N

N

Reflexive Event-B: Semantics and Correctness The
EB4EB framework

Peter Riviere, Neeraj Kumar Singh, Yamine Ait-Ameur

» To cite this version:

Peter Riviere, Neeraj Kumar Singh, Yamine Ait-Ameur. Reflexive Event-B: Semantics and Correctness
The EB4EB framework. IEEE Transactions on Reliability, 2022, pp.1-16. 10.1109/TR.2022.3219649 .
hal-03836811

HAL Id: hal-03836811
https://hal.science/hal-03836811

Submitted on 2 Nov 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03836811
https://hal.archives-ouvertes.fr

Reflexive Event-B: Semantics and Correctness
The EB4EB framework

Peter Riviere, Neeraj Kumar Singh, Yamine Ait-Ameur
INPT-ENSEEIHT/IRIT
University of Toulouse, Toulouse, France
{peter.riviere, neeraj.singh, yamine } @enseeiht.fr

Abstract—The Event-B method enables correct by construction
modelling of systems. It relies on set theory and first-order logic,
to describe a series of refined system models expressed as a
set of events modifying state variables. Invariants and theorems
are introduced to express system properties submitted to the
proof system associated to Event-B. While Event-B has proven
its efficiency for the proof of this type of properties, it does
not offer powerful means allowing the explicit description of
properties other than safety and specific forms of reachability.
Checking other properties like deadlock-freeness, liveness or
event scheduling, etc. requires ad hoc modelling techniques and
external tools such as model checkers or other proof systems. This
paper presents FB4EB, a new modelling framework offering the
capability to introduce formally defined Event-B extensions, in
particular new proof obligations corresponding to new properties.
It is based on meta-modelling techniques. It includes a theory
(a meta-theory) modelling Event-B and offers means for explicit
manipulation of Event-B features and an extension mechanism
to explicitly formalise and prove other properties. This reflexive
framework relies on a trace-based semantics of Event-B and in-
troduces a set of Event-B theories defining data types, operators,
well-defined conditions, theorems and proof rules to define Event-
B constructs and their semantics. Deep and shallow instantiation
mechanisms are set up to instantiate the obtained meta-theory.
The EB4EB framework and its instantiation mechanisms are
developed in Event-B using the Rodin platform ensuring correct-
ness and internal consistency of the defined theories. Lamport’s
clock example, instantiating EB4EB in both shallow and deep
mechanisms, is used to evaluate the proposed approach.

I. INTRODUCTION

Metamodelling is a standard approach in software engi-
neering for describing abstractions of models and properties,
as well as performing analysis to guarantee the quality of
the developed models, rules, operations, and constraints. This
approach is widely used in the field of model-driven engi-
neering. Formal methods also offer frameworks to support
meta-modelling facilities through the development of meta-
theories, axiomatising metamodels, to represent higher-level
reasoning concepts used in the specification, development, and
verification of complex systems [10]], [24], [37]], [47].

Event-B [2] enables correct by construction modelling of
systems. It relies on set theory and first-order logic (FOL), to
describe a series of refined system models expressed as a set of
events modifying state variables. Invariants and theorems are
introduced to express system properties submitted to the proof
system associated to Event-B. An integrated development
environment (IDE), Rodin [4], enables model development
as well as the automatic generation of proof obligations. The

associated proof process ensures system consistency thanks to
the proof system it supports. Rodin has been extended with
several plugins including composition/decomposition [46],
Theory plug-in [3[], [17], code generation [26], [35] and so
on. In particular, the theory plugin [3], [17] enables to extend
the core concepts of Event-B by defining new data types,
theories, and operators that can be used in Event-B models.
In addition to the classical theories for lists, trees, graphs and
reals, several other theories have been developed to support
complex constructs like continuous features [21f], [22] or
domain knowledge ontologies [33]], [34].

For checking system consistency and refinement, Event-B
and its Rodin IDE rely on induction and provide automatically
generated proof obligations for invariant preservation, variant
progress, events feasibility, proof theorems, guard strengthen-
ing, refinement, and so on. To check additional properties such
as deadlock freeness, liveness, reachability, event scheduling,
and domain-specific properties, the designer must provide an
adhoc Event-B model based on the core Event-B features or
must rely on other modelling tools, such as model checkers
and external interactive theorem provers. Indeed, there is no
mechanism for encoding and reasoning on Event-B trace
semantics. Moreover, Event-B does not offer the capability
to manipulate Event-B concepts explicitly to formalise prop-
erties in a generic an reusable setting. Therefore, performing
advanced reasoning level by introducing new, reusable and
automatically generated POs for any designed model is not
yet possible.

Our objective is to define a novel framework based on a
reflexive formalisation, using Event-B, of a meta-theory allow-
ing to manipulate Event-B concepts. This theory is enriched
by new concepts allowing to formalise and generate new
proof obligations formalising advanced and reusable reasoning
mechanisms.

This paper extends our work presented in [41]. Our primary
contribution is to present an EB4EB framework based on
meta modelling concepts, including trace semantics of the
core Event-B, for explicitly manipulating Event-B features and
extending its reasoning mechanism to support other properties.
In order to express the Event-B core modelling constructs,
trace-based semantics, and new proof obligations for the
EB4EB framework, a set of theories including data types,
operators, well-defined conditions, theorems, and proof rules
is developed. In addition, these theories enable manipulation
of static and dynamic concepts of Event-B features as well as

defining new proof obligations to support a reusable (defined
once and for all) advanced reasoning level. Two instantiation
mechanisms, deep and shallow, associated to these generic
theories, are introduced to exploit this correct by construction
framework to support new Event-B model analyses. The for-
malised trace-based semantics is used to prove the soundness
of the defined models analyses associated to the native and
new generated Event-B POs allowed by EB4EB. Finally, we
evaluate our approach on Lamport’s clock example.

This paper is organised as follows. Section [[I] presents
Event-B modelling concepts, including refinement and proof
obligations. Section describes reflexive concepts, related
work, and the EB4EB framework. The core concepts of
Event-B are described in Sections [[V] and [V] of the EB4EB
framework. Section describes the trace semantics and the
correctness of proof obligations is provided in Section
Deep and shallow embeddings are described in Section
Section |IX] describes Lamport’s clock example, which is used
to describe the application of EB4EB framework by applying
the deep and shallow embeddings in Section [X] Section
presents the EB4EB reasoning mechanism, including a new
set of proof obligations. The proof process related to the
development of the clock model and deadlock reasoning
extension is described in Section Finally, Section [XIII|
concludes the paper and discusses future work.

II. EVENT-B

Event-B [2] is a correct-by-construction method supporting
the development of large and complex systems. Its formal
modelling language is based on set theory and first-order
logic (FOL) and relies on the definition of state variables
characterising systems state and a set of events to model
state changes. A system model is designed as a series of
refined intermediate models starting from an abstract model.
The main components of the Event-B modelling language are
summarised below.

A. Event-B Contexts and Machines

Contexts (Tables[[(a)) describe all the static elements of
the models through the definition of carrier sets s, constants
¢, axioms A and theorems Ty, .

Machines (Table [[[b)) describe model behaviour. It con-
sists of Variables x, Invariants 1(x), Theorems Ty, (x) and
Variants V (x). It defines a transition system represented as
a set of guarded events evt recording state changes using a
Before-After Predicates (BAP). Events which decrease the
variant are tagged as convergent otherwise they are ordinary.
Invariants I(x) and Theorems T,,.n(x) ensure safety proper-
ties, while Variant V(x) ensures convergence properties for
convergent events.

- Refinements. Refinement (see Table c)) enables incremental
design by introducing characteristics such as functionality,
safety, reachability at different abstraction levels. It decom-
poses a machine, a state-transition system, into a more con-
crete model, by refining events and variables (simulation rela-
tionship). Introduction of gluing invariants preserves already
proven properties.

Context Machine Refinement
CONTEXT Cix MACHINE M A MACHINE M ©
SETS s SEES Ctx REFINES M4

VARIABLES 2C
INVARIANTS
J(z?, 2C) A 1C (2©)

VARIABLES =4
INVARIANTS T4 (z4)
THEOREMS T, j, (z)

CONSTANTS ¢
AXIOMS A
THEOREMS T4,

END VARIANT V(mA) EVENTS
EVENTS EVENT entC
EVENT evt REFINES vt
ANY oA ANY oC
WHERE GA (24, o) WHERE GC (2C, o ©)
THEN WITH
24 | BAPA(24 0B W (A, o,
a2 A 24, aC, 2C, 20"
END THEN
END 2 | BAPC (

(a) (b) (©

TABLE I: Global structure of Context, Machines and Refine-
ments

A= Tero AN (@) = Trnen (@)
AANGa(a®) A BAPA(a?, 2y = I3 (a?)

(1) Theorems (THM)
(2) Initialisation (INIT)

3) Invariant ANTy ($A) A GA(a:A, aA)
preservation (INV) | ABAPA(z?, a?,2?) = 14 (z?)
) Event AANTa(z™) AGE(2?,)
feasibility (FIS) = 324 . BAPA (24, a?, z?)
5) Variant ANTE () AGA (2™, o)

progress (VAR) ABAPA(z4, 0, z4) = V(z?') < V(z?)

TABLE II: Machine Proof obligations

(6) Event ANTA (@) A J(2®,29) A G (2%, %)
Simulation AW (a?, o,z 24, ¢, zC")
(SIM) ABAPC (z€,a,2°")
= BAPA(z*, a?, =)
@) Guard ANTA () A T (a2, 2C)
Strengthening | AW (a?, o€, 24, 24", 2, 2C")
(GRDS) AGC (z€,aC) = Ga(z?, a?)

TABLE III: Refinement Proof obligations

- Proof Obligations (PO) and Property Verification. Several
POs are associated with the Event-B models shown in Table
and[[TI] These POs are generated automatically, and all of them
must be successfully discharged to guarantee the correctness
of an Event-B model, including refinements. Two additional
POs related to refinement, guard strengthening and simulation,
are required in our shallow modeling approach.

- Core Well-definedness (WD). The WD POs are associated to
all built-in operators of the Event-B modelling language. Once
proved, these WD conditions are used as hypotheses to prove
other POs related to invariants, theorems, feasibility, etc.

B. Event-B extensions with Theories

In order to handle more complex modelling concepts not
supported by native Event-B, an extension of Event-B based
on mathematical definitions has been proposed in [3[], [18].
This extension, like Isabelle/HOL [38]] or PVS [39]], allows to
define new theories by introducing new data types, operators,
theorems and proof rules. They can be further used in the core
development of Event-B models.

- Theory description. Table [[V|shows core modelling elements
for developing new theories. The core modelling elements
are classified in different clauses known as data types, opera-
tors, axiomatic definitions, axioms, theorems and proof rules.

A theory can be parameterized [Theory

THEORY Th

IMPORT Thl, ...

