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Introduction

Since the advent of composite materials in structural engineering, the dynamic bending of orthotropic rectangular plates has been studied extensively.

Composite materials are becoming increasingly important in aerospace, automo-tive, marine, and civil engineering designs. The finite element method (FEM) 5 is effective for calculating the dynamic response and modal characteristics of such structures, but limitations arise when the mode density increases. The precision of the results is highly dependent on the mesh size, and convergence studies must be conducted. The mesh size of finite elements depends on the highest frequency in the analysis; increasing the number of finite elements re-10 quires greater computational time and effort to solve the problem.

To overcome these difficulties, several meshless methods have been developed, including the dynamic stiffness method (DSM) [START_REF] Clough | Dynamics of Structures[END_REF] and the spectral element method (SEM) [START_REF] Lee | Spectral Element Method in Structural Dynamics[END_REF]. These methods are fundamentally based on the exact 15 closed-form solution of the governing differential equations of motion. Consequently, the DSM is based on the minimization of the discretization of the structure geometry. This approach was developed extensively for beam elements in the late 20th century [START_REF] Richard | An accurate method in structural vibration analysis[END_REF][START_REF] Lunden | Damped second-order rayleigh-timoshenko beam vibration in space -an exact complex dynamic member stiffness matrix[END_REF][START_REF] Banerjee | Coupled bending-torsional dynamic stiffness matrix for beam elements[END_REF][START_REF] Banerjee | Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping[END_REF][START_REF] Banerjee | Free vibration of axially loaded composite timoshenko beams using the dynamic stiff?ness matrix method[END_REF][START_REF] Banerjee | Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened timoshenko beams[END_REF][START_REF] Casimir | Dynamic behaviour of structures in large 470 frequency range by continuous element methods[END_REF]. [START_REF] Boscolo | Dynamic stiffness elements and their applications for plates using first order shear deformation theory[END_REF] The extension of the meshless method to plate elements is difficult. The main challenge is that no closed-form solution exists for the governing differential equations of motion. Even so, during the last twenty years, DSM formulations for plate elements have been developed. Kim and Lee recently published a paper that presents a complete survey of plate DSM formulations [START_REF] Kim | Exact frequency-domain spectral element model for the transverse vibration of a rectangular kirchhoff plate[END_REF]. The 25 concept is based on the series development of strong solutions of the equations of motion. This concept is not new; the first scientists to obtain strong solutions based on series for the static deflection of rectangular plates were Henri Navier at the beginning of the 19th century and Maurice Lévy at the end of the 19th century. Navier used double trigonometric Fourier series to transform the par-30 tial derivative equations into an algebraic system of equations, but the boundary conditions were limited to the fully simply-supported case. Lévy used a single series built with products of trigonometric functions along one dimension and solutions of the resulting differential equation along the other dimension. The Lévy solutions are limited to plates for which two opposite edges are simply 35 supported. Plates subject to such boundary conditions are often called Lévy plates. In the context of meshless methods and powerful computational resources, many researchers have presented new perspectives on the Navier-type and Lévy-type solutions to address static deflection, buckling, and the dynamic analysis of plates. Following the work of Langley [START_REF] Langley | Application of the dynamic stiffness method to the free and forced vibrations of aircraft panels[END_REF] devoted to stiffened plates, 40 the first textbook describing DSM, including Lévy-plate formulations, was written by Leung in 1993 [START_REF] Leung | Dynamic stiffness and substructures[END_REF]. Leung provided an exhaustive presentation of the DSM beam and Lévy-plate elements developed until the beginning of the 1990s.

