
HAL Id: hal-03836861
https://hal.science/hal-03836861v1

Submitted on 2 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Massive Access in Media Modulation Based Massive
Machine-Type Communications

Li Qiao, Jun Zhang, Zhen Gao, Derrick Wing Kwan Ng, Marco Di Renzo,
Mohamed-Slim Alouini

To cite this version:
Li Qiao, Jun Zhang, Zhen Gao, Derrick Wing Kwan Ng, Marco Di Renzo, et al.. Massive Access in
Media Modulation Based Massive Machine-Type Communications. IEEE Transactions on Wireless
Communications, 2022, 21 (1), pp.339 - 356. �10.1109/TWC.2021.3095484�. �hal-03836861�

https://hal.science/hal-03836861v1
https://hal.archives-ouvertes.fr


ar
X

iv
:2

10
4.

03
87

4v
2 

 [
cs

.I
T

] 
 6

 J
ul

 2
02

1
1

Massive Access in Media Modulation Based

Massive Machine-Type Communications
Li Qiao, Jun Zhang, Zhen Gao, Derrick Wing Kwan Ng, Fellow, IEEE, Marco Di Renzo, Fellow, IEEE, and

Mohamed-Slim Alouini, Fellow, IEEE

Abstract—The massive machine-type communications
(mMTC) paradigm based on media modulation in conjunction
with massive multi-input multi-output base stations (BSs) is
emerging as a viable solution to support the massive connectivity
for the future Internet-of-Things, in which the inherent massive
access at the BSs poses significant challenges for device activity
and data detection (DADD). This paper considers the DADD
problem for both uncoded and coded media modulation based
mMTC with a slotted access frame structure, where the device
activity remains unchanged within one frame. Specifically, due
to the slotted access frame structure and the adopted media
modulated symbols, the access signals exhibit a doubly structured
sparsity in both the time domain and the modulation domain.
Inspired by this, a doubly structured approximate message
passing (DS-AMP) algorithm is proposed for reliable DADD in
the uncoded case. Also, we derive the state evolution of the DS-
AMP algorithm to theoretically characterize its performance.
As for the coded case, we develop a bit-interleaved coded
media modulation scheme and propose an iterative DS-AMP
(IDS-AMP) algorithm based on successive inference cancellation
(SIC), where the signal components associated with the detected
active devices are successively subtracted to improve the data
decoding performance. In addition, the channel estimation
problem for media modulation based mMTC is discussed and
an efficient data-aided channel state information (CSI) update
strategy is developed to reduce the training overhead in block
fading channels. Finally, simulation results and computational
complexity analysis verify the superiority of the proposed
DS-AMP algorithm over state-of-the-art algorithms in the
uncoded case. Also, our results confirm that the proposed
SIC-based IDS-AMP algorithm can enhance the data decoding
performance in the coded case and verify the validity of the
proposed data-aided CSI update strategy.

Index Terms—Massive access, media modulation, massive
multi-input multi-output, massive machine-type communications.
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I. INTRODUCTION

W ITH the advent of the Internet-of-Things (IoT), mas-

sive machine-type communications (mMTC) are ex-

pected to support various potential applications, including

smart metering, surveillance and healthcare. In fact, mMTC

are considered to be an indispensable component for future

beyond 5G/6G networks [2], [3]. In stark contrast with con-

ventional human-type communications (HTC) that are char-

acterized by downlink transmissions with long packets and

high data rates, mMTC are characterized by uplink transmis-

sions with short packets from massively deployed machine

type devices (MTDs) whose data traffic is sporadic [4], [5].

The unique traffic characteristics of mMTC indicate that the

existing access solutions designed for HTC can not effectively

support the massive access of MTDs, which necessitates low-

latency and high-reliable massive access techniques with low-

complexity signal processing algorithms.

A. Related Work

Existing access solutions can be mainly divided into two cat-

egories: grant-based access approaches and grant-free access

approaches [2]–[5]. As for grant-based access solutions, allo-

cating orthogonal radio resources to different active MTDs via

some sophisticated scheduling algorithms is necessary before

the uplink transmission. However, this costs extra signaling

overhead for handling the granted signals. In practice, due

to the limited orthogonal resources, it would be difficult to

support a large number of MTDs by applying grant-based

schemes, and the use of complicated resource scheduling

algorithms can lead to a prohibitive signaling overhead and

latency, leading even to congestion [2]–[6]. As an alternative

solution, grant-free access schemes have recently emerged and

have drawn significant attention [7]–[16]. In grant-free access

systems, the MTDs can transmit in the uplink without waiting

for permission, which significantly simplifies the uplink access

procedure and hence reduces the access latency compared with

grant-based access protocols.
Due to the limited radio resources but large number of

potential MTDs, grant-free massive access schemes result in

non-orthogonal transmissions, which makes the device activity

and data detection (DADD) problem more difficult to handle.

In particular, the DADD can be treated as an underdetermined

linear problem. This implies that the application of classical

linear least-squares (LS) and linear minimum mean square

error (LMMSE) detectors to tackle the DADD problem would

result in poor detection performance [17]. Fortunately, thanks

to the sporadic traffic characteristics of MTDs in mMTC, the

number of active MTDs is usually much smaller than the

number of total MTDs in any given time interval, which mo-

http://arxiv.org/abs/2104.03874v2
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tivates the application of compressive sensing (CS) techniques

to design effective grant-free massive access schemes [18].
Recently, several grant-free massive access schemes have

been proposed. Specifically, by leveraging the block sparsity

of the data traffic of mMTC in consecutive time slots, the

authors of [8] and [9] proposed a structured iterative support

detection algorithm and a threshold-aided block sparsity adap-

tive subspace pursuit algorithm, respectively, to jointly detect

the active MTDs and the corresponding transmitted data with

improved performance. Furthermore, by exploiting the finite

alphabet constraint of the transmit data as a priori information,

a maximum a posteriori probability-based greedy algorithm

was proposed in [10] to further improve the performance. In

addition, in contrast to the greedy algorithms mentioned above,

the authors of [11] proposed an approximate message passing

(AMP) algorithm based detector [19]–[21], whereby the finite

alphabet constraint of the transmit symbols was considered

in the a priori probability and the expectation maximization

(EM) algorithm was adopted to detect the active MTDs [22].

It is worth noting that the aforementioned works, i.e., [8]–[11],

considered a slotted access frame structure, where the MTDs

remain (in)active over an entire data frame (several successive

time slots). Yet, the authors of [12] and [13] considered MTDs

with dynamic device activity, where the activity of each MTD

varies in several continuous time slots. Specifically, a dynamic

CS-based detector and a prior-information-aided adaptive CS-

based detector were proposed in [12] and [13], respectively. In

both cases, the detection accuracy was improved by exploit-

ing previously detected results. However, only single-antenna

MTDs and single-antenna base stations (BSs) were considered

in [8]–[13].
To unleash the potential of massive access in mMTC,

spatial modulation based on multiple transmit antennas at the

MTDs and massive multi-input multi-output (mMIMO) BSs

were considered in [14], [23], and [24]. In particular, spatial

modulation is a low-complexity and energy-efficient multiple-

antenna scheme that utilizes a single or fewer radio frequency

(RF) chains than the number of antenna elements [25]–[28].

By encoding part of the information bits onto the activated

antenna elements, spatial modulation is capable of enhancing

the data rate at a low cost and low power consumption [26].

The application and suitability of spatial modulation to the

IoT is discussed and proved experimentally in [29] and [30],

respectively. In addition, the use of mMIMO at the BSs can

significantly reduce the detection error probability of the active

MTDs, thus improving the reliability of massive access [31].

Inspired by this, the authors of [14] proposed a two-level

sparse structure CS (TLSSCS) algorithm for grant-free access,

and the authors of [23] and [24] considered a grant-based

access scheme, where a group subspace pursuit algorithm

and a structured AMP algorithm were proposed for detecting

the signals encoded by using spatial modulation, respectively.

By exploiting the structured sparsity of the spatial modulated

symbols, the algorithms proposed in [14], [23], and [24]

achieve better data detection performance than the algorithms

designed for single-antenna devices in [8]–[13]. However, the

spatial modulation transmission scheme adopted in [14], [23],

and [24] is the simplest one, which doubles the number of

antenna elements for each extra spatial modulated data bit

[25].
Fortunately, during the last years many improved transmis-

sion schemes have been proposed in order to enhance the spec-

tral efficiency of spatial modulation without compromising

its low-complexity and energy-efficiency. A recent overview

and comparison of the most popular solutions, which includes

generalized spatial modulation, media modulation, and, more

recently, metasurface-based modulation, is available in [32].

In this paper, we consider media modulation introduced in

[33]. In particular, media modulation employs a single RF

chain, a single radiating element, and several low-cost RF

mirrors [34]–[37]. The information bits are encoded into the

active/inactive (or ON/OFF) status of the RF mirrors, which

determines the resulting radiation pattern of the entire structure

[34], [35]. In contrast to spatial modulation, the number of

spatial bits encoded in media modulation is larger and depends

on the number of distinguishable radiation patterns that can

be realized [38]. Due to the promising advantages of media

modulation, it was recently adopted in [15], [16], [39], [40]

for application to the uplink transmission of MTDs with

mMIMO BSs. Specifically, as for grant-based access schemes,

the authors of [39] and [40] proposed an iterative interfer-

ence cancellation detector and a message passing algorithm

based detector, respectively. As for grant-free access schemes

with a slotted access frame structure, a structured orthogonal

matching pursuit (StrOMP) algorithm for activity detection

and a successive interference cancellation (SIC)-based struc-

tured subspace pursuit (SSP) algorithm for data detection

were proposed in [15]. In addition, a prior-information aided

media modulation subspace matching pursuit (PIA-MSMP)

algorithm was proposed in [16] for DADD. Additionally, the

authors of [16] proposed a prior-information aided adaptive

media modulation subspace matching pursuit algorithm to

accommodate the dynamic device activity. Although the struc-

tured sparsity of media modulated symbols was exploited for

better performance in [15] and [16], the proposed greedy al-

gorithms failed to fully exploit the finite alphabet constraint of

the transmit symbols. Hence, there are plenty of opportunities

for further improving the design and optimization of media

modulation for application to grant-free massive access. It

is important to note, in addition, that the grant-free massive

access schemes in the aforementioned research works, i.e.,

[8]–[16], [23], [24], [39], [40], are developed for an uncoded

scenario, while their extension to coded systems needs further

research.

