfully. From characterization, we have the
real values Ē = 5.82 MPa, ¯̀0 = 60 mm and Ā = 172 mm2

for object parameters. Node 0 (leftmost) is clamped to the
ground, node 10 (rightmost) is driven by the UR5 robot and
free nodes 1 to 9 may be perceived or estimated.

A. Sensitivity to modeling errors

Since the presented control law is model-based, a very de-
sirable property would be robustness with regard to modeling
errors. In the presented case study, these errors could come
from misidentified parameters (namely Young’s modulus) or
ignored phenomena such as bending.

To evaluate this aspect, we skew voluntarily Young’s
modulus value. In the controller, we setup E = 1.50 MPa,
which is a typical value for this family of materials3. The task
we want to accomplish consists in positioning nodes 5 and
6 relatively with a piece of tape: relevant goal coordinates
in the global frame for these nodes are resp. [−.880;−.163]
and [−.826;−.147] (m). Node 1 to 6 are perceived with the
RGB-D camera.

This task is illustrated on Fig. 3 but also in the video
attachment to this paper. Tuning the controller by hand,
we found that Gp = diag(0.2) gives satisfactory results in
terms of stability and velocity. The specified goal position
is reached after five seconds, when the final norm of error
vector et remains steadily under 6 mm. We conclude that
the mismatch in modeling parameters introduced voluntarily
does not have an impact on the precision of the result.

Analysis: As shown by expressions (17) and (18),
stiffness matrices have a linear dependency on E. From
control law (12), the terms in E in Kd , Kt cancel out and the
error signal still follows the first-order convergent behavior
defined by (10). Practically, misidentification of the Young’s

3Found on matweb.com under the ”Natural Rubber, Vulcanized” category.



Fig. 3: Tracking of nodes during trajectory execution.

Fig. 4: Target error and computed velocity output during
motion.

modulus and neglect of other effects such as bending can
be compensated by tuning the proportional gain matrix Gp
accordingly.

B. Positioning precision evaluation

On the real system, it is impossible to reach a perfect
precision for target nodes positioning, either because mea-
surements are subject to noise (especially depth values of
the RGB-D camera) or because the specified goal is not
physically feasible. To answer this problem, we propose to
terminate the control loop when the norm of the error vector
et is smaller than a certain threshold.

In this experiment, we set the goal coordinates for target
nodes 4 and 5 to resp. [−.905;−.126] and [−.849;−.142]
(m). First, we try to reach this configuration when setting
the error threshold to 10 mm. From Fig. 4, we can see that
the controller succeeds in reducing the error under this value
and stops. Afterwards, we repeat this procedure, but lowering
threshold value every time. An interesting case arises when
the threshold value is down to 3 mm. From Fig. 4, one can
see that the error cannot durably settle under this value due

Fig. 5: Final shapes obtained for 3, 6 and 10 mm threshold.

to noises. Consequently, termination condition is never met
and velocities are computed indefinitely. It can be said that
positioning precision cannot be better than 3 mm with the
current implementation.

Analysis: This value for maximal precision makes
sense, since depth measurement spread for our camera is
typically 1% of camera to object distance, whose value is
300 to 500 mm in our setup. Aside from this, comparing
global object shapes on Fig. 5, it can be seen that lowering
the threshold has made the global shape much closer to the
expected result. By raising the y-coordinate of the actuator
compared to 6 and 10 mm cases, the controller has found a
way towards a better fitting configuration.