In the 1990s, some DSM Lévy-plate formulations were described by other authors. Bercin addressed orthotropic Lévy-plate DSM elements [START_REF] Bercin | Analysis of orthotropic plate structures by the direct-dynamic stiffness method[END_REF], Bercin and 45 Langley investigated the problem of assembling non-coplanar Lévy-plate DSM elements with in-plane vibrations [START_REF] Bercin | Application of the dynamic stiffness technique to the in-plane vibrations of plate structures[END_REF], and Leung and Zhou studied laminated composite plates [START_REF] Leung | Dynamic stiffness analysis of laminated composite plates[END_REF]. However, to formulate a DSM plate element supporting connections with another coplanar or non-coplanar DSM plate along any of its four edges, solutions for fully natural boundary conditions are required. With 50 3 this type of solution, the resulting elementary dynamic stiffness matrices can be assembled to form a structural dynamic stiffness matrix in the same way as in the finite element method. Approximate solutions have been described by many authors in the modal analysis of rectangular plates subjected to fully natural boundary conditions, that is, with four free edges. These boundary con-55 ditions are known as "free-free-free-free" (FFFF). Leissa [START_REF] Leissa | Vibration of plates[END_REF][START_REF] Leissa | The free vibration of rectangular plates[END_REF] provided an extensive survey of approximate eigensolutions for the FFFF case. The approximate solutions for these boundary conditions are based on a series built with beam eigenfunctions and a Rayleigh-Ritz procedure. Gorman [START_REF] Gorman | Free vibration analysis of the completely free rectangular plate by the method of superposition[END_REF]subsequently described a superposition method to address the free vibrations of an FFFF 60 plate with any degree of accuracy. His method superimposed two accurate Lévy solutions to exactly satisfy both FFFF boundary conditions and the symmetry properties of the modes. Each doubly symmetric, doubly antisymmetric, and antisymmetric-symmetric eigenmode is broken into two Lévy-type building blocks, for which an exact Lévy solution is used. Thus, any degree of accuracy 65 can be obtained. In 2005, using the Gorman decomposition, Casimir et al. [START_REF] Casimir | The dynamic stiffness matrix of two-495 dimensional elements: application to kirchhoff's plate continuous elements[END_REF] were the first researchers to describe a DSM rectangular plate with fully natural boundary conditions. The procedure consisted of processing four dynamic stiffness matrices related to the symmetry contributions; a matrical operation was described to combine the four matrices into a complete dynamic stiffness ma-70 trix. While this DSM formulation, including natural boundary conditions, had the ability to support any other plate connection, these first works were limited to Kirchhoff's isotropic rectangular plates. However, formulations of Lévy-plate elements and other plate theories were included. In 2011, Boscolo and Banerjee described DSM Lévy plates including a first-order shear deformation theory 75 [START_REF] Boscolo | Dynamic stiffness elements and their applications for plates using first order shear deformation theory[END_REF] and in-plane stiffness [START_REF] Boscolo | Dynamic stiffness method for exact inplane free vibration analysis of plates and plate assemblies[END_REF]. Soon after, they described a composite Mindlin DSM Lévy plate [START_REF] Boscolo | Dynamic stiffness formulation for composite 505 mindlin plates for exact modal analysis of structures. part i: Theory[END_REF][START_REF] Boscolo | Dynamic stiffness formulation for composite mindlin plates for exact modal analysis of structures. part i: Results and 510 applications[END_REF]. Higher-order shear deformation theory devoted to laminates was reported by Fazzolari et al. [START_REF] Fazzolari | An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies[END_REF] in a DSM Lévy-plate formulation. DSM formulations with fully natural boundary conditions are the focus of most recent research. In 2015, the Gorman decomposition of the four symmetry 80 contributions was used again to describe DSM plate elements. In 2015, such formulations concerning isotropic rectangular plates were reported by Banerjee et al. [START_REF] Banerjee | Dynamic stiffness matrix of a rectangular plate for the general case[END_REF] for transverse vibrations, by Nefovska-Danilović and Petronijević [START_REF] Nefovska-Danilović | In-plane free vibration and re-520 sponse analysis of isotropic rectangular plates using the dynamic stiffness method[END_REF] for in-plane vibrations, and by Kolarević et al. [START_REF] Kolarević | Dynamic stiffness elements for free vibration analysis of rectangular mindlin plate assemblies[END_REF] for the Mindlin shear theory. Ghorbel et al. described an orthotropic rectangular DSM plate [START_REF] Ghorbel | Dynamic stiffness formulation for free orthotropic plates[END_REF]. In 2016, 85 extension of the Gorman decomposition to in-plane vibration was used by Ghorbel et al. [START_REF] Ghorbel | In-plane dynamic stiffness matrix for a free orthotropic plate[END_REF] to describe an in-plane DSM orthotropic plate with fully natural boundary conditions. A DSM element including higher-order shear deformation effects was described by Kolarević et al. [START_REF] Kolarević | Free vibration analysis of plate assemblies using the dynamic stiffness method based on the higher order shear deformation theory[END_REF]. A DSM sandwich plate element was developed by Marjanović et al. [START_REF] Marjanović | Free vibration study of sandwich plates using a family of novel shear deformable dynamic stiffness elements:limitations and comparison with the finite element solutions[END_REF] for fully natural boundary conditions.
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Many other formulations of DSM plate elements are still in progress. In 2017, Damnjanović et al. studied stiffened composite plates [START_REF] Damnjanović | Application of the dynamic stiffness method in the vibration analysis of stiffened composite plates[END_REF][START_REF] Damnjanović | Free vibration 550 analysis of stiffened and cracked laminated composite plate assemblies using shear-deformable dynamic stiffness elements[END_REF] and Nefovska-Danilović et al. studied multilayered plates [START_REF] Nefovska-Danilović | 555 Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies -part i: Theory[END_REF][START_REF] Marjanović | 560 43 Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies -part ii: Numerical examples[END_REF] for fully natural boundary conditions. In 2018 and 2019, Kumar et al. described a Lévy-plate DSM element including functionally graded material [START_REF] Kumar | Free vibration analysis of thin function-565 ally graded rectangular plates using the dynamic stiffness method[END_REF][START_REF] Kumar | Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rect-570 angular plates[END_REF]. Papkov and Banerjee 95 studied an orthotropic Mindlin plate for fully natural boundary conditions [START_REF] Papkov | Dynamic stiffness formulation and free vibration analysis of specially orthotropic mindlin plates with arbitrary boundary conditions[END_REF].

In the current study, a new Lévy series is defined to simplify the classical superposition approach based on symmetry decomposition. The classical approach implies eight Lévy series, and has been used since 2005 for DSM plate 100 formulation with natural boundary conditions [START_REF] Casimir | The dynamic stiffness matrix of two-495 dimensional elements: application to kirchhoff's plate continuous elements[END_REF][START_REF] Banerjee | Dynamic stiffness matrix of a rectangular plate for the general case[END_REF][START_REF] Nefovska-Danilović | 555 Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies -part i: Theory[END_REF]. The new formulation is based on the extended Lévy series and the projection method on boundaries.

Only four series are required to build the entire dynamic stiffness matrix. The use of symmetry contributions is no longer necessary, which simplifies the DSM plate formulations without a loss of accuracy. This general solution was used 105 in 2021 for DSM formulation by Wei et al. [START_REF] Wei | Dynamic stiffness formulation for transverse and in-plane vibration of rectangular plates with arbitrary boundary conditions based on a generalized superposition method[END_REF] and a spectral element model by Kim and Lee [START_REF] Kim | Exact frequency-domain spectral element model for the transverse vibration of a rectangular kirchhoff plate[END_REF] for isotropic plates. Numerical examples are presented for an orthotropic DSM rectangular Kirchhoff plate element. The accuracy of the formulation and the results were compared with results obtained using the finite element method (FEM). The geometry of the plate is defined in a Cartesian coordinate system. Figure 1 shows an orthotropic rectangular plate defined by a thickness h and lateral dimensions 2a × 2b. The origin O of the Cartesian coordinate system is chosen 115 at the center of the mid-plane of the plate, with the z-axis normal to this plane. Kirchhoff's hypothesis is adopted; a straight line normal to the mid-surface Epreuve de DSCR -Durée 3h00 

               u(x, y, z, t) = -z ∂W ∂x v(x, y, z, t) = -z ∂W ∂y w(x, y, z, t) = W (x, y, t) (1) 
where u, v, w are the displacements of point M in the x, y, z-directions, and U , V , W are the displacements of the projection P of point M on the middle surface of the plate. β y and β x are the rotations of the middle plane about the x and y axes, respectively, expressed as equations:

125        β x =-∂W ∂x β y = ∂W ∂y (2)

Constitutive equations

For plates with orientation such that orthotropic axes 1 and 2 are equal to the x and y axes, respectively, the force/displacement relationships are expressed as equations:

               M x = -h 3 12 D 11 ∂ 2 w ∂x 2 -h 3 12 D 12 ∂ 2 w ∂y 2 M y = -h 3 12 D 12 ∂ 2 w ∂x 2 -h 3 12 D 22 ∂ 2 w ∂y 2 M xy = -h 3 6 D 66 ∂ 2 w ∂x∂y (3) 130        T x = -h 3 12 D 11 ∂ 3 w ∂x 3 -h 3 12 (D 12 + 2D 66 ) ∂ 3 w ∂x∂y 2 T y = -h 3 12 D 22 ∂ 3 w ∂y 3 -h 3 12 (D 12 + 2D 66 ) ∂ 3 w ∂x 2 ∂y (4) 
where

                       D 11 = E1 1-ν12ν21 D 22 = E2 1-ν12ν21 D 12 = ν12E2 1-ν12ν21 D 66 = G 12 (5)
where E 1 , E 2 are the Young's moduli along the orthotropic directions, ν 12 and ν 21 are Poisson's ratios, and G 12 is the shear modulus. 

