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3D-scanning fluorescence imaging of living tissue is in demand for less phototoxic acquisition process.
For the imaging of biological surfaces, adaptive and sparse scanning schemes have been proven to effi-
ciently reduce the light dose by concentrating acquisitions around the surface. In this paper, we focus on
optimizing the scanning scheme at constant photon budget, when the problem is to estimate the position
of a biological surface whose intensity profile is modeled as a Gaussian shape. We propose an approach
based on the Cramér-Rao Bound to optimize the positions and number of scanning points, assuming
signal-dependant Gaussian noise. We show that in case of regular sampling, the optimization problem
can be reduced to a few parameters, allowing to define quasi-optimal acquisition strategies, first when no
prior knowledge on the surface location is available, and then when the user has a prior on this location.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

State of the art techniques for 3D-scanning fluorescence mi-
croscopy provide high-resolution volumetric images of living
tissues. One current limitation lies in the fact that the imag-
ing process is phototoxic and causes photobleaching, as labeled
tissues are highly irradiated by excitation light [1]. To reduce
photodamage, one solution is to engineer the light dose, ei-
ther by using pulsed light to avoid the deleterious triplet-state
of fluorophores [2], or by using a fast feedback to send just
enough light to reach a prescribed signal to noise ratio [3–7].
One can also lower the intensity of excitation light, and couple
this reduction with denoising to compensate for the reduced
signal [1, 8, 9]. Another solution is to change the setup architec-
ture, such as with the light-sheet microscope that allows to ex-
cite only the imaged plane [10]. Eventually, instead of perform-
ing a standard plane-by-plane acquisition, one can follow an al-
ternative acquisition scheme, such as axial compressed-sensing
[11].

In all of these techniques, the scanning process samples the
entire 3D volume. To further reduce the light dose, an idea is
to shine light only on points that would provide information of
interest. In this regard, an adaptive-scanning fluorescence mi-
croscope optimized for the unsupervised imaging of biological
surfaces has been designed in [12]. It consists in i) performing
a fractional pre-scan of the volume in order to estimate the sur-
face of interest, and then ii) targeting illumination inside a thin
shell enclosing this surface. In the case of epithelia – curved cell
monolayers –, the pre-scan is performed on a very small frac-

tion (∼ 0.1 %) of the sample space, and therefore contributes
very little to the total light dose. Focusing the scan-path exclu-
sively inside the shell allows to dramatically improve the pho-
ton budget. A similar strategy is adopted in [13] to estimate the
surface of a cell sheet from the two-photon fluorescence emitted
in Lissajou pre-scans.

In the aforementioned work, the axial position of the sur-
face is estimated from the set of pre-scanning points. In light of
the above, the quality of this estimation is crucial. Indeed, pre-
cise estimation allows to restrict the shell as close as possible to
the actual structure of interest. But, meanwhile, this estimation
must be done with as few photons as possible.

The estimation precision of the surface depends strongly
on the sampling strategy adopted during the prescan. In this
paper, we search for the sampling scheme that provide the
best trade-off between precision and light dose. More pre-
cisely, when modeling such surface as a 2D-function S so that
z = S(x, y), where (x, y) are the lateral coordinates and z the
third coordinate oriented along the sample width, this func-
tion S(x, y) can be estimated with scanning intensities along
the z-axis for several (x, y)-coordinates, (x1, y1), (x2, y2), . . . ,
(xN , yN). For the ith coordinates (xi, yi), an estimate ẑi of the lo-
cation of the fluorescent epithelium can then be obtained from
this scan along z, allowing to recover the function S(x, y) from
(xi , yi, ẑi), i ∈ [1, N]. In this case, it thus becomes fundamen-
tal to optimize the acquisition strategy along the z axis. In this
work, we will then focus on the following estimation problem:
given a couple of coordinates (x, y), our goal is to estimate the
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position zs of the biological surface from several measurements
along the z-axis. We assume that we have a fixed photon bud-
get to distribute along z. The question we address is then: for a
given (x, y), what are the positions and the number of scanning
points along z that provide the most precise estimation of zs,
for a given photon budget? Is it preferable to concentrate this
budget on few sampling points along z, with relatively high in-
tensity on each scanning point, or to perform many acquisitions
along z with very few photons per acquisition?

