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Abstract. Link prediction is a fundamental problem in the field of
graph mining. The aim of link prediction is to infer/discover unobserved
links in graphs. Link prediction in biological graphs is highly challeng-
ing. There exist many similarity-based methods in the literature for link
prediction. These methods compete for victory in graphs from various
domains. Unfortunately, they are efficient only in some specific graphs,
and no one wins in all graphs. In this paper, we study some well-known
similarity-based methods and consider them as independent features to
define a feature set. The feature set is then used to train traditional su-
pervised learning methods for link prediction in biological graphs. We
evaluate the methods on ten biological graphs from different organisms.
Experimental results show that the similarity-based methods collabo-
ratively improve prediction performance, and are even comparable to
high-performing embedding-based methods in some biological graphs.
We compute the importance score of similarity-based features in order
to explain the leading features in a graph.

Keywords: Biological graphs · Link prediction · Similarity-based heuris-
tics · Supervised learning.

1 Introduction

Many complex biological systems can be well-represented with graphs where a
node represents a biological entity (e.g. protein, gene, etc.) and a link represents
the interaction between two entities. Most real-world biological graphs are in-
complete in nature. For example, 99.7% of the molecular interactions in human
cells are still not known[1]. The links in biological graphs must be validated by
field and/or laboratory experiments, which are expensive and time consuming.
Researchers have developed link prediction methods to compute the plausibility
of a link between two unconnected nodes in a graph to avoid the blind checking
of all possible interactions. Formally, link prediction is the task of predicting the
likelihood of a link between two nodes based on available topological/attribute
information of a graph[2]. Link prediction methods help us toward a deep un-
derstanding of the structure, evolution, and functions of biological graphs [3].
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Similarity-based methods are the simplest and unsupervised methods of link
prediction in biological graphs, which define the proximity of a link by the sim-
ilarity between its end nodes. The great advantage of these methods is their
interpretibility which is essential for any biological system [4]. However, each
of the similarity-based methods performs well only in some particular graphs
and no one wins in all graphs. These methods necessitate manually formulating
various heuristics based on prior beliefs or extensive knowledge of various bio-
logical graphs. The lack of universal applicability of similarity-based methods
motivates researchers to study machine learning methods to automatically learn
the heuristics from a graph. To learn the appropriate heuristics automatically
from a graph, researchers have developed embedding-based methods which rep-
resent nodes, edges, graphs in low dimensional vector space [5]. The embedding-
based method has become a popular link prediction tool in graphs over the last
decade. These methods show impressive link prediction performance in most of
the graphs. The downside of embedding-based methods is that they seriously suf-
fer from the well-known ’black-box’ problem. As the link decisions in biological
graphs are critical, a link prediction method should be sufficiently interpretable
to achieve trust among stakeholders [6]. The requirement for link prediction
methods to be interpretable may limit the use of embedding-based methods
in real-world biological systems. Researchers are still working on opening the
’black-box’ of embedding-based methods [9, 10].
Another group of link prediction methods is developed based on traditional su-
pervised learning-based methods. These methods extract features from a graph
and train a traditional classifier for the link prediction task [11–17]. These meth-
ods are nearly as performant as embedding-based methods and as interpretable
as similarity-based methods in many biological graphs. These methods describe
the link prediction problem as a link classification problem with two classes:
existence and absence of a link. In this paper, we intend to investigate whether
the existing similarity-based heuristics collaboratively improve the link predic-
tion performance in biological graphs. We study similarity-based heuristics for
feature extraction and utilize the features in supervised learning-based classifiers
for link prediction in biological graphs. We find that this is not the first attempt
to study supervised learning methods to link prediction problem in graphs. But
there are important differences between past works [12, 18, 19] and this study.
The existing methods mostly focus on node attributes for extracting features
which are application dependent. However, node attributes are not available in
many real-world biological graphs. In contrast, our supervised learning-based
method is developed based on only the topological features (similarity-based
heuristics). Kumari et al [17] studied a few local (four) and global (three) simi-
larity heuristics for supervised link predictions, which is the closest work in the
literature to our study. However, for large graphs, global methods are not the
best option as they are computationally expensive [20]. In this study, we enrich
the feature set by including fourteen local similarity-based heuristics. In addi-
tion, we extract few other topological features of nodes and derive link-based fea-
tures based on end node features. We study these features in supervised machine
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learning methods for link prediction in biological graphs. We see that supervised
learning methods show comparable prediction results in many of the biological
graphs. We also demonstrate the feature importance in different datasets for
different supervised learning-based methods.