Boundary conditions

Natural boundary conditions along the boundaries x = ±a are easily written using the Hamilton's principle; they can be expressed as equations:

       T x + ∂Mxy ∂y = F zx M x = M x (6)
Similarly, the natural boundary conditions along y = ±b can be expressed as equations:

140        T y + ∂Mxy ∂x = F zy M y = M y (7)

Equation of motion

Equilibrium relationships are expressed as equation:

∂ 2 M x ∂x 2 + 2 ∂ 2 M xy ∂x∂y + ∂ 2 M y ∂y 2 = ρh ∂ 2 w ∂t 2 (8) 
The equation of motion of a thin plate is obtained by introducing force/displacement relationships into the equilibrium equations, expressed as equation:

- h 3 12 D 11 ∂ 4 w ∂x 4 - h 3 6 D 12 + h 3 3 D 66 ∂ 4 w ∂x 2 ∂y 2 - h 3 12 D 22 ∂ 4 w ∂y 4 = ρh ∂ 2 w ∂t 2 (9) 
3. New Lévy series solution 145

For harmonic vibrations, the transverse displacement can be expressed as follows:

w(x, y, t) = W (x, y)e iωt (10) 
and the amplitude of the harmonic solution satisfies the following:

- h 3 12 D 11 ∂ 4 W ∂x 4 - h 3 6 D 12 + h 3 3 D 66 ∂ 4 W ∂x 2 ∂y 2 - h 3 12 D 22 ∂ 4 W ∂y 4 + ρhω 2 W = 0 (11)
The Gorman superposition method facilitates the analysis of only one quarter of the rectangular plate for each symmetry contribution; the novel Lévy series 150 simplifies the problem, providing a general exact solution of the governing equation without dividing the displacement into four symmetry contributions. The proposed Lévy series can be expressed as follows:

W (x, y) = +∞ m=0 1 W m (x) cos mπy b + +∞ m=0 2 W m (y) cos mπx a + +∞ m=1 3 W m (x) sin (2m-1)πy 2b + +∞ m=1 4 W m (y) sin (2m-1)πx 2a (12) 
Therefore, the rotations β x , β y defined by Eqs. 2 are expressed as follows:

                       β x (x, y) = - +∞ m=0 1 W m (x) cos mπy b + +∞ m=0 mπ a 2 W m (y) sin mπx a - +∞ m=1 3 W m (x) sin (2m-1)πy 2b - +∞ m=1 (2m-1)π 2a 4 W m (y) cos (2m-1)πx 2a β y (x, y) = - +∞ m=0 mπ b 1 W m (x) sin mπy b + +∞ m=0 2 W m (y) cos mπx a + +∞ m=1 (2m-1)π 2b 3 W m (x) cos (2m-1)πy 2b + +∞ m=1 4 W m (y) sin (2m-1)πx 2a ( 13 
)
The idea is to avoid the Gorman superposition, which requires uncoupled sym-155 metry contributions. This uncoupling hypothesis is valid solely when the geometry and materials have the same symmetry properties. This is not the case when the orthotropic directions are not parallel to the edges of the plate or when the plate is a parallelogram. Let us consider a nontrivial solution for the harmonic equation of motion Eq. 11 denoted by W . Symmetric-symmetric, 160 antisymmetric-symmetric, symmetric-antisymmetric, and antisymmetric-antisymmetric contributions are given below:

                       W SS (x, y) = 1 4 [W (x, y) + W (-x, y) + W (x, -y) + W (-x, -y)] = W SS (-x, y) = W SS (x, -y) W SA (x, y) = 1 4 [W (x, y) + W (-x, y) -W (x, -y) -W (-x, -y)] = W SA (-x, y) = -W SA (x, -y) W AS (x, y) = 1 4 [W (x, y) -W (-x, y) + W (x, -y) -W (-x, -y)] = -W AS (-x, y) = W AS (x, -y) W AA (x, y) = 1 4 [W (x, y) -W (-x, y) -W (x, -y) + W (-x, -y)] = -W AA (-x, y) = -W AA (x, -y) (14) 
These contributions are such that W (x, y) = W SS (x, y)+W SA (x, y)+W AS (x, y)+ W AA (x, y), each of which satisfies the equation of harmonic motion, i.e., Eq. 11.

This property is the basis of Gorman decomposition. In this case, the symmetry 165 contributions are uncoupled. For example, the symmetric-symmetric contribution is as follows:

∂ 4 WSS ∂x 4 = 1 4 ∂ 4 W ∂x 4 (x, y) + ∂ 4 W ∂x 4 (-x, y) + ∂ 4 W ∂x 4 (x, -y) + ∂ 4 W ∂x 4 (-x, -y) ∂ 4 WSS ∂x 2 ∂y 2 = 1 4 ∂ 4 W ∂x 2 ∂y 2 (x, y) + ∂ 4 W ∂x 2 ∂y 2 (-x, y) + ∂ 4 W ∂x 2 ∂y 2 (x, -y) + ∂ 4 W ∂x 2 ∂y 2 (-x, -y) ∂ 4 WSS ∂y 4 = 1 4 ∂ 4 W ∂y 4 (x, y) + ∂ 4 W ∂y 4 (-x, y) + ∂ 4 W ∂y 4 (x, -y) + ∂ 4 W ∂y 4 (-x, -y) (15) 
Further, the following can be easily verified:

α ∂ 4 W SS ∂x 4 + β ∂ 4 W SS ∂x 2 ∂y 2 + γ ∂ 4 W SS ∂y 4 = 0 (16) 
α, β, γ being any real numbers.
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Let us now consider a harmonic equation of motion that is slightly more complicated, such as

α ∂ 4 W ∂x 4 + β ∂ 4 W ∂x∂y 3 + γ ∂ 4 W ∂y 4 + δW = 0 (17) 
α, β, γ, δ being any real numbers.