B. Our Contributions

This paper considers both uncoded and coded media mod-

ulation based mMTC, by assuming a slotted access frame

structure. It is assumed that the activity of the MTDs remains

unchanged in each frame, which yields a sparse transmission

frame. To design a reliable DADD scheme, we introduce a

doubly structured AMP (DS-AMP) algorithm for uncoded

transmission. The state evolution (SE) of the proposed DS-

AMP algorithm is derived in order to characterize its per-

formance. As for the coded transmission, we introduce a

bit-interleaved coded media modulation (BICMM) scheme
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and propose an SIC-based iterative DS-AMP (IDS-AMP)

scheme for improving the decoding performance. In addition,

the channel estimation (CE) problem for media modulation

based mMTC is discussed and an effective channel state

information (CSI) update strategy is developed to reduce the

training overhead in block fading channels. With the aid of

numerical simulations and computational complexity analysis,

we verify the superiority of the proposed DS-AMP algorithm

and the SIC-based IDS-AMP algorithm for uncoded and

coded transmission, respectively, with respect to state-of-the-

art benchmark schemes. Moreover, the effectiveness of the CSI

update strategy is verified. The main contributions of this paper

can be summarized as follows:

• DS-AMP algorithm for uncoded media modulation

based mMTC: By utilizing the structured sparsity of me-

dia modulated symbols in the modulation domain and the

discrete distribution of quadrature amplitude modulation

(QAM) alphabets, the proposed DS-AMP algorithm can

reliably perform DADD. Furthermore, by leveraging the

structured sparsity of the slotted access frame structure in

the time domain, the active/inactive status of the MTDs

and the noise variance can be adaptively learned via

the EM algorithm with enhanced accuracy. Besides, we

derive the theoretical SE, which closely matches the

simulated results for the DS-AMP algorithm.

• BICMM designed for coded media modulation based

mMTC: We integrate the bit-interleaved coded mod-

ulation (BICM) [41], [42] into media modulation and

develop a BICMM scheme, which can effectively mitigate

the error bursts in fading channels and improve the data

decoding performance. Particularly, we employ a bit-wise

interleaver between the channel encoder and the media

modulation module, where the bits of the media mod-

ulated symbols and the QAM symbols are collectively

processed by channel coding and interleaving.

• SIC-based IDS-AMP scheme for coded media mod-

ulation based mMTC: We design a dedicated data

packet structure for MTDs and develop an IDS-AMP

detector at the BSs. The developed data packet includes a

signature sequence part that is known by the transceiver

and a payload part for data transmission. Particularly,

we consider the decoding quality of the signature se-

quence as a metric to determine the SIC order. Different

from the DS-AMP algorithm that yields hard-decision

estimates, the developed IDS-AMP detector yields soft

log-likelihood ratio (LLR) for both the media modulated

and the QAM symbol bits, which are fed to the channel

decoding module for improving the decoding accuracy.

Furthermore, the SIC operation in the IDS-AMP detector

successively subtracts the signal components associated

with the well decoded active devices to improve the data

decoding performance.

Notation: Matrices and vectors are denoted by symbols in

boldface. Operators (·)T , (·)∗, and (·)−1
represent transpose,

conjugate, and inverse, respectively. For a matrix A and an

ordered set Ω, A[m,n] denote the m-th row and n-th column

element of A, A[Ω,:] (A[:,Ω]) is the sub-matrix containing

the rows (columns) of A indexed by Ω, and A[Ω,m:n] is the

sub-matrix containing from the m-th to the n-th columns of

A[Ω,:]. For a vector x and an ordered set Ω, ‖x‖p, [x]m,

and [x]Ω denote the lp norm, m-th element of x, and the

elements of x indexed by Ω, respectively. Θ(x, n) is the

operator that selects the indices of the top n largest elements

of x. For an ordered set Γ and its subset Ω, |Γ|c, Γ|i,
and Γ \ Ω denote the cardinality of Γ, the i-th element of

Γ, and the complement of subset Ω in Γ, respectively. For

the binary codewords c1 and c2, we define their Hamming

distance D(c1, c2) as the number of elements in which they

differ. [K] is the set {1, 2, ...,K} and 0m×n denotes a zero

matrix with size m × n. If h is the joint distribution of

variable x = [x1, x2, x3]
T , then the marginal distribution of

x2 is denoted by
∑

∼{x2}
h(x) =

∑
x1∈A

∑
x3∈A

h(x), where

xi, ∀i ∈ {1, 2, 3}, belongs to a finite domain A. Finally,

CN (x;µ, ν) denotes the complex Gaussian distribution of a

random variable x with mean µ and variance ν.

II. SYSTEM MODEL

In this section, we first introduce the media modulation

based mMTC scheme and then focus on the massive access

at the BS for DADD.

A. Media Modulation Based mMTC Scheme

As illustrated in Fig. 1, we consider K MTDs that employ

media modulation for enhancing the throughput and the BS

employs mMIMO with Nr ≫ 1 antenna elements for realizing

a reliable massive access. Only Ka out of K (K≫Ka) MTDs

are active simultaneously. Specifically, each MTD is equipped

with one RF chain, one transmit antenna, and NRF low-cost

RF mirrors, where each RF mirror has a controllable binary

ON/OFF status. Each device has Nt = 2NRF different kinds of

mirror activation patterns (MAPs), i.e., Nt different channel

realizations, which can be used to encode log2Nt = NRF

extra information bits. As for the uplink access, therefore,

the throughput is η = log2M + NRF bit per channel use

(bpcu), which consists of log2M bits conveyed by, e.g., an

M -ary QAM (M -QAM) scheme and NRF bits conveyed by

media modulation. Furthermore, the use of an mMIMO offers

improved detection performance for massive access [23], [31].

B. Massive Access in Media Modulation Based mMTC

As shown in Fig. 2, we consider a media modulation based

mMTC system with a slotted access frame structure, where the

active/inactive status of the K MTDs is invariable in a frame,

i.e., J successive time slots. We refer to this property as the

structured sparsity in the time domain. For convenience, we

focus our attention on the massive access problem in any given

frame without loss of generality. Specifically, the received

signal at the BS in the j-th, ∀j ∈ [J ], time slot, which is

denoted by yj ∈ CNr×1, can be written as

yj =
∑K

k=1
aksk,jHkdk,j+wj

=
∑K

k=1
Hkxk,j+wj = Hx̃j +wj ,

(1)

where the binary activity indicator ak ∈ {0, 1} is one (zero)

if the k-th MTD is active (inactive), sk,j of the k-th MTD
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ON/OFF Control

RF Chain
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NRF RF mirrorsMTD k
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Baseband Signal

Inactive MTD

Active MTD

Nr

Fig. 1. Media modulation based mMTC scheme: The MTDs adopt media
modulation to access the mMIMO BSs.

Time domain

1

2

3

K

A Media Modulated Symbol 

J time slots (a frame)

Nt

t

4

5

MTDs

Fig. 2. Media modulation based mMTC with a slotted access frame structure,
where the invariant active/inactive status of the MTDs within a frame forms
a structured sparsity in the time domain, and the media modulated symbols
possess a structured sparsity in the modulation domain.

in the j-th time slot is selected from the M -QAM set S,

dk,j ∈ C
Nt×1 and xk,j = aksk,jdk,j ∈ C

Nt×1 are the

media modulated symbol and the effective uplink transmitted

symbols of the k-th MTD in the j-th time slot, respectively,

Hk ∈ CNr×Nt is the multiple-input multiple-output (MIMO)

channel matrix corresponding to the k-th MTD, wj ∈ CNr×1

is the Gaussian noise whose elements follow an independent

and identically distributed (i.i.d.) complex Gaussian distribu-

tion CN ([wj ]n; 0, σ
2
w), ∀n ∈ [Nr], H = [H1,H2, ...,HK ] ∈

C
Nr×(KNt) and x̃j = [(x1,j)

T , (x2,j)
T , ..., (xK,j)

T ]T ∈
C(KNt)×1 are the aggregated channel matrix and uplink access

signal of the j-th time slot, respectively.
According to the media modulation transmission scheme,

only one entry of the media modulated symbol dk,j , ∀j ∈ [J ]
and ∀k ∈ [K], is one and the others are zeros, i.e.,

supp {dk,j} ∈ [Nt], ‖dk,j‖0 = 1, ‖dk,j‖2 = 1, (2)

where supp{dk,j} denotes the support set of dk,j . We refer

to this property as the structured sparsity in the modulation

domain. Additionally, we consider the commonly adopted

Gauss-Markov block fading channel model [43], [44], and the

details of the CE problem will be discussed in Section V.

III. PROPOSED SOLUTION FOR UNCODED MEDIA

MODULATION BASED MMTC

In this section, we present the proposed DS-AMP algorithm

for DADD in uncoded media modulation based mMTC. First,

we exploit the doubly structured sparsity in media modulation

based mMTC and formulate an optimization problem for

massive access. Then, by exploiting the doubly structured

sparsity as a priori information, we propose a DS-AMP

algorithm for effective DADD. Subsequently, the SE of the

DS-AMP algorithm is derived to theoretically predict the

performance. Finally, the computational complexity of the DS-

AMP algorithm is analyzed.

A. Preliminaries

Although the total number of MTDs in the IoT is generally

massive, their sporadic traffic behavior results in a sparse

activity, i.e., at any given time slot, only a minority of MTDs

are active [2]–[5]. Hence, we introduce an activity indicator

vector a = [a1, a2, ..., aK ]T ∈ CK×1, which is sparse as the

number of active MTDs Ka = ‖a‖0 ≪ K . Furthermore, we

collectively refer to the structured sparsity in the time domain

due to the slotted access frame structure and the structured

sparsity in the modulation domain shown in (2) as the doubly

structured sparsity.
To exploit the structured sparsity in the time domain, we

rewrite the received signals of J successive time slots in a

compact matrix form as

Y = HX+W, (3)

where we have Y = [y1,y2, ...,yJ ] ∈ CNr×J , H ∈
CNr×(KNt), X = [x̃1, x̃2, ..., x̃J ] ∈ C(KNt)×J , and W =
[w1,w2, ...,wJ ] ∈ CNr×J . Hence the massive access problem

can be formulated as the following optimization problem

min
X

‖Y −HX‖2F = min
{x̃j}J

j=1

J∑

j=1

‖yj −Hx̃j‖22

= min
{ak,dk,j,sk,j}

J,K

j=1,k=1

J∑

j=1

∥∥∥∥∥yj −
K∑

k=1

aksk,jHkdk,j

∥∥∥∥∥

2

2

s.t. (2), ‖a‖0 ≪ K, and sk,j ∈ S, k ∈ [K], j ∈ [J ]. (4)

B. Proposed DS-AMP Algorithm for DADD

1) Problem Formulation Based on Factor Graph: The

optimization problem in (4) minimizes the mean square error

between Y and HX, which is equivalent to estimating the a

posteriori mean of the uplink access signal X [45]1. In (4), the

a posteriori mean of [xk,j ]i, ∀k ∈ [K], ∀j ∈ [J ], ∀i ∈ [Nt],
can be expressed as