TYPE PARAMETERS E, F, ...
DATATYPES

by Type in the clause TYPE
PARAMETERS. The description of
the data-type, operator, theorems

Type2(E, ...)
and proof rules use the type pa- constructors
rameters. Data types (DATATYPES estrl(p: Ty -)

OPERATORS

clause) can be defined with con-
structors, and each constructor can
have some destructors. Note that a
destructor can also have an induc-
tive definition.

Opl <nature> (py: T, ...)
well-definedness WD (pq, ...)
direct definition D

AXIOMATIC DEFINITIONS
TYPES Aq, ...
OPERATORS
AOp2 <nature> (pq1: T, ..): Tp

well-definedness WD (p1, ...)

A theory may contain sev-

AXIOMS A7, ..
eral operators of different nature THEOREMS T ...
(<nature> tag), expression or pred- —
icate. These new defined operators TABLE 1IV: Global
extend the capabilities of the Event- structure of Event-B
B core language and can be used Theories

directly in core modelling components like expression and
predicate. Operators may be defined in two ways. First, explic-
itly in the direct definition clause where the operator
is equivalent to an expression, and second, axiomatically in the
AXIOMATIC DEFINITIONS clause where the behaviour of
the operator is expressed by a set of axioms. Last, a theory
defines a set of theorems proven with the help of defined
operators and axioms.

Many theories have been defined for sequences, lists,
groups, reals, differential equations, and so on [18]], [21].

- Well-definedness (WD) in Theories. This useful clause
associates well-definedness (WD) conditions to each operator
defined in a theory. This condition restricts the use of an op-
erator to its licit parameters (partial definitions). In particular,
when a function is denoted as operator, this condition defines
the domain of this function as well-definedness additional
constraints. When the defined operator is used, a WD proof
obligation is generated and must be discharged to ensure the
correctness of the modeled specification as well as defined
properties.

All the WD POs and theorems are proved using the Event-B
proof system.
- Event-B proof system and its IDE Rodin. Rodilﬂ is an open-
source Eclipse-based Integrated Development Environment for
modelling in Event-B. It offers resources for model editing,
automatic PO generation, project management, refinement and
proof, model checking, model animation and code generation.
The theories extension for Event-B is available as a plug-in.
Theories are tightly integrated in the proof process. Depending
on their definition (direct or axiomatic), operator definitions
are expanded either using their direct definition (if available) or
by enriching the set of axioms (hypotheses in proof sequents)
using their axiomatic definition. Theorems can be imported as
hypotheses and used in proofs just like any other theorem.
The proof system is partially automatic, the other parts are
interactive. Many tools are available to help with proof like
predicate provers or SMT solvers.

'Rodin Integrated Development Environment http://www.event-b.org/index.
html

III. THE EB4EB FRAMEWORK
A. Motivation

As mentioned in the introduction, Event-B extensions are
not possible as the modelling language does not offer the ca-
pability to manipulate Event-B concepts as first-order objects.
Meta-modelling features are not available in the core Event-B
modelling language. Offering meta-modelling capabilities is
the main idea of the EB4EB framework.

Embedding modelling language constructs in another mod-
elling language is well accepted by the model-driven engineer-
ing. When this embedding is realised in the same modelling
language, it is qualified as reflexive. Two embedding tech-
niques have been identified: deep and shallow embeddings.
Deep embedding describes explicitly the semantics and syntax
of the source language in the logic of the host language,
whereas shallow embedding simply expresses by translation
the semantics of the source language in the semantics host lan-
guage [16] (i.e. here the translator carries the semantics). Both
approaches have their pros and cons. Deep embedding requires
more modelling effort to address structural and semantic ele-
ments of the source language. As a result, while this approach
may be difficult to grasp and tedious, it offers full access, in
the logic of the host modelling language, to the elements of
the source modelling language for formal verification. On the
other hand, the shallow embedding approach is straightforward
and easy to use once the semantics of the source modelling
language is directly formalised in the modelling language
enconding the transformation. It leads to limited access to the
source modelling language constructs for formal verification,
in particular when tracing verification results (e.g. counter-
examples). Munoz et al. [37] proposed a structural embedding
approach in which only the language structure is deep/shallow
embedded in the host logic and the source language expression
is replaced by the host logic expression.

In order to design a formal setting for defining Event-B
extensions, the proposed EB4EB framework defines a reflexive
embedding on Event-B in an Event-B theory. Before entering
into the details of the EB4EB framework, we review some
approaches of the literature which addressed the problem
of embedding formal modelling languages in other formal
modelling languages.

B. Related work

Several modelling languages use a reflexive approach to
handle higher-order modelling concepts and their manipulation
for improving reasoning mechanisms and other advanced level
modelling features. Riccobene et al. [40]] proposed the ASM-
Metamodel (AsmM) for manipulating Abstract State Ma-
chine (ASM) [15]] concepts like abstract machines, signatures,
terms, rules, and so on. The developed API offers to express
analyses and ASM tool extensions, such as requirements
validation [42], model checking [7], animation [14], [19],
flattener for the ASMETA framework [9], and reviewing ASM
model by meta property verification [8]]. Bicarregui et al. [[11]]
proposed reflexive concepts for VDM [30] in a mathematical
reasoning environment MURAL [31] to provide modelling and
reasoning capabilities for higher-order concepts. The Event-B

http://www.event-b.org/index.html
http://www.event-b.org/index.html

API available in Rodin tools enables the development of core
plug-ins such as model checker and animation ProB [32], code
generation [26], [35], extending modelling features [28]], [46].

The reflexive approach is not limited to modelling lan-
guages; other formal methods approaches related to type
theory use it to manipulate their syntax and higher-order mod-
elling concepts. For example, the reflexive approach is pro-
posed for Agda [48], Lean [23]], and Coq [5[]. Moreover, this
approach can be used in functional programming languages
such as MetaML [49], and Template Haskell [45]. In [47]],
the authors proposed a framework in the MetaCoq project to
define the semantic of Coq in order to support the certified
meta-programming environment. This framework aided in the
development of CertiCoq [|6], a certified compiler of Coq. The
reflection principle is implemented in Isabelle/HOL [24] to ex-
press HOL models as well as reasoning mechanisms in order to
describe complex systems with self-replacement functionality.
Similarly, Mitra et al. [36] proposed the reflection mechanism
in PVS based on theories and templates to generalise proofs
and make them highly reusable using strategies concepts for
proving abstraction relation between automata.

Regarding the B method [1]], Munoz et al. [37]] proposed
a formalisation in the higher-order theorem prover PVS [39].
In the same vein, Event-B is also formalised to ensure the
correctness of modelling and reasoning concepts. Bodeveix et
al. [[12] proposed context formalisation in order to prove the
theorems expressing properties on Event-B models. Schneider
et al. [43]] proposed the core semantics of Event-B, including
refinement, in CSP [29], which is based on trace semantics.
In [25], the authors proposed the Event-B formalisation to
express the theory of institution, but it is not tool supported.
Event-B modelling constructs are also formalised in Coq to
express Event-B traces, and a set of theorems is proved in
Coq to ensure the correctness of proof obligations.

Our approach provides a homogeneous framework for using
the Event-B machine concept as a first-class object in models,
similar to Coq and HOL, and the user does not require to use
different semantic frameworks to manipulate it, as described
in CSP [43]] and Coq [20]]. Thus, our work is free of seman-
tic heterogeneity constraints, which could reduce embedding
correctness. Our method can handle two types of semantics:
native and axiomatic. The first native semantics deal with
the core concept of state-based modelling and refinement,
while the second axiomatic semantics deal with first-order
logic. These semantical representations play a central role in
analysing and ensuring any complex systems that have been
built correctly in a non-intrusive manner.

In [20], [27], [32], [43], [44], trace-based semantic was
used to validate the Event-B modelling and analysis concepts.
Most of this work emphasises on Event-B embedding in
other formalisms or APIs to ensure the Event-B semantics,
whereas our work provides a set of operators, axioms, and
theorems developing a theory (a meta-theory) to manipulate
and extend the core concepts of Event-B while preserving the
semantics in the same formal modelling language. Moreover,
our framework allows expressing some important properties
such as liveness, deadlock freeness, event scheduling and so
on. In addition, this framework also provides a set of operators

to represent the Event-B trace semantics in order to ensure the
correctness of modelling features, functionalities, properties,
and proof obligations. This framework enables non-intrusive
analysis for checking the correctness of complex systems. As
far as we know, this is the first reflexive framework for the
Event-B method to analyse a system systematically.

C. The EB4EB framework

The EB4EB framework is based on first-order logic and
set theory, which enable a simple and easy mechanism for
exporting Event-B core concepts, including semantics, in
other formalisms without redoing the entire work, and its
use does not impose many well-typed proof obligations. This
framework supports two types of proof processes: the first is
operational with axiomatic semantics in the Event-B context,
and the second is induction to handle machine mechanisms
similar to Event-B native proof process.

General Theories (B)

NotEmptyList

EB4EB Core (A) EB4EB Correctness (C)

EvtBStruc
A
imj
EVtBPO

EvtBTraces

import

import

Theo4POCorrectness

Theo4PO e
EB4EB

Extension (D)

EvtBCorrectness

import

Fig. 1: Architecture of the theories

The EB4EB framework defines a set of generic and reusable
Event-B theories formalising all the concepts available in an
Event-B model. It uses an algebraic style with concept types,
constructors, operators and a set of axioms and theorems
providing their properties. This theory is instantiated to define
specific Event-B models. Two instantiation mechanisms have
been defined: deep and shallow. Fig. 1| depicts the architecture
of this framework. The core theory (Fig [[JA) models the
core Event-B method. The correctness of the defined proof
obligations with respect to the provided-trace based semantics
is supported by Fig. [I|B and Fig. [TJC. Last, the extensions
of the framework and their correctness are presented in the
theories of Fig. [I|D.

In the following, we provide a detailed presentation of this
framework. The formalisation of the model the constructs
(Section [TV), Event-B proof obligations (Section [V]) and the
semantics and the theorem guaranteeing the correctness of
the approach (Sections and are presented. The two
instantiation mechanisms are presented in Section

IV. EB4EB STRUCTURE (SEE FIG.[T[(A))

This section introduces the EvtBStruc Event-B theory
of EB4EB (see Fig. E}(A)) dedicated to the definition of
the structure of an Event-B model. It includes data types
constructors and well-structured machine.

A. Data types and constructors

In order to model states and events (transitions), the
two main components of a state-transition system, the
Event-B meta-theory EvtBStruc introduces, in the TYPE
PARAMETERS clause, two polymorphic type parameters, rep-
resented as carrier sets, STATFE and EVENT (see List-
ing [I). The type parameter STATE is used to represent a
set of variables. An explicit description of each variable is
not required at this abstract level. Indeed, the type parameter
STATE abstracts the state as a Cartesian product of all vari-
ables. At the instantiation step, this abstract type is replaced
with concrete variables of the considered Event-B model. The
second type parameter EV ENT is used to abstract the label
of events.