175

For example, the symmetric-symmetric contribution satisfies the following:

∂ 4 W SS ∂x∂y 3 = 1 4 ∂ 4 W ∂x∂y 3 (x, y) - ∂ 4 W ∂x∂y 3 (-x, y) - ∂ 4 W ∂x∂y 3 (x, -y) + ∂ 4 W ∂x∂y 3 (-x, -y) (18) 
Further, it can be easily verified that this contribution does not satisfy the modified harmonic equation of motion, i.e., Eq. 17. In this case, the symmetry contributions are coupled, and the Gorman decomposition does not apply. The procedure is described below.

190 First, the governing equations have to be solved under natural boundary conditions. Therefore, the Levy serie Eq. 12 are introduced into the equation of motion Eq. 11. Two uncoupled systems of differential equations along the

x-axis and y-axis are obtained. These systems are given by equations:

       a 1 d 4 1 Wm dx 4 + a 2 (m) d 2 1Wm dx 2 + a 3 (m) 1 W m = 0 a 1 d 4 3 Wm dx 4 + a 2 (m) d 2 3Wm dx 2 + a 3 (m) 3 W m = 0 (19) 195        b 1 d 4 2Wm dy 4 + b 2 (m) d 2 2Wm dy 2 + b 3 (m) 2 W m = 0 b 1 d 4 4Wm dy 4 + b 2 (m) d 2 4Wm dy 2 + b 3 (m) 4 W m = 0 ( 20 
)
where the coefficients a i , a i , b i and b i are expressed as

a 1 = -h 3 12 D 11 , a 2 (m) = h 3 6 (D 12 + 2D 66 ) mπ b 2 , a 3 (m) = ρhω 2 -h 3 12 D 22 mπ b 4 . a 1 = -h 3 12 D 11 , a 2 (m) = h 3 6 (D 12 + 2D 66 ) (2m-1)π 2b 2 , a 3 (m) = ρhω 2 -h 3 12 D 22 (2m-1)π 2b 4 . b 1 = -h 3 12 D 22 , b 2 (m) = h 3 6 (D 12 + 2D 66 ) mπ a 2 , b 3 (m) = ρhω 2 -h 3 12 D 11 mπ a 4 b 1 = -h 3 12 D 22 , b 2 (m) = h 3 6 (D 12 + 2D 66 ) (2m-1)π 2a 2 , b 3 (m) = ρhω 2 -h 3 12 D 11 (2m-1)π 2a 4
These systems of ordinary differential equations along the x-axis and y-axis are expressed as

       1 W m (x) = -a2(m) a1 1 W m (x) -a3(m) a1 1 W m (x) 3 W m (x) = - a 2 (m) a 1 3 W m (x) - a 3 (m) a 1 3 W m (x) (21) 200        2 W m (y) = -b2(m) b1 2 W m (y) -b3(m) b1b 2 W m (y) 4 W m (y) = - b 2 (m) b 1 4 W m (y) - b 3 (m) b 1 4 W m (y) (22) 
Applying the concept of state space, the two systems in Eqs. 21 and 22 can be transformed into matrical equations, respectively:

1 Z m (x) = 1 T m 1 Z m (x), 3 Z m (x) = 3 T m 3 Z m (x) (23) 2 Z m (y) = 2 T m 2 Z m (y), 4 Z m (y) = 4 T m 4 Z m (y) (24) 
where

j Z m (x) = [ j W m (x), j W m (x), j W m (x), j W m (x)] T , j = 1, 3 (25) 
and

205 j Z m (y) = [ j W m (y), j W m (y), j W m (y), j W m (y)] T , j = 2, 4 (26) 
where

1 T m =             0 1 0 0 0 0 1 0 0 0 0 1 -a3(m) a1 0 -a2(m) a1 0             (27) 
and

3 T m =             0 1 0 0 0 0 1 0 0 0 0 1 - a 3 (m) a 1 0 - a 2 (m) a 1 0             (28) 2 T m =             0 1 0 0 0 0 1 0 0 0 0 1 -b3(m) b1 0 -b2(m) b1 0             (29) 
and

4 T m =             0 1 0 0 0 0 1 0 0 0 0 1 - b 3 (m) b 1 0 - b 2 (m) b 1 0             (30) 
The general solutions of Eqs. 23 and 24 are readily found using the distinct 210 eigenvalues and corresponding matrix of eigenvectors of the companion matrices 3 T m and 4 T m . These solutions are expressed as

1 T m , 2 T m ,
                       1 Z m (x) = 4 i=1 i A m i Q m e i λmx 3 Z m (x) = 8 i=5 i A m i Q m e i λmx 2 Z m (y) = 12 i=9 i A m i Q m e i λmy 4 Z m (y) = 16 i=13 i A m i Q m e i λmy (31) 
where i Q m and i λ m are the eigenvectors and the eigenvalues, respectively, of the matrices 1 T m for i ∈ {1, 2, 3, 4}, i Q m and i λ m are the eigenvectors and the eigenvalues of the matrices 3 T m for i ∈ {5, 6, 7, 8}.
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Similarly, i Q m and i λ m are the eigenvectors and the eigenvalues, respectively, of the matrices 2 T m for i ∈ {9, 10, 11, 13}; i Q m and i λ m are the eigenvectors and eigenvalues, respectively, of the matrices 4 T m for i ∈ {13, 14, 15, 16}.

