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Abstract

A novel Lévy series for developing a dynamic stiffness matrix for a completely

free orthotropic Kirchhoff plate is presented in this paper. The bending be-

havior is based on the Kirchhoff-Love thin-plate theory. The dynamic stiffness

matrix is derived using the new Lévy series without classical symmetry decom-

position, simplifying the building procedure. Harmonic responses obtained by

this method and the finite element method are compared to establish the rate

of convergence and the degree of precision of the current formulation.

Key words: Dynamic stiffness method, Lévy series, Harmonic response,

Orthotropic plate

1. Introduction

Since the advent of composite materials in structural engineering, the dy-

namic bending of orthotropic rectangular plates has been studied extensively.

Composite materials are becoming increasingly important in aerospace, automo-
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tive, marine, and civil engineering designs. The finite element method (FEM)5

is effective for calculating the dynamic response and modal characteristics of

such structures, but limitations arise when the mode density increases. The

precision of the results is highly dependent on the mesh size, and convergence

studies must be conducted. The mesh size of finite elements depends on the

highest frequency in the analysis; increasing the number of finite elements re-10

quires greater computational time and effort to solve the problem.

To overcome these difficulties, several meshless methods have been devel-

oped, including the dynamic stiffness method (DSM) [1] and the spectral ele-

ment method (SEM) [2]. These methods are fundamentally based on the exact15

closed-form solution of the governing differential equations of motion. Con-

sequently, the DSM is based on the minimization of the discretization of the

structure geometry. This approach was developed extensively for beam ele-

ments in the late 20th century [3–9].

20

The extension of the meshless method to plate elements is difficult. The

main challenge is that no closed-form solution exists for the governing differen-

tial equations of motion. Even so, during the last twenty years, DSM formula-

tions for plate elements have been developed. Kim and Lee recently published

a paper that presents a complete survey of plate DSM formulations [10]. The25

concept is based on the series development of strong solutions of the equations

of motion. This concept is not new; the first scientists to obtain strong solutions

2
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based on series for the static deflection of rectangular plates were Henri Navier

at the beginning of the 19th century and Maurice Lévy at the end of the 19th

century. Navier used double trigonometric Fourier series to transform the par-30

tial derivative equations into an algebraic system of equations, but the boundary

conditions were limited to the fully simply-supported case. Lévy used a single

series built with products of trigonometric functions along one dimension and

solutions of the resulting differential equation along the other dimension. The

Lévy solutions are limited to plates for which two opposite edges are simply35

supported. Plates subject to such boundary conditions are often called Lévy

plates. In the context of meshless methods and powerful computational re-

sources, many researchers have presented new perspectives on the Navier-type

and Lévy-type solutions to address static deflection, buckling, and the dynamic

analysis of plates. Following the work of Langley [11] devoted to stiffened plates,40

the first textbook describing DSM, including Lévy-plate formulations, was writ-

ten by Leung in 1993 [12]. Leung provided an exhaustive presentation of the

DSM beam and Lévy-plate elements developed until the beginning of the 1990s.

In the 1990s, some DSM Lévy-plate formulations were described by other au-

thors. Bercin addressed orthotropic Lévy-plate DSM elements [13], Bercin and45

Langley investigated the problem of assembling non-coplanar Lévy-plate DSM

elements with in-plane vibrations [14], and Leung and Zhou studied laminated

composite plates [15]. However, to formulate a DSM plate element supporting

connections with another coplanar or non-coplanar DSM plate along any of its

four edges, solutions for fully natural boundary conditions are required. With50

3
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this type of solution, the resulting elementary dynamic stiffness matrices can

be assembled to form a structural dynamic stiffness matrix in the same way

as in the finite element method. Approximate solutions have been described

by many authors in the modal analysis of rectangular plates subjected to fully

natural boundary conditions, that is, with four free edges. These boundary con-55

ditions are known as “free-free-free-free” (FFFF). Leissa [16, 17] provided an

extensive survey of approximate eigensolutions for the FFFF case. The approx-

imate solutions for these boundary conditions are based on a series built with

beam eigenfunctions and a Rayleigh–Ritz procedure. Gorman [18]subsequently

described a superposition method to address the free vibrations of an FFFF60

plate with any degree of accuracy. His method superimposed two accurate Lévy

solutions to exactly satisfy both FFFF boundary conditions and the symme-

try properties of the modes. Each doubly symmetric, doubly antisymmetric,

and antisymmetric-symmetric eigenmode is broken into two Lévy-type building

blocks, for which an exact Lévy solution is used. Thus, any degree of accuracy65

can be obtained. In 2005, using the Gorman decomposition, Casimir et al. [19]

were the first researchers to describe a DSM rectangular plate with fully natural

boundary conditions. The procedure consisted of processing four dynamic stiff-

ness matrices related to the symmetry contributions; a matrical operation was

described to combine the four matrices into a complete dynamic stiffness ma-70

trix. While this DSM formulation, including natural boundary conditions, had

the ability to support any other plate connection, these first works were limited

to Kirchhoff’s isotropic rectangular plates. However, formulations of Lévy-plate

4
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elements and other plate theories were included. In 2011, Boscolo and Baner-

jee described DSM Lévy plates including a first-order shear deformation theory75

[20] and in-plane stiffness [21]. Soon after, they described a composite Mindlin

DSM Lévy plate [22, 23]. Higher-order shear deformation theory devoted to

laminates was reported by Fazzolari et al. [24] in a DSM Lévy-plate formula-

tion. DSM formulations with fully natural boundary conditions are the focus of

most recent research. In 2015, the Gorman decomposition of the four symmetry80

contributions was used again to describe DSM plate elements. In 2015, such

formulations concerning isotropic rectangular plates were reported by Banerjee

et al. [25] for transverse vibrations, by Nefovska-Danilović and Petronijević [26]

for in-plane vibrations, and by Kolarević et al. [27] for the Mindlin shear theory.

Ghorbel et al. described an orthotropic rectangular DSM plate [28]. In 2016,85

extension of the Gorman decomposition to in-plane vibration was used by Ghor-

bel et al. [29] to describe an in-plane DSM orthotropic plate with fully natural

boundary conditions. A DSM element including higher-order shear deformation

effects was described by Kolarević et al. [30]. A DSM sandwich plate element

was developed by Marjanović et al. [31] for fully natural boundary conditions.90

Many other formulations of DSM plate elements are still in progress. In 2017,

Damnjanović et al. studied stiffened composite plates [32, 33] and Nefovska-

Danilović et al. studied multilayered plates [34, 35] for fully natural boundary

conditions. In 2018 and 2019, Kumar et al. described a Lévy-plate DSM el-

ement including functionally graded material [36, 37]. Papkov and Banerjee95

studied an orthotropic Mindlin plate for fully natural boundary conditions [38].