1.1 Similarity-based link prediction

Link prediction is the task of discovering or inferring a set of non-existing links
in a graph based on the current snapshot of the graph. Similarity-based is the
simplest category of link prediction methods, which is formulated based on the
assumption that two nodes interact if they are similar in a graph [20]. Generally,
these methods compute similarity scores of non-existent links, sort the links in
decreasing order of their scores and top-L links are predicted as potential existent
links. Defining the similarity is a crucial and non-trivial task which differs from
graphs to graphs [20]. Consequently, numerous similarity-based methods exist
in the literature. These methods are broadly categorized into three categories:
local, global and quasi-local methods. Local methods are developed based on
local topological or neighbourhood information, whereas global methods use the
global topological information of graphs to define similarity functions [20]. Quasi-
local methods consider the neighbourhood up-to a predefined hop for defining the
similarity function. The high computational time of global methods motivates
us to study only local and quasi-local methods. We study fourteen well-known
local similarity-based methods for link prediction in graphs, thirteen of which are
summarized in Table. 1 local and one quasi-local. We summarize the similarity-
based methods and the rest one (Preferential Attachment (PA)) in Table. 2 with
basic principles and the definition of similarity functions.

2 Methodology

In a broader sense, we consider the similarity-based heuristics as individual fea-
tures to generate the feature set for a supervised learning-based classifier.
We describe each of the steps in Sections 2.1-2.3.

2.1 Feature extraction

The most crucial task of a supervised learning-based classifier is to define an
appropriate feature set [12]. Given a graph and a train set of links, we extract
structural features for the train links. When extracting the features of a link,
the link is temporarily removed from the graph and re-connected after feature
extraction to ensure that the extracted features are not biased by the existence
of the train link. We are motivated to use only topological features for defining
our feature set as they exist in all kinds of graphs. Our feature set contains
twenty topological features which are broadly categorized into two categories:
similarity-based and derived link features (Fig. 1).
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Table 1: Summary of similarity-based methods. Each method is considered as an
individual link feature. S(x, y) is the similarity function between two end nodes
x and y. Γx and Γx denote the neighbour sets of nodes x and y respectively. A
is the adjacency matrix and λ is a free parameter.
Method Principle Similarity-function
Common Neigh-
bours (CN) [21]

Two nodes are more likely to be linked if
they have more neighbours in common.

CN(x, y) = |Γx ∩ Γy|

Adamic-Adar (AA)
[22]

A variant of CN in which each com-
mon neighbour is penalized logarithmi-
cally by its degree.

AA(x, y) =
∑

z∈Γx∩Γy

1
log|Γz|

Resource Allocation
(RA) [23]

Based on the resource allocation mech-
anism, the high degree common neigh-
bours will be penalized even more.

RA(x, y) =
∑

z∈Γx∩Γy

1
|Γz|

Jaccard Index(JA)
[24]

The score is punished for each non-
common neighbour in the normalization
of CN.

JA(x, y) =
|Γx∩Γy|
|Γx∪Γy|

Salton Index(SA)
[25]

The cosine similarity between adjacency
vectors for a pair of nodes is used to
compute the link probability.

SA(x, y) =
|Γx∩Γy|√
|Γx|×|Γy|

Sørensen Index(SO)
[26]

The overall fraction of common neigh-
bours from a local perspective is what
the link prediction is described as.

SO(x, y) =
2×|Γx∩Γy|
|Γx|+|Γy|

Hub Promoted In-
dex (HPI) [27]

Link establishment between high-degree
nodes and hubs is encouraged.

HPI(x, y) =
|Γx∩Γy|

max(|Γx|,|Γy|)

Hub Depressed In-
dex (HDI) [27]

Link establishment between low-degree
nodes and hubs is encouraged.

HDI(x, y) =
|Γx∩Γy|

min(|Γx|,|Γy|)

Local Leicht-
Holme- Newman
(LLHN) [28]

The real and expected number of shared
neighbours are used to define the simi-
larity between two nodes.

LLHN(x, y) =
|Γx∩Γy|

|Γx|×|Γy|

Cannistrai–Alanis–
Ravai (CAR) [29]

In measuring the similarity score be-
tween two end nodes, level-2 linkages
are combined with shared neighbour-
hood information.