220

The functions 1 W m , 3 W m along the x-direction and 2 W m , 4 W m along the y-direction can be expanded as

                                                       1 W m (x) = 4 i=1 i A m 1i Q m e i λmx 1 W m (x) = 4 i=1 i A m 2i Q m e i λmx 1 W m (x) = 4 i=1 i A m 3i Q m e i λmx 1 W m (x) = 4 i=1 i A m 4i Q m e i λmx 3 W m (x) = 8 i=5 i A m 1i Q m e i λmx 3 W m (x) = 8 i=5 i A m 2i Q m e i λmx 3 W m (x) = 8 i=5 i A m 3i Q m e i λmx 3 W m (x) = 8 i=5 i A m 4i Q m e i λmx ( 32 
)
where 1i Q m , 2i Q m , 3i Q m , 4i Q m are the components of vector i Q m with i ∈ {1, ..., 8} and 225                                                        2 W m (y) = 12 i=9 i A m 1i Q m e i λmy 2 W m (y) = 12 i=9 i A m 2i Q m e i λmy 2 W m (y) = 12 i=9 i A m 3i Q m e i λmy 2 W m (y) = 12 i=9 i A m 4i Q m e i λmy 4 W m (y) = 16 i=13 i A m 1i Q m e i λmy 4 W m (y) = 16 i=13 i A m 2i Q m e i λmy 4 W m (y) = 16 i=13 i A m 3i Q m e i λmy 4 W m (y) = 16 i=13 i A m 4i Q m e i λmy ( 33 
)
where 1i Q m , 2i Q m , 3i Q m , 4i Q m are the components of vector i Q m with i ∈ {9..., 16}.
For m = 0, a simpler expression of the solution is possible. The functions 1 W 0 (x) and 2 W 0 (y) are the solutions, expressed as equations:

230        -h 3 12 Q 11 d 4 1W0 dx 4 = -ρhω 2 1 W 0 (x) -h 3 12 Q 22 d 4 2W0 dy 4 = -ρhω 2 2 W 0 (y) (34) therefore,        1 W 0 (x) = 4 i=1 i A 0 e i λ0x 2 W 0 (y) = 8 i=5 i A 0 e i λ0y (35) 
where eigenvalues i λ 0 are expressed as

                       1 λ 0 = 4 12ρw 2 Q11h 2 5 λ 0 = 4 12ρw 2 Q22h 2 2 λ 0 = -4 12ρw 2 Q11h 2 6 λ 0 = -4 12ρw 2 Q22h 2 3 λ 0 = i 4 12ρw 2 Q11h 2 7 λ 0 = i 4 12ρw 2 Q22h 2 4 λ 0 = -i 4 12ρw 2 Q11h 2 8 λ 0 = -i 4 12ρw 2 Q22h 2 (36) 
The transverse displacement W (x, y) is obtained from Eqs. 32, 33 and 12, expressed as

235 W (x, y) = 4 i=1 i A 0 e i λ0x + 8 i=5 i A 0 e i λ0y + +∞ m=1 
4 i=1 i A m 1i Q m e i λmx cos mπy b + +∞ m=1 12 i=9 i A m 1i Q m e i λmy cos mπx a + +∞ m=1 
8 i=5 i A m 1i Q m e i λmx sin (2m-1)πy 2b + +∞ m=1 16 i=13 i A m 1i Q m e i λmy sin (2m-1)πx 2a (37) 
At this stage, the four family functions

1 W m (x), 2 W m (y), 3 W m (x) and 4 W m (y)
are processed, and the displacement solution in the whole plate is known.

The rotations are obtained from Eqs. 32, 33 and 13 in the following form:

β x (x, y) = - 4 i=1 i A 0 i λ 0 e i λ0x - +∞ m=1 
4 i=1 i A m 2i Q m e i λmx cos mπy b + +∞ m=1 12 i=9 i A m 1i Q m e i λmy mπ a sin πx a - +∞ m=1 
8 i=5 i A m 2i Q m e i λmx sin (2m-1)πy 2b - +∞ m=1 
16 i=13 i A m 1i Q m e i λmy (2m-1)π 2a cos (2m-1)πx 2a ( 38 
) 240 β y (x, y) = 8 i=5 i A 0 i λ 0 e i λ0y - +∞ m=1 
4 i=1 i A m 1i Q m e i λmx mπ b sin mπy b + +∞ m=1 2 12 i=9 i A m 2i Q m e i λmy cos mπx a + +∞ m=1 8 i=5 i A m 1i Q m e i λmx (2m-1)π 2b cos (2m-1)πy 2b + +∞ m=1 16 i=13 i A m 2i Q m e i λmy sin (2m-1)πx 2a (39) 

Dynamic stiffness matrix of the completely free orthotropic plate

As explained in the Introduction, a solution under a fully natural boundary condition is required to allow the assembly of dynamic stiffness matrices. The dynamic stiffness matrices of the FFFF plate elements can be assembled as with the FEM. Therefore, the integration constants are eliminated in the FFFF case.
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This boundary condition is not a limitation for the other boundary condition cases. Similar to the FE stiffness and mass matrices, the FFFF dynamic stiffness matrix can be modified to consider a simply supported condition or a clamped condition with a penalty method or simply with line and column removals. The only case that was not included was the fully clamped plate. In this particular 250 case, the assembly of two FFFF matrices and modification of the global matrix

are required.       1 S W 0 + N n=1 1 S W n cos nπy b + N n=1 1 A W n sin (2n-1)πy 2b 1 S β x0 + N n=1 1 S β xn cos nπy b + N n=1 1 A β xn sin (2n-1)πy 2b 2 S W 0 + N n=1 2 S W n cos nπx a + N n=1 2 A W n sin (2n-1)πx 2a 2 S β y0 + N n=1 2 S β yn cos nπx a + N n=1 2 
A β yn sin (2n-1)πx 2a 3

S W 0 + N n=1 3 
S W n cos nπy b + N n=1 3 A W n sin (2n-1)πy 2b 3 S β x0 + N n=1 3 
S β xn cos nπy b + N n=1 3 A β xn sin (2n-1)πy 2b 4 S W 0 + N n=1 4 
S W n cos nπx a + N n=1 4 
A W n sin nπx a 4 S β y0 + N n=1 4 S β yn cos nπx a + N n=1 4       1 S F zx0 + N n=1 1 S F zxn cos nπy b + N n=1 1 A F zxn sin (2n-1)πy 2b 1 S M x0 + N n=1 1 S M xn cos nπy b + N n=1 1 A M xn sin (2n-1)πy 2b 2 S F zy0 + N n=1 2 S F zyn cos nπx a + N n=1 2 
A F zyn sin (2n-1)πx 2a 2