5
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In the current study, a new Lévy series is defined to simplify the classical

superposition approach based on symmetry decomposition. The classical ap-

proach implies eight Lévy series, and has been used since 2005 for DSM plate100

formulation with natural boundary conditions [19, 25, 34]. The new formulation

is based on the extended Lévy series and the projection method on boundaries.

Only four series are required to build the entire dynamic stiffness matrix. The

use of symmetry contributions is no longer necessary, which simplifies the DSM

plate formulations without a loss of accuracy. This general solution was used105

in 2021 for DSM formulation by Wei et al. [39] and a spectral element model

by Kim and Lee [10] for isotropic plates. Numerical examples are presented for

an orthotropic DSM rectangular Kirchhoff plate element. The accuracy of the

formulation and the results were compared with results obtained using the finite

element method (FEM).110

2. Governing equations of the orthotropic rectangular plate

2.1. Plate geometry and Kirchhoff’s hypothesis

The geometry of the plate is defined in a Cartesian coordinate system. Figure

1 shows an orthotropic rectangular plate defined by a thickness h and lateral

dimensions 2a× 2b. The origin O of the Cartesian coordinate system is chosen115

at the center of the mid-plane of the plate, with the z-axis normal to this plane.

Kirchhoff’s hypothesis is adopted; a straight line normal to the mid-surface

6
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Figure 1 – Schéma cinématique dans le plan du méridien terrestre passant par G. Ce plan tourne
dans le référentiel géocentrique R0 à la vitesse angulaire Ω autour de l’axe des pôles Oz0.

1

Figure 1: Geometry of the plate

of the plate remains perpendicular after deformation. Thus, the displacement

at any point M(x, y, z) of the volume is given by Eqs. 1. The orthotropic axes120

of the material are parallel to the x and y axes.





u(x, y, z, t) = −z ∂W∂x

v(x, y, z, t) = −z ∂W∂y

w(x, y, z, t) = W (x, y, t)

(1)

where u, v, w are the displacements of point M in the x, y, z-directions, and

U , V , W are the displacements of the projection P of point M on the middle

surface of the plate. βy and βx are the rotations of the middle plane about the

x and y axes, respectively, expressed as equations:125





βx=−∂W∂x

βy=∂W
∂y

(2)

7
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2.2. Constitutive equations

For plates with orientation such that orthotropic axes 1 and 2 are equal to the

x and y axes, respectively, the force/displacement relationships are expressed

as equations: 



Mx = −h3

12D11
∂2w
∂x2 − h3

12D12
∂2w
∂y2

My = −h3

12D12
∂2w
∂x2 − h3

12D22
∂2w
∂y2

Mxy = −h3

6 D66
∂2w
∂x∂y

(3)

130 



Tx = −h3

12D11
∂3w
∂x3 − h3

12 (D12 + 2D66) ∂3w
∂x∂y2

Ty = −h3

12D22
∂3w
∂y3 − h3

12 (D12 + 2D66) ∂3w
∂x2∂y

(4)

where





D11 = E1

1−ν12ν21

D22 = E2

1−ν12ν21

D12 = ν12E2

1−ν12ν21

D66 = G12

(5)

where E1, E2 are the Young’s moduli along the orthotropic directions, ν12 and

ν21 are Poisson’s ratios, and G12 is the shear modulus.

135

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
2.3. Boundary conditions

Natural boundary conditions along the boundaries x = ±a are easily written

using the Hamilton’s principle; they can be expressed as equations:





Tx +
∂Mxy

∂y = Fzx

Mx =Mx

(6)

Similarly, the natural boundary conditions along y = ±b can be expressed as

equations:140 



Ty +
∂Mxy

∂x = Fzy

My =My

(7)

2.4. Equation of motion

Equilibrium relationships are expressed as equation:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
= ρh

∂2w

∂t2
(8)

The equation of motion of a thin plate is obtained by introducing force/displacement

relationships into the equilibrium equations, expressed as equation:

−h
3

12
D11

∂4w

∂x4
−
(
h3

6
D12 +

h3

3
D66

)
∂4w

∂x2∂y2
− h3

12
D22

∂4w

∂y4
= ρh

∂2w

∂t2
(9)

9
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3. New Lévy series solution145

For harmonic vibrations, the transverse displacement can be expressed as

follows:

w(x, y, t) = W (x, y)eiωt (10)

and the amplitude of the harmonic solution satisfies the following:

−h
3

12
D11

∂4W

∂x4
−
(
h3

6
D12 +

h3

3
D66

)
∂4W

∂x2∂y2
− h

3

12
D22

∂4W

∂y4
+ρhω2W = 0 (11)

The Gorman superposition method facilitates the analysis of only one quarter

of the rectangular plate for each symmetry contribution; the novel Lévy series150

simplifies the problem, providing a general exact solution of the governing equa-

tion without dividing the displacement into four symmetry contributions. The

proposed Lévy series can be expressed as follows:

W (x, y) =
∑+∞
m=0 1Wm(x) cos mπyb +

∑+∞
m=0 2Wm(y) cos mπxa

+
∑+∞
m=1 3Wm(x) sin (2m−1)πy

2b +
∑+∞
m=1 4Wm(y) sin (2m−1)πx

2a

(12)

Therefore, the rotations βx, βy defined by Eqs. 2 are expressed as follows:





βx(x, y) = −∑+∞
m=0 1W

′
m(x) cos mπyb +

∑+∞
m=0

mπ
a 2Wm(y) sin mπx

a

−∑+∞
m=1 3W

′
m(x) sin (2m−1)πy

2b −∑+∞
m=1

(2m−1)π
2a 4Wm(y) cos (2m−1)πx

2a

βy(x, y) = −∑+∞
m=0

mπ
b 1Wm(x) sin mπy

b +
∑+∞
m=0 2W

′
m(y) cos mπxa

+
∑+∞
m=1

(2m−1)π
2b 3Wm(x) cos (2m−1)πy

2b +
∑+∞
m=1 4W

′
m(y) sin (2m−1)πx

2a

(13)