These type parameters are used in the definition of a new
datatype Machine in the DATATYPES clause. A single con-
structor Cons_machine is defined in the CONSTRUCTOR
clause associated with destructors to represent and access
various constituents of Event-B components. The following
destructors are defined.

- Fvent - a set of machine events;

- State - a set of machine states;

- Init - an initialisation event;

- Progress - a set of progress events;

- AP - the after-predicate defining the initialisation state;

- Grd - a set of event guards as a pair made of allowed

state and an event;

- BAP - a set of before after-predicates as a triple made

of an event and before and after states;

- Inv - machine invariants as a set of licit states;

- Thm - machine theorems as a set of licit states;

- Variant - machine variants as a pair associating an

integer to a state;

- Ordinary - a set of ordinary events, i.e. events which do

not constrain the variant;

- Convergent - a set of events decreasing a variant.

B. Well Structured Machine

The DATATYPES clause defines a constructor and destruc-
tors to access the Event-B modelling components. The above-
defined constructors and destructors contain typing informa-
tion only. Therefore, they may lead to ill-defined datatype
definitions. It is necessary to associate well-definedness (WD)
conditions that restrict their use in consistent cases. For
example, the BAP destructor is a relation between events and
states, but the initialisation event is not concerned by this
before-after relation and shall be excluded from the set of
events involved in a BAP.

In order to avoid such ill-defined typing definitions, we
introduce a set of new operators in Listing [2| each of which
is equipped with WD conditions. In Listing the first
well-defined operator BAP_WellCons is declared with one
argument machine m, and its direct definition shows that
all events in the domain of the BAP relation are progress
events, implying that the event set contains no initialisation
event. The next well-defined operator Grd_WellCons is also
defined with single machine m argument. Its direct definition
states that all events in the domain of the Grd relation are
progress events. To check the well definedness condition of
the Event operator, the Event_WellCons is declared. Its
direct definition states that the union of the progress and
initialisation events equals the machine events.

The direct definition of the next Variant_WellCons
operator shows that all the states belonging to the variant
states are convergent and identified from the set of invariant
states, i.e. each variant state element is associated with an
integer. Note that the variant is a total function in the invariant
states. The direct definition of the Tag_Event_WellCons
operator shows that the union of convergent and ordinary
events equals mutually exclusive machine events and the
initialisation event is an ordinary event.

The last Machine_WellCons operator is important. It
collects all the well-definedness conditions of all the defined
operators. Its direct definition is the conjunction of all other
well-defined operators. It represents the global well-defined
condition associated with an Event-B machine m.

THEORY EvtBStruc // Part 1
TYPE PARAMETERS EVENT ,STATE
DATA TYPES
Machine (STATE ,EVENT)
CONSTRUCTORS
Cons_machine (
Event : P(EVENT),
State : P(STATE) ,
Init : EVENT ,
Progress : P(EVENT) ,
AP . P(STATE)
Grd : P(EVENT x STATE),
BAP : P(EVENT x (STATE x STATE)),
Inv : P(STATE) ,
Thm : P(STATE)
Variant : P(STATE X Z),
Ordinary : P(EVENT),
Convergent : P(EVENT)

Listing 1: Machine Data-type Definition

//THEORY EvtBStruc
OPERATORS
BAP_WellCons predicate (m : Machine(STATE, EVENT))
direct definition
dom(BAP(m)) = Progress(m)
Grd_WellCons predicate (m : Machine(STATE, EVENT))
direct definition
dom(Grd(m)) = Progress(m)
Event_WellCons predicate (m : Machine(STATE, EVENT))
direct definition
partition(Event(m), {Init(m)}, Progress(m))
Variant_WellCons predicate (m : Machine(STATE, EVENT))
direct definition
Inv(m) < Variant(m) € Inv(m) — Z
Tag_Event_WellCons predicate (m : Machine(STATE, EVENT))
direct definition
partition(Event(m), Ordinary(m), Convergent(m))A
Init(m) € Ordinary(m)
Machine_WellCons predicate (m : Machine(STATE, EVENT))
direct definition
BAP_WellCons(m)A
Grd_WellCons(m)A
Event_WellCons(m)A
Tag_Event_WellCons(m)A
Variant_WellCons(m)

Part 2

Listing 2: Machine Well Constructed Operators

V. EB4EB PROOF OBLIGATIONS (SEE FIG.[T[(A))

Once Event-B models are structurally well built, semantics
can be addressed. This section presents a set of proof obli-
gations formalised as operators of the EvtBPO theory (see
Fig.[T}(A)) of the EB4EB framework. These operators express
and help to discharge the generated proof obligations given in
Section[[l] such as INV, FIS, NAT and VAR. Their definitions
are inductive as they apply to the initialisation and then to all
other events. The formalisation relies on an encoding of FOL
expressions set comprehension. Below, we formalise all POs
at the meta-theory level.

A. Feasibility Proof Obligation (FIS)

1) Principle: The objective of this proof obligation rule is
to ensure that when the guard of an event holds, its BAP allows
to reach the next state, i.e. the action defined by the BAP is
feasible. It is defined as,

M + Vi,a,z-Gi(a,z) Al(z) = (32’ - BAP;(a, z,2"))
M F FIS

2) FIS Operators formalised in EB4EB: The feasibil-
ity rule is encoded in the Event-B meta-theory presented
in Listing E} We defined three operators Mch_FIS_Init,
Mch_FIS_One_Ev, and Mch_FIS. The first two operators
represent the base case and induction case for the feasibility
PO, respectively. The first operator is declared with one
argument machine m, and its direct definition for the base case
ensures that the intersection of machine invariants (Inv(m))
and machine after-predicates (AP(m)) should not be empty.
The second operator is declared with two arguments machine
m and event e. The direct definition for the induction case
ensures that the invariants and guards of the progress event
e are a subset of the domain of the BAP of e. The last
operator checks the machine feasibility by induction. Its direct
definition shows that the machine is feasible at initialisation
(base case) and for all progress events (inductive case).

2) INV Operators in EB4EB: The invariant proof obligation
rule is also formalised in Event-B meta-theory presented
in Listing @ Three predicate operators, Mch_INV_Init,
Mch_INV_One_Ev and Mch_INV, define the initialisation,
the induction case of the invariant PO for a single event e,
and the induction case of invariant properties for all progress
events, respectively. The direct definition of the first operator
states that the machine after predicate (AP(m)) is a subset
of machine invariant. The next operator, Mch_INV_One_Ev,
ensures that the BAP of progress event e preserves the invari-
ants if guards and invariants are held before. The last operator
is defined to check each event preserves the machine invariants
by induction. The direct definition of this operator shows that
the machine invariant is preserved at initialisation and for all
progress events, i.e. invariant for all machine events.

Mch_INV_Init predicate (m : Machine(STATE, EVENT))
direct definition
AP(m) C Inv(m)
Mch_INV_One_Ev predicate (m : Machine(STATE, EVENT),
e: EVENT)
well-definedness e € Progress(m)
direct definition
BAP(m)[{e}][Inv(m) N Grd(m)[{e}]] C Inv(m)
Mch_INV predicate (m : Machine(STATE, EVENT))
direct definition
Mch_INV _Init(m)A
(Ve - e € Progress(m) = Mch_INV _One_Ev(m,e))

Mch_FIS_Init predicate (m : Machine(STATE, EVENT))
direct definition
Inv(m) N AP(m) # 0
Mch_FIS_One_Ev predicate (m : Machine(STATE, EVENT),
e: EVENT)
well-definedness e € Progress(m)
direct definition
Inv(m) N Grd(m)[{e}] C dom(BAP(m)[{e}])
Mch_FIS predicate (m : Machine(STATE, EVENT))
direct definition
Mch_FIS_Init(m)A
(Ve - e € Progress(m) = Mch_FIS_One_Ev(m,e))

Listing 4: Invariant proof obligation operators

C. Natural Variant Proof Obligation (NAT)

1) Principle: The objective of this proof obligation rule is
to ensure that a proposed numeric variant is a natural number
under the guards of each convergent event. The variant proof
obligation rule is defined as,

M b Vi,a,z-e; € convergent A G;(a,z) N I(z) = v(z) €N
M + NAT
2) Natural Variant in EB4EB: Listing [5] shows two opera-
tors, Mch_NAT_One_Ev and Mch_NAT, to define a variant
for an event e as a natural number and that all convergent
events have a natural number as a variant, respectively. Their
direct definitions are provided below.

Listing 3: Feasibility proof obligation operators

B. Invariant Proof Obligation (INV)
1) Principle: Invariant proof obligation rule ensures that

each event of a machine preserves the invariant. It uses two
abbreviations to increase it readability. It is defined as,

initCasernyv = Vo, z’ - AP(a,z’) = I(z")
inducCasernv (i) = Va, z, 2" - Gi(a,z) AN BAP; (o, m,a’) A I(z) = I(z)

M + initCasernv M b Vi-i€l.n = inducCasernvy (i)

M + INV
Here, for an Event-B machine containing n progress events,
G;(xz,a)) and BAP;(«a,x,2") represent the guard and the
before-after predicate of the event e;(i € 1..n)

Mch_NAT_One_Ev predicate (m : Machine(STATE, EVENT),
e: EVENT)
well-definedness e € Convergent(m)
direct definition
Variant(m)[Inv(m) N Grd(m)[{e}]] C N
Mch_NAT predicate (m : Machine(STATE, EVENT))
direct definition
Variant(m)[Inv(m) N Grd(m)[Convergent(m)]] C N

Listing 5: Variant proof obligation operators

D. Variant decrease Proof Obligation (VAR)

1) Principle: This proof obligation rule ensures that each
convergent event decreases the proposed numeric variant. This
proof obligation rule is defined as,

M F Vi,a,z,z’ -e; € Convergent A G;(a, x)
Al (z) N BAP(z,z',a) = v(z’') < v(z)
M + VAR

2) Variant decrease in EB4EB: Two new operators,
Mch_VARIANT_One_Ev and Mch_VARIANT, are de-
clared to represent convergent properties in Listing [6] The
Mch_VARIANT_One_Ev definition guarantees that if invari-
ants and guards hold, then the BAP decreases the variant
associated with the convergent event e. The WD clause defines
other well-defined operators to ensure the correctness and the
required WD conditions for the variants. Similarly, the opera-
tor Mch_VARIANT generalises the definition of convergence,
it checks the required properties for all convergent events of
machine m.