[x̂k,j ]i =
∑

[xk,j]i∈S

[xk,j ]i p
(
[xk,j ]i |yj

)
,

(5)

where S = {S, 0}, p
(
[xk,j ]i |yj

)
is the marginal distribution

of p (x̃j |yj) that can be expressed as

p
(
[xk,j ]i |yj

)
=

∑
∼{[xk,j]i}

p (x̃j |yj) . (6)

Based on Bayes’ theorem, the joint posterior distribution

p (x̃j |yj) can be expressed as

p
(
x̃j |yj ;σ

2
w, a

)
=

p
(
yj |x̃j ;σ

2
w

)
p (x̃j ; a)

p (yj)

=
1

p (yj)

Nr∏

n=1

p
(
[yj ]n |x̃j ;σ

2
w

) K∏

k=1

p (xk,j ; ak) ,

(7)

1Due to space limitations, interested readers are referred to Eqs. (10.2)-
(10.5) of Chapter 10 in [45] for the detailed derivations.
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Fig. 3. Factor graph of the joint posterior distribution p
(
x̃j |yj ;σ2

w ,a
)
, where

the activity of the k-th MTD, ∀k ∈ [K], remains unchanged in J successive
time slots and is denoted by ak . The circles represent the variable nodes and
the squares represent the factor nodes.

where the likelihood function can be expressed as

p
(
[yj ]n |x̃j ;σ

2
w

)
=

1

πσ2
w

exp

(
− 1

σ2
w

∣∣∣∣[yj ]n−
K∑

k=1

[Hkxk,j ]n

∣∣∣∣
2
)
.

(8)
According to the sparse device activity, the structured

sparsity in the modulation domain in (2), and the discrete

distribution of the QAM alphabet, the a priori distribution

p (xk,j ; ak) in (7) is formulated as

p (xk,j ; ak) = (1 − ak)

Nt∏

i=1

δ
(
[xk,j ]i

)
+

ak





1

Nt

Nt∑

i=1


 1

M

∑

s∈S

δ
(
[xk,j ]i − s

) ∏

g∈[Nt],g 6=i

δ
(
[xk,j ]g

)




 ,

(9)

where M = |S|c and δ (·) is the Dirac delta function.
A factor graph representation of the joint posterior distribu-

tion p
(
x̃j |yj ;σ

2
w, a

)
in (7) is illustrated in Fig. 3. However,

calculating the marginal distribution p
(
[xk,j ]i |yj

)
, ∀k ∈ [K],

∀j ∈ [J ], and ∀i ∈ [Nt], from the joint posterior distribution

p
(
x̃j |yj ;σ

2
w , a

)
is extremely complicated in massive access,

due to the exceedingly large value of K . Fortunately, the

AMP algorithm can provide an effective approximation of

the marginal distributions at a low complexity, yet achieving

near MMSE performance. In particular, by applying the AMP

algorithm on the factor graph illustrated in Fig. 3, we propose a

DS-AMP algorithm for handling the massive access problem.

Specifically, we apply the DS-AMP algorithm to calculate

the a posteriori mean of the media modulated signals xk,j

(k ∈ [K], j ∈ [J ]), and resort to the EM algorithm for

estimating the activity indicators ak and the variance σ2
w of

the complex Gaussian noise.

2) Update Rules of the DS-AMP Algorithm: As discussed

in [19]–[21], in the large system regime2 (i.e., K → ∞, λ =
Ka

K and κ = Nr

K are fixed), the AMP algorithm decouples, in

2Although developed in the large system regime, the AMP algorithm
performs well even for medium size problems, such as massive access with
hundreds or thousands of MTDs [19], [21].

the asymptotic regime, the matrix estimation problem of (3)

into KJNt uncoupled scalar problems

Y = HX+W → rl,j = [xk,j ]i + ŵl,j , ∀i, j, k, (10)

where l = (k−1)Nt+i, rl,j is the mean of [xk,j ]i estimated by

the AMP algorithm, ŵl,j ∼ CN (ŵl,j ; 0, φl,j) is the equivalent

noise, and φl,j is its variance.
In addition, the joint posterior distribution (7) can be ap-

proximated as

p
(
x̃j |yj ;σ

2
w, a

)
≈ q

(
x̃j |yj ;σ

2
w, a

)

=

K∏

k=1

Nt∏

i=1

q
(
[xk,j ]i |rl,j , φl,j ;σ

2
w, ak

)
. (11)

Based on Bayes’ theorem, the approximated marginal a

posteriori distribution, denoted as q
(
[xk,j ]i |rl,j , φl,j ;σ

2
w , ak

)
,

∀i, j, k, is given as follows

q
(
[xk,j ]i |rl,j , φl,j ;σ

2
w, ak

)

=
1

q (rl,j ;σ2
w, ak)

q
(
rl,j | [xk,j ]i ;σ

2
w

)
p
(
[xk,j ]i ; ak

)
,

(12)

where

q
(
rl,j | [xk,j ]i

)
=

1

πφl,j
exp

(
− 1

φl,j

∣∣rl,j − [xk,j ]i
∣∣2
)
, (13)

p
(
[xk,j ]i ; ak

)
=
∑

∼{[xk,j]i}
p (xk,j ; ak)

=

(
1− ak

Nt

)
δ
(
[xk,j ]i

)
+

ak
NtM

∑

s∈S

δ
(
[xk,j ]i−s

)
,

(14)

q
(
rl,j ;σ

2
w, ak

)
=
∑

[xk,j]i∈S

q
(
rl,j | [xk,j ]i ;σ

2
w

)
p
(
[xk,j ]i ; ak

)
.

(15)

Then, the a posteriori mean and variance of [xk,j ]i, ∀i, j, k,

are given, respectively, as

[x̂k,j ]i = fm (rl,j , φl,j)

=
∑

[xk,j ]i∈S

[xk,j ]i q
(
[xk,j ]i |rl,j , φl,j ;σ

2
w, ak

)
, (16)

[v̂k,j ]i = fv (rl,j , φl,j)

=−
∣∣[x̂k,j ]i

∣∣2+
∑

[xk,j ]i∈S

∣∣[xk,j ]i
∣∣2q
(
[xk,j ]i|rl,j , φl,j ;σ

2
w, ak

)
,

(17)

where l = (k − 1)Nt + i.
It is worth noting that rl,j , φl,j , x̂k,j , and v̂k,j are updated

iteratively by the AMP algorithm. In the factor graph in Fig.

3, in particular, rl,j and φl,j , ∀l, j, are updated iteratively at

the variable nodes. The update rules at the t-th iteration are

expressed as

φt
l,j =

(
Nr∑

n=1

∣∣H[n,l]

∣∣2

σ2
w + V t

n,j

)−1

, (18)

rtl,j =
[
x̂t
k,j

]
i
+ φt

l,j

Nr∑

n=1

H∗
[n,l]

(
[yj ]n − Zt

n,j

)

σ2
w + V t

n,j

, (19)
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where V t
n,j and Zt

n,j , ∀n, j, are updated at the factor nodes of

the factor graph as

V t
n,j =

K∑

k=1

∣∣Hk[n,:]

∣∣2 v̂t
k,j , (20)

Zt
n,j =

K∑

k=1

Hk[n,:]x̂
t
k,j − V t

n,j

[yj ]n − Zt−1
n,j

σ2
w + V t−1

n,j

. (21)

Due to space limitations, interested readers are referred to

[20], [21] for the detailed derivation of the AMP update rules

in (18)−(21).
3) Parameters Estimation: It is noteworthy that the activity

indicator ak, ∀k ∈ [K], and the noise variance σ2
w in (16)

and (17) are unknown parameters to be determined. Hence,

we will integrate the EM algorithm to adaptively learn those

parameters in each DS-AMP iteration.
Note that the EM algorithm is an iterative approach that

finds the maximum likelihood solutions for probabilistic

models with unknown parameters [22]. By defining θ ={
σ2
w , ak, k ∈ [K]

}
, the EM algorithm updates the parameter

set θ as follows

Q
(
θ, θt

)
= E

{
ln p (X,Y; θ) |Y; θt

}
, (22)

θ
t+1 = argmax

θ

Q
(
θ, θt

)
, (23)

where θ
t is the parameter set estimated at the t-th iteration,

E {·|Y; θt} denotes the expectation conditioned on the re-

ceived signal Y under θt.
According to the AMP algorithm, the a posteriori distribu-

tion p
(
x̃j |yj ;σ

2
w , a

)
can be approximated as q

(
x̃j |yj ;σ

2
w, a

)
,

which reduces the complexity of the EM estimation. Hence,

we can obtain the update rules of the noise variance σ2
w and

the activity indicator ak, ∀k, as follows

(
σ2
w

)t+1
=

1

JNr

J∑

j=1

Nr∑

n=1



(
[yj ]n − Zt

n,j

)2
(
1 +

V t
n,j

(σ2
w)t

)2 +

(
σ2
w

)t
V t
n,j

V t
n,j + (σ2

w)
t


 ,

(24)

at+1
k = fa

(
rtl,j , φ

t
l,j ; a

t
k

)

=
1

J

J∑

j=1

∑

xk,j∈Γ0

Nt∏

i=1

q
(
[xk,j ]i |rtl,j , φt

l,j ; a
t
k

)
, (25)

where l = (k− 1)Nt + i and Γ0 is the set of all possible xk,j

when the k-th MTD is active3. The detailed derivation of the

EM update rules as indicated in (24) and (25) is available in

the Appendix.
4) Arithmetic Flow of the Proposed DS-AMP Algorithm:

Based on (12)−(25), we summarize our proposed DS-AMP

algorithm in Algorithm 1.
The details of Algorithm 1 are explained as follows.

Since the active/inactive status of the MTDs is unknown, we

initialize the activity indicator a1k = 0.5, ∀k ∈ [K], in line

1. We note that lines 4−5 are the key steps of the AMP

3For example, if Nt = 2 and S = {+1,−1}, then

Γ0 =

{[
+1

0

]
,

[
−1

0

]
,

[
0

+1

]
,

[
0

−1

]}
. (26)

Algorithm 1: Proposed DS-AMP Algorithm

Input: The received signals Y=[y1, ...,yJ ]∈C
Nr×J , the channel

matrix H = [H1, ...,HK ] ∈ C
Nr×(KNt), and the maximum

iteration number T0.
Output: The set of active MTDs Ω and the reconstructed media

modulation signal X ∈ C
KNt×J .