10
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The idea is to avoid the Gorman superposition, which requires uncoupled sym-155

metry contributions. This uncoupling hypothesis is valid solely when the ge-

ometry and materials have the same symmetry properties. This is not the case

when the orthotropic directions are not parallel to the edges of the plate or

when the plate is a parallelogram. Let us consider a nontrivial solution for

the harmonic equation of motion Eq. 11 denoted by W . Symmetric-symmetric,160

antisymmetric-symmetric, symmetric-antisymmetric, and antisymmetric-antisymmetric

contributions are given below:





WSS(x, y) = 1
4 [W (x, y) +W (−x, y) +W (x,−y) +W (−x,−y)] = WSS(−x, y) = WSS(x,−y

WSA(x, y) = 1
4 [W (x, y) +W (−x, y)−W (x,−y)−W (−x,−y)] = WSA(−x, y) = −WSA(x,

WAS(x, y) = 1
4 [W (x, y)−W (−x, y) +W (x,−y)−W (−x,−y)] = −WAS(−x, y) = WAS(x,

WAA(x, y) = 1
4 [W (x, y)−W (−x, y)−W (x,−y) +W (−x,−y)] = −WAA(−x, y) = −WAA(

(14)

These contributions are such thatW (x, y) = WSS(x, y)+WSA(x, y)+WAS(x, y)+

WAA(x, y), each of which satisfies the equation of harmonic motion, i.e., Eq. 11.

This property is the basis of Gorman decomposition. In this case, the symmetry165

contributions are uncoupled. For example, the symmetric-symmetric contribu-

tion is as follows:

∂4WSS

∂x4 = 1
4

[
∂4W
∂x4 (x, y) + ∂4W

∂x4 (−x, y) + ∂4W
∂x4 (x,−y) + ∂4W

∂x4 (−x,−y)
]

∂4WSS

∂x2∂y2 = 1
4

[
∂4W
∂x2∂y2 (x, y) + ∂4W

∂x2∂y2 (−x, y) + ∂4W
∂x2∂y2 (x,−y) + ∂4W

∂x2∂y2 (−x,−y)
]

∂4WSS

∂y4 = 1
4

[
∂4W
∂y4 (x, y) + ∂4W

∂y4 (−x, y) + ∂4W
∂y4 (x,−y) + ∂4W

∂y4 (−x,−y)
]

(15)

11
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Further, the following can be easily verified:

α
∂4WSS

∂x4
+ β

∂4WSS

∂x2∂y2
+ γ

∂4WSS

∂y4
= 0 (16)

α, β, γ being any real numbers.170

Let us now consider a harmonic equation of motion that is slightly more

complicated, such as

α
∂4W

∂x4
+ β

∂4W

∂x∂y3
+ γ

∂4W

∂y4
+ δW = 0 (17)

α, β, γ, δ being any real numbers.

175

For example, the symmetric-symmetric contribution satisfies the following:

∂4WSS

∂x∂y3
=

1

4

[
∂4W

∂x∂y3
(x, y)− ∂4W

∂x∂y3
(−x, y)− ∂4W

∂x∂y3
(x,−y) +

∂4W

∂x∂y3
(−x,−y)

]

(18)

Further, it can be easily verified that this contribution does not satisfy the

modified harmonic equation of motion, i.e., Eq. 17. In this case, the symmetry

contributions are coupled, and the Gorman decomposition does not apply.

180

Without the use of the Gorman superposition and symmetry considerations,

the proposed series provides novel perspectives for future DSM developments

in which symmetry contributions are coupled. For uncoupled symmetry contri-
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butions, these series facilitate the simplification of the dynamic stiffness matrix

building procedure and the reduction of the total number of series. Here, four185

series are used where the Gorman superposition requires two series for each

symmetry contribution, i.e., a total of eight series. Therefore, only the four

family functions 1Wm(x), 2Wm(y), 3Wm(x) and 4Wm(y) have to be obtained.

The procedure is described below.

190

First, the governing equations have to be solved under natural boundary

conditions. Therefore, the Levy serie Eq. 12 are introduced into the equation

of motion Eq. 11. Two uncoupled systems of differential equations along the

x-axis and y-axis are obtained. These systems are given by equations:





a1
d4

1Wm

dx4 + a2(m)d2
1Wm

dx2 + a3(m)1Wm = 0

a′1
d4

3Wm

dx4 + a′2(m)d2
3Wm

dx2 + a′3(m)3Wm = 0

(19)

195 



b1
d4

2Wm

dy4 + b2(m)d2
2Wm

dy2 + b3(m)2Wm = 0

b′1
d4

4Wm

dy4 + b′2(m)d2
4Wm

dy2 + b′3(m)4Wm = 0

(20)

where the coefficients ai, a
′
i, bi and b′i are expressed as

a1 = −h3

12D11, a2(m) = h3

6 (D12 + 2D66)
(
mπ
b

)2
, a3(m) =

[
ρhω2 − h3

12D22

(
mπ
b

)4]
.

a′1 = −h3

12D11, a′2(m) = h3

6 (D12 + 2D66)
(

(2m−1)π
2b

)2
, a′3(m) =

[
ρhω2 − h3

12D22

(
(2m−1)π

2b

)

13
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b1 = −h3

12D22, b2(m) = h3

6 (D12 + 2D66)
(
mπ
a

)2
, b3(m) =

[
ρhω2 − h3

12D11

(
mπ
a

)4]

b′1 = −h3

12D22, b′2(m) = h3

6 (D12 + 2D66)
(

(2m−1)π
2a

)2
, b′3(m) =

[
ρhω2 − h3

12D11

(
(2m−1)π

2a

)4

These systems of ordinary differential equations along the x-axis and y-axis are

expressed as





1W
′′′′
m (x) = −a2(m)

a1 1W
′′
m(x)− a3(m)

a1 1Wm(x)

3W
′′′′
m (x) = −a

′
2(m)
a′1

3W
′′
m(x)− a′3(m)

a′1
3Wm(x)

(21)

200 



2W
′′′′
m (y) = − b2(m)

b1 2W
′′
m(y)− b3(m)

b1b 2Wm(y)

4W
′′′′
m (y) = − b

′
2(m)
b′1

4W
′′
m(y)− b′3(m)

b′1
4Wm(y)

(22)

Applying the concept of state space, the two systems in Eqs. 21 and 22 can be

transformed into matrical equations, respectively:

1Z ′m(x) = 1Tm
1Zm(x), 3Z ′m(x) = 3Tm

3Zm(x) (23)