Mch_VARIANT (m)A
Mch_THM (m)

Mch_VARIANT _One_Ev predicate (
m : Machine(STATE, EVENT),e: EVENT ,s :
well-definedness Variant_WellCons(m),
Mch_INV _One_Ev(m,e) e € Progress(m),
e € Convergent(m),s € Inv(m),s € Grd(m)[{e}]
direct definition
Vop - sp € BAP(m)[{e}][{s}]
= (Inv(m) < Variant(m))(s) >
(Inv(m) < Variant(m))(sp)
Mch_VARIANT predicate (m : Machine(STATE, EVENT))
well-definedness Variant_WellCons(m),Mch_INV (m),
BAP_WellCons(m) , Tag_Event_WellCons(m) ,
Event_WellCons(m)
direct definition
Ve, s - e € Event(m) A e € Convergent(m)A
s € State(m) A's € Inv(m) A s € Grd(m)[{e}]
= Mch_VARIANT_One_Ev(m,e,s)

STATE)

Listing 6: Variant decrease proof obligation operators

E. Theorem THM

1) Principle: This rule ensures that a context or machine
theorem can be proven. Theorems are important for simplify-
ing some proofs. The theorem proof obligation rule states that
theorems are deduced from invariants, it is defined as,

M F Vz-I(z) = Thm(z)
M + THM

2) Theorem THM in EB4EB: The declared operator
Mch_THM consists of one argument machine m, and its direct
definition shows that the invariants are a subset of theorems
in Listing

Mch_THM predicate (m : Machine(STATE, EVENT))
direct definition
Inv(m) C Thm(m)

Listing 7: Theorem proof obligation operator

F. Proof Obligation Generation

Listing shows the most important predicate operator
check_Machine_Consistency. When this predicate is
used as a theorem at the instance level, it allows generating
automatically all possible POs. This predicate expresses the
proof obligations as the conjunction of all the proof obligations
related to Event-B constituents expressed using the predicate
operators previously defined. By the WD condition associated
to this operator, it only applies to well-built machines, as
defined by the properties described in Section

check_Machine_Consistency predicate (

m : Machine(STATE, EVENT))
well-definedness Machine_WellCons(m)
direct definition

Mch_INV (m)A

Mch_FIS(m)A

Mch_NAT (m)A

Listing 8: Machine Proof Obligation

Note that the POs generation mechanism described in this
section can be seen as another approach to generating them.
Instead of using the PO generator of the RODIN platform, one
can use the WD and Theorem proof obligations obtained by
the use of the EB4EB theories.

VI. TRACE’S SEMANTICS OF EVENT-B

In this section, we present a trace-based semantics for
Event-Machines and then relate it to the proof obligations
formalised in the previous section.

A. Event-B traces

For a given machine M, a sequence of states tr = sg —
$1 — ...+ s, describes a trace of machine M iff,

1) tr contains at least one state. A trace includes at least
the initialisation event;

2) sq is the initial state satisfying the After Predicate (AP)
of the initialisation event;

3) for each successive states s;,s;+; of the sequence tr,
there exists a progress event e such that

o s, satisfies the guard of e and
e 5; — ;41 satisfies the Before-After Predicate of
the event e

This notion of trace is formalised in an Event-B theory.

B. Trace’s Semantics in EB4EB

1) Non-empty

X | THEORY NotEmptyList // Part 1
lists (see Fig.[I}(B)):

TYPE PARAMETERS T

p DATA TYPES
To formahse.: the NotEmptyList (T)
trace semantics of CONSTRUCTORS

cons (el : T,
next : NotEmptyList(T))
base_case (base : T')
OPERATORS
first expression (
I : NotEmptyList(T))
recursive definition
case 1:
cons(t,q) => t
base_case(t) => t

Event-B, we develop
another theory
NotEmptyList as
shown in Listing [0
This theory relies on
the list data type and
declares a List type

T. The data type Listing 9: An inductive list
NotEmptyList has two constructors, one for describing

the base case and one for describing the inductive case. The
base case constructor has only one element in the list, while
the inductive case constructor has one element at the head of
the list and a tail to represent a list of other elements. In this
theory, we define the first operator, which takes a list as
an argument and returns the first element of the list. The list
theory is used to represent a trace as a list of states, where
the list is the inverse of the state sequence. If n is the size of
the list, then the state s; is at the index n — ¢ of the list, and
the state s,, is at the head of the list.

2) A theory of Event-B traces (See Fig.[I}(C)): The formal-
isation of Event-B machine traces is proposed in the theory
of Listing This theory imports the two developed theories,
EvtBStruc and NotEmptyList allowing to access to the
Event-B features already formalised and to lists respectively.
It defines two operators: IsATrace and IsANextState.
The first operator is a predicate that checks if a trace tr
of a machine m is a trace of this machine. It is defined
inductively on the trace structure and refers to the second
operator I sANext State to check that every state in the trace
is a correct next state. The direct definition of this operator
states that there exists a progress event e such that s belongs
to the guard of event e and s — sp satisfies the Before-After
predicates of event e.

// THEORY NotEmptyList Part 2
OPERATORS
AllAre predicate (l: NotEmptyList(T) ,pred : P(T))
recursive definition
case 1:
base_case(el) => el € pred
cons(t,q) => t € pred A AllAre(q, pred)

Listing 11: New Operator on the list
Listing [T2] presents the proved theorem for checking the
Invariant’s PO correctness. It states that if for all traces ¢r of
any well structured Event-B machine m satisfying the invariant
PO Mch_INV of Listing [then the invariant property
inv(m) of machine m holds in any state of the trace ¢tr. The
previous All Are(tr, inv(m)) operator is used for this purpose.

THEORY EvtBTraces IMPORT EvtBStruc,
TYPE PARAMETERS STATE,EVENT
OPERATORS

IsATrace predicate (tr: NotEmptyList(STATE),
m : Machine(STATE, EVENT))
recursive definition
case tr:
base_case(s) => s € AP(m)
cons(sp,q) =>
IsANextState(sp, first(q), m) A IsATrace(q, m)
IsANextState predicate (sp: STATE ,s: STATE,
m : Machine(STATE, EVENT))
direct definition
Je - e € Progress(m)A
s € Grd(m)[{e}] A s+ sp € BAP(m)[{e}])

NotEmptyList

THEORY EvtBCorrectness

IMPORT EvtBTraces, EvtBPO

TYPE PARAMETERS STATE,EVENT

THEOREMS

thml :
Vm, tr - m € Machine(STATE, EVENT)A
Machine_WellCons(m) A IsATrace(tr, m) A Mch_INV (m)
= AllAre(tr, Inv(m))

END

Listing 10: Inductive trace of Event-B

VII. EB4EB CORRECTNESS (SEE FIG.[1](B,C))

The correctness of the expression of each proof obligation
defined in the Event-B Theory presented in section [V]is estab-
lished at the trace semantics level of Section [VIl Correctness
is stated according to the definition of the proof obligations
available in the Event-B reference book [2]]. The EB4EB is set
up for this purpose. A theorem ensuring that the defined proof
obligation entails the property on the traces is formalised and
proved.

A. Principle (See Figll}(C))

To establish correctness, we introduce another Event-B
theory FEvtBCorrectness that imports the EvtBPO and
EvtBTraces two theories (See Fig[I}(C)). It includes a set
of theorems stating that the expressed PO implies that the PO
property holds on the trace.

We demonstrate our approach using invariant proof obliga-
tion. In this case, we ensure that invariant is a valid machine
invariant if any state in a trace satisfies it.

B. Correctness of the Invariant PO formalised in EB4EB

In order to define the theorem ensuring the correctness of
the definition of the Invariant PO defined in Section the
NotEmptyList theory has been extended with the A11Are
operator (see Listing checking that the predicate pred (ex-
pressed using set-theoretical “belongs to” relationship) holds
for all the elements of a non-empty list [(used later to model a
trace). It is recursively defined on the elements of a non-empty
list

Listing 12: Theorem of correction of the proof obligation

The theorem of Listing [I2] has been proved using the proof
system of the Rodin platform. The main proof step of this
proof is a case-based proof on the structure of the trace by
unfolding the definition of the All Are operator. Following this
approach, similar theorems have been defined and proved for
the remaining proof obligations.

VIII. MODELLING EVENT-B MACHINES IN EB4EB

In the previous section, we presented the theory axioma-
tising Event-models. The well-definedness conditions and the
relevant theorems introduced allows to check the correctness
of the specific models defined as instances of this generic the-
ory. Below, we describe the defined instantiation mechanisms.

A. Instantiation Methodology

DA S.A
S.2
Event-B Theory Event-B Theory Imports
of of Abstract Machine
Event-B concepts Event-B concepts
(var,events,inv,...) (var.events,inv,...)
\ c A
Meta Instantiate Meta Instantiate Refines
DEEP SHALLOW
- Concrete Cont Concrete Mach
Instantiation Deep Gontext Instantiation { oncrete Gonext]‘W[oncrete Mad ‘"e]
D2 S.3 S4

(a) Deep Modelling
Fig. 2: EB4EB framework

(b) Shallow Modelling

Two instantiation mechanisms, depicted in Fig. [2] are envi-
sioned: deep and shallow modelling.

Deep modelling consists in the definition of the various ele-
ments composing a machine conforming to the EvtBStruc.
At instantiation, these definitions are provided in an Event-
B context, where witnesses for type parameters STATE and
EVENT are provided. Deep instantiation mechanism is rec-
ommended when manipulating and/or reasoning on Event-B

features as first order objects is required. In particular, this
mechanisms allows for the extension of Event-B to formalise
and prove other properties not available in core Event-B.

Shallow modelling is close to shallow embedding [16]. It
relies on an abstract Event-B machine and model instances
are defined as a refinement of this machine. This instantiation
mechanism is recommended when the model can be expressed
and proved. The benefit of this mechanism is the use of
the refinement operation associated to the built-in induction
principle available in core Event-B.

To compare both mechanisms, one can state that deep
instantiation mechanism offers the capability to extend the
Event-B method to handle other type of properties not avail-
able in core Event-B while shallow instantiation mechanism
allows for the use of the refinement operation offered by core
Event-B.

In both mechanisms, the defined operators, when invoked
in a machine or a context, automatically generate well-
definedness and theorem POs that must be proven in order
to ensure machine consistency. These two instantiation mech-
anisms are detailed below.

B. Deep modelling based instantiation (see Fig.

This instantiation mechanism consists in defining an in-
stance of the data type Machine in an Event-B context
(D.2) where the generic type parameters of the meta-theory
are instantiated by sets describing machines state variables
and events. All the Event-B constructs described in the
EvtBStruc Meta-theory such as invariants, theorems, event
guards and before after predicate and so on are defined in
the form of axioms. Consistency is ensured by the intro-
duction of the theorem check_Machine_Consistency
corresponding to the predicate consistency operator of the
Meta-theory. It generates two kinds of proof obligation: first
the well-definedness PO to ensure that the Event-B machine
is well built, and second the PO related to the Event-B
machine consistency such as invariant preservation, and variant
decreasing corresponding to the theorem proof obligation.
Both proof obligations must be proved (see Listing [T3). These
obtained POs are proved using the Event-B Rodin theorem
prover as well as the other supporting theorem provers.