C. Reliance on node coordinate estimation

As said in section II, estimation of node position is needed
to handle cases where the vision system cannot measure the
coordinates of all nodes. To illustrate this, we perform tasks
from sections IV-A and IV-B but this time we act as if the
right side of the object cannot be perceived. Different cases
will be explored:

1) second experiment, target nodes (4,5) are perceived,
nodes 6 to 9 are estimated

2) second experiment, target nodes (4,5) are estimated as
well as nodes 6 to 9



3) first experiment, target nodes (5,6) are perceived, nodes
7 to 9 are estimated

4) first experiment, target nodes (5,6) are estimated as
well as nodes 7 to 9

For this experiment, we track all nodes with the vision
system to obtain a ground truth, but choose to only use
values for perceived nodes in the control loop. We also keep
the modeling error introduced for the first experiment. In
each case, we measure the final value of three different error
signals:

• the norm of expected control error et , which is used
with a 10 mm precision threshold,

• the norm of real control error u∗
t − ūt , where the bar

denotes the ground truth value,
• the norm of the estimation error ue − ūe, where the bar

denotes the ground truth value.
Target nodes are perceived in cases 1 and 3; consequently,
no error is introduced on target node coordinate and et is
equal to u∗

t − ūt . Results are compiled in the table I.
Analysis: The main difference between cases 1-2 and

3-4 is that the goal configuration involves a greater change
in object shape in the latter case. Coincidentally, estimation
error values are greater in cases 3 and 4. This means that
estimation is subject to drift: the bigger the displacement,
the larger the estimation error. A fair hypothesis is that the
sharp filtering on RGB-D camera signals needed to eliminate
the noise induces imprecision on u̇p which is propagated to
ue by (15) and (16). For case 4, the improper estimation is
illustrated on Fig. 6. From this graph, nodes 6 to 8 exhibit the
largest estimation errors. Estimation errors possibly stack up:
the nodes located furthest to a perceived node will be even
more subject to estimation drift.

Cases 2 and 4 hence have a very different outcome. While
in case 2 the real control error remains just shy of the
threshold value, in case 4 the object ends up ill-positioned
by several centimeters. Moreover, the expected control error
remains largely above the threshold in case 4, meaning that
termination is never met and that the controller is stuck in a
configuration from which it cannot improve. However, cases
1 and 3 are not prevented from reaching the goal in spite of
estimation errors.

Overall, we can conclude that perception of target nodes is
the best way to ensure success. When it is not possible, the
estimation should be handled with care as it is subject to a
slow drift. In future works, this problem could be mitigated
by using the simulation-based approaches of the literature
to carry out this estimation. However, satisfactory results in
case 2 show that simulation solving could be executed at a
drastically diminished rate, and not at each time step of the
control loop as in the state of the art.

V. CONCLUSION

Contribution: In this article, we have proposed a
method for closed-loop shape control of deformable objects
based on a finite element formulation. The expression of
the static equilibrium conditions have allowed us to link

Fig. 6: Evolution of coordinates of rightmost nodes during
motion in case 4.

TABLE I: Experimental error results

case estimated perceived et u∗
t − ūt ue − ūe

e nodes p nodes mm mm mm
1 6 to 9 0 to 5, 10 9.58 9.54 15.77
2 4 to 9 0 to 3, 10 9.59 10.30 15.79
3 7 to 9 0 to 6, 10 9.73 9.73 41.78
4 5 to 9 0 to 4, 10 19.01 27.08 37.33

nodal displacements with each other. From this, we have
synthesized a control law to reach a given shape and a
procedure to estimate the current shape. Both together, they
allowed us to write a controller whose capabilities have been
illustrated and experimentally.

Advantages: Using an inexpensive RGB-D camera to
close the control loop, we have shown our method capable
of imposing a goal shape to an object without resorting to
resource-intensive simulations and numercial optimizations.
The robustness of the method with regards to modeling errors
is another important merit, especially if object parameters are
changeable or difficult to identify. Partial perception and es-
timation of hidden nodes was also validated experimentally.

Limitations and perspectives: An important perspective
is to extend the presented work to more generic cases. Those
cases include tasks with richer deformation patterns and 3D
objects, but also textureless objects which cannot be handled
by the current perception solution. We have also considered
handling drift in node estimation with a computationally-
inexpensive simulation method. Dynamic switching between
perception and estimation for nodes in order to handle
occlusions could also prove a worthy addition.
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