CAR(x, y) =
∑

z∈Γx∩Γy
1 +

|Γx∩Γy∩Γz|
2

Clustering
Coefficient-based
Link Prediction
(CCLP) [30]

The influence of each shared neighbour
is quantified by using the node’s local
clustering coefficient.

CCLP (x, y) =
∑

z∈Γx∩Γy
CCz

Node and Link
Clustering(NLC)
[31]

The contribution of each common neigh-
bor is quantified by using the node’s
node and link clustering coefficients.

NLC(x, y) =
∑

z∈Γx∩Γy

(
CN(x,z)
|Γz|−1

×

CCz +
CN(x,z)
|Γz|−1

× CCz

)
Local Path In-
dex(LPI) [32]

Similarity is calculated using the second
and third order paths between the end
nodes.

LPI(x, y) = [A2 + λA3]x,y

Fig. 1: Feature set for supervised learning
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Table 2: Summary of derived link features: The derived link feature function
S(x, y) is defined based on end nodes features.
Feature Principle Link feature function
Preferential Attach-
ment (PA) [33]

Based on the rich-get-richer principle, in
which the link likelihood between two
high-degree nodes is greater than that
between two low-degree nodes.

PA(x, y) = |Γx| × |Γy|

Pager Rank (PR)
[34]

PageRank computes a ranking of the
nodes based on the structure of the
links.

PR(x, y) = PR(x) + PR(y)

Clustering Coeffi-
cient (CC) [35]

The clustering coefficient of a node is
the fraction of possible triangles through
that node that exist

CC(x, y) = CC(x) + CC(y)

Degree Centrality
(DC) [36]

The degree centrality for a node is the
fraction of nodes it is connected to.

DC(x, y) = DC(x) + DC(y)

Eigen vector cen-
trality (EVC) [37]

Eigenvector centrality computes the
centrality for a node based on the cen-
trality of its neighbors.

EV C(x, y) = EV C(x) + EV C(y)

Closeness Central-
ity(CLC) [38]

Closeness centrality of a node is the
reciprocal of the average shortest path
length to other reachable nodes.

CLC(x, y) = CLC(x) + CLC(y)

Vote Rank Central-
ity(VRC) [39]

Ranking of the nodes based on a vot-
ing scheme where a node casts votes to
its neighbours. A node with the highest
votes has the best (lowest) ranking.

V RC(x, y) = 1
V RC(x)

+ 1
V RC(y)

Similarity-based link features : We define the link-based features as the
features which are related to the common topological information of end-nodes
of a link. We use thirteen existing similarity-based heuristics as link-based fea-
tures, which are summarized in Table 1. For instance, the number of common
neighbours of end nodes of a link is used as the common neighbour(CN) feature.

Derived link features : Few link-based features are derived from the individual
features of the link’s end nodes. We summarized six derived features in Table 2.
These features are related to the topological information of individual nodes only.
For example, the degree of end nodes is multiplied in Preferential Attachment
(PA) to define the similarity score. Note that the link features in Table 2 except
PA are not directly defined in the literature. We derive the link features based
on the end node feature. To compute the link feature, features of end nodes
are simply added except PA. As the voterank centrality computes low ranks for
high-influencing nodes in a graph, the reciprocals of the voterank scores of end
nodes are summed to define the voterank centrality feature.

2.2 Feature scaling

In general, the magnitude scale for different features in different graphs varies [7,
8]. Supervised learning-based methods are easily affected by the non-uniform
scaling as there is a high chance that features with higher magnitude play a
more decisive role during the training of a classifier. But, it is not desirable for
the classifier to be biased towards one particular feature. Hence, we normalize
each feature in the range of 0-1.
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2.3 Classifier training and link prediction

For the link prediction task, we train a traditional supervised machine learning
classifier to classify a link into either existent or non-existent classes. There ex-
ist many classifiers in the literature which perform better than others in some
particular datasets. In this paper, we study three traditional classifiers: Support
Vector Machine(SVM) with RBF kernel, Decision Tree, and Logistic Regres-
sion. We extract the features of the test links and classify them into existent
or non-existent classes using a trained classifier to evaluate the link prediction
performance.

3 Experiments

3.1 The baselines

To evaluate the prediction performance of supervised learning methods, we con-
sider two categories of link prediction methods: similarity-based and embedding-
based methods.