1: ∀i, j, k, n: We initialize the iterative index t=1, the activity
indicator a1

k = 0.5, Z0
n,j = [yj ]n, V 0

n,j = 1, the noise variance(
σ2
w

)1
= 100, the reconstructed signal X = 0KNt×J ,

[
x̂1
k,j

]
i
=

a1
k

∑
s∈S

s/MNt, and
[
v̂1
k,j

]
i
= a1

k

∑
s∈S

|s|2 /MNt −
∣∣[x̂1

k,j

]
i

∣∣2;

2: for t = 1 to T0 do
3: %AMP operation:
4: ∀i, j, k, n: Compute V t

n,j , Zt
n,j , φt

l,j , and rtl,j by using (20),
(21), (18), and (19), respectively, where l = (k − 1)Nt +
i; {Decoupling step}

5: ∀i, j, k, n: Compute
[
x̂t+1
k,j

]

i
and

[
v̂t+1
k,j

]

i
by using (16) and

(17), respectively; {Denoising step}
6: %EM operation:
7: ∀k: Compute (σ2

w)
t+1 and at+1

k by using (24) and (25);
8: end for
9: %Min-max normalization:

10: Let ã= â−min(â)
max(â)−min(â)

, where â=[â1, ..., âK ]T=
[
aT0
1 , ..., aT0

K

]T
,

min(·) and max(·) are the minimum value and maximum value
of the arguments, respectively;

11: %Extract the active MTDs and their MAPs:
12: ∀k: The set of active MTDs Ω = {k| [ã]k > 0.5};

13: ∀k, j: η∗=argmaxη̂∈[Nt]

[
x̂
T0

k,j

]

η̂
;

14: ∀k ∈ Ω,∀j:

The reconstructed signal is X[(k−1)Nt+η∗,j] =
[
x̂
T0

k,j

]

η∗

.

operation, which consists of two parts. For the first part, a

decoupling operation is performed in the same way as the

original AMP algorithm in order to decouple the superimposed

received signal into uncoupled scalar elements based on (10)

and (18)−(21) [19]–[21]. For the second part, the denoising

step computes the a posteriori mean and variance of each

scalar element by using (16) and (17), where the structured

sparsity in the modulation domain and the discrete distribution

of the QAM alphabet are exploited in the a priori probability.

In line 7, based on (24) and (25), the EM algorithm updates

the noise variance σ2
w and the activity indicators ak, ∀k ∈ [K],

by exploiting the structured sparsity in the time domain.

Furthermore, the iteration stops when a predefined maximum

number T0 is reached, where T0 is chosen to guarantee the

convergence of the algorithm. Line 10 linearly transforms the

estimated activity indicator vector â to ã by using the min-max

normalization. In line 12, if the k-th (k ∈ [K]) element of ã is

larger than 0.5, the k-th MTD is considered to be active. Line

13 selects the possible MAPs based on the structured sparsity

of the media modulated symbol as indicated in (2). Finally,

line 14 reconstructs the media modulated signals.
Note that all the estimated activity indicators can be small,

i.e., [â]k < 0.5, ∀k ∈ [K], in poor conditions, e.g., at low

signal-to-noise ratio (SNR), where the set of active MTDs

given in [11] (i.e., {k|[â]k > 0.5}, ∀k ∈ [K]) results in the

degraded active MTDs detection error. Fortunately, we find

that the elements of â are linearly separable in most cases,
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even when all the elements are smaller than 0.5. Hence, in

line 10, we preprocess â by using the min-max normalization

to enlarge the separability of its elements, and the output is ã.

After the preprocessing, in line 12, we can obtain the set of

active MTDs based on ã. The simulation results illustrated in

Section V verify the advantage of our improved active MTDs

detection method over that in [11].

C. State Evolution of the DS-AMP Algorithm

SE is a tool for analyzing the performance of AMP algo-

rithms in the large system limit, i.e., KNt → ∞, by tracking

the mean-square errors (MSE) of each iteration [19], [21].

In particular, capitalizing on the SE, we can characterize the

performance of the proposed DS-AMP algorithm theoretically.
To start with, the MSE and average variance of the estimated

signals at the t-th iteration are respectively defined as

et =
1

KJNt

K∑

k=1

J∑

j=1

Nt∑

i=1

∣∣[x̂t
k,j ]i − [xk,j ]i

∣∣2 , (27)

vt =
1

KJNt

K∑

k=1

J∑

j=1

Nt∑

i=1

[v̂t
k,j ]i. (28)

We define a scalar random variable X0 that obeys the a

priori distribution in (14). Based on [21], it can be shown,

in large system limit and if the elements of the measurement

matrix follow an i.i.d. distribution with zero mean and variance

γ, that the estimated mean of x0 at the t-th iteration, denoted

as rt0, can be expressed as

rt0 = x0 +

√
σ2
w + γKNte

t

Nrγ
z, (29)

where x0 is a realization of X0, z ∼ CN (z; 0, 1). In

addition, the estimated variance of x0 at the t-th iteration,

denoted as φt
0, can be expressed as

φt
0 ≈ σ2

w + γKNtv
t

Nrγ
. (30)

By substituting (29) and (30) into (16) and (17), we obtain

the approximated MMSE estimation of x0 for the DS-AMP

algorithm at the (t+ 1)-th iteration. Hence, the MSE and the

average variance of the estimated signals at the (t + 1)-th
iteration can be expressed as

et+1 =

∫
dx0p0(x0)

∫
Dz
∣∣fm(rt0, φ

t
0)− x0

∣∣2 , (31)

vt+1 =

∫
dx0p0(x0)

∫
Dzfv(r

t
0, φ

t
0), (32)

where p0(x0) is the a priori distribution in (14), Dz =
e−|z|2/πdz, fm(rt0, φ

t
0) and fv(r

t
0, φ

t
0) are defined in (16) and

(17), respectively.
As listed in Algorithm 2, we present the detailed procedures

of the SE of the proposed DS-AMP algorithm. In particular,

we adopt Monte Carlo simulations to generate a large number

of realizations of the transmit signals, where the sporadic

traffic and the doubly structured sparsity are fully embodied.

Simulation results in Section V-B will demonstrate that the SE

can accurately predict the simulated results of the proposed

DS-AMP algorithm.

Algorithm 2: State Evolution of DS-AMP Algorithm

Input: The noise variance σ2
w, the sparsity level λ = Ka

K
, the

number of MAPs Nt, the frame length J , the order of the QAM
modulation, the variance γ of the elements in the measurement
matrix, the number of Monte Carlo simulations NMC, the max-
imum SE iterations TSE, and the terminal threshold ε.

Output: The theoretically predicted MSE ê.
1: ∀m ∈ [NMC]: Generate NMC realizations of the transmit signals

Xm ∈ C
KNt×J , according to the a priori distribution in (9).

2: ∀m,k: Define e1 = 0NMC×1 and v1 = 0NMC×1 to record the
predicted MSE and average variance of the m-th Monte Carlo
realization. We initialize the iteration number t = 1, the predicted
MSE e1 = 1, the average variance v1 = 1, and the activity
indicators for the m-th signal realization a1

k,m = 0.5;
3: for t = 1 to TSE do
4: for m = 1 to NMC do

5: ∀i, j, k: rm,t
l,j =

[
xm
k,j

]
i
+
√

σ2
w+γKNtet

Nrγ
z,φm,t

l,j =
σ2
w+γKNtv

t

Nrγ
;

6: ∀i, j, k:
[
x̂m
k,j

]
i
=fm(rm,t

l,j , φm,t
l,j ),

[
v̂m
k,j

]
i
=fv(r

m,t
l,j , φm,t

l,j );

7: ∀k: at+1
k,m = fa(r

m,t
l,j , φm,t

l,j ; at
k,m);

8: Calculating
[
et+1

]
m

and
[
vt+1

]
m

referring to (27) and
(28), respectively;

9: end for
10: et+1= 1

NMC

∑NMC

m=1

[
et+1

]
m

, vt+1= 1
NMC

∑NMC

m=1

[
vt+1

]
m

;

11: ê = et+1;
12: if

∣∣et+1 − et
∣∣ < ε then

13: break; {End the SE iterations}
14: end if
15: end for

D. Computational Complexity of the DS-AMP Algorithm

The computational complexity of the proposed DS-AMP

algorithm mainly arises from the complex-valued matrix mul-

tiplications4 of the following operations at each iteration [24].
AMP decoupling step: The complexity of performing the

AMP decoupling step, i.e., (18)−(21), is O(52JKNtNr).
AMP denoising step: The complexity of performing the

AMP denoising step, i.e., (15)−(17), is O
[
JKNt(|S|c + 1

4 )
]
.

Furthermore, simulation results demonstrate that the pre-

defined maximum number of iterations T0 can be small

to guarantee the convergence of the proposed DS-AMP al-

gorithm. Hence the overall complexity is of the order of

O
[
T0JKNt(

5
2Nr + |S|c + 1

4 )
]
, which scales linearly with the

number of MTDs, the number of MAPs in media modulation,

the order of the QAM modulation, and the number of receive

antennas at the BSs. This linear complexity is appealing for

efficiently processing the massive access of future IoT.

IV. PROPOSED SOLUTION FOR CODED MEDIA

MODULATION BASED MMTC

In this section, we propose a solution for coded media

modulation based mMTC scheme, whose block diagram is

illustrated in Fig. 4. Specifically, we propose a dedicated data

packet structure as well as a BICMM scheme at the MTDs,

and develop an IDS-AMP detector at the receiver, so that the

DADD performance can be further improved.

4For the sake of simplicity, a real-valued multiplication is assumed to have
a complexity that equals a quarter of a complex-valued multiplication.
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Fig. 4. Communication process of the proposed massive access solution for coded media modulation based mMTC.

A. Dedicated Data Packet Structure and BICMM at the MTDs

The proposed data packet structure is tailored for the

implementation of an SIC-based IDS-AMP detector at the

receiver. Specifically, the data packet is composed of two

parts, i.e., the Ls-bit signature sequence part and the Ld-

bit payload data. We consider that all the MTDs share the

same binary signature sequence bs ∈ NLs×1, which is a pre-

defined pseudo-random 0/1 sequence known at the transceiver.

At the receiver, we consider the Hamming distance D(bs, b̂s)
between bs and b̂s as a metric to evaluate the decoding

quality of the associated payload data part of the MTDs, where

b̂s ∈ NLs×1 is the estimated binary signature sequence of any

detected MTD. Hence, D(bs, b̂s) can be used to determine

the order for the subsequent SIC processing. By contrast, the

conventional SIC order metric, e.g., the SNR or the signal-to-

interference-plus-noise ratio (SINR), is difficult to be acquired

in practical massive access processing [46]. Particularly, for

0 ≤ D(bs, b̂s) ≤ Ls, a smaller D(bs, b̂s) indicates a better

decoding quality of the signature sequence, which usually

implies a higher decoding quality of the associated payload

data and a higher priority to be subtracted during the SIC stage.