2Z ′m(y) = 2Tm
2Zm(y), 4Z ′m(y) = 4Tm

4Zm(y) (24)

where

jZm(x) = [jWm(x), jW
′
m(x), jW

′′
m(x), jW

′′′
m (x)]

T
, j = 1, 3 (25)

and205

jZm(y) = [jWm(y), jW
′
m(y), jW

′′
m(y), jW

′′′
m (y)]

T
, j = 2, 4 (26)
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where

1Tm =




0 1 0 0

0 0 1 0

0 0 0 1

−a3(m)
a1

0 −a2(m)
a1

0




(27)

and

3Tm =




0 1 0 0

0 0 1 0

0 0 0 1

−a
′
3(m)
a′1

0 −a
′
2(m)
a′1

0




(28)

2Tm =




0 1 0 0

0 0 1 0

0 0 0 1

− b3(m)
b1

0 − b2(m)
b1

0




(29)

and

4Tm =




0 1 0 0

0 0 1 0

0 0 0 1

− b
′
3(m)
b′1

0 − b
′
2(m)
b′1

0




(30)

The general solutions of Eqs. 23 and 24 are readily found using the distinct210

eigenvalues and corresponding matrix of eigenvectors of the companion matrices
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1Tm, 2Tm, 3Tm and 4Tm. These solutions are expressed as





1Zm(x) =
∑4
i=1

iAm
iQme

iλmx

3Zm(x) =
∑8
i=5

iAm
iQme

iλmx

2Zm(y) =
∑12
i=9

iAm
iQme

iλmy

4Zm(y) =
∑16
i=13

iAm
iQme

iλmy

(31)

where iQm and iλm are the eigenvectors and the eigenvalues, respectively, of

the matrices 1Tm for i ∈ {1, 2, 3, 4}, iQm and iλm are the eigenvectors and the

eigenvalues of the matrices 3Tm for i ∈ {5, 6, 7, 8}.215

Similarly, iQm and iλm are the eigenvectors and the eigenvalues, respec-

tively, of the matrices 2Tm for i ∈ {9, 10, 11, 13}; iQm and iλm are the eigen-

vectors and eigenvalues, respectively, of the matrices 4Tm for i ∈ {13, 14, 15, 16}.

220

The functions 1Wm, 3Wm along the x-direction and 2Wm, 4Wm along the

y-direction can be expanded as
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



1Wm(x) =
∑4
i=1

iAm
1iQme

iλmx

1W
′
m(x) =

∑4
i=1

iAm
2iQme

iλmx

1W
′′
m(x) =

∑4
i=1

iAm
3iQme

iλmx

1W
′′′
m (x) =

∑4
i=1

iAm
4iQme

iλmx

3Wm(x) =
∑8
i=5

iAm
1iQme

iλmx

3W
′
m(x) =

∑8
i=5

iAm
2iQme

iλmx

3W
′′
m(x) =

∑8
i=5

iAm
3iQme

iλmx

3W
′′′
m (x) =

∑8
i=5

iAm
4iQme

iλmx

(32)

where 1iQm, 2iQm, 3iQm, 4iQm are the components of vector iQm with i ∈

{1, ..., 8} and225 



2Wm(y) =
∑12
i=9

iAm
1iQme

iλmy

2W
′
m(y) =

∑12
i=9

iAm
2iQme

iλmy

2W
′′
m(y) =

∑12
i=9

iAm
3iQme

iλmy

2W
′′′
m (y) =

∑12
i=9

iAm
4iQme

iλmy

4Wm(y) =
∑16
i=13

iAm
1iQme

iλmy

4W
′
m(y) =

∑16
i=13

iAm
2iQme

iλmy

4W
′′
m(y) =

∑16
i=13

iAm
3iQme

iλmy

4W
′′′
m (y) =

∑16
i=13

iAm
4iQme

iλmy

(33)

where 1iQm, 2iQm, 3iQm, 4iQm are the components of vector iQm with i ∈

{9..., 16}.

For m = 0, a simpler expression of the solution is possible. The functions
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1W0(x) and 2W0(y) are the solutions, expressed as equations:230





−h3

12Q11
d4

1W0

dx4 = −ρhω2
1W0(x)

−h3

12Q22
d4

2W0

dy4 = −ρhω2
2W0(y)

(34)

therefore, 



1W0(x) =
∑4
i=1

iA0e
iλ0x

2W0(y) =
∑8
i=5

iA0e
iλ0y

(35)

where eigenvalues iλ0 are expressed as





1λ0 = 4

√
12ρw2

Q11h2
5λ0 = 4

√
12ρw2

Q22h2

2λ0 = − 4

√
12ρw2

Q11h2
6λ0 = − 4

√
12ρw2

Q22h2

3λ0 = i 4

√
12ρw2

Q11h2
7λ0 = i 4

√
12ρw2

Q22h2

4λ0 = −i 4

√
12ρw2

Q11h2
8λ0 = −i 4

√
12ρw2

Q22h2

(36)

The transverse displacement W (x, y) is obtained from Eqs. 32, 33 and 12, ex-

pressed as

235

W (x, y) =
∑4
i=1

iA0e
iλ0x +

∑8
i=5

iA0e
iλ0y

+
∑+∞
m=1

∑4
i=1

iAm
1iQme

iλmx cos mπyb +
∑+∞
m=1

∑12
i=9

iAm
1iQme

iλmy cos mπxa

+
∑+∞
m=1

∑8
i=5

iAm
1iQme

iλmx sin (2m−1)πy
2b +

∑+∞
m=1

∑16
i=13

iAm
1iQme

iλmy sin (2m−1
2a

(37)

At this stage, the four family functions 1Wm(x), 2Wm(y), 3Wm(x) and 4Wm(y)

are processed, and the displacement solution in the whole plate is known.
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The rotations are obtained from Eqs. 32, 33 and 13 in the following form:

βx(x, y) = −∑4
i=1

iA0
iλ0e

iλ0x −∑+∞
m=1

∑4
i=1

iAm
2iQme

iλmx cos mπyb

+
∑+∞
m=1

∑12
i=9

iAm
1iQme

iλmy
(
mπ
a

)
sin πx

a −
∑+∞
m=1

∑8
i=5

iAm
2iQme

iλmx sin (2m−1)π
2b

−∑+∞
m=1

∑16
i=13

iAm
1iQme

iλmy
(

(2m−1)π
2a

)
cos (2m−1)πx

2a

(38)240

βy(x, y) =
∑8
i=5

iA0
iλ0e

iλ0y −∑+∞
m=1

∑4
i=1

iAm
1iQme

iλmx
(
mπ
b

)
sin mπy

b

+
∑+∞
m=1 2

∑12
i=9

iAm
2iQme

iλmy cos mπxa +
∑+∞
m=1

∑8
i=5

iAm
1iQme

iλmx
(

(2m−1)π
2b

)
co

+
∑+∞
m=1

∑16
i=13

iAm
2iQme

iλmy sin (2m−1)πx
2a

(39)