S M y0 + N n=1 2 S M yn cos nπx a + N n=1 2 
A M yn sin (2n-1)πx 2a

-3 S F zx0 - N n=1 3 
S F zxn cos nπy b - N n=1 3 
A F zxn sin (2n-1)πy 2b 

-3 S M x0 - N n=1 3 S M xn cos nπy b - N n=1 3 A M xn sin (2n-1)πy 2b -4 S F zy0 - N n=1 4 S F zyn cos nπx a - N n=1 4 A F zyn sin (2n-1)πx 2a -4 S M y0 - N n=1 4 S M yn cos nπx a - while                             1 S W 0 1 S β x0 2 S W 0 2 S β x0 3 S W 0 3 S β y0 4 S W 0 4 S β y0                             =                             1 2b b -b W (a, y)dy 1 2b b -b β x (a, y)dy 1 2a a -a W (x, b)dx 1 2a a -a β y (x, b)dx 1 2b b -b W (-a, y)dy 1 2b b -b β x (-a, y)dy 1 2a a -a W (x, -b)dx 1 2a a -a β y (x, -b)dx                             and                                                             1 S W n 1 A W n 1 S β xn 1 A β xn 2 S W n 2 A W n 2 S β yn 2 A β yn 3 S W n 3 A W n 3 S β xn 3 A β xn 4 S W n 4 A W n 4 S β yn 4 A β yn                                                             =                                                             1 b b -b W (a,
cos nπx a dx 1 a a -a β y (x, -b) sin (2n-1)πx 2a dx                                                             (44)                             1 S F zx0 1 S M x0 2 S F zy0 2 S M y0 3 S F zx0 3 S M x0 4 S F zy0 4 S M y0                             =                             1 2b b -b F zx (a, y)dy 1 2b b -b M x (a, y)dy 1 2b a -a F zy (x, b)dx 1 2b a -a M y (x, b)dx 1 2a b -b F zx (-a, y)dy 1 2a b -b M x (-a, y)dy 1 2a a -a F zy (x, -b)dx 1 2a a -a M y (x, -b)dx                             and                                                             1 S F zxn 1 A F zxn 1 S M xn 1 A M xn 2 S F zyn 2 A F zyn 2 S M yn 2 A M yn 3 S F zxn 3 A F zxn 3 S M xn 3 A M xn 4 S F zyn 4 A F zyn 4 S M yn 4 A M yn                                                             =                                                             1 b b -b F zx (a,
cos nπx a dx 1 a a -a M y (x, b) sin (2n-1)πx 2a dx                                                             (45) 
The subscripts x and y in Eqs. 42, 43, 44 and 45 refer to the plate boundaries x = a or x = -a and y = -b or y = b. Instead of vectors ũ and f , projection 265 vectors Ũ and F are derived. They are built with the components on the Hilbert basis series expansion given by Eqs. 42 and 43. Thus, it is now possible to relate displacement/force vectors and integration constants denoted as C p :

Ũ = H(ω)C p F = G(ω)C p (46) 
where

( Ũ ) T = 1 S W 0 1 S β x0 2 S W 0 2 S β y0 3 S W 0 3 S β x0 4 S W 0 4 S β y0 • • • 1 S W N 1 A W N 1 S β xN 1 A β xN 2 S W N 2 A W N 1 S β yn 2 A β xN 3 S W N 3 A W N 3 S β xN 3 A β xN 4 S W N 4 A W N 4 S β yN 4 A β yN (8+16N ) (47) ( F ) T = 1 S F zx0 1 S M x0 2 S F zy0 2 S M y0 3 S F zx0 3 S M x0 4 S F zy0 4 S M y0 • • • 1 S F zxN 1 A F zxN 1 S M xN 1 A M xN 2 S F zyN 2 A F zyN 2 S M yN 2 A M yN 3 S F zxN 3 A F zxn 3 S M xn 3 A M xn 4 S F zyn 4 A F zyn 4 S M yN 4 A M yN (8+16N ) (48) 
and

270 ( Cp ) T = 1 A 0 2 A 0 3 A 0 4 A 0 5 A 0 6 A 0 7 A 0 8 A 0 • • • 1 A N 2 A N 3 A N 4 A N 5 A N 6 A N 7 A N 8 A N 9 A N 10 A N 11 A N 12 A N 13 A N 14 A N 15 A N 16 A N (8+16N ) (49) 
The size of the matrices H and G depends on the number of terms in the general solution given by the Lévy series Eq. 12. To consider square matrices, the number of terms in the Levy series must be the same as the number of terms in the Hilbert series expansion in Eqs. 42 and 43. Elimination of vector C p from Eq. 46 gives the relation between the force vector F and the displacement vector Ũ , expressed as

F = K. Ũ (50) 
where K is the dynamic stiffness matrix for the entire plate. This matrix relates the projection vectors of displacements Ũ and forces F on the four edges of the plate.
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K(ω) = G(ω).H(ω) -1 (51) 
This building procedure leads to an (8 + 16N ) × (8 + 16N ) dynamic stiffness matrix. The dimensions of the matrix correspond to the selected Hilbert basis for the projections on each edge of the plate. Therefore, the proposed Lévy series does not exhibit an advantage over the previous Gorman decomposition procedure in terms of dimensions, as the projection Hilbert basis is identical for 285 both. Only the CPU time for post-processing of the displacement inside the plate is reduced because four series are used instead of eight.

Numerical results and discussion

The formulation is based on the new Lévy series and has been implemented using FORTRAN and MATLAB programs. In this section, several numerical 290 examples are discussed to establish the accuracy of the current formulation.

Natural frequencies, mode shapes, and harmonic responses on an orthotropic plate with free boundary conditions were processed.

Modal analysis

The 2a × 2b dimensions of the plate are 0.5 m×1 m, and its thickness is 295 0.002 m (Figure 1). The plate is constructed with a carbon-epoxy material; its properties are E 1 =18.1 GPa, E 2 =50.9 GPa, G 12 = 11.0 GPa, ν 12 = 0.4 and ρ=1526 kg/m 3 . The orthotropic directions are parallel to the edges of the plate.