As a result, the error propagation in the SIC processing can

be mitigated with the aid of the proposed signature sequence.
In addition to the data packet structure, we develop a

BICMM scheme. As shown in Fig. 4, the BICMM scheme

consists of an encoder, a bit-wise interleaver, and a media

modulation module. Specifically, after channel coding, the

length of one data packet is expanded from L bits to L′

bits. Then, the L′-bit data packet is delivered to a bit-wise

interleaver module. We consider a block interleaver with η
columns and J = L′/η rows, where we assume L′ = ηJ
without loss of generality. The L′-bit data packet is fed into

the interleaver by rows and read out by columns5. At the

transmitter, every η bits of the interleaved L′-bit data packet

are sequentially modulated into J media modulation symbols

that are transmitted in J successive time slots (i.e., a frame).

Hence, after interleaving, the bits originally associated with

the same media modulated symbol are separated by (J − 1)

other bits, which makes the coded bits to the media modulation

module more dispersed to combat the spatial-selective channel

5Note that the deinterleaver is an array identical to the interleaver, while
the L′ bits data packet is read in by columns and read out by rows.

fading6. In particular, each media modulation-based MTD

has Nt unique radiation patterns associated with Nt different

channels with different spatial channel fading. Typically, active

MTD selects one of the channels based on its input spatial data

bits to transmit a media modulated symbol with η bits. Burst

errors may occur if the selected channel suffers from deep

fading, which results in the spatial-selective channel fading.

Thanks to the bit-wise interleaver combined with the encoder,

η successive bits originally associated with the same media

modulated symbol are separated into different media mod-

ulated symbols with different spatial channel fading, which

mitigates the spatial-selective channel fading and improves the

data decoding performance [41], [42], [47].

B. Proposed IDS-AMP Detector at the BS

As shown in Fig. 4, the proposed IDS-AMP detector has

8 modules, including a DS-AMP algorithm module, an LLR

calculation module, a deinterleaver, a soft decoder, a decoding

quality judgement module, an encoder, an interleaver, and

an interference cancellation module. The main procedure is

summarized in Algorithm 3, and the details are illustrated as

follows.
DS-AMP algorithm module (lines 4−10 of Algorithm 3):

Firstly (line 4), we obtain the approximated a posteriori dis-

tribution q
(
xk,j |yj ;σ

2
w, ak

)
, ∀k, j, and the activity indicator

vector â = [â1, ..., âK ]T , which can be acquired by calling the

DS-AMP algorithm (i.e., performing lines 1−8 of Algorithm

1). Secondly (lines 5−8), if the iteration index is i = 0,

we acquire the indices of the active MTDs that are detected,

denoted as Ω0, by executing lines 10−12 of Algorithm 1. The

index set of the MTDs that remain to be iteratively decoded,

denoted by Ω1, is assigned to be equivalent to Ω0 in the first

iteration (i.e., the iteration with index i = 0) and is updated

in the subsequent SIC. Thirdly (lines 9, 10), we update the

iteration index i = i + 1, and then select the N MTDs most

likely to be active based on the activity indicators for the

subsequent SIC, where the index set of the N MTDs is denoted

as Ω2=Θ([â]Ω1
,N) and we consider the MTD with a larger

activity indicator is more likely to be active. If |Ω1|c is smaller

than the predefined constant N , we set Ω2 = Ω1.

6Practical slowly time-varying fading channels may exhibit burst error
which is beyond the error correction capability of the codes of reasonable
complexity [47]. Therefore, in fading channels, coding is typically combined
with interleaving to mitigate the effect of burst error [47].
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LLR calculation module (line 12 of Algorithm 3):

According to the approximated a posteriori distribution

q
(
xk,j |yj ;σ

2
w, ak

)
, ∀k, j, obtained from the DS-AMP algo-

rithm module, we calculate the LLR information of the MTDs

whose indices are in Ω2. For any media modulation symbol

xk,j , ∀k, j, the LLR of the associated media modulated bit

BMED
k,j,b , ∀b ∈ [log2Nt], and the LLR of the associated M -QAM

bit BQAM
k,j,d , ∀d ∈ [log2M ], can be expressed, respectively, as

LLR
(
BMED

k,j,b

)
= log

∑
xk,j∈Φb

0
q
(
xk,j |yj ;σ

2
w, ak

)
∑

xk,j∈Φb
1
q (xk,j |yj ;σ2

w, ak)
, (33)

LLR
(
BQAM

k,j,d

)
= log

∑
xk,j∈Ψd

0
q
(
xk,j |yj ;σ

2
w, ak

)
∑

xk,j∈Ψd
1
q (xk,j |yj ;σ2

w, ak)
, (34)

where Φb
0 (Φb

1) is the set of xk,j for which the media

modulated bit BMED
k,j,b , ∀b, is equal to zero (one), and Ψd

0 (Ψd
1)

is the set of xk,j for which the M -QAM bit BQAM
k,j,d , ∀d, is

equal to zero (one)7.
Deinterleaver and soft decoder modules (line 14 of

Algorithm 3): Firstly, the LLR information of the MTDs with

indices in Ω2 is deinterleaved. Note that the deinterleaver is

an array identical to the interleaver described in Section IV-

A, with the exception that the L′-bit data packet is read in by

columns and read out by rows. Secondly, for each MTD whose

index is in Ω2, the soft decoder decodes the deinterleaved LLR

information to get the data packet of Ls + Ld bits. Finally,

for the |Ω2|c MTDs detected as active, the decoded L|Ω2|c
bits are recorded in a binary data packet matrix B ∈ NK×L,

i.e., B[Ω2,1:L]. In particular, the first Ls columns of B store

the decoded signature sequence bits and the remaining Ld

columns record the decoded payload data bits.
Decoding quality judgement module (lines 15−17 of

Algorithm 3): Firstly (lines 16), for each MTD whose index

is in Ω2|n, ∀n ∈ [|Ω2|c], we calculate the Hamming distances

between the decoded signature sequence
(
B[Ω2|n,1:Ls]

)T
and the true signature sequence bs, denoted as [m]n =

D
(
bs,
(
B[Ω2|n,1:Ls]

)T)
. Secondly (line 17), based on the

Hamming distances m ∈ N|Ω2|c×1, whether and how to

perform the SIC processing is judged. In particular, if no

element of m is equal to zero, we skip the interference

cancellation module, decode the remaining MTDs indexed

in {Ω1 \ Ω2} in line 18, and stop the algorithm in line 19.

If there exist elements equal to zero in m, on the other

hand, this indicates that there are one or several MTDs with

almost perfect decoding quality. In this case, we apply the

signals reconstruction module and the interference cancellation

module (i.e., lines 22−31).

7For example, supposing that Nt = 2, M = 2, S = {+1,−1}, b ∈ [1],
and d ∈ [1], then we can get

Φ1
0 =

{[
+1

0

]
,

[
−1

0

]}
,Φ1

1 =

{[
0

+1

]
,

[
0

−1

]}
, (35)

Ψ1
0 =

{[
+1

0

]
,

[
0

+1

]}
,Ψ1

1 =

{[
−1

0

]
,

[
0

−1

]}
. (36)

Algorithm 3: Proposed IDS-AMP Detector

Input: The received signals Y= [y1, ...,yJ ] ∈ CNr×J and the channel

matrix H = H0=[H1, ...,HK ]∈CNr×(KNt).
Output: The estimated index set of active MTDs Ω0, and the associated

demodulated payload data bits B[Ω0,Ls+1:L] with B ∈ NK×L defined
as the binary data packet matrix of all MTDs.

1: Initialization: The iteration index i=0, the binary data packet matrix B =
0K×L, and for possible active MTDs given their temporary index set

Λ, their MAPs’ index set is defined as Λ̃ = {Λ̃n}
|Λ|c
n=1, where Λ̃n =

{Nt(Λ|n−1)+u}Nt
u=1 is the MAPs’ index set of the n-th MTD in Λ for

n ∈ [|Λ|c];
2: while 1 do
3: %DS-AMP algorithm module:

4: Obtain â = [â1, ..., âK ]T and q
(
xk,j |yj ;σ2

w, ak
)
, ∀k, j, by per-

forming lines 1−8 of Algorithm 1;
5: if i = 0 then
6: Acquire the index set of active MTDs detected, denoted as Ω0, by

performing lines 10−12 of Algorithm 1;
7: The index set of MTDs remaining to be iteratively decoded is

denoted as Ω1, and Ω1 = Ω0 in the first iteration;
8: end if

9: i = i+ 1;
10: Acquire the N MTDs most likely to be active based on the quantities

of activity indicators for the following SIC, whose index set is denoted
as Ω2=Θ([â]Ω1

,N);
11: %LLR calculation module:
12: Calculate the LLR information of the MTDs indexed by Ω2;
13: %Deinterleaver and soft decoder modules:

14: For each MTD with index in Ω2, perform deinterleaving and soft
decoding, and then record the decoded bits in the binary matrix
B[Ω2,1:L];

15: %Decoding quality judgement module:

16: For each decoded MTD with index in Ω2, calculate the Hamming
distances between the estimated signature sequence and the true signa-

ture sequence, denoted as [m]n = D
(
bs,

(
B[Ω2|n,1:Ls]

)T)
, n ∈

[|Ω2|c];
17: if [m]n 6= 0, ∀n then

18: For each MTD indexed by {Ω1 \Ω2}, calculate the LLR informa-
tion, perform deinterleaving and soft decoding, and then record the
decoded bits in matrix B[{Ω1\Ω2},:];

19: break; {End the algorithm};
20: else
21: %Signals reconstruction module:

22: Acquire the MTDs with very high decoding quality for SIC, and the
associated index set is denoted as Ω3 = {Ω2|n | [m]n = 0,∀n};

23: For each MTD with index in Ω3, encode and interleave the decoded
data bits B[Ω3,:], then perform media modulation on the interleaved
bits;

24: X̂ = 0KNt×J , record the reconstructed signals in X̂
[Ω̃3,:]

;

25: %Interference cancellation module:
26: Y = Y −H0X̂; {Update the received signals}
27: Ω1 = {Ω1 \ Ω3}, Λ = {Ω0 \ Ω1};
28: H = H0[:,{[KNt]\Λ̃}]

; {Update the measurement matrix}

29: if Ω1 = ∅ then
30: break; {End the algorithm}
31: end if

32: end if

33: end while
34: Results: The estimated index set of active MTDs is Ω0 and the associated

demodulated payload data is B[Ω0,Ls+1:L].