4. Dynamic stiffness matrix of the completely free orthotropic plate

As explained in the Introduction, a solution under a fully natural boundary

condition is required to allow the assembly of dynamic stiffness matrices. The

dynamic stiffness matrices of the FFFF plate elements can be assembled as with

the FEM. Therefore, the integration constants are eliminated in the FFFF case.245

This boundary condition is not a limitation for the other boundary condition

cases. Similar to the FE stiffness and mass matrices, the FFFF dynamic stiffness

matrix can be modified to consider a simply supported condition or a clamped

condition with a penalty method or simply with line and column removals. The

only case that was not included was the fully clamped plate. In this particular250

case, the assembly of two FFFF matrices and modification of the global matrix

are required.
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The displacement vector ũ of the boundaries x = a, y = b, x = −a and

y = −b is defined as255

ũ =




w0(a, y)

βx(a, y)

w0(x, b)

βy(x, b)

w0(−a, y)

βx(−a, y)

w0(x,−b)

βy(x,−b)




(40)

Using the natural boundary conditions in Eqs. 6 and 7, the external force

vectors f̃ on these boundaries are defined as

f̃ =




Fzx(a, y)

Mx(a, y)

Fzy(x, b)

My(x, b)

−Fzx(−a, y)

−Mx(−a, y)

−Fzy(x,−b)

−My(x,−b)




(41)

Applying the projection method [19], the dependence of ũ and f̃ with the spa-

tial variables x and y is eliminated. The components of vectors ũ and f̃ are

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
developed on a Hilbert basis series as260

ũ =




1
SW0 +

∑N
n=1

1
SWn cos nπyb +

∑N
n=1

1
AWn sin (2n−1)πy

2b

1
Sβx0 +

∑N
n=1

1
Sβxn cos nπyb +

∑N
n=1

1
Aβxn sin (2n−1)πy

2b

2
SW0 +

∑N
n=1

2
SWn cos nπxa +

∑N
n=1

2
AWn sin (2n−1)πx

2a

2
Sβy0 +

∑N
n=1

2
Sβyn cos nπxa +

∑N
n=1

2
Aβyn sin (2n−1)πx

2a

3
SW0 +

∑N
n=1

3
SWn cos nπyb +

∑N
n=1

3
AWn sin (2n−1)πy

2b

3
Sβx0 +

∑N
n=1

3
Sβxn cos nπyb +

∑N
n=1

3
Aβxn sin (2n−1)πy

2b

4
SW0 +

∑N
n=1

4
SWn cos nπxa +

∑N
n=1

4
AWn sin nπx

a

4
Sβy0 +

∑N
n=1

4
Sβyn cos nπxa +

∑N
n=1

4
Aβyn sin (2n−1)πx

2a




(42)

f̃ =




1
SFzx0 +

∑N
n=1

1
SFzxn cos nπyb +

∑N
n=1

1
AFzxn sin (2n−1)πy

2b

1
SMx0 +

∑N
n=1

1
SMxn cos nπyb +

∑N
n=1

1
AMxn sin (2n−1)πy

2b

2
SFzy0 +

∑N
n=1

2
SFzyn cos nπxa +

∑N
n=1

2
AFzyn sin (2n−1)πx

2a

2
SMy0 +

∑N
n=1

2
SMyn cos nπxa +

∑N
n=1

2
AMyn sin (2n−1)πx

2a

−3
SFzx0 −

∑N
n=1

3
SFzxn cos nπyb −

∑N
n=1

3
AFzxn sin (2n−1)πy

2b

−3
SMx0 −

∑N
n=1

3
SMxn cos nπyb −

∑N
n=1

3
AMxn sin (2n−1)πy

2b

−4
SFzy0 −

∑N
n=1

4
SFzyn cos nπxa −

∑N
n=1

4
AFzyn sin (2n−1)πx

2a

−4
SMy0 −

∑N
n=1

4
SMyn cos nπxa −

∑N
n=1

4
AMyn sin (2n−1)πx

2a




(43)
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39 
40 
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while




1
SW0

1
Sβx0

2
SW0

2
Sβx0

3
SW0

3
Sβy0

4
SW0

4
Sβy0




=




1
2b

∫ b
−bW (a, y)dy

1
2b

∫ b
−b βx(a, y)dy

1
2a

∫ a
−aW (x, b)dx

1
2a

∫ a
−a βy(x, b)dx

1
2b

∫ b
−bW (−a, y)dy

1
2b

∫ b
−b βx(−a, y)dy

1
2a

∫ a
−aW (x,−b)dx

1
2a

∫ a
−a βy(x,−b)dx




and




1
SWn

1
AWn

1
Sβxn

1
Aβxn

2
SWn

2
AWn

2
Sβyn

2
Aβyn

3
SWn

3
AWn

3
Sβxn

3
Aβxn

4
SWn

4
AWn

4
Sβyn

4
Aβyn




=




1
b

∫ b
−bW (a, y) cos nπyb dy

1
b

∫ b
−bW (a, y) sin (2n−1)πy

2b dy

1
b

∫ b
−b βx(a, y) cos nπyb dy

1
b

∫ b
−b βx(a, y) sin (2n−1)πy

2b dy

1
a

∫ a
−aW (x, b) cos nπxa dx

1
a

∫ a
−aW (x, b) sin (2n−1)πx

2a dx

1
a

∫ a
−a βy(x, b) cos nπxa dx

1
a

∫ a
−a βy(x, b) sin (2n−1)πx

2a dx

1
b

∫ b
−bW (−a, y) cos nπyb dy

1
b

∫ b
−bW (−a, y) sin (2n−1)πy

2b dy

1
b

∫ b
−b βx(−a, y) cos nπyb dy

1
b

∫ b
−b βx(−a, y) sin (2n−1)πy

2b dy

1
a

∫ a
−aW (x,−b) cos nπxa dx

1
a

∫ a
−aW (x,−b) sin (2n−1)πx

2a dx

1
a

∫ a
−a βy(x,−b) cos nπxa dx

1
a

∫ a
−a βy(x,−b) sin (2n−1)πx

2a dx




(44)
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
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 1 
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28 
29 
30 
31 
32 
33 
34 
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39 
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43 
44 
45 
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