Nevertheless, the answer is not trivial, since the problem de-
pends on many parameters, such as the intensity of the fluo-
rescent signal coming from the tissue, the presence of a back-
ground signal, the kind of noise and its level in the imaging sys-
tem, but also on the fact that the user can have – or not – prior
knowledge on the surface’s location. In this paper, we propose
to optimize the sampling strategy using the Cramér-Rao Bound
(CRB) that is commonly used to characterize estimation perfor-
mance [14] and to optimize imaging systems [15–17]. The CRB
is a lower bound of the variance of estimation for unbiased es-
timation algorithms. In our case, the CRB is used to assess for
the localization precision. We show that in case of a regular sam-
pling and when the fluorescent signal along z is modeled as a
Gaussian shape – which constitutes an accurate approximation
in many cases –, we can design optimized sampling strategies
that only depend on few reduced parameters. We first study the
situation where we have no prior knowledge on the position of
the biological surface. We then cover the case where we have a
prior knowledge of its approximate position. Such a prior may
stem from an iterative procedure to delineate the surface – the
precision increasing with each iteration –, or simply from the
previous time point in a live imaging context.

The paper is organized as follows. Section 2 describes the
model of the noisy fluorescent signal along z, and the general
expression of the CRB of the surface’s position at fixed photon
budget. In Section 3, we analyze the CRB when assuming no
prior knowledge on the surface’s location, while section 4 tack-
les the case knowing approximately the surface’s location.

2. MODEL AND BOUND ON THE ESTIMATION OF THE
AXIAL POSITION OF A BIOLOGICAL SURFACE

A. Model of the fluorescent signal

In this study, we consider a biological surface labeled with fluo-
rescent tags. Typical biological surfaces are epithelium that are
layered cell sheets. An example of such an epithelium is shown
in Fig 1.a. It consists of a wing imaginal disk of Drosophila
melanogaster. The imaginal disk is the precursor, inside the de-
veloping larva, of the wing and thorax of the adult fly. It is
an important model system to study the regulation of growth
and morphogenesis [18]. In Fig. 1.a, the E-cadherin protein in-
volved in the adherens junction between cells is tagged with
the green fluorescent protein (GFP) [19]. It is imaged using a
conventional confocal spinning-disk microscope coupled with
an EM-CCD sensor. A vertical section of the volumetric image
is given in Fig. 1.b.

Let us consider the signal s along the z-axis (optical axis) at
a given lateral coordinates (x, y). Figure 1.c (red curve) shows
a typical profile of this signal s, the maximum corresponding
to the location of the adherens junction along z. This signal is
sampled over a set of K scanning points {zk; k ∈ J1, KK}, and
can be modeled as

s(zk) = r(zk) + n(zk) (1)
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Fig. 1. Example of a fluorescent signal coming from an imag-
inal disk of Drosophila melanogaster embryo. The cell junc-
tions (E-cadherin) have been tagged with GFP to be fluores-
cent and lie on a thin sheet. The fluorescent signal is acquired
using a spinning-disk confocal microscope coupled with an
EM-CCD sensor. (a) 3D image of the imaginal disk. (b) Im-
age corresponding to the green vertical slice shown in (a).
(c) z-profil of the signal s(z) (red curve) along the red dotted
line shown in (a) and (b), and corresponding gaussian shape
model r(z) (black curve). The position of the peak corresponds
to that of the cell sheet at the selected (x, y) coordinates. The
amplitude of the peak with respect to background is denoted
aI0/K, and the background signal is denoted bI0/K where I0 is
the total intensity being sent along z axis, and K is the number
of scanning samples along z.