Signals reconstruction module (lines 22−24 of Algorithm

3): Firstly (line 22), we acquire the indices of the zero elements

in m, denoted by Ω3 = {Ω2|n | [m]n = 0, ∀n}, which is

a fine-grained index set of the MTDs with higher decoding

quality. Secondly (lines 23), for each MTD with indices in

Ω3, to reconstruct the signal components, we sequentially

perform encoding, interleaving, and media modulation (i.e.,

we repeat the BICMM scheme at MTD) according to the de-



10

DataPreamble Data

AUD & CE Data Detection
DADD

CSI update

t
H +1t

H

Frame

Structure

(Tx)

Processing 

Procedure

(Rx)

JADCE-DD (Preamble-aided initial CE) DADD (Data-aided CSI update)

Fig. 5. Schematic diagram of the two-stage massive access scheme: the JADCE-DD stage and the following DADD stage, where the frame structure at the
transmitter and the processing procedure at the receiver for each stage are presented in detail.

coded B[Ω3,1:L]. Thirdly (line 24), we record the reconstructed

signals in X̂
[Ω̃3,:]

, where Ω̃3 is the index set of the MAPs of

the MTDs whose indices are in Ω3.
Interference cancellation module (lines 26−31 of Algo-

rithm 3): Firstly (line 26), we subtract the signal components

X̂
[Ω̃3,:]

from the received signals Y. Secondly (line 27), we

subtract the index set Ω3 of the MTDs cancellated in the

current iteration from the index set Ω1 of the MTDs to

be decoded in the following iterations, which is updated as

Ω1 = {Ω1 \ Ω3}. Also, we obtain the index set of the MTDs

that are already subtracted in the previous iterations, which

is denoted as Λ = {Ω0 \ Ω1}. Thirdly (line 28), we update

the measurement matrix as H = H0[:,{[KNt]\Λ̃}], where

H0 ∈ CNr×(KNt) is the input channel matrix, Λ̃ denotes the

index set of the MAPs of the MTDs whose indices are in

Λ, and the relationship between Λ̃ and Λ is defined in line 1

of Algorithm 3. Finally (lines 29−31), if Ω1 is empty, the

algorithm is terminated; otherwise, the updated Y, H, and Ω1

are fed back to line 4 to continue the next IDS-AMP iteration.

Since the sparsity level in the next iteration is reduced with the

unaltered dimension Nr of the observations (i.e., the number

of antennas at the BS), the proposed IDS-AMP detector is

capable of achieving the improved decoding performance by

using the aforementioned interference cancellation module.

V. CHANNEL ESTIMATION FOR MEDIA MODULATION

BASED MMTC

In this section, we first present the Gauss-Markov block

fading channel model. Then, the CE is discussed in two stages.

In the first stage, we discuss the initial CE stage to acquire

the CSI of all the MTDs based on preambles. In the following

stage, we propose a data-aided CSI update strategy to reduce

the training overhead.
Firstly, the Gauss-Markov block fading channel of the k-

th MTD in the (t + 1)-th frame (block), ∀k ∈ [K], can be

expressed as

Ht+1
k =

√
αHt

k +
√
1− αVt

k, (37)

where Ht
k ∈ CNr×Nt is the MIMO channel matrix corre-

sponding to the k-th MTD in the t-th time slot, elements

in Ht
k obey the i.i.d. complex Gaussian distribution, and

Vt
k ∈ C

Nr×Nt is the uncorrelated channel aging error. The

elements in Vt
k also follow the i.i.d. complex Gaussian dis-

tribution with zero mean and unit variance [43]. Furthermore,

α is the autoregressive (AR) coefficient and the time-domain

correlation is ατ/2=
E[[Ht

k]
∗

n,i[H
t+τ

k
]n,i]

E[[Ht
k
]∗
n,i

[Ht
k
]n,i]

, where E [·] is the

expectation operation, n ∈ [Nr], i ∈ [Nt] [44]. The discrete

time-lag τ ∈Z is equivalent to the number of symbols within

a frame (block) [44] and a case study will be presented in the

simulations.
As for the initial CE at the first stage, the frame structure

of the access signals consists a unique preamble allocated to

each MTD and the following payload data, as shown in Fig.

5. The active MTDs transmit their preambles and data to the

BS without any grant. At the BS, joint activity detection and

channel estimation (JADCE) as well as data detection (DD)

is conducted in each frame. Due to the sporadic traffic, the

JADCE-DD process can be realized by using CS techniques.

The details of CS-based algorithms for JADCE-DD applied

to media modulation aided grant-free massive access can be

found in e.g., Section VI of [16]. In particular, the authors

of [16] employed greedy CS algorithms, while other kinds

of CS algorithms can also be utilized, e.g., the AMP-based

algorithms according to [21], which is beyond the scope of this

paper. Owing to the slowly time-varying CSI and the sporadic

device activity [7], the BS can obtain the CSI of all the MTDs

after several frames.
At the following stage, as indicated in Fig. 5, only data

symbols are transmitted in successive frames and DADD is

performed at the BS. Hence, we refer to this stage as the

DADD stage. Note that the CSI utilized in the first frame of the

DADD stage is obtained at the JADCE-DD stage. Furthermore,

to combat the channel aging and to reduce the training

overhead, we propose a CSI update strategy with the aid of

the detected data symbols, as shown in Fig. 5. Specifically,

by providing Ht = [Ht
1,H

t
2, ...,H

t
K ] ∈ CNr×(KNt) and the

received signal Yt = [yt
1, ...,y

t
J ] ∈ CNr×J as the input of the

proposed Algorithm 1 or Algorithm 3, we can obtain the set

of correctly detected active MTDs Ωt and the reconstructed

signal X̂t ∈ CKNt×J of the t-th frame, ∀t. The number and

the set of MAPs for the correctly estimated active MTDs are

denoted as Na = |Ωt|c (Na ≤ Ka) and Ω̃t = {Ω̃t
u}Na

u=1,

respectively, where Ω̃t
u = {Nt(Ω

t|u − 1) + i}Nt

i=1 is the set of

MAPs for the u-th MTD in Ωt for u ∈ [Na]. Hence, we can

transform the system model in (3) as

Yt ≈ H̃tX̃t +Wt, (38)

where X̃t = X̂t
[Ω̃t,:]

∈ C
NaNt×J and H̃t = Ht

[:,Ω̃t]
∈

CNr×NaNt are the estimated media modulated signals and

the associated CSI for active MTDs, respectively, and the

approximately equal sign “≈” can be written as an equal

sign “=” if perfect DADD is achieved. Due to the slowly



11

time-varying IoT channels, the frame length J can be longer

than NaNt, where Na ≤Ka and Ka is only a fraction of

the total MTDs. Hence, we can refine the CSI H̃t based on

X̃t. For example, by using the MMSE estimator8, we can

obtain the refined CSI of active MTDs, denoted as Ĥt =

Yt
(
(X̃t)HRt

H
X̃t +NaNtσ

2
wI
)−1

(X̃t)HRt
H

∈ C
Nr×NaNt ,

where Rt
H

= E

[
(H̃t)HH̃t

]
is the channel’s covariance matrix

[48]. Then, in the (t + 1)-th frame, we set Ht+1 = Ht ∈
C

Nr×(KNt) and update part of it by performing Ht+1

[:,Ω̃t]
= Ĥt.

Hence, we can adopt the updated CSI Ht+1 as an input of

the proposed Algorithm 1 or Algorithm 3 for DADD in the

(t+ 1)-th frame.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

In this section, an extensive simulation investigation is

carried out to evaluate the activity detection error rate (ADER)

of the MTDs, the symbol error rate (SER), and the bit error rate

(BER) of the proposed massive access solution. The ADER,

SER, and BER are defined as

ADER =
Em + Ef

K
, (39)

SER =
JEm + Esymbol

JKa
, (40)

BER=
ηJEm + EMED + EQAM

ηJKa
, (41)

respectively, where Em is the number of active MTDs missed

to be detected, Ef is the number of inactive MTDs falsely

detected to be active, Esymbol is the number of error symbols9

of the detected active MTDs, JKa is the total number of

symbols transmitted by the Ka active MTDs within one

frame, EMED and EQAM are the numbers of the errors

of the media modulated bits and the quadrature amplitude

modulated bits of the detected active MTDs within one frame,

respectively, and ηJKa is the number of total bits transmitted

by the Ka active MTDs within one frame. As for the CSI

update strategy, given the t-th frame, ∀t, NMSEH denotes the

normalized mean-square errors (NMSE) between the updated

CSI H
t ∈ CNr×(KNt) utilized for DADD and the true

CSI Ht ∈ CNr×(KNt). In addition, the NMSE between the

reconstructed signal matrix X̂t and the true signal matrix Xt

is denoted as NMSEX. Specifically, NMSEH and NMSEX can

be respectively expressed as

NMSEH =
∥∥∥Ht −Ht

∥∥∥
F

/ ∥∥Ht
∥∥
F
, (42)

NMSEX =
∥∥∥X̂t −Xt

∥∥∥
F

/ ∥∥Xt
∥∥
F
. (43)

8Denote Pu as the probability when the estimated media modulated signal

matrix X̂t

[Ω̃t
u,:]

∈ CNt×J of given MTD, ∀u ∈ [Na], is a singular matrix.

Then, considering the typical case, i.e., one row of X̂t

[Ω̃t
u,:]

is all zeros, we

have Pu ≈ JNt(1 − 1
Nt

)J . If J = 200 and Nt = 4, we have Pu ≈

8.2×10−23. Hence, it is suitable to assume that X̃t is a non-singular matrix,
which enables us to adopt the MMSE estimator.

9We consider that one symbol is in error if either its media modulated bits
or quadrature amplitude modulated bits are in error.

In the simulations, the number of MTDs is K = 500 with

Ka = 50 active MTDs, where each MTD adopts NRF = 2 RF

mirrors for media modulation and 4-QAM (M = 4). Hence,

the throughput is η = NRF + log2M = 4 bpcu. Moreover,

the number of receive antennas is Nr = 256, the maximum

iteration number is set to T0 = 15. Additionally, the frame

length J is set to 12 for uncoded media modulation based

mMTC. For the SE of the DS-AMP algorithm, the number

of Monte Carlo simulations is NMC = 500, the maximum

number of iterations is TSE = 50, and the terminal threshold

is ε = 10−5. Since we can obtain the a posteriori estimation

of the media modulation signals xk,j , ∀k, j, in each Monte

Carlo simulation (i.e., line 6 in Algorithm 2), the ADER,

BER, and SER of the theoretical SE can be calculated in the

same way as those for the DS-AMP algorithm, and they can

be then averaged over all Monte Carlo simulations. For the

proposed coded media modulation based mMTC scheme, we

consider a Turbo code with 1/3 rate and 12 tail bits. The length

of the data packet is L = 120 with the length of the signature

sequence being Ls = 20. Hence, after channel encoding, the

length of the data packet is L′ = 3L+12 = 372 and the frame

length is J = L′/η = 93 for coded media modulation based

mMTC. In addition, N is set to 5 in line 10 of Algorithm 3.