For the similarity-based category, we consider all the heuristics in Table 1
in Table 2. For the embedding-based methods, we choose two popular meth-
ods: Node2Vec [40] and SEAL [41]. We shortly describe Node2Vec and SEAL
methods. For more details, we refer to the original papers. Node2Vec [40] is
a classical skip-gram model-based graph embedding method which learns node
embeddings by optimizing a neighbourhood preserving objective function. It
makes an interpolation between BFS(Breadth First Search) and DFS(Depth
First Search) to define a 2nd order random walk. A fixed size neighbourhood is
sampled using the 2nd order random walk and fed into the well-known skip-gram
model [42] to learn the node embedding. The link embedding is then computed
as the Hadamard product of the end node embeddings. A logistic regression-
based classifier is then trained for the link prediction task. SEAL, the second
embedding-based approach, is based on neural networks (NN). Learning from
Sub-graphs, Embeddings and Attributes (SEAL) utilizes the latent and
explicit features of end nodes and structural information of the graph to learn
the link embedding. SEAL starts with extracting a h-hop neighbouring sub-
graph and node labeling by a double radius node labeling (DRNL) algorithm.
In the second step, the labelled sub-graph is then used to generate the struc-
tural encoding. The link embedding is the concatenation of structural encoding,
pre-computed latent encoding and explicit feature encoding. In the final step, a
neural network(NN) is trained for link prediction task.

3.2 Experimental datasets

In this study, we focus on only biological graphs. For evaluating performance, we
collect six biological graphs from the Network Repository 1. Table 3 summarizes
the topological statistics and descriptions of the graph datasets.

1 https://networkrepository.com/bio.php
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Table 3: The graph datasets: number of nodes(|V|), links(|E|), average node
degree (NDeg), average clustering coefficient (CC), and description.
Graph Organism |V| |E| NDeg CC Description
CE-GT [43] Worm 924 3239 7.01 0.605 Nodes: Genes in C. elegans

Links: Gene functional associations in C.elegans
CE-HT [43] Worm 2617 2985 2.28 0.008 Nodes: Proteins in C. elegans

Links: High-throughput protein-protein interac-
tions

Celegans
[43]

Worm 453 2040 9.01 0.647 Nodes: Substrates in Caenorhabditis elegans

Links: Metabolic reactions between substrates
in C.elegans

CE-LC [44] Worm 1387 1648 2.37 0.076 Nodes: Proteins in C.elegans worm
Links: Small/medium-scale protein-protein in-
teractions (compiled from protein-protein inter-
action data bases)

Diseasome
[45]

Human 516 1188 4.61 0.636 Nodes: Known genetic disorders in H.sapiens

Links: Connections between pair of disorders
when they share minimum one gene.

DM-HT [45] Fly 2989 4660 3.12 0.009 Nodes: Proteins in D.melan-ogaster fly
Links: High-throughput protein-protein interac-
tions

DM-LC [44] Fly 658 1129 3.43 0.105 Nodes: Proteins in D.melanogaster fly
Links: Small/medium-scale protein-protein in-
teractions (compiled from protein-protein inter-
action data bases)

HS-HT [44] Human 2570 13691 10.65 0.169 Nodes: Proteins in human
Links: Protein-protein interactions in human
protein network

SC-LC [44] Yeast 2004 20452 20.41 0.168 Nodes: Proteins in S.cerevisiae yeast
Links: Small/medium-scale protein-protein in-
teractions in yeast network

Yeast [44] Yeast 2114 2277 2.15 0.059 Nodes: Proteins in S.cerevisiae yeast
Links: Protein-protein interactions in yeast net-
work

The link prediction performance is evaluated using a random sampling vali-
dation protocol [41, 7, 8]. For a graph dataset, train and test sets are prepared
by splitting the existent links. The train set consists of 90% existent and an equal
number of non-existent links. The test set contains the remaining 10% existent
and equal number of non-existent links. To prepare five train and five test sets
for each graph, we repeat the link splitting operation five times independently.
The datasets are available in a GitLab repository 2.