where r is a linear combination of a Gaussian shape centered
on zs and of a constant background, as shown in Fig. 1.c (black
curve), and n(zk) denotes the noise corrupting the acquisition.
More precisely, r can be written as

r(zk) =
I0

K
·

{
a exp

[
−
(zk − zs)2

2γ2

]
+ b

}
(2)

where I0 is the intensity of excitation light to be distributed
along z-axis. We assume I0 is homogeneously distributed so
that each point zk received I0/K. The parameter γ denotes the
standard deviation of the Gaussian shape, and is thus related to
the width along z of the adherens junction. The parameter b re-
lates to the proportion of background light reaching the sensor.
The parameter a is the amplitude of the Gaussian shape with re-
spect to background. Note that the values of a can strongly vary
with respect to (x, y), as for example in Fig. 1.b where only the
cell contours contain fluorescent tags. Depending on the kind
of cells observed or on the fluorescent tag used, as for exam-
ple DAPI to tag cell nuclei, the surface on which these cells are
distributed may contain larger or smaller non-fluorescent areas,
characterized by very low values of the amplitude parameter



a. Although this can affect the difficulty to recover the surface,
the optimized scanning strategies proposed in this paper can
still be used, provided the modeling of the intensity along z as
a Gaussian shape remains valid.

The signal r is corrupted by two sources of noise contained
in n: i) electronic noise (mainly thermal and readout noise),
which can be modeled as white Gaussian noise of constant vari-
ance β, and ii) signal-dependent noise related to photon noise
and amplification of the signal. In this work, we consider that,
after amplification, the signal we observe contains a sufficient
number of counts, so that this signal-dependent noise can be
modeled as a Gaussian noise of variance αr(zk), where α is re-
lated to the photoelectron amplification. Thus, the n(zk) are
assumed to be independent Gaussian random variables, with
zero-mean and with variance

Var[n(zk)] = α r(zk) + β (3)

These parameters α and β allows to cope with various sensor
noise models [20–22].

In this paper, the parameters zs, γ, a, and b are the unknown
parameters to estimate – although their values might be known
to some extent. In the estimation problem, zs is the parameter
of interest, while γ, a, and b are nuisance parameters. The other
parameters constitute experimental parameters.

B. Cramér-Rao bound

Our goal is to estimate zs the most precisely possible, having a
fixed photon budget I0 to be distributed on the set of scanning
points {zk; k ∈ J1, KK}. Given this photon budget I0, what are
the number K and the positions zk that optimize the estimation
precision for zs?

To answer this question, we propose to optimize K and the
set of zk with respect to the Cramér-Rao Bound (CRB) of zs. The
CRB represents the lower bound on the estimation variance that
can be obtained with an unbiased estimator. As in [23], but
considering the noise model given in Eq. (3), the CRB of zs can
be expressed as (see Appendix A)

CRBzs =
[
J−1

]
1,1

=
K2γ2

I2
0 a2

[
R−1

]
1,1

(4)

where J is the Fisher Information Matrix associated to the esti-
mation of the 4 unknown parameters (zs, γ, a, b), and where

R =




Λ2,2 Λ3,2 Λ1,2 Λ1,1

Λ3,2 Λ4,2 Λ2,2 Λ2,1

Λ1,2 Λ2,2 Λ0,2 Λ0,1

Λ1,1 Λ2,1 Λ0,1 Λ0,0




(5)

with

Λp,q =
K

∑
k=1

(Zk − Zs)
p e−

q(Zk−Zs)2

2

αI0
K

[
ae

−(Zk−Zs)2

2 + b

]
+ β

(6)

with defining the reduced parameters Zs = zs/γ, and Zk =
zk/γ.

This expression depends on zs, which is the parameter of in-
terest, and on the parameters a, b and γ, which are generally un-
known. Note that, usually, an approximate value of γ is known,
as it corresponds to the measurable thickness of the cell sheet.
The expression also depends on the intensity I0, on the noise

parameters α and β, and on the number K and the positions zk

(k ∈ J1, KK) of the scanning points. Our goal is to analyze how
to optimize K and zk to decrease CRBzs .

In the following, we will focus on regular sampling strate-
gies, i.e. so that the sampling step zk+1 − zk is constant, be-
cause such strategies can easily be implemented experimentally
and because their optimal settings are tractable computation-
ally. Moreover, two situations will be considered: first, when
we have no a priori knowledge on the surface’s location zs (sec-
tion 3), and second, when we know approximately in which
interval zs has to be searched (section 4).