Without loss of generality, we investigate the ADER, SER, and

BER performance of different algorithms in any given frame

with perfect CSI at the BS, and a Rayleigh MIMO channel is

considered.

B. Performance of the Proposed DS-AMP Algorithm

For comparison, we consider the following benchmarks.

Benchmark 1: LMMSE multi-user detector for a traditional

uplink mMIMO system [23], where Ka single-antenna users

(after the grant-based scheduling) adopting 16-QAM (for

achieving the same throughput of 4 bpcu) are supported by an

mMIMO BS with Nr = 256 receive antennas. Benchmark

2: The StrOMP algorithm (i.e., algorithm 1 in [15]) is used

for the activity detection and the SIC-SSP algorithm (i.e.,

algorithm 2 in [15]) is used for data detection, where the

terminal threshold Pth for the StrOMP algorithm is set to

1.5. Benchmark 3: A modified DS-AMP algorithm with-

out executing the min-max normalization (i.e, the min-max

normalization in line 10 of Algorithm 1 is replaced by

ã = â), where the activity detection method is the same

as that in [11] (i.e., {k|[â]k > 0.5}, ∀k ∈ [K]). AMP:

The conventional AMP algorithm [20] (i.e., only perform

lines 1−5 and 8 in Algorithm 1), where the sparsity level

is λ = Ka

K and the noise variance σ2
w are perfectly known

in advance, and the a priori probability in (14) is replaced

by p
(
[xk,j ]i

)
= (1− λ)δ

(
[xk,j ]i

)
+ λ

M

∑
s∈S

δ
(
[xk,j ]i − s

)
.

TLSSCS: The cutting-edge TLSSCS algorithm from [14],

where the scaling factor α = 4 (i.e., α in (6) of literature [14]).

PIA-MSMP: The state-of-the-art PIA-MSMP algorithm (i.e.,

algorithm 1 in [16]) with the perfectly known sparsity level.
Fig. 6(a), Fig. 6(b), and Fig. 6(c) compare the ADER,

SER, and BER performance of different solutions versus

the SNR, respectively. Firstly, we observe that the SER and

BER performance of the media modulation based mMTC
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Fig. 6. Performance comparison of different solutions versus SNR: (a) ADER performance comparison; (b) SER performance comparison; (c) BER performance
comparison.
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Fig. 7. Performance comparison of different solutions versus the numbers of time slots J within a frame at SNR = 5 dB: (a) ADER performance comparison;
(b) SER performance comparison; (c) BER performance comparison.

scheme with the proposed DS-AMP algorithm outperforms the

traditional uplink mMIMO scheme (benchmark 1) when the

same throughput is considered. This verifies the advantages

of the proposed media modulation based mMTC scheme over

the traditional scheme. Since benchmark 1 perfectly knows the

indices of the active MTDs, comparing the proposed scheme

with benchmark 1 is actually unfair. Secondly, it can be ob-

served that the proposed DS-AMP algorithm outperforms the

TLSSCS algorithm, the PIA-MSMP algorithm, and benchmark

2 in terms of ADER, SER, and BER performance, which

verifies the superiority of the proposed algorithm. Moreover,

thanks to the exploitation of the doubly structured sparsity, our

proposed DS-AMP algorithm outperforms the conventional

AMP algorithm in ADER, SER, and BER. Furthermore, it is

apparent that the proposed DS-AMP algorithm outperforms

benchmark 3 in the low SNR regime (i.e., 0 dB∼2 dB),

which verifies the effectiveness of the proposed min-max

normalization (i.e., line 10 in Algorithm 1) in the DS-AMP

algorithm. Finally, we observe that the SE offers a good

tightness compared with the proposed DS-AMP algorithm in

terms of ADER, SER, and BER performance, which can be

observed from Fig. 7, Fig. 8, and Fig. 9 as well.
From Fig. 7, we observe that the proposed DS-AMP al-

gorithm outperforms the conventional AMP algorithm, the

TLSSCS algorithm, the PIA-MSMP algorithm, and benchmark

2 versus different frame lengths at SNR = 5 dB in terms of

ADER, SER, and BER performance. From Fig. 7(a), owing to

the exploitation of the structured sparsity in the time domain,

it can be observed that the advantage of the proposed DS-

AMP algorithm over other algorithms in terms of ADER

performance becomes more evident upon increasing J . From

Fig. 7(b) and Fig. 7(c), if J is small (i.e., J < 5), we can obtain

improved BER and SER performance as well as improved

ADER performance. If J is large (i.e., J > 9), on the other

hand, the BER and SER performance almost stays unaltered

for different values of J . Since the conventional AMP algo-

rithm reconstructs the signals of each time slot separately, its

performance remains unchanged against different values of J .
Fig. 8 provides the ADER, SER, and BER performance

comparisons of different algorithms versus the sparsity level

(λ = Ka

K given K = 500 and SNR = 3 dB). From Fig. 8(a),

Fig. 8(b), and Fig. 8(c), we observe that the proposed DS-AMP

algorithm outperforms the conventional AMP algorithm, the

TLSSCS algorithm, the PIA-MSMP algorithm, and benchmark

2 in terms of ADER, SER, and BER performance, respectively.

Fig. 9 depicts the ADER, SER, and BER performance of

different algorithms versus the numbers of receive antennas Nr

at SNR = 5 dB. From Fig. 9, similar conclusion as observed

in Fig. 8 can be obtained. In particular, both figures verify the

superiority and robustness of the proposed DS-AMP algorithm
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Fig. 8. Performance comparison of different solutions versus the sparsity level λ = Ka

K
, given K = 500 and SNR = 3 dB: (a) ADER performance comparison;

(b) SER performance comparison; (c) BER performance comparison.
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Fig. 9. Performance comparison of different solutions versus the numbers of receive antennas Nr at SNR = 5 dB: (a) ADER performance comparison; (b)
SER performance comparison; (c) BER performance comparison.

under different system parameters, i.e., the sparsity level or the

number of receive antennas, in typical IoT scenarios.
Fig. 10 depicts the ADER and BER performance of the

proposed DS-AMP algorithm versus the maximum iteration

number T0. We observe that the ADER and BER performance

of the proposed DS-AMP algorithm converges fast at various

SNRs (usually fewer than 15 iterations are needed), which

indicates that we can adopt the maximum iteration number

T0 = 15 for Algorithm 1. In particular, the SER performance

of the DS-AMP algorithm versus T0 is similar to that of the

BER and ADER performance.
The computational complexity comparison of different so-

lutions is provided in Table I. It is apparent that the com-

putational complexity of the proposed DS-AMP algorithm

is an order of magnitude lower than that of the TLSSCS

algorithm, the PIA-MSMP algorithm, and benchmark 2 under

the considered simulation parameters. Moreover, the com-

plexity of the DS-AMP algorithm scales linearly with the

number of receive antennas Nr, whereas the computational

complexity of the TLSSCS and PIA-MSMP algorithms can

be approximately proportional to the square of Nr. Hence, the

proposed DS-AMP is more attractive than other state-of-the-art

algorithms for solving the massive access problem in mMIMO

systems. Furthermore, compared with the conventional AMP

algorithm and benchmark 3, the proposed DS-AMP algorithm

achieves better performance without substantially increasing

the computational complexity.

C. Performance of the Proposed IDS-AMP Scheme

In this subsection, we compare the SER and BER perfor-

mance of the proposed IDS-AMP scheme with the following

benchmarks. Benchmark 4: The proposed DS-AMP algorithm

adopting uncoded media modulation and a hard decision (i.e.,

it performs a hard decision according to the output signal

X ∈ CKNt×J from Algorithm 1 to get the demodulated

binary bits). Benchmark 5: The proposed DS-AMP algorithm

adopting coded media modulation and soft decision, while the

processing of interleaving/deinterleaving and SIC in Fig. 4 is

not adopted. Benchmark 6: The proposed DS-AMP algorithm

adopting coded media modulation, interleaving/deinterleaving,

and soft decision, while the SIC processing is not adopted.

Benchmark 7: The proposed IDS-AMP scheme with the

exception of the proposed decoding quality judgement (i.e.,

lines 15−17 of Algorithm 3) is removed and Ω3 in line 22

is equal to Ω2.
Fig. 11 compares the SER and BER performance of bench-

marks 4−7 and the proposed IDS-AMP scheme. The worst

performance is achieved by benchmark 4, which indicates

the necessity of adopting channel coding and soft decoding

for improving the data decoding performance. The superiority

of benchmark 6 over benchmark 5 verifies the efficiency of
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Table I: Computational complexity comparison of different algorithms for uncoded media modulation based mMTC

Algorithms Computational complexity
Complex-valued multiplications1

Nr = 128 Nr = 256

Benchmark 1 O(JNrKa + 2NrKa
2 + Ka

3) 0.84 × 106 1.56 × 106

DS-AMP O[T0JKNt(
5
2
Nr + |S|c + 1

4
)] 1.17 × 108 2.32 × 108

AMP O[T0JKNt(
5
2
Nr + |S|c + 1

4
)] 1.17 × 108 2.32 × 108

Benchmark 3 O[T0JKNt(
5
2
Nr + |S|c + 1

4
)] 1.17 × 108 2.32 × 108

TLSSCS O{(JNrKa + 2NrKa
2 + Ka

3) + (Ka + 1)[Nr
2(KNt + J) + NrJKNt] +∑Ka+1

s=1 [Nr
2 + 2Nr(sNt)

2 + (sNt)
3]}

2.14 × 109 7.53 × 109

PIA-MSMP O{3JKaNr(Nt +1)+(Ka +1)[Nr
2(KNt +J)+NrJKNt]+

∑Ka
s=1[Nr

2 +
2Nr(sNt)

2 + (sNt)
3]}

2.12 × 109 7.50 × 109

Benchmark 2 O{KaJKNtNr +
∑Ka

s=1[JNr(s + 2s2 + 2(sNt)
2) + J(s3 + (sNt)

3)] +∑Ka
s=1[JNr(s + 2s2 + 2(sNt)

2) + J(s3 + (sNt)
3)]}

4.82 × 109 8.16 × 109

1 The order of complex-valued multiplications is obtained under parameters J = 12, Nt = 4, K = 500, Ka = 50, T0 = 15, |S|c = 4.
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Fig. 10. Performance of the proposed DS-
AMP algorithm versus the maximum iteration
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-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

SNR (dB)
(a)

10-3

10-2

10-1

100

SE
R

Benchmark 4
Benchmark 5
Benchmark 6
Benchmark 7
Proposed solution

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

SNR (dB)
(b)

10-4

10-3

10-2

10-1

100

B
E

R

Benchmark 4
Benchmark 5
Benchmark 6
Benchmark 7
Proposed solution

Fig. 11. Performance of the proposed SIC-based massive access solution in comparison with the benchmarks:
(a) SER performance comparison; (b) BER performance comparison.

the proposed BICMM in overcoming the effect of burst error

in spatial-selective channel fading. Besides, the superiority of

benchmark 7 over benchmark 6 in the high SNR regime (i.e.,

greater than -2 dB) verifies the effectiveness of SIC processing

in improving the data decoding performance. However, bench-

mark 7 is observed to be inferior to benchmark 5 in the low

SNR regime (i.e., -3.5 dB∼-2.5 dB), since the SIC at a low

SNR can degrade the performance. By contrast, the proposed

IDS-AMP scheme shows a consistent superiority over the

four considered benchmarks. Particularly, the superiority of the

IDS-AMP scheme over benchmark 7 verifies the data decoding

gain achieved by the proposed decoding quality judgement

module.