Listing [I3] represents the skeleton of a context representing
an instantiated machine in which each axiom characterises
different components of the Event-B machine for reasoning
and analysis using EB4EB framework. Our goal is to gen-
erate an instance machine automatically, thus the skeleton of
the context model is fixed in a sequence of axioms. These
sequences are: axm]l - to define partitions set Fv of machine
events; axm?2 - to define a machine m as an instance of
theory’s data type by instantiating EV ENT as an event set
Ev, and STATE as a cartesian product of variables type;
axrm3 - to set event accessor as partition event set Fv; axmd
- to set state accessor as a cartesian product variables type;
axrmb - to set initial event of a machine m; axm6 - to define a
set of progress events; azm7 - to define a set of machine after-
predicates; axmS8 - to define a set of machine guards; axm9
- to define a set of machine before-after predicates; axm10 -

to define a set of machine invariants; arml1 - to define a set
of machine theorems; axml12 - to define a set of a machine
variants; axml13 - to define a set of ordinary events; azm14
- to define a set of convergent events. Finally, the theorem
check_Machine_Consistency is defined to ensure that the
machine m is well-constructed and consistent by satisfying all
associated proof obligations. A T'H M PO is generated for this
theorem.

CONTEXT Deep

SETS Ev, ...

CONSTANTS mch, ...

AXIOMS
axml :
axm?2 :
axm3:
axm4 :
axms5 :
axmeé :
axm?7:
axms8 :
axm9:
axml0:
axmll:
axml2:
axml3:
axml4:

THEOREMS
thml: check_Machine_Consistency(mch)

END

partition(Ev, . ..)
mch € Machine(. .., Ev)
Event(mch) = Ev
State(mch) = ...
Init(mch) = ...
Progress(mch) = {...}
AP(mch) = {...}
Grd(mch) = {...}
BAP(mch) = {...}
Inv(mch) = {...}
Thm(mch) = {...}
Va7"%ant(7nch) ={..}
Ordinary(mch) = {...}
Convergent(mch) = {...}

Listing 13: A skeleton of a machine in the deep modelling

C. Shallow modelling based instantiation (see Fig. 2]

As mentioned above, this mechanism introduces a context
and an abstract machine to be refined by the instance Event-B
model. Listings [I4] and show these context and machine
of the abstract model for shallow instantiation. The context
defines the sets Ev and St as instances of the type parameters
for events and states. For this purpose, a constant mch is
introduced as a member of Machine(St, Ev).

CONTEXT ShallowGenCtx
SETS St, Ev
CONSTANTS mch
AXIOMS
axml: mch € Machine(St, Ev)
END

Listing 14: A static element of abstract machine (S.2)

In the abstract machine model, two variables s and
InitDone (for scheduling event triggering) are declared in
the invl — inv2 invariant clauses. These variables are set
in the INITIALISATION event. inv3 ensures that the in-
variant Inv(mch) of the instance model is satisfied. In this
model, we define three events: Do_Init, Do_Ordinary,
and Do_Convergent whose actions modify the state using
the AP (for initialisation) and BAP operators (actl). The
first event is used to initialise state variables in action (actl).
Its guards ensure that InitDone is FALSE (grdl), and
the feasibility and invariants hold for the Init event (grd2).
The Do_Ordinary event updates the machine state s for
an event e annotated as Ordinary. Its guards state that
InitDone is TRUE; the event e is a progress and ordinary
event (grd2); the machine state s belongs to Grd of e (grd3);
and feasibility and invariant properties of mch hold for the
event e (grd4). Similar to the ordinary event, the last event
Do_Convergent contains additional guards grd2 to tag the

event e as convergent and grd6 to ensure that the variant
properties of mch for the event e hold.

Note that our generic abstract model contains initialisation,
ordinary and convergent events, whereas we may only have
initialisation and progress events, in the same spirit of TLAT,
where the progress event can be refined by ordinary and
convergent events later in further refinement. In this instan-
tiation mechanism, the proof process relies on the induction
principle offered by Event-B. Following the shallow modelling
principle, the proof of machine consistency is delegated to
Event-B itself. The defined properties are verified in the
machine refining the generic machine ShallowMchGen.

o grdl is the guard’s state, InitDone is true or false
depending on which events are refined, and the refinement
of abstract state s in the concrete guard.

e grd2 and grd3 introduces instances of the guard, and
BAP/AP.

« actl defines the concrete assignment as well as updates
event parameters with a concrete one.

MACHINE ShallowGenMch
SEES ShallowGenCtx

VARIABLES
s,
InitDone
INVARIANTS
invl: s € St
inv2: InitDone € BOOL
inv3: InitDone = TRUE = s € Inv(mch)
EVENTS
INITTALISATION
THEN
actl : s,InitDone :| s’ € St A InitDone’ := FALSE
END
Do_Init
WHERE
grdl: InitDone = FALSE
grd2: Mch_INV _Init(mch) A Mch_FIS_Init(mch)
THEN
actl : s,InitDone :| s’ € AP(mch) A InitDone := TRUE
END
Do_Ordinary
ANY e
WHERE
grdl : InitDone = TRUE
grd2: e € Progress(mch) A e € Ordinary(mch)
grd3: s € Grd(mch)[{e}]
grd4: Mch_INV_One_Ev(mch,e) AN Mch_FIS_One_Ev(mch,e)
THEN
actl: s:€ BAP(mch)[{e}][{s}]
END

Do_Convergent

ANY e

WHERE
grdl : InitDone = TRUE
grd2: e € Progress(mch) A e € Convergent(mch)
grd3: s € Grd(mch)[{e}]
grd4: Mch_INV_One_Ev(mch,e) N Mch_FIS_One_Ev(mch, e)
grd5: Variant_WellCons(mch)
grd6: Mch_VARIANT_One_Ev(mch,e, s)A

Mch_NAT_One_Ev(mch,e)

THEN
actl: s:€ BAP(mch)[{e}][{s}]

END

END

MACHINE ShallowMch REFINES ShallowGenMch SEES ...

VARIABLES
InitDone
INVARIANTS
invl: s=... // Gluing invariant for abstract state
// variables s and concrete state variables
EVENIS // Static parts describe in the Event—B context
INITIALISATION
WITH s': s’ = ...
THEN
actl: ..., InitDone:| ... A InitDone’ = FALSE
END
Do_Init REFINES Do_Init
'WHERE
grdl: InitDone = FALSE
grd2: ... = AP(mch)
WITH s': s’ = ...
THEN
actl: ...,InitDone:|... € AP(mch) A InitDone’ = TRUE
END
. REFINES Do_Ordinary// Refines Do_Convergent if the event
// has the tag convergent
WHERE // Guard strengthening encode the PO describe
// as a guard in the abstract m.
grdl: InitDone = TRUE A ... € Grd(mch)[{...}]

grd2: ... = Grd(mch)[{...}]

grd3: ... = BAP(mch)[{...}]
WITH e¢: e= ..., s': s’ = ...
THEN

actl: ...:| ... € BAP(mch)[{.. . }][{...}]
END

Listing 15: A generic abstract machine (S.2)

Listing [T6] presents a skeleton of an Event-B machine rep-
resenting an instance formalising an Event-B model. Similarly
to the deep modelling instantiation approach, a static part is
described in another context. This skeleton machine refines the
abstract machine (see Listing [I3)). It represents the dynamic
part of the machine instantiate, where:

« invl provides the gluing invariant of the abstract state s
and the concrete one.

o each event is refined by the concrete one, and each
concrete event provides witnesses (WITH clause) for
the event parameters.

Listing 16: A shallow modelling machine skeleton

IX. CASE STUDY

To illustrate our approach, we have chosen the case study of
a 24h hour clock originally defined by L. Lamport. The main
functionalities (FUN) and requirements (REQ) of the clock
case study are given as follows:

o FUN1 A minute can progress

o FUN2 An hour can progress

o REQI1 The hours are represented in a 24-hour format.
o REQ2 The clock must converge at midnight.

« REQ3 The clock never stops.

In Listing [I7} we describe the clock model that is formalised
in the native Event-B language. In this model, two variables
are defined, minute m and hour h, in ¢nvl —inv2. Two safety
properties are introduced in inv3 — inv4. The first safety
property (REQI) states that the minute m is always less than
60 and hour £ is less than 24.The next safety property (REQ3)
is defined as a theorem that is a disjunction of all guards to
state that the clock never stops means always the guard of
at least one event is true. The last safety property (REQ2)
is related to convergence (variant) expressed by the number
24 %60 — 1 — (m + h * 60). In this model, in addition to
the initialisation ordinary event INITIALISATION, we
introduce three events: tick_min - to model the minute progress
by 1; tick_hour - to model the hour progress by 1 (two

convergent events); and tick_midnight - to reset the clock at
midnight (an ordinary event). The required guards are added
in the defined events to update the minute m and hour h.

MACHINE Clock
VARIABLES m, h

INVARIANTS
invl: m €N
inv2: heN
inv3: m < 60
invd: h <24

THEOREMS

thml: m < 59V
(m =59 A h < 23)V
(m =59 A h = 23)
VARIANTS
24 %60 — 1 — (m + h * 60)
EVENTS

tick_min <convergent>
WHERE grdl: m < 59

THEN actl: m:|m/ =m+1
END

tick_hour <convergent>
WHERE grdl: m =59 A h < 23
THEN actl: m,h :|

m' =0ARh =h+1
END

tick_midnight <ordinary>
WHERE grdl: m =59 A h =23
THEN actl: m,h :|

model (see Listing [T7). Axiom axzm12 is used to instantiate
the Variant with the defined variant of the Clock model. The
next axioms axml3 — axml4 instantiate the Ordinary and
Convergent with a list of ordinary and convergent events,
respectively. In this model, we have only two ordinary events
init and tick_midnight and two convergent events tick_min
and tick_hour.

Machine correctness. It is important to note the intro-
duction, in Listing [I8] of a theorem thml referring to
the check_Machine_Consistency operator. The automat-
ically generated well-definedness PO associated to the
check_M achine_Consistency operator and the one for the
theorem shall be proved. They entail machine correctness.

INITIALISATION m' =0Ah =0
THEN actl: m,h :| END

m' =0AR =0
END END

Listing 17: A machine of clock

X. EB4EB DEEP AND SHALLOW MODELLING OF THE
CLOCK CASE STUDY

Below we present the two instantiation mechanisms corre-
sponding to the clock model of Listing

A. Deep modelling instantiation for the clock model

We describe the development of the clock case study using
the deep modelling instantiation technique of Section
using the meta-theory introduced in Section and [V] All
constituents of the Clock model are explicitly expressed in
terms of the EvtBStruc and EvtBPO Meta-theory con-
structs. The Clock Event-B model is represented as an Event-
B context using the skeleton shown in the Listing of the
Section and POs are described either as theorems or as
well-definedness POs.