1
SFzx0
1
SMx0

2
SFzy0
2
SMy0

3
SFzx0
3
SMx0

4
SFzy0
4
SMy0




=




1
2b

∫ b
−b Fzx(a, y)dy

1
2b

∫ b
−bMx(a, y)dy

1
2b

∫ a
−a Fzy(x, b)dx

1
2b

∫ a
−aMy(x, b)dx

1
2a

∫ b
−b Fzx(−a, y)dy

1
2a

∫ b
−bMx(−a, y)dy

1
2a

∫ a
−a Fzy(x,−b)dx

1
2a

∫ a
−aMy(x,−b)dx




and




1
SFzxn
1
AFzxn
1
SMxn

1
AMxn

2
SFzyn
2
AFzyn
2
SMyn

2
AMyn

3
SFzxn
3
AFzxn
3
SMxn

3
AMxn

4
SFzyn
4
AFzyn
4
SMyn

4
AMyn




=




1
b

∫ b
−b Fzx(a, y) cos nπyb dy

1
b

∫ b
−b Fzx(a, y) sin (2n−1)πy

2b dy

1
b

∫ b
−bMx(a, y) cos nπyb dy

1
b

∫ b
−bMx(a, y) sin (2n−1)πy

2b dy

1
a

∫ a
−a Fzy(x, b) cos nπxa dx

1
a

∫ a
−a Fzy(x, b) sin (2n−1)πx

2a dx

1
a

∫ a
−aMy(x, b) cos nπxa dx

1
a

∫ a
−aMy(x, b) sin (2n−1)πx

2a dx

1
b

∫ b
−b Fzx(−a, y) cos nπyb dy

1
b

∫ b
−b Fzx(−a, y) sin (2n−1)πy

2b dy

1
b

∫ b
−bMx(−a, y) cos nπyb dy

1
b

∫ b
−bMx(−a, y) sin (2n−1)πy

2b dy

1
a

∫ a
−a Fzy(x, b) cos nπxa dx

1
a

∫ a
−a Fzy(x, b) sin (2n−1)πx

2a dx

1
a

∫ a
−aMy(x, b) cos nπxa dx

1
a

∫ a
−aMy(x, b) sin (2n−1)πx

2a dx

(45)

The subscripts x and y in Eqs. 42, 43, 44 and 45 refer to the plate boundaries

x = a or x = −a and y = −b or y = b. Instead of vectors ũ and f̃ , projection265

vectors Ũ and F̃ are derived. They are built with the components on the Hilbert

basis series expansion given by Eqs. 42 and 43. Thus, it is now possible to relate
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βxN

yN

]
(8+16N)

1
SMxN

n
4
AFzyn

]
(8+16N)
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displacement/force vectors and integration constants denoted as Cp:

Ũ = H(ω)Cp

F̃ = G(ω)Cp

(46)

where

(Ũ)T =
[
1
SW0

1
Sβx0

2
SW0

2
Sβy0

3
SW0

3
Sβx0

4
SW0

4
Sβy0 · · · 1

SWN
1
AWN

1
SβxN

1
A

2
SWN

2
AWN

1
Sβyn

2
AβxN

3
SWN

3
AWN

3
SβxN

3
AβxN

4
SWN

4
AWN

4
SβyN

4
Aβ

(47)

(F̃ )T =
[
1
SFzx0 1

SMx0
2
SFzy0 2

SMy0
3
SFzx0 3

SMx0
4
SFzy0 4

SMy0 · · · 1SFzxN 1
AFzxN

1
AMxN

2
SFzyN 2

AFzyN 2
SMyN

2
AMyN

3
SFzxN 3

AFzxn 3
SMxn

3
AMxn

4
SFzy

4
SMyN

4
AMyN

]
(8+16N)

(48)

and270

(C̃p)
T =

[
1A0

2A0
3A0

4A0
5A0

6A0
7A0

8A0 · · · 1AN 2AN
3AN

4AN

5AN
6AN

7AN
8AN

9AN
10AN

11AN
12AN

13AN
14AN

15AN
16AN

(49)

The size of the matrices H and G depends on the number of terms in the gen-

eral solution given by the Lévy series Eq. 12. To consider square matrices, the

number of terms in the Levy series must be the same as the number of terms

in the Hilbert series expansion in Eqs. 42 and 43. Elimination of vector Cp

from Eq. 46 gives the relation between the force vector F̃ and the displacement275
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vector Ũ , expressed as

F̃ = K.Ũ (50)

where K is the dynamic stiffness matrix for the entire plate. This matrix relates

the projection vectors of displacements Ũ and forces F̃ on the four edges of the

plate.280

K(ω) = G(ω).H(ω)−1 (51)

This building procedure leads to an (8 + 16N) × (8 + 16N) dynamic stiffness

matrix. The dimensions of the matrix correspond to the selected Hilbert basis

for the projections on each edge of the plate. Therefore, the proposed Lévy

series does not exhibit an advantage over the previous Gorman decomposition

procedure in terms of dimensions, as the projection Hilbert basis is identical for285

both. Only the CPU time for post-processing of the displacement inside the

plate is reduced because four series are used instead of eight.

5. Numerical results and discussion

The formulation is based on the new Lévy series and has been implemented

using FORTRAN and MATLAB programs. In this section, several numerical290

examples are discussed to establish the accuracy of the current formulation.

Natural frequencies, mode shapes, and harmonic responses on an orthotropic

plate with free boundary conditions were processed.
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5.1. Modal analysis

The 2a × 2b dimensions of the plate are 0.5 m×1 m, and its thickness is295

0.002 m (Figure 1). The plate is constructed with a carbon-epoxy material; its

properties are E1=18.1 GPa, E2=50.9 GPa, G12 = 11.0 GPa, ν12 = 0.4 and

ρ=1526 kg/m3. The orthotropic directions are parallel to the edges of the plate.