Direction 1 is along the x direction and direction 2 is along the y direction. A modal analysis was performed for FFFF boundary conditions. This calculation 300 provides a first validation of the developed element but is not sufficient because the series are able to predict eigenfrequencies with high accuracy for very few terms but necessitate much more terms to process harmonic responses over the entire frequency range. This problem is illustrated in Figure 2. The harmonic responses of the aforementioned plate were processed over [0,100 Hz] frequency 305 range while increasing the number of terms in the Lévy series. The convergence of the response is clearly shown; however the convergence toward eigenfrequencies is considerably easier than that of the response for other frequencies. Eigenfrequencies are often obtained in DSM formulations using the William-310

Wittrick algorithm [START_REF] Wittrick | A general alogorithm for computing natural 44 frequencies of elastic structures[END_REF], [START_REF] Wittrick | Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings[END_REF], [START_REF] Leung | Dynamic stiffness analysis of laminated composite plates[END_REF], [START_REF] Boscolo | Dynamic stiffness elements and their applications for plates using first order shear deformation theory[END_REF]. In this study, these frequencies are simply evaluated using harmonic repetition analysis [START_REF] Casimir | The dynamic stiffness matrix of two-495 dimensional elements: application to kirchhoff's plate continuous elements[END_REF], [START_REF] Nefovska-Danilović | 555 Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies -part i: Theory[END_REF]. Four load cases, exciting symmetric-symmetric (SS) modes, symmetric-antisymmetric (SA) modes (symmetric along x and antisymmetric along y), symmetric-antisymmetric (AS) modes (antisymmetric along x and symmetric along y) and antisymmetric-315 antisymmetric (AA) modes were considered. Peaks in displacement responses are detected. This method ensures that no eigenfrequencies are missing, especially when they are close together. Thus, modal displacements are obtained using the proposed Lévy series Eq. 12. The results are detailed for each load case and compared with the FE modal analysis performed with the commercial 320 software ABAQUS. Discrete Kirchhoff quadrilateral (DKQ) elements were used in the FE models. For the SS case, a convergence study of the DSM results is summarized in Table 1.

• Symmetric-symmetric modes.

325 1 indicates that the first seven frequencies are exactly processed with only three terms, despite the fact that the harmonic response is very poor in this case (Figure 2). Moreover, we observed that some series have very good convergence toward eigenfrequencies that have been obtained 330 with FE models; however, no convergence was obtained for any other frequency response. The convergence study of the FE results shows that more than 5000 DKQ finite elements are required to reach the precision of the DSM results.

• Symmetric-Antisymmetric modes.
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Table 3 gives the first ten eigenfrequencies corresponding to the symmetricantisymmetric modes. • Antisymmetric-Antiymmetric modes.

Table 5 gives the first ten eigenfrequencies corresponding to the antisymmetricantisymmetric modes. These tables show that the DSM formulation described in this study produces results in close agreement with FE results. Some representative mode shapes obtained by the DSM formulation are illustrated in Figure 3. Each mode shape is computed with the Lévy series Eq. 37 for a given eigenfrequency. As shown in Tables 2345, the natural frequencies of the FFFF thin rectangular 355 plate were calculated using the proposed DSM and were compared with the FEM results. Comparison of the natural frequencies shows that the average difference between DSM and FEM is practically negligible. In addition, using the proposed Lévy series, the mode shapes of thin rectangular plates can be predicted, as presented in Figure 3. As explained above, such a modal analysis 360 is not sufficient to validate the formulation. Harmonic responses are examined hereafter, and the numerical stability is estimated from the response curves for a given frequency range.

Harmonic response analysis

To evaluate the performance of the current formulation, several harmonic 365 loadings were used, and the response of the plate was processed over the entire frequency range. The structure was subjected to harmonic forces distributed along the edges of the plate or located at a single point. Harmonic responses were evaluated for an increasing number of terms in series development (n=3, n=7, and n=11). These responses were compared with those obtained using 370 DKQ finite elements.

Symmetrical-Symmetrical loading

The structure was subjected to a unit harmonic force distributed along the edges of the plate defined by y = b and y = -b. The harmonic loading is shown 375 in Figure 4. The projections of this load on the functional basis must satisfy equations:

F 2 (x) = 2 S F 0 + N n=1 2 S F n cos nπx a + N n=1 2 A F n sin (2n -1)πx 2a (52) 
and

F 4 (x) = 4 S F 0 + N n=1 4 S F n cos nπx a + N n=1 4 A F n sin (2n -1)πx 2a (53) 
therefore, by identification, the following components on the Hilbert basis are obtained: 2 S F 0 = 1 and 4 S F 0 = 1.
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The harmonic response of the plate is evaluated at the point located at x = a and y = b on edge 1 according to the Hilbert basis in Eq. 42.

W (a, b) = 1 S W 0 + N n=1 1 S W n (-1) n + N n=1 1 A W n (-1) n+1 (54) 
The response obtained by DSM for n=11 terms in series and the response obtained with 50×100 DKQ finite elements up to 500 Hz are shown in Figure 385 5. The two methods indicate very good agreement. The harmonic response of the plate was evaluated at the point located at

x = 0 and y = b on edge 2 according to the Hilbert basis given in Eq. 42. The two methods indicate very good agreement.

Concentrated harmonic unit load
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A completely free orthotropic rectangular plate was subjected to a unit vertical harmonic force at the point located at y = b and x = 0. The projections of this unit load on the functional basis are evaluated using Eq. 39 to obtain 2 S F 0 = 1 2a and 2 S F n = 2 A F n = 1 a . This load case is shown in Figure 8. 

Concluding remarks 425

The proposed approach is general enough to describe the exact solution for the harmonic response of FFFF plates without using a superposition method.

This simplifies the processing of the dynamic stiffness matrix for rectangular plates; four series were used instead of eight. The classical advantages of the DSM over the FEM are preserved: accuracy with truncated series, reduced cal-430 culation time, and limited memory allocation.

The main advantage of these series is that they don't necessitate a symmetry decomposition of the displacement solution. This advantage will allow to address more general dynamic stiffness formulations such as non-symmetric plate 435 or any orthotropic directions. These problems will be the subject of next papers.