The deep modelling resulting context of the Event-B clock
model given in Listing is presented in Listing In
this context, a set Ev lists all the clock events in axzml.
The clock machine clock is defined by axiom axm2 as a
member of Machine(Z x Z, Ev), where the first argument
defines machine state as Z x Z and the second one machine
events Fv.Note that Z x Z and Fv correspond respectively
to the instantiation of the type parameters STATE and
EVENT of the EFvtBPO theory. Furthermore, three axioms
(axm3 — axmb) are used to instantiate FEwvent with the
enumerated set Ev, State with Z x Z, and Init with the
event label init.

The next axiom (axm6) is instantiated with progress events.
Axiom axm7 instantiates the after-predicate AP derived from
the action of the initialisation event (actl) in the Clock ma-
chine. Similarly, axioms axzm8 and axm9 are used to instanti-
ate the guard Grd and the before-after predicate BAP with a
set of guards and actions of all events derived from the Clock
machine using comprehensive sets. The next axiom (axm10)
is defined to instantiate invariant /nv using comprehensive sets
derived from invl — inv4 of Listing and azmll is used
to instantiate theorem T'hm derived from thml of the clock

CONTEXT ClockDeep

SETS Ev
CONSTANTS clock, tick_min, tick_hour, tick_midnight, init
AXIOMS
axml : partition(Ev,
{init}, {tick_midnight}, {tick_hour}, {tick_min})
axm2: clock € Machine(Z X Z, Ev)
axm3: FEvent(clock) = Ev
axm4: State(clock) =7Z X Z
axm5: Init(clock) = init
axm6: Progress(clock) = {tick_midnight, tick_hour, tick_min}
axm7: AP(clock) ={m+— h|m=0Ah=0}
axm8: Grd(clock) = {t — (m+— h) | (

(t = tick_min A m < 59)V
(t = tick_hour Am =59 A h < 23)V
(t = tick_midnight Am = 59 A h = 23))}
axm9: BAP(clock) = {t — ((m — h) — (mp — hp)) | (
(t = tick_min Amp =m+ 1A hp = h)V
(t = tick_hour Amp =0Ahp =h+ 1)V
(t = tick_midnight A mp =0 A hp = 0))}

axml0: Inv(clock) ={m —h|meNARENAM60AhI <24}
axmll: Thm(clock) = {m — h |
m < BIV (m=59Ah<23)V(m=59Ah=23)}
axml2: Variant(clock) = {m +— h +— v |
v=24%60—1—(m+ h=*60)}
axml3: Ordinary(clock) = {init, tick_midnight}
axml4: Convergent(clock) = {tick_min, tick_hour}
THEOREMS
thml: check_Machine_Consistency(clock)
END

Listing 18: A deep instance of the clock machine (D.2)

B. Shallow modelling instantiation for the clock model

We describe the development of the clock case study using
the shallow modelling instantiation technique of Section
using the meta-theory introduced in Section [TV] and

All the constituents of the Clock model are explicitly
expressed using the EvtBStruc and EvtBPO Meta-Theory
constructs. The corresponding Clock Event-B model is repre-
sented as a context (Listing [I9) and a machine (Listing [20)
corresponding to the skeleton machine of Listing The POs
guaranteeing the correctness of the instantiation are obtained
by the theorems and by guard strengthening POs generated by
the refinement of the abstract machine of Listing [T5]

In the same vein as shallow embedding, we use Event-
B to preserve semantics. We describe an abstract Event-B
model formalising the required properties for Event-B models
correctness: a context for the static part and properties
and a generic machine for the dynamic parts i.e. transitions
represented by events.

The concrete model refines the abstract generic model
introduced above. The static elements of the clock model are
described by the context of Listing (19| and dynamic elements
are described in machine of Listing [20]

Static constituents (Event-B context). In the context of List-
ing we define a constant pr in axml as a bijection relation
between (Z x Z) and St to maintain an exact correspondence
between abstract and concrete states. We enumerate the set
FEv with clock events in axm?2. Axioms (axm3-axmb) are
used to instantiate Fvent with enumerated set Fv, State with
St, and Init with the event init. Axiom axm6 is defined
to instantiate progress events of the clock machine. Axiom
axmT defined invariant /nv using comprehensive sets derived
from invl — inv4 of Listing [[7} Axiom azm8 instantiates
theorem T'hm derived from thm1 of the clock model. Variant
of the clock machine is introduced in axm9. Then two axioms
(azm10 — axmll) are used to instantiate Ordinary and
Convergent with a set of ordinary and convergent events.
Context correctness. We define four theorems (thm1-thm4) to
check the proof obligation associated with the well-constructed
event, well-constructed variant, well-constructed events tags
(ordinary or convergent), and machine theorem. Once proved,
these theorems guarantee that the context is well-defined and
the required properties hold.

event, two witnesses are provided for the abstract parameter
event ¢ and the state s’. The action of this event uses BAP
operator to update concrete variables m and h. Similarly, the
two other events Tick_hour and Tick_midnight are
also obtained by refining the abstract events Do_Convergent
and Do_Ordinary by providing witnesses and appropriate
instantiations of guards and before-after predicates.

Machine correctness. Gluing invariant (invl), witnesses and
guard strengthening are introduced to check the POs associated
with machine events (initial and tagged events). New generated
POs are proved to guarantee that the machine is correct and
the required properties hold. Here, the classical proof process
associated to Event-B with its inductive reasoning is used.

CONTEXT ClockShallowCtx
EXTENDS ShallowGenCtx
CONSTANTS tick_min, tick_hour,
AXIOMS
axml :
axm?2:

tick_midnight, init, pr
pr € (Z X Z) —» St
partition(Ev,
{init}, {tick_midnight}, {tick_hour}, {tick_min})
Event(mch) = Ev
State(mch) = St
Init(mch) = init
Progress(mch) = {tick_midnight, tick_hour, tick_min}
Inv(mch) = prl{m— h|m eNAhENAM < 60AhI < 24}]
Thm(mch) = prl[{m — h |
m <59V (m=59Ah<23)V(m=59Ah=23)}]
Variant(mch) = {s,v, m,h-s = pr(m — h)A
v=(24%60—-1—(m+ h*60))]|s— v}
Ordinary(mch) = {init, tick_midnight}
Convergent(mch) = {tick_min, tick_hour}

axm3:
axm4 :
axms5 :
axmé6 :
axm?7:
axms :

axm9:

axml0:

axmll :
THEOREMS

thml :

thm?2 :

thm3 :

thm4 :
END

Event_WellCons(mch)
Variant_WellCons(mch)
Tag_Event_WellCons(mch)
Mch_THM (mch)

Listing 19: Instances for static elements: clock machine (S.3)
Dynamic constituents (event-B machine). The abstract machine
is refined in Listing [20] to introduce the events of the Clock
Event-B machine. In this model, we declare two new variables
m and h and a gluing invariant ¢nwvl to link (glue) concrete
and abstract variables. No new event is added but each
abstract event has been refined by concrete ones by providing
concrete guards and actions. The newly introduced variables
are set in the refined INITIALISATION event, and a witness
is provided to map the abstract and concrete variables. In
the Do_Init event, we introduce a new guard (grd2) to
instantiate AP operator and a witness is provided for the
state s’. The action of this event modifies the concrete clock
variables m and h. The event Do_Convergent is refined
by two concrete clock events Tick_min and Tick_hour,
and the event Do_Ordinary is refined by the concrete
event Tick_midnight. In the Tick_min event, grdl is
a data refinement, it introduces the two concrete variables
m and h. The two other guards grd2 and grd3 respectively
refer to the concrete guard and before after predicate of the
tick_min event defined in the context of Listing In this

MACHINE ClockShallow REFINES ShallowGenMch
SEES ClockShallowCtx
VARIABLES

m,

h,

InitDone
INVARIANTS

invl: s=pr(mw— h) // Gluing
EVENTS

INITIALISATION

WITH
s': s/ =pr(m’ — h')
THEN

actl: m,h,InitDone:| m' € ZAh' :€ ZA InitDone’ = FALSE
END

Invariant

Do_Init REFINES Do_Init

WHERE
grdl : InitDone = FALSE
grd2: pr[{0— 0}] = AP(mch)
s'os

THEN
actl: m,h,InitDone :| pr(m’ — h') € AP(mch)A

InitDone = TRUE

=pr(m’ — k')

END

Tick_min REFINES Do_Convergent
WHERE
grdl: InitDone = TRUE A pr(m — h) € Grd(mch)[{tick_min}]
grd2: pr({ms,hs - ms < 59 A hs € Z | ms — hs}]
= Grd(mch)[{tick_min}]
grd3: {ss,ssp, ms, hs, msp, hsp-
ss = pr(ms — hs) A ssp = pr(msp — hsp)A
msp = ms+ 1A hs = hsp | ss — ssp}
= BAP(mch)[{tick_min}]

WITH
e: e=tick_min, s': s = pr(m’ — h')
THEN
actl: m,h:|
pr(m’ — h') € BAP(mch)[{tick_min}|[{pr(m — h)}]
END

Tick_hour REFINES Do_Convergent
WHERE
grdl: InitDone = TRUE A pr(m — h) € Grd(mch)[{tick_hour}]
grd2: pr[{ms,hs-hs < 23 Ams =59 | ms — hs}|
= Grd(mch)[{tick_hour}]
grd3: {ss,ssp, ms, hs, msp, hsp-
ss = pr(ms +— hs) A ssp = pr(msp — hsp)A
msp = ms A hsp = hs+ 1| ss+ ssp}
= BAP(mch)[{tick_hour}]

WITH

e: e = tick_hour, s': s' = pr(m’ — h')
THEN

actl: m,h:|

pr(m’ — h') € BAP(mch)[{tick_hour}][{pr(m — h)}]

Tick_midnight REFINES Do_Ordinary
'WHERE
grdl : InitDone = TRUEA
pr(m — h) € Grd(mch)[{tick_midnight}]
grd2: pr[{ms,hs-ms =59 A hs =23 | ms — hs}]
= Grd(mch)[{tick_midnight}]
grd3: {ss,ssp, ms, hs, msp, hsp-

ss = pr(ms +— hs) A ssp = pr(msp — hsp)A
msp =0A hsp =0 ss+— ssp}
= BAP(mch)[{tick_midnight}]
WITH
e: e = tick_midnight, s:
THEN
actl: m,h |
pr(m’ — h') € BAP(mch)[{tick_midnight}][{pr(m — h)}]

s' =pr(m’ — h')

END
END

Theo4POCorrectness theory with a correctness theorem
to be proved. It states that [PO]_Definition implies the
expression PO_Sepc_On_Traces(...), on the traces, of the
specification of the concerned PO.

Listing 20: A shallow instance of the clock machine (S5.4)

XI. EXTENDING THE EB4EB REASONING MECHANISM
(SEE FIG.[T}(D))

Extensibility is one of the benefits of the meta-theory
EvtBStruc and EvtBPO of Sections [[V] and [V} every Event-B
feature is explicitly formalised and can be manipulated using
operators, making it possible to define specific development
operations or new reasoning mechanisms, as new operators,
in a non-intrusive way. By non-intrusive, we mean that these
development operations do not affect the classical Event-B
development as machines are manipulated as instances of the
meta-theory EvtBStruc and EvtbPO. The principle of designing
such Event-B machine analyses is described below.