D. Performance of the CSI Update Strategy

To investigate the data-aided CSI update strategy, we con-

sider successive Nf (Nf ≫ 1) frames (blocks), where the

Gauss-Markov block fading channel model (37) is considered

and a Rayleigh MIMO channel model is utilized for the first

frame. The coherence time Tc is defined by the duration that

the time-domain correlation function is above 0.5 [44] and we

have Tc = 0.423/fm, where fm = vfc/vc is the maximum

Doppler shift, v is the maximum velocity of the MTDs, and

vc is the speed of light [44]. According to 3GPP Narrowband

Internet-of-Things (NB-IoT) specifications, W = 15 kHz

bandwidth for single-tone uplink transmission with carrier

frequency fc = 900 MHz can be supported [49]. In this

case, the time-lag τ = ⌊Tc/Ts⌋ = 213, if v = 35.6 km/h,

where Ts = 1/W denotes the symbol duration. Since the time-

domain correlation ατ/2 has to be above 0.5 between the time

indices i = 1 and i = τ + 1, we obtain the AR coefficient

α = 0.9935 when ατ/2 is set to 0.5 [44]. Furthermore,

the frame length after channel coding is J = 213, and the

associated number of bits transmitted by a frame is 280 bits.

t-th frame
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Fig. 12. The CSI update process of the t-th frame, 0 < t < Nf .

The AR coefficient is 0.99. The encoder and other system

parameters are the same as that in Section VI-A, and the

proposed DS-AMP algorithm with channel coding is used for

DADD in each frame.
For comparison, we consider two strategies, both of which

assume that the CSI of all the MTDs has been acquired at

the BS in the first frame. In particular, for the CSI non-

update strategy: the CSI used for DADD in each frame is

the same as that in the first frame. As for the proposed CSI

update strategy: the CSI of correctly detected active MTDs

are refined by the MMSE estimator at the BS in the t-th frame,

0 < t < Nf , as shown in (38), and then the updated CSI

matrix of all the MTDs is used for DADD in the (t+1) frame.

In particular, by decoding, re-encoding, and media modulating

the bits associated with the detected active MTDs, as shown

in Fig. 12, we can obtain the signal matrix X̃t for refining the

CSI matrix H̃t. Then, Ht+1 is updated as shown in (38).
It can be seen from Fig. 13, as the time increases, the

NMSEH and NMSEX performance of the CSI non-update

strategy decreases monotonically due to the channel aging.

On the contrary, by exploiting the proposed CSI update

strategy, the NMSEH and NMSEX performance dramatically
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Fig. 13. Performance comparison of the proposed CSI update strategy versus
time (i.e., the number of frames) at SNR = 30 dB and the AR coefficient
α = 0.99: (a) NMSEH performance comparison; (b) NMSEX performance
comparison.

outperforms that of the non-update strategy, especially, after

a relatively large number of frames. Hence, by using the

proposed CSI update strategy in slowly time-varying IoT

channel scenarios, it is unnecessary for the BS to estimate

the CSI of all the MTDs in every frame, which can reduce the

training overhead significantly.

VII. CONCLUSIONS

This paper investigated the DADD problem for media mod-

ulation based mMTC, where both uncoded and coded trans-

missions were considered. By exploiting the doubly structured

sparsity of media modulation signals, we first proposed a DS-

AMP algorithm to solve the DADD problem for the uncoded

case. Also, we derived the SE of the DS-AMP algorithm

to theoretically predict its performance. Furthermore, for the

coded case, we developed a BICMM scheme and proposed an

IDS-AMP scheme based on SIC for improving the data decod-

ing performance. In particular, a signature sequence part for

facilitating the SIC processing was proposed to be embedded

into the dedicated data packet and then the IDS-AMP detector

was developed, whereby the estimated signal components were

iteratively subtracted from the received signals for enhancing

the data decoding performance. In addition, we discussed the

CE problem and developed a data-aided CSI update strategy to

reduce the training overhead in block fading channels. Finally,

extensive simulation results demonstrated the superiority of the

proposed DS-AMP algorithm over cutting-edge algorithms in

terms of ADER, SER, and BER performance while ensuring a

lower computational complexity in the uncoded transmission.

Improved data decoding performance of the proposed SIC-

based IDS-AMP scheme was verified in the coded case as well.

Also, simulation results verified the efficiency of the proposed

CSI update strategy.

APPENDIX

Here we provide the detailed derivation of the EM update

rules in the proposed algorithms. According to (22) and (23),

ln p (X,Y; θ) can be expressed as

ln p (X,Y; θ)

= ln p
(
Y|X;σ2

w

)
+ ln p (X; a)

=
∑J

j=1

[
ln p

(
yj |x̃j ;σ

2
w

)
+ ln p (x̃j ; a)

]

=

J∑

j=1

[
Nr∑

n=1

ln p
(
[yj ]n |x̃j ;σ

2
w

)
+

K∑

k=1

ln p (xk,j ; ak)

]
.

(44)

In order to find the parameter set θ that maximizes Q (θ, θt)
in the (t + 1)-th iteration, we differentiate Q (θ, θt) with

respect to θ and let it equal zero.
First, according to (9) and (44), we differentiate Q (θ, θt)

with respect to ak, ∀k, as follows

∂Q (θ, θt)

∂ak
=

∂E {ln p (X,Y; θ) |Y; θt}
∂ak

=
∑J

j=1
E

{
d

dak
lnp (xk,j ; ak) |Y; θt

}

=
∑J

j=1

∑
xk,j∈Γ

p
(
xk,j |Y; θt

) d

dak
lnp (xk,j ; ak)

≈
J∑

j=1

∑

xk,j∈Γ

q
(
xk,j |rtk,j , φt

k,j ;
(
σ2
w

)t
, atk

) d

dak
lnp (xk,j ; ak)

=

J∑

j=1

∑

xk,j∈Γ

Nt∏

i=1

q
(
[xk,j ]i |rtk,j ,φt

k,j ;
(
σ2
w

)t
,atk

) d

dak
lnp (xk,j ; ak) ,

(45)

where Γ = {Γ0,0Nt×1} and Γ0 is defined in (26). The

function q
(
[xk,j ]i |rtk,j , φt

k,j ;
(
σ2
w

)t
, atk

)
can be calculated

according to (12) and

d

dak
lnp (xk,j ; ak) =

−∏Nt

i=1 δ
(
[xk,j ]i

)

p (xk,j ; ak)
+

1

Nt

∑Nt

i=1

[
1

M

∑
s∈S

δ
(
[xk,j ]i − s

) ∏
n∈[Nt],n6=i

δ
(
[xk,j ]n

)
]

p (xk,j ; ak)
.

(46)
Hence, the EM update rule for ak, ∀k, can be expressed as

at+1
k =

1

J

J∑
j=1

∑
xk,j∈Γ0

Nt∏
i=1

q
(
[xk,j ]i |rtl,j , φt

l,j ; a
t
k

)
. (47)

Next, define zj = Hx̃j (∀j ∈ [J ]), then we have [zj ]n =
K∑

k=1

[Hkxk,j ]n (n ∈ Nr). According to (8) and (44), we

differentiate Q (θ, θt) with respect to σ2
w as follows

∂Q (θ, θt)

∂ (σ2
w)

=
∂E {ln p (X,Y; θ) |Y; θt}

∂ (σ2
w)

=

J∑

j=1

Nr∑

n=1

E

{
d

d (σ2
w)

lnp
(
[yj ]n |x̃j ;σ

2
w

)
|Y; θt

}

=

J∑

j=1

Nr∑

n=1

E

{
d

d (σ2
w)

[
−ln

(
σ2
w

)
−
(
[yj ]n − [zj ]n

)2

(σ2
w)

]
|Y; θt

}
.

(48)



16

Hence, we have

(
σ2
w

)t+1
=

1

JNr

J∑
j=1

Nr∑
n=1

E

{(
[yj ]n − [zj ]n

)2 |Y; θt
}
,

(49)

where for n ∈ [Nr],

E

{(
[yj ]n − [zj ]n

)2 |Y; θt
}

=
(
[yj ]n − E

{
[zj ]n |yj ; θ

t
})2

+Var
{
[zj ]n |yj ; θ

t
}
,
(50)

and Var {·|yj ; θ
t} is the variance conditioned on yj with

parameter θt.
Note that the distribution of [zj ]n can be expressed as

f
(
[zj ]n |yj ; θ

t
)

=
1

C
f
(
[yj ]n | [zj ]n ; θt

)
f
(
[zj ]n ; θ

t
)

=
1

C
CN

(
[yj ]n ; [zj ]n ,

(
σ2
w

)t) CN
(
[zj ]n ;Z

t
n,j, V

t
n,j

)

= CN
(
[zj ]n ;E

{
[zj ]n |yj ; θ

t
}
,Var

{
[zj ]n |yj ; θ

t
})

,
(51)

where

E
{
[zj ]n |yj ; θ

t
}
=

(
σ2
w

)t
Zt
n,j + [yj ]n V

t
n,j

(σ2
w)

t
+ V t

n,j

, (52)

Var
{
[zj ]n |yj ; θ

t
}
=

(
σ2
w

)t
V t
n,j

(σ2
w)

t
+ V t

n,j

, (53)

and C is the normalization factor, V t
n,j and Zt

n,j are calculated

in (20) and (21), respectively.
Hence, according to (49), (50), (52), and (53), we obtain

the EM update rule of the noise variance as

(
σ2
w

)t+1
=

1

JNr

J∑
j=1

Nr∑
n=1



(
[yj ]n − Zt

n,j

)2
(
1 +

V t
n,j

(σ2
w)t

)2 +

(
σ2
w

)t
V t
n,j

V t
n,j + (σ2

w)
t


 .

(54)
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