The natural frequencies of FFFF rectangular plates were calculated using the proposed DSM. Comparison of these frequencies with those obtained by FEM showed that the average difference between DSM and DKQ formulations is prac-440 tically negligible. In addition, using the proposed Lévy series, the mode shapes or the displacement field at any circular frequency can be easily processed. In exploring the performances of different Lévy series, the authors noticed that a modal analysis is not adequate without a harmonic response analysis for validation. Series provide fast convergence toward eigenfrequencies but are unable 445 to evaluate the response of the plate at any frequency with few terms.
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 2 Governing equations of the orthotropic rectangular plate 2.1. Plate geometry and Kirchhoff 's hypothesis

Figure 1 - 1 Figure 1 :

 111 Figure 1 -Schéma cinématique dans le plan du méridien terrestre passant par G. Ce plan tourne dans le référentiel géocentrique R 0 à la vitesse angulaire Ω autour de l'axe des pôles Oz 0 .
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  Without the use of the Gorman superposition and symmetry considerations, the proposed series provides novel perspectives for future DSM developments in which symmetry contributions are coupled. For uncoupled symmetry contri-butions, these series facilitate the simplification of the dynamic stiffness matrix building procedure and the reduction of the total number of series. Here, four 185 series are used where the Gorman superposition requires two series for each symmetry contribution, i.e., a total of eight series. Therefore, only the four family functions 1 W m (x), 2 W m (y), 3 W m (x) and 4 W m (y) have to be obtained.
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 2 Figure 2: DSM convergence for SS harmonic response on [0, 100 Hz]
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 3 Figure 3: Second SS, AS, SA and AA mode shapes
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 52 Figure 5: Harmonic response to a symmetrical-symmetrical load
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  by DSM for n = 11 terms in series and the response obtained with 100×50 DKQ finite elements up to 500 Hz are shown in Figure7.
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 78352 Figure 7: Harmonic response of the plate to an antisymmetrical-symmetrical load

Figure 9 :

 9 Figure 9: Harmonic response to a harmonic concentrated load

Table 1 :

 1 Natural frequencies of SS modes for orthotropic rectangular plate with FFFF boundary conditions for increasing n

	SS Mode	1	2	3	4	5	6	7	8	9	10
	DSM (n=3)	7.26 40.92 62.14 78.36 114.5 130.6 205.2		309.3	
	DSM (n=5)	7.26 40.92 62.14 78.36 114.4 130.6 205.0 215.4 306.1 322.0
	DSM (n=7)	7.26 40.92 62.14 78.36 114.4 130.6 205.0 215.4 306.0 321.9
	DSM (n=9)	7.26 40.92 62.14 78.36 114.4 130.6 205.0 215.4 306.0 321.9
	DSM (n=11) 7.26 40.92 62.14 78.36 114.4 130.6 205.0 215.4 306.0 321.9

Table

  

Table 2

 2 compares the FE and DSM results. The first ten eigenfrequencies corresponding to the symmetric-symmetric modes are given.
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Table 2 :

 2 Natural frequencies of SS modes for orthotropic rectangular plate with FFFF boundary conditions. DSM (n=11), DKQ FE (50×25, 67×33 and 100×50 elements)

	SS Mode	1	2	3	4	5	6	7	8	9	10
	DSM (n=11)	7.3	40.9	62.1	78.3 114.4 130.6 205.0 215.4	306	321.9
	DKQ FE (100×50) 7.26 40.95 62.17 78.35 114.7 130.6 205.1 216.4 306.8 323.3
	DKQ FE (67×33)	7.26 41.00 62.24 78.41 115.1 130.8 205.6 218.0 308.3 325.0
	DKQ FE (50×25)	7.26 41.07 62.34 78.48 115.7 131.0 206.3 220.3 310.4 328.9

Table 3 :

 3 Natural frequencies of SA modes for orthotropic rectangular plate with FFFF boundary conditions. DSM (n=11), DKQ FE (100×50 elements)

	SA Mode	1	2	3	4	5	6	7	8	9	10
	DSM	24.1	63.1 125.8 167.3 186.9 228.3 245.1 324.2 359.3 437.7
	DKQ FE 24.09 63.10 125.9 167.6 187.2 229.0 245.4 324.3 362.0 438.2
	• Antisymmetric-Symmetric modes.						
	Table 4 gives the first ten eigenfrequencies corresponding to the antisymmetric-	
	symmetric modes.								
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Table 4 :

 4 Natural frequencies of AS modes for orthotropic rectangular plate with FFFF boundary conditions. DSM (n=11), DKQ FE (100×50 elements)

	AS Mode	1	2	3	4	5	6	7	8	9	10
	DSM	19.68 53.17 64.78 86.70 134.7 140.6 214.5 230.9 267.2 297.5
	DKQ FE 19.67 53.16 64.77 86.65 134.7 140.6 214.3 230.8 267.1 297.3

Table 5 :

 5 Natural frequencies of AA modes for orthotropic rectangular plate with FFFF boundary conditions. DSM (n=11), DKQ FE (100×50 elements) .97 81.45 137.8 158.3 171.3 228.3 254.3 308.0 377.6 DKQ FE 10.99 38.22 82.12 137.9 158.3 171.2 229.2 255.2 308.7 378.0

	AA Mode	1	2	3	4	5	6	7	8	9	10
	DSM 11.00 37350								

Table 6 :

 6 Table 6 lists the CPU times required to obtain the harmonic response curves. The responses for 500 discrete frequencies were processed. This time depends only on the number n of the terms in Lévy's series. CPU consuming times (500 processed frequencies) and CPU times/frequency

	n (DSM)	3	5	7	9	11
	CPU times (500 processed frequencies)	1 s	5 s	13 s	27 s	42 s
	CPU times (1 processed frequency)	2 ms 10 ms 26 ms 54 ms 84 ms
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For comparison, the calculation time for a 125×63 shell FE model, wherein equivalent accuracy is obtained for n = 11, is approximately 7 s per processed frequency (via the direct response method).

Highlights :

. We present new Lévy series for calculatng the dynamic stiness matrix of free orthotropic plates.

. Free boundary conditons are required for plate assemblies.

. Modal analysis and harmonic analysis are presented.

. The numerical validaton is achieved thanks to comparisons with FE results.
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Graphical Abstract

A novel Lévy series for developing a dynamic stiffness matrix for a completely free orthotropic Kirchhoff plate is presented in this paper. The bending behavior is based on the Kirchhoff-Love thinplate theory. The dynamic stiffness matrix is derived using the new Lévy series without classical symmetry decomposition, simplifying the building procedure. Harmonic responses obtained by this method and the finite element method are compared to establish the rate of convergence and the degree of precision of the current formulation.
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