Direction 1 is along the x direction and direction 2 is along the y direction. A

modal analysis was performed for FFFF boundary conditions. This calculation300

provides a first validation of the developed element but is not sufficient because

the series are able to predict eigenfrequencies with high accuracy for very few

terms but necessitate much more terms to process harmonic responses over the

entire frequency range. This problem is illustrated in Figure 2. The harmonic

responses of the aforementioned plate were processed over [0,100 Hz] frequency305

range while increasing the number of terms in the Lévy series. The convergence

of the response is clearly shown; however the convergence toward eigenfrequen-

cies is considerably easier than that of the response for other frequencies.
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Figure 2: DSM convergence for SS harmonic response on [0, 100 Hz]

Eigenfrequencies are often obtained in DSM formulations using the William-310

Wittrick algorithm [40], [41], [15], [20]. In this study, these frequencies are sim-

ply evaluated using harmonic repetition analysis [19], [34]. Four load cases, ex-

citing symmetric-symmetric (SS) modes, symmetric-antisymmetric (SA) modes

(symmetric along x and antisymmetric along y), symmetric-antisymmetric (AS)

modes (antisymmetric along x and symmetric along y) and antisymmetric-315

antisymmetric (AA) modes were considered. Peaks in displacement responses

are detected. This method ensures that no eigenfrequencies are missing, espe-

cially when they are close together. Thus, modal displacements are obtained

using the proposed Lévy series Eq. 12. The results are detailed for each load
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case and compared with the FE modal analysis performed with the commercial320

software ABAQUS. Discrete Kirchhoff quadrilateral (DKQ) elements were used

in the FE models. For the SS case, a convergence study of the DSM results is

summarized in Table 1.

• Symmetric-symmetric modes.325

Table 1: Natural frequencies of SS modes for orthotropic rectangular plate with FFFF
boundary conditions for increasing n

SS Mode 1 2 3 4 5 6 7 8 9 10
DSM (n=3) 7.26 40.92 62.14 78.36 114.5 130.6 205.2 309.3
DSM (n=5) 7.26 40.92 62.14 78.36 114.4 130.6 205.0 215.4 306.1 322.0
DSM (n=7) 7.26 40.92 62.14 78.36 114.4 130.6 205.0 215.4 306.0 321.9
DSM (n=9) 7.26 40.92 62.14 78.36 114.4 130.6 205.0 215.4 306.0 321.9
DSM (n=11) 7.26 40.92 62.14 78.36 114.4 130.6 205.0 215.4 306.0 321.9

Table 1 indicates that the first seven frequencies are exactly processed

with only three terms, despite the fact that the harmonic response is very

poor in this case (Figure 2). Moreover, we observed that some series have

very good convergence toward eigenfrequencies that have been obtained330

with FE models; however, no convergence was obtained for any other fre-

quency response.

Table 2 compares the FE and DSM results. The first ten eigenfrequencies

corresponding to the symmetric–symmetric modes are given.335
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Table 2: Natural frequencies of SS modes for orthotropic rectangular plate with FFFF
boundary conditions. DSM (n=11), DKQ FE (50×25, 67×33 and 100×50 elements)

SS Mode 1 2 3 4 5 6 7 8 9
DSM (n=11) 7.3 40.9 62.1 78.3 114.4 130.6 205.0 215.4 306 3
DKQ FE (100×50) 7.26 40.95 62.17 78.35 114.7 130.6 205.1 216.4 306.8 3
DKQ FE (67×33) 7.26 41.00 62.24 78.41 115.1 130.8 205.6 218.0 308.3 3
DKQ FE (50×25) 7.26 41.07 62.34 78.48 115.7 131.0 206.3 220.3 310.4 3

The convergence study of the FE results shows that more than 5000 DKQ

finite elements are required to reach the precision of the DSM results.

• Symmetric-Antisymmetric modes.340

Table 3 gives the first ten eigenfrequencies corresponding to the symmetric-

antisymmetric modes.

Table 3: Natural frequencies of SA modes for orthotropic rectangular plate with FFFF
boundary conditions. DSM (n=11), DKQ FE (100×50 elements)

SA Mode 1 2 3 4 5 6 7 8 9 10
DSM 24.1 63.1 125.8 167.3 186.9 228.3 245.1 324.2 359.3 437.7
DKQ FE 24.09 63.10 125.9 167.6 187.2 229.0 245.4 324.3 362.0 438.2

• Antisymmetric-Symmetric modes.

Table 4 gives the first ten eigenfrequencies corresponding to the antisymmetric-

symmetric modes.345

Table 4: Natural frequencies of AS modes for orthotropic rectangular plate with FFFF
boundary conditions. DSM (n=11), DKQ FE (100×50 elements)

AS Mode 1 2 3 4 5 6 7 8 9 10
DSM 19.68 53.17 64.78 86.70 134.7 140.6 214.5 230.9 267.2 297.5
DKQ FE 19.67 53.16 64.77 86.65 134.7 140.6 214.3 230.8 267.1 297.3
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• Antisymmetric-Antiymmetric modes.

Table 5 gives the first ten eigenfrequencies corresponding to the antisymmetric-

antisymmetric modes.

Table 5: Natural frequencies of AA modes for orthotropic rectangular plate with FFFF
boundary conditions. DSM (n=11), DKQ FE (100×50 elements)

AA Mode 1 2 3 4 5 6 7 8 9 10
DSM 11.00 37.97 81.45 137.8 158.3 171.3 228.3 254.3 308.0 377.6
DKQ FE 10.99 38.22 82.12 137.9 158.3 171.2 229.2 255.2 308.7 378.0

350

These tables show that the DSM formulation described in this study pro-

duces results in close agreement with FE results. Some representative mode

shapes obtained by the DSM formulation are illustrated in Figure 3. Each

mode shape is computed with the Lévy series Eq. 37 for a given eigenfrequency.

Figure 3: Second SS, AS, SA and AA mode shapes
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As shown in Tables 2-5, the natural frequencies of the FFFF thin rectangular355

plate were calculated using the proposed DSM and were compared with the

FEM results. Comparison of the natural frequencies shows that the average

difference between DSM and FEM is practically negligible. In addition, using

the proposed Lévy series, the mode shapes of thin rectangular plates can be

predicted, as presented in Figure 3. As explained above, such a modal analysis360

is not sufficient to validate the formulation. Harmonic responses are examined

hereafter, and the numerical stability is estimated from the response curves for

a given frequency range.

5.2. Harmonic response analysis

To evaluate the performance of the current formulation, several harmonic365

loadings were used, and the response of the plate was processed over the entire

frequency range. The structure was subjected to harmonic forces distributed

along the edges of the plate or located at a single point. Harmonic responses

were evaluated for an increasing number of terms in series development (n=3,

n=7, and n=11). These responses were compared with those obtained using370

DKQ finite elements.