A. Analysis principle: New POs

In our framework, model analysis is defined by introducing
a new PO which must fulfil two requirements 1) first this
PO shall be reusable and 2) and second, it shall be generated
automatically. The first requirement is met by formalising the
PO at the meta-theory level as a predicate operator and the
second one relies on the exploitation of well-definedness (WD)
and Theorems (THM) POs automatically generated.

1) Event-B machine analysis pattern: The definition of
a new PO is depicted by the theory pattern of Listing [21]
Theo4PO theory (see Fig. [[}(D)) imports the meta-theory
EvtBPO and introduces a third, optional type parame-
ter T'4rgs possibly needed by the analysis. The PO as-
sociated to the analysis is defined by a predicate opera-
tor [PO]_Definition formalising the PO as a predi-
cate. Then, checking the defined PO, is realised by the
check_Machine [PO] predicate operator which is well-
defined when machine m is well structured and consistent.

THEORY Theo4POCorrectness IMPORT EvtBTraces,
TYPE PARAMETERS STATE, EVENT, Tayrqs
THEOREMS
thmCorrectnessPO :
Vm, tr - m € Machine(STATE, EVENT)A
Machine_WellCons(m) A IsATrace(tr, m)A
.. A [PO]_Definition(m,args)
= PO_Sepc_On_Traces(...)

Theo4PO

THEORY Theo4PO IMPORT EvtBPO
TYPE PARAMETERS STATE,EVENT,TArgs
OPERATORS
[PO] _Definition <predicate >
(m : Machine(STATE, EVENT),args :
well-definedness condition ...
direct definition ...
check_Machine_[PO] <predicate>
(m : Machine(STATE, EVENT), args: Targs)
well-definedness condition
Machine_WellCons(m) A check_Machine_Consistency(m)
direct definition [PO]_Definition(m,args)

TArgs)

END

Listing 22: Analyses Correctness

2) Checking PO
context pattern:

CONTEXT MachinePO
EXTENDS Deep

s ot THEOREMS
LlStlng ShOWS thmPO : check_Machine_[PO] (mch, args)
the Event-B context |END

pattern defined to
check the newly de-
fined PO. A consistent instance machine context Deep, asso-
ciated to an Event-B machine resulting from the instantiation
of the meta-theory FvtBStruc and EvtBPO, is extended
by the context MachinePO instantiating the extended theory
TheodPO. Theorem thmPO checks that the PO holds for
the machine mch. The WD and THM associated POs are
automatically generated.

The main key points of using this framework is that 1) well-
definedness conditions ensure elements are used correctly, 2)
meta-properties on these analyses are done once and for all,
and 3) these analyses can be performed without altering the
machine’s behaviour, in a non-intrusive way.

This approach is demonstrated below on the definition of
the deadlock freeness proof obligation.

Listing 23: Analyses Machine

B. Introduction of deadlock-freeness as a new proof obligation

1) Requirements: Deadlock-freeness states that a machine
m cannot be in a state where no progress is possible, i.e. at
least one event in a machine m is always enabled. Informally,
it can be formulated as: when the invariant holds then the
disjunction of all the events guards holds.

2) PO Definition: The PO shall state that, for a machine
m, there exists at least one event e such that the current
state satisfies its guard i.e. s € Grd(m)(e). When expressed
using the operators of the meta-theory, we write Inv(m) C
Grd(m)[Progress(m)]. This operator does not require any
additional argument for args.

THEORY Theo4Deadlock IMPORT EvtBPO
TYPE PARAMETERS STATE,EVENT
OPERATORS
DeadlockFreeness_Definition <predicate >
(m : Machine(STATE, EVENT))
direct definition Inv(m) C Grd(m)[Progress(m)]
END

Listing 21: Analyses Theory
Once a PO is defined, its correctness is established fol-
lowing the same approach as the one we set up in sec-
tion [VII] to prove the correctness of native proof obliga-
tion. Another theory Theo4POCorrectness (see Fig (C,
D)) is introduced. It relies on trace semantics proposed
in Section Listing [22] shows the skeleton of the

Listing 24: DeadlockFree Theory

According to the defined pattern, we introduce, in List-
ing a new theory Theo4Deadlock, with two new
operators and required well-definedness condition.

3) Deadlock freeness PO for Clock model: The extended
context with the thmDLK theorem generating WD and THM
POs of the clock machine is shown in Listing

CONTEXT ClockDeadlockFree
EXTENDS ClockDeep
THEOREMS
thmDLK : check_Machine_DeadLock(clock)
END

Listing 25: Clock DeadlockFreeness
4) Correctness: We specify the deadlock freeness prop-
erties using the Event-B trace semantics described in Sec-
tioVIIl in order to check the correctness of the de-
fined PO, and thus ensure that a developed model is
deadlock-free. The deadlock freeness PO is defined as
DeadlockFreeness_Definition in Listing

THEOREMS
ThmCorrectnessDeadlockFree :
Vm, tr - m € Machine(STATE, EVENT)A
Machine_WellCons(m) N IsATrace(tr, m)A
Mch_INV (m) A DeadlockFreeness_De finition(m)
= AllAre(tr, Grd(m)[Progress(m)])

Listing 26: Theorem of Deadlock freeness’ correctness

Listing [26] presents the theorem Theo4Deadlock-—
Correctness to ensure the correctness of deadlock
freeness PO. It states that for all well-constructed
machines (Machine_WellCons(m)) and for all
traces of any machine such that traces of machines
(IsATrace(tr,m)) are valid ones, machine invariants fold
(Mch_INV(m)), and the proof obligation of deadlock
freeness (DeadlockFreeness_De finition(m)) holds, then
any state satisfies at least one guard of a progress event at
any state of the trace (AllAre).

XII. PROOF PROCESS

The Rodin platform is well-equipped with different types
of provers and SMT solvers to support proof automation for
the core Event-B. However, the current proof process for meta
models developed in the EB4EB framework lacks automation.
Thus, user interaction is needed to discharge the generated
proof obligations. One of our primary goals is to experi-
ment with shallow modelling mechanisms to use the native
induction proof process in Event-B to reduce overall proof
efforts and improve proof automation. On the other hand, we
propose some proof rules in the developed theories to define
some rewriting rules to simplify the direct definitions and well
definedness of the EB4EB framework’s defined operators. One
of these rewrite rules is based on the deep modelling template
given in the Listing [I3] where the destructor of the machine
instantiated in the proof obligation is replaced by the instance’s
set comprehension. Then, the definitions of these proof rules
are integrated with existing or new proof tactics of Rodin.
These rules are automatically applied by the Rodin prover
when tactics are invoked.

Max Interac- Number
Model PO Nodes tive of Tactic
Depth Nodes application
Clock deep thm1/WD 47 137 1 2
thm1/THM 108 352 0 1
DeadlockFree thmDLK/THM 169 221 1 2

TABLE V: Proof statistics

Table [V] shows the number of automatic nodes for each
theorem of the deep modelling. Without any tactic, these nodes

are discharged manually for each operator by instantiating
correctly. The introduction of new proof rules in form of tactics
enables to discharge most of the nodes automatically. For
example, most of the proof obligations of the clock model are
discharged automatically and only one node requires manual
interaction. Similarly, the deadlock freeness has 169 nodes
without tactic and only one interactive node with tactic.

XIII. CONCLUSION

We presented the EB4EB framework, which allows for
the explicit manipulation of Event-B features using meta-
modelling concepts. The developed framework is a collection
of theories that includes data types, operators, WD condi-
tions, theorems, and proof rules. These theories are specially
designed for encoding the core modelling constructs and
proof obligation rules of Event-B. In addition, trace seman-
tics is provided to ensure the correctness of the introduced
Event-B language constructs. We developed two instantiation
mechanisms, deep and shallow, to use the defined theories
and associated operators, definitions, WD and proof rules.
These mechanisms allow manipulation of static and dynamic
concepts of Event-B features as well as defining new proof
obligations to support advanced level reasoning once and
for all. Note that these theories must be instantiated in new
development, and the generated POs must be discharged to
ensure correct instantiation. The expressiveness, effectiveness,
portability, and scalability of our developed EB4EB framework
and its trace semantics were evaluated using Lamport’s clock
case study. Finally, we showed, on the case of the deadlock
freeness, that correct extensions can be introduced.

In the future, we intend to use EB4EB framework to extend
the reasoning mechanism by supporting externally defined
POs to analyse domain-specific properties, such as continuous
behaviour, human-machine interactions etc. In addition, we
plan to certify Rodin plugins like composition/decomposition,
code generation and model transformations and so on, using
EB4EB framework. Another important goal is to use De-
dukti [[13] to import and export the Event-B theory and models
into proof assistants such as Coq, PVS and Isabelle/HOL.
Acknowledgements This study was undertaken as part of the
EBRP (Enhancing Event-B and RODIN: EventB-RODIN-Plus)
project funded by ANR, the French National Research Agency.

REFERENCES

[1] J.-R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge
University Press, August 1996.

[2] Jean-Raymond Abrial. Modeling in Event-B: system and software
engineering. Cambridge University Press, 2010.

[3] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Michael
Leuschel, Matthias Schmalz, and Laurent Voisin. Proposals for mathe-
matical extensions for Event-B. Technical report, 2009.

[4] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son
Hoang, Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for
modelling and reasoning in Event-B. STTT, 12(6):447-466, 2010.

[5] A. Anand, S. Boulier, C. Cohen, M. Sozeau, and N. Tabareau. Towards
certified meta-programming with typed template-coq. In Jeremy Avigad
and Assia Mahboubi, editors, 9th International Conference, ITP. Part of
FloC 2018, volume 10895 of LNCS, pages 20-39. Springer, 2018.

[6] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe Paraskevopoulou,
Randy Pollack, Olivier Savary Belanger, Matthieu Sozeau, and Matthew
Weaver. Certicoq: A verified compiler for coq. In The third international
workshop on Coq for programming languages (CogPL), 2017.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Asmetasmv:
A way to link high-level ASM models to low-level nusmv specifications.
In Marc Frappier, Uwe Glisser, Sarfraz Khurshid, Régine Laleau, and
Steve Reeves, editors, 2nd International Conference, ABZ, volume 5977
of LNCS, pages 61-74. Springer, 2010.

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Automatic
review of abstract state machines by meta property verification. In
César A. Muioz, editor, 2nd NASA Formal Methods Symposium -
NFM, volume NASA/CP-2010-216215 of NASA Conference Proceed-
ings, pages 4-13, 2010.