3.3 Evaluation metrics

The link prediction problem is considered as a binary classification problem [46].
A traditional classifier, in general, learns a threshold to classify links as existent
or non-existent. However, for similarity-based link classification methods, we find
no standard approach for computing the threshold. The threshold is calculated
in an optimistic manner. We first normalize the link scores to a range of 0-1 and
then use the normalized scores to compute a ROC curve. The curve gives the true

2 https://gitlab.inria.fr/kislam/supervised-lp
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positiverate (TPR) and false positive rate (FPR) for different score threshold
settings.The threshold point with the highest [TPR+(1-FPR)] is computed as
the threshold as we want to maximize TPR as well as minimize FPR. We classify
links based on this threshold. A link with a score >= threshold is classified as
existent and non-existent otherwise. Based on the true and predicted classes of
links, we define four metrics: true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). TP is the number of existent links predicted to
be existent, TN is the number of non-existent links predicted to be non-existent,
FP is the number of non-existent links predicted to be existent, and FN is the
number of existent links predicted to be non-existent links. We compute the
following three well-known metrics using these four metrics.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1 = 2× Precision×Recall

Precision+Recall
(3)

3.4 Results and discussion

In this section, we describe the prediction performance of supervised learning-
based methods on six biological graphs. We also illustrate the importance of the
features in graphs.

Prediction performance The prediction performance is computed for all
methods over all the five sets for each graph, and the average scores are recorded.
We do not include the standard deviation results as the values are very low in
all the experiments. The precision, recall and F1 scores are tabulated Table 4,
where the best two similarity-based methods are denoted with Sim1 and Sim2.
We compute the precision scores of similarity-based methods in a optimistic way.
The precision scores of similarity-based methods (best and second best) are very
high and highest among all the methods in all the graphs, as shown in the table.
This demonstrates the ability of similarity-based methods to predict high-quality
links. However, the recall scores are low, implying that these methods identify
the majority of existing test links as non-existent. As a result, the F1 score for
similarity-based methods is very low. We also see that, as expected, the two
best-performing similarity-based methods differ for different datasets. Among
the supervised learning methods (SVM, DT, LR), DT shows the worst predic-
tion results, but it is still much better than similarity-based methods. The other
two classifiers have similar performance scores. The performance of the other
two classifiers in terms of prediction scores is impressive. Yet in many graphs,
supervised learning-based classifiers show superior prediction performance than
embedding-based methods. Relating the performance to graph properties, we
see that traditional classifiers outperform embedding-based methods in dense
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Table 4: Performance metrics: The dataset-wise best and second best precision,
recall and F1 scores are indicated in bold and underline. The best and second
best similarity-based methods are denoted with Sim1 andSim2 respectively. For
Sim1 and Sim2 methods, the methods are specified and the performance scores
are given in ().
Datasets Metric Sim1 Sim2 N2V SEAL SVM DT LR

Precision NLC (0.960) JA (0.896) 0.707 0.842 0.842 0.828 0.901
CE-GT Recall NLC (0.039) JA (0.042) 0.707 0.931 0.827 0.776 0.900

F1 NLC (0.075) JA (0.078) 0.707 0.885 0.834 0.801 0.901

Precision RA (0.996) AA (0.996) 0.596 0.705 0.753 0.745 0.752
CE-HT Recall RA (0.001) AA (0.001) 0.593 0.791 0.529 0.519 0.510

F1 RA (0.002) AA (0.002) 0.594 0.745 0.622 0.612 0.608

Precision RA (0.938) CCLP (0.932) 0.778 0.806 0.899 0.850 0.907
Celegans Recall RA (0.042) CCLP (0.041) 0.777 0.888 0.899 0.830 0.906

F1 RA (0.08) CCLP (0.079) 0.778 0.845 0.899 0.840 0.906

Precision AA (0.969) RA (0.969) 0.658 0.763 0.715 0.763 0.789
CE-LC Recall AA(0.009) RA(0.009) 0.647 0.794 0.620 0.584 0.673

F1 AA(0.028) RA(0.028) 0.652 0.778 0.664 0.662 0.726

Precision NLC (0.991) AA (0.988) 0.757 0.914 0.926 0.800 0.927
Diseasome Recall NLC (0.035) AA (0.040) 0.756 0.896 0.919 0.692 0.920

F1 NLC (0.067) AA (0.078) 0.756 0.905 0.922 0.742 0.924

Precision CCLP (0.999) NLC (0.998) 0.712 0.720 0.780 0.796 0.770
DM-HT Recall CCLP (0.001) NLC (0.001) 0.704 0.703 0.657 0.661 0.644

F1 CCLP (0.002) NLC (0.002) 0.708 0.712 0.714 0.722 0.701

Precision PA (0.979) CCLP(0.944) 0.696 0.790 0.829 0.828 0.812

DM-LC Recall PA(0.02) CCLP(0.007) 0.688 0.835 0.771 0.770 0.777
F1 PA(0.039) CCLP(0.014) 0.692 0.812 0.799 0.798 0.794