5.2.1. Symmetrical-Symmetrical loading

The structure was subjected to a unit harmonic force distributed along the

edges of the plate defined by y = b and y = −b. The harmonic loading is shown375

in Figure 4.
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Figure 4: Symmetrical-symmetrical loading

The projections of this load on the functional basis must satisfy equations:

F2(x) = 2
SF0 +

N∑

n=1

2
SFn cos

nπx

a
+

N∑

n=1

2
AFn sin

(2n− 1)πx

2a
(52)

and

F4(x) = 4
SF0 +

N∑

n=1

4
SFn cos

nπx

a
+

N∑

n=1

4
AFn sin

(2n− 1)πx

2a
(53)

therefore, by identification, the following components on the Hilbert basis are

obtained: 2
SF0 = 1 and 4

SF0 = 1.380

The harmonic response of the plate is evaluated at the point located at x = a

and y = b on edge 1 according to the Hilbert basis in Eq. 42.

W (a, b) = 1
SW0 +

N∑

n=1

1
SWn(−1)n +

N∑

n=1

1
AWn(−1)n+1 (54)

The response obtained by DSM for n=11 terms in series and the response

obtained with 50×100 DKQ finite elements up to 500 Hz are shown in Figure385

5. The two methods indicate very good agreement.
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Figure 5: Harmonic response to a symmetrical-symmetrical load

5.2.2. Antisymmetrical-symmetrical loading

The structure was subjected to two unit opposite harmonic forces distributed

along the edges of the plate defined by y = b and y = −b. The loading is shown

in Figure 6 and is described by the following components on the Hilbert basis:390

2
SF0 = 1 and 4

SF0 = −1.
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Figure 6: Antisymmetrical-symmetrical loading

The harmonic response of the plate was evaluated at the point located at

x = 0 and y = b on edge 2 according to the Hilbert basis given in Eq. 42.

395

W (a, b) = 2
SW0 +

N∑

n=1

2
SWn (55)

The response obtained by DSM for n = 11 terms in series and the response

obtained with 100×50 DKQ finite elements up to 500 Hz are shown in Figure

7.

The two methods indicate very good agreement.

5.2.3. Concentrated harmonic unit load400

A completely free orthotropic rectangular plate was subjected to a unit ver-

tical harmonic force at the point located at y = b and x = 0. The projections

of this unit load on the functional basis are evaluated using Eq. 39 to obtain

2
SF0 = 1

2a and 2
SFn = 2

AFn = 1
a . This load case is shown in Figure 8.
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Figure 7: Harmonic response of the plate to an antisymmetrical-symmetrical load

Figure 8: Concentrated load

405

35



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
The harmonic response of the plate was evaluated at the point located at

x = 0 and y = b on edge 2 according to the Hilbert basis given in Eq. 42.

W (0, b) = 2
SW0 +

N∑

n=1

2
SWn (56)

The response obtained by DSM for n = 11 terms in series and the response

obtained with 100×50 DKQ finite elements up to 500 Hz are shown in Figure410

9.

Figure 9: Harmonic response to a harmonic concentrated load
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In a same manner as previous DSM formulations, the DSM based on the

new Lévy series obtains high-accuracy harmonic responses despite an extremely

low memory cost; the required memory allocation for this DSM is considerably415

lesser than that for equivalent FE models. The second advantage of this method

is CPU consumption time. Table 6 lists the CPU times required to obtain

the harmonic response curves. The responses for 500 discrete frequencies were

processed. This time depends only on the number n of the terms in Lévy’s

series.420

Table 6: CPU consuming times (500 processed frequencies) and CPU times/frequency

n (DSM) 3 5 7 9 11
CPU times (500 processed frequencies) 1 s 5 s 13 s 27 s 42 s
CPU times (1 processed frequency) 2 ms 10 ms 26 ms 54 ms 84 ms

For comparison, the calculation time for a 125×63 shell FE model, wherein

equivalent accuracy is obtained for n = 11, is approximately 7 s per processed

frequency (via the direct response method).

6. Concluding remarks425

The proposed approach is general enough to describe the exact solution for

the harmonic response of FFFF plates without using a superposition method.

This simplifies the processing of the dynamic stiffness matrix for rectangular

plates; four series were used instead of eight. The classical advantages of the

DSM over the FEM are preserved: accuracy with truncated series, reduced cal-430

culation time, and limited memory allocation.
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The main advantage of these series is that they don’t necessitate a symmetry

decomposition of the displacement solution. This advantage will allow to ad-

dress more general dynamic stiffness formulations such as non-symmetric plate435

or any orthotropic directions. These problems will be the subject of next papers.

The natural frequencies of FFFF rectangular plates were calculated using the

proposed DSM. Comparison of these frequencies with those obtained by FEM

showed that the average difference between DSM and DKQ formulations is prac-440

tically negligible. In addition, using the proposed Lévy series, the mode shapes

or the displacement field at any circular frequency can be easily processed. In

exploring the performances of different Lévy series, the authors noticed that a

modal analysis is not adequate without a harmonic response analysis for vali-

dation. Series provide fast convergence toward eigenfrequencies but are unable445

to evaluate the response of the plate at any frequency with few terms.
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Highlights :

. We present new Lévy series for calculatng the dynamic stiness matrix of free orthotropic plates.

. Free boundary conditons are required for plate assemblies.

. Modal analysis and harmonic analysis are presented.   

. The numerical validaton is achieved thanks to comparisons with FE results.



Author Statement :

Karima KHLIFI: Conceptualizatonn Softaaen  aitni Jean-Baptite CASIMIR: Methodoloiyn 

Supeavisionn Reviet and Editnin Ali AKROUT: Supeavisionn Mohamed HADDAR: Supeavisionn Paoject 

Administaaton



Declaratio if ioterettt

☒ The authors declare that they have no known competng fnancial interests or personal relatonships 
that could have appeared to infuence the work reported in this paper.

☐The authors declare the following fnancial interestsppersonal relatonships which may be considered 
as potental competng interests: 



Graphical Abstract 

 

A novel Lévy series for developing a dynamic stiffness matrix for a completely free orthotropic 

Kirchhoff plate is presented in this paper. The bending behavior is based on the Kirchhoff-Love thin-

plate theory. The dynamic stiffness matrix is derived using the new Lévy series without classical 

symmetry decomposition, simplifying the building procedure. Harmonic responses obtained by this 

method and the finite element method are compared to establish the rate of convergence and the 

degree of precision of the current formulation. 

A meshless approach : 

 

Harmonic response : 

 