Paolo Arcaini, Riccardo Melioli, and Elvinia Riccobene. Asmetaf: A
flattener for the ASMETA framework. In Paolo Masci, Rosemary Mon-
ahan, and Virgile Prevosto, editors, 4th Workshop on Formal Integrated
Development Environment, F-IDE@FLoC, volume 284 of EPTCS, pages
26-36, 2018.

Yves Bertot and Pierre Castran. Interactive Theorem Proving and Pro-
gram Development: Coq’Art The Calculus of Inductive Constructions.
Springer Publishing Company, Incorporated, 2010.

J. C. Bicarregui and B. Ritchie. Reasoning about vdm developments
using the vdm support tool in mural. In S. Prehn and W. J. Toetenel,
editors, VDM’91 Formal Software Development Methods, pages 371—
388. Springer Berlin Heidelberg, 1991.

Jean-Paul Bodeveix and Mamoun Filali. Event-b formalization of
event-b contexts. In Alexander Raschke and Dominique Méry, editors,
Rigorous State-Based Methods, pages 66—80, Cham, 2021. Springer
International Publishing.

Mathieu Boespflug, Quentin Carbonneaux, Olivier Hermant, and Ronan
Saillard. Dedukti: A Universal Proof Checker. In Journées communes
LTP - LAC, Orléans, France, 2012.

Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor. AsmetaA:
Animator for abstract state machines. In Michael J. Butler, Alexander
Raschke, Thai Son Hoang, and Klaus Reichl, editors, 6th International
Conference, ABZ, volume 10817 of LNCS, pages 369-373, 2018.
Egon Borger and Robert F. Stirk. Abstract State Machines. A Method
for High-Level System Design and Analysis. Springer, 2003.

Richard J. Boulton, Andrew Gordon, Michael J. C. Gordon, John Har-
rison, John Herbert, and John Van Tassel. Experience with embedding
hardware description languages in HOL. 1In IFIP TCIO/WG 10.2
International Conference on Theorem Provers in Circuit Design: Theory,
Practice and Experience, page 129-156. North-Holland Publishing Co.,
1992.

Michael Butler and Issam Maamria. Mathematical extension in Event-B
through the Rodin theory component. 2010.

Michael J. Butler and Issam Maamria. Practical theory extension in
Event-B. In Theories of Programming and Formal Methods - Essays
Dedicated to Jifeng He on the Occasion of His 70th Birthday, pages
67-81, 2013.

Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene, and Patrizia
Scandurra. A scenario-based validation language for asms. In Egon
Borger, Michael J. Butler, Jonathan P. Bowen, and Paul Boca, editors,
First International Conference, ABZ, volume 5238 of LNCS, pages 71—
84. Springer, 2008.

Pierre Castéran. An Explicit Semantics for Event-B Refinements, pages
155-173. Springer Singapore, 2021.

Guillaume Dupont, Yamine Ait Ameur, Neeraj Kumar Singh, and Marc
Pantel. Event-b hybridation: A proof and refinement-based framework
for modelling hybrid systems. ACM Trans. Embed. Comput. Syst.,
20(4):35:1-35:37, 2021.

Guillaume Dupont, Yamine Ait Ameur, Marc Pantel, and Neeraj Kumar
Singh. Formally verified architecture patterns of hybrid systems using
proof and refinement with Event-B. In Rigorous State-Based Methods
- 7th International Conference, ABZ, volume 12071 of LNCS, pages
169-185. Springer, 2020.

Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and
Leonardo de Moura. A metaprogramming framework for formal
verification. 1(ICFP), 2017.

Benja Fallenstein and Ramana Kumar. Proof-producing reflection for
HOL - with an application to model polymorphism. In Christian
Urban and Xingyuan Zhang, editors, Interactive Theorem Proving - 6th
International Conference, ITP, volume 9236 of LNCS, pages 170-186.
Springer, 2015.

Marie Farrell, Rosemary Monahan, and James F. Power. Combining
event-b and CSP: an institution theoretic approach to interoperability.
In Zhenhua Duan and Luke Ong, editors, 19th International Conference
ICFEM, volume 10610 of LNCS, pages 140-156. Springer, 2017.
Andreas Fiirst, Thai Son Hoang, David Basin, Krishnaji Desai, Naoto
Sato, and Kunihiko Miyazaki. Code Generation for Event-B. In Elvira

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Albert and Emil Sekerinski, editors, Integrated Formal Methods, pages
323-338. Springer, 2014.

Thai Son Hoang and Jean-Raymond Abrial. Reasoning about liveness
properties in event-b. In Shengchao Qin and Zongyan Qiu, editors,
13th International Conference on Formal Engineering Methods, ICFEM
2011, volume 6991 of LNCS, pages 456-471. Springer, 2011.

Thai Son Hoang, Dana Dghaym, Colin F. Snook, and Michael J. Butler.
A composition mechanism for refinement-based methods. In 22nd
International Conference on Engineering of Complex Computer Systems,
ICECCS, pages 100-109. IEEE Computer Society, 2017.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666-677, 1978.

Clifford B. Jones. Systematic software development using VDM. Prentice
Hall International Series in Computer Science. Prentice Hall, 1986.
Clifford B. Jones, K. D. Jones, Peter Alexander Lindsay, and Richard C.
Moore. Mural - a formal development support system. Springer, 1991.
Michael Leuschel and Michael Butler. ProB: A Model Checker for B,
pages 855-874. LNCS. Springer, 2003.

Ismail Mendil, Yamine Ait Ameur, Neeraj Kumar Singh, Dominique
Méry, and Philippe A. Palanque. Leveraging event-b theories for
handling domain knowledge in design models. In Shengchao Qin, Jim
Woodcock, and Wenhui Zhang, editors, 7th International Symposium,
SETTA, volume 13071 of LNCS, pages 40-58. Springer, 2021.

Ismail Mendil, Yamine Ait Ameur, Neeraj Kumar Singh, Dominique
Méry, and Philippe A. Palanque. Standard conformance-by-construction
with event-b. In Alberto Lluch-Lafuente and Anastasia Mavridou,
editors, 26th International Conference, FMICS, volume 12863 of LNCS,
pages 126-146. Springer, 2021.

Dominique Méry and Neeraj Kumar Singh. Automatic code generation
from Event-B models. In Proceedings of the Symposium on Information
and Communication Technology, SoICT, pages 179-188, 2011.

Sayan Mitra and Myla Archer. Pvs strategies for proving abstraction
properties of automata. Electronic Notes in Theoretical Computer
Science, 125(2):45-65, 2005. Proceedings of the 5th International
Workshop on Strategies in Automated Deduction (Strategies 2004).
César Muiloz and John Rushby. Structural embeddings: Mechanization
with method. In International Symposium on Formal Methods, pages
452-471. Springer, 1999.

T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof
Assistant for Higher-order Logic. Springer-Verlag, 2002.

Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, //th International Con-

ference on Automated Deduction - CADE, volume 607 of LNCS, pages

748-752. Springer, 1992.

Elvinia Riccobene and Patrizia Scandurra. Towards an interchange
language for asms. In Wolf Zimmermann and Bernhard Thalheim,
editors, /1th International Workshop, Advances in Theory and Practice
ASM, volume 3052 of LNCS, pages 111-126. Springer, 2004.

Peter Riviere, Neeraj Kumar Singh, and Yamine Ait Ameur. EB4EB:
A Framework for Reflexive Event-B. In 26th International Conference
on Engineering of Complex Computer Systems (ICECCS), pages 71-80,
2022.

Patrizia Scandurra, Andrea Arnoldi, Tao Yue, and Marco Dolci. Func-
tional requirements validation by transforming use case models into
abstract state machines. In Sascha Ossowski and Paola Lecca, editors,
ACM Symposium SAC, pages 1063-1068. ACM, 2012.

Steve A. Schneider, Helen Treharne, and Heike Wehrheim. A CSP
account of event-b refinement. In John Derrick, Eerke A. Boiten,
and Steve Reeves, editors, I5th International Refinement Workshop,
Refine@FM, volume 55 of EPTCS, pages 139-154, 2011.

Steve A. Schneider, Helen Treharne, and Heike Wehrheim. The
behavioural semantics of event-b refinement. Formal Aspects Comput.,
26(2):251-280, 2014.

Tim Sheard and Simon Peyton Jones. Template meta-programming for
haskell. SIGPLAN Not., 37(12):60-75, dec 2002.

Renato Silva and Michael Butler. Shared Event Composition/Decom-
position in Event-B. In Bernhard K. Aichernig, Frank S. de Boer, and
Marcello M. Bonsangue, editors, Formal Methods for Components and
Objects, pages 122—141. Springer, 2012.

M. Sozeau, A. Anand, S. Boulier, C. Cohen, Y. Forster, F. Kunze,
G. Malecha, N. Tabareau, and T. Winterhalter. The MetaCoq Project. J.
Autom. Reason., 64(5):947-999, 2020.

Aaron Stump. Verified Functional Programming in Agda. Association
for Computing Machinery and Morgan & Claypool, 2016.

Walid Taha and Tim Sheard. Multi-stage programming with explicit
annotations. SIGPLAN Not., 32(12):203-217, dec 1997.

	Introduction
	Event-B
	Event-B Contexts and Machines
	Event-B extensions with Theories

	The EB4EB Framework
	Motivation
	Related work
	The EB4EB framework

	EB4EB structure (see Fig. 1.(A))
	Data types and constructors
	Well Structured Machine

	EB4EB Proof obligations (see Fig. 1.(A))
	Feasibility Proof Obligation (FIS)
	Principle
	FIS Operators formalised in EB4EB

	Invariant Proof Obligation (INV)
	Principle
	INV Operators in EB4EB

	Natural Variant Proof Obligation (NAT)
	Principle
	Natural Variant in EB4EB

	Variant decrease Proof Obligation (VAR)
	Principle
	Variant decrease in EB4EB

	Theorem THM
	Principle
	Theorem THM in EB4EB

	Proof Obligation Generation

	Trace's semantics of Event-B
	Event-B traces
	Trace's Semantics in EB4EB
	Non-empty lists (see Fig. 1.(B))
	A theory of Event-B traces (See Fig. 1.(C))

	 EB4EB Correctness (see Fig. 1.(B,C))
	Principle (See Fig.1.(C))
	Correctness of the Invariant PO formalised in EB4EB

	Modelling Event-B machines in EB4EB
	Instantiation Methodology
	Deep modelling based instantiation (see Fig. 2a)
	Shallow modelling based instantiation (see Fig. 2b)

	Case Study
	EB4EB deep and Shallow modelling of the clock case study
	Deep modelling instantiation for the clock model
	Shallow modelling instantiation for the clock model

	Extending the EB4EB Reasoning Mechanism (see Fig. 1.(D))
	Analysis principle: New POs
	Event-B machine analysis pattern
	Checking PO context pattern

	Introduction of deadlock-freeness as a new proof obligation
	Requirements
	PO Definition
	Deadlock freeness PO for Clock model
	Correctness

	Proof Process
	Conclusion
	References