Precision NLC (0.954) CCLP (0.949) 0.797 0.854 0.861 0.847 0.861
HS-HT Recall NLC (0.031) CCLP (0.031) 0.794 0.815 0.840 0.791 0.848

F1 NLC (0.060) CCLP (0.061) 0.796 0.834 0.850 0.818 0.854

Precision NLC (0.893) AA (0.873) 0.772 0.784 0.868 0.850 0.853
SC-LC Recall NLC (0.035) AA (0.036) 0.770 0.815 0.849 0.810 0.844

F1 NLC (0.067) AA (0.068) 0.771 0.799 0.859 0.829 0.849

Precision CCLP (0.971) RA (0.967) 0.699 0.705 0.753 0.746 0.755
Yeast Recall CCLP (0.006) RA (0.008) 0.699 0.726 0.567 0.551 0.598

F1 CCLP (0.012) RA (0.015) 0.699 0.716 0.647 0.634 0.668

graphs. This is intuitive as the majority of the studied similarity-based heuris-
tics are based on common neighbours (see Table. 1). The performance scores of
traditional classifiers are worse in the sparse graphs (CE-HT, CE-LC, Yeast),
where embedding-based methods show better performance scores.

Feature importance In this section, we investigate the influence of each fea-
ture in a classifier for the link prediction task. To compute the feature impor-
tance coefficient, we use the Permutation importance module from the sklearn
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Fig. 2: Feature importance in HS-HT graph by Logistic regression classifier

python-based machine learning tool 3. When a feature is unavailable, the coeffi-
cient is calculated by looking at how much the score (accuracy) drops [47]. The
higher the coefficient, the higher the importance of the feature. In Fig. 2, we
demonstrate the feature importance in the HS-HT biological graph in the logis-
tic regression (LR) classifier to investigate how the importance of features differs
in different sets of the same biological graph. In the LR classifier for the HS-HT
biological graph, four features dominate. The dominance of multiple heuristics or
features in a graph shows that heuristics that work collaboratively perform bet-

3 https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation
importance.html
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ter than heuristics that work alone. We can also find that the feature importance
coefficients in all five sets in the HS-HT graph are substantially identical.

We further investigate the importance score of features in three classifiers
(SVM, DT, LR) for three different datasets. We evaluate the importance score
of features for only one set for each graph. We see that different classifiers give
different importance coefficients to different features in different datasets. In
DM-HT dataset, all the classifiers compute high coefficient for LPI feature and
they have close prediction performance (in Table 4). In the Celegans dataset, the
HPI feature dominates in SVM and LR classifiers whereas LPI dominates in the
DT classifier. In the Celegans dataset, SVM and LR outperform DT in terms
of prediction (in Table 4), demonstrating that LR and SVM compute feature
importance scores more correctly. Surprisingly, we see that DT has a tendency
to give more importance to the LPI feature in these three datasets.

4 Conclusion

Do similarity-based heuristics compete or collaborate for link prediction task in
graphs? In this article, we study this question. We study fourteen similarity-
based heuristics in six biological graph from three different organisms. As ex-
pected, we observe they perform well only in some particular biological graphs
and no one wins in all graphs. Rather than using them as standalone link pre-
diction methods, we consider them as features for supervised learning methods.
In addition, we derive six link features based on the node’s topological informa-
tion. Based on the twenty features, we train three traditional supervised learning
methods: SVM, DT and LR-based classifiers. We see that the similarity-based
heuristics collaboratively improve link prediction performance remarkably, even
outperforming embedding-based methods in some graphs.

We propose three future dimensions of this study. Firstly, studying collab-
oration of similarity-based heuristics in large scale biological as well as social
graphs could be a potential future work as the graphs in the current study
are small/medium in size. Secondly, exploring some other heuristics might im-
prove prediction performance in sparse graphs. The final future research could
be studying other classifiers like Random Forest, AdaBoost, K-Neighbors for the
link prediction task in graphs.
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(g) SVM in DM-HT
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(h) DT in DM-HT
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(i) LR in DM-HT

Fig. 3: Feature importance in different datasets by different supervised methods:
(a)-(c) in Celegans, (d)-(f) in Diseasome, (g)-(i) in DM-HT
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