3. OPTIMAL SAMPLING WITHOUT PRIOR ON THE SUR-
FACE LOCATION

In this section, we assume that we have no prior information on
the position zs of the biological surface. In this case, the whole
axial range available has to be scanned, with scanning points
zk uniformly distributed along z. Our goal is then to find the
optimal value of the sampling step, i.e. the spacing between
two consecutive scanning points.

A. Reformulation of the optimization problem

Let us denote [zmin, zmax] the axial range available. As pre-
viously mentioned, the scanning points zk will be uniformly
distributed on [zmin, zmax] so that zk+1 − zk = δ, with δ de-
noting the constant sampling step, and z1 = zmin + δ/2 and
zK = zmax − δ/2. Let us define l = zmax − zmin the length of
the interval to probe. The number K of scanning points is then
K = l/δ. Thus, optimizing the scanning strategy is equivalent
to determine the value of δ that minimizes CRBzs .

Let us define the reduced parameters ∆ = δ/γ and L = l/γ.
The coefficients Λp,q of Eq. (6) can be rewritten as

Λp,q =
1

αI0b/L + β
Λ̃p,q (7)

where

Λ̃p,q =
L/∆

∑
k=1

(Zk − Zs)
p e−

q
2 (Zk−Zs)2

λ

[
1 + ηe−

(Zk−Zs)2)

2

]
∆ + (1 − λ)

(8)

with

η =
a

b
and λ =

αI0b/L

αI0b/L + β
(9)

The parameter η is the signal to background ratio. The parame-
ter λ is a noise coefficient that takes values between 0 and 1. In
the expression of λ, the quantity αI0b/L corresponds to the vari-
ance of the signal-dependent noise that comes from the back-
ground, on a typical length of γ, and β is the variance of the elec-
tronic noise. Therefore λ can be seen as the proportion of signal-
dependent noise with respect to the total amount of noise, con-
sidering the background only. When λ → 0, β ≫ αI0b/L,
which means that the electronic noise becomes predominant,
whereas, when λ → 1, the signal-dependent noise is predom-
inant. It corresponds to the case of an ideal sensor without ad-
ditive electronic noise. Note that when λ = 1, the CRB of zs

corresponds to that obtained in Poisson noise regime.

In the following, we define the matrix R̃ that is of the same

form of matrix R given in Eq. (5), but filled with the Λ̃p,q coeffi-
cients instead of Λp,q. The CRB of zs becomes

CRBzs =
L2γ2 (αI0b/L + β)

I2
0 a2

[R̃−1
1 ]1,1

∆2
(10)



Finding the value of δ that minimizes CRBzs is thus equivalent

to find the value of ∆ = δ/γ that minimizes [R̃−1]1,1/∆2.

From Eq. (8), it comes that [R̃−1]1,1 is a function of Zs, η, λ,
and of the set {Zk}k=1,...,K i.e. of the set {Z1, L, ∆}. We can

check that [R̃−1]1,1 depends no more on L, as soon as L is suf-
ficiently high (typically L = l/γ & 10). Indeed, increasing L
while keeping all other parameters constant only improves the
estimation of the unknown background parameter b, and has
no impact on the estimation precision of a, γ and zs.

Because [R̃−1]1,1 depends on Zs itself, which is to estimate,
we propose to follow a minimax approach. We minimize the
maximal CRB – the worst CRB value – over all Zs values. When
ignoring bounding effects obtained when zs is close to zmin or
zmax (within a typical distance of 3γ), it comes that CRBzs varies
as a ∆-periodic function of Zs. We thus only have to consider
the maximal value of CRBzs over all Zs in [Z0 − ∆/2, Z0 + ∆/2]
with Z0 = (Zmax + Zmin)/2. We then search for the optimal ∆

value

∆opt = argmin
∆

C̃RBzs (11)

with

C̃RBzs = max
Zs∈[Z0−∆/2,Z0+∆/2]

1

∆2
[R̃−1]1,1 (12)

Now, provided L is sufficiently high, and ignoring Zs-bounding
effects, ∆opt depends only on λ and η. Through these two re-
duced parameters λ and η, ∆opt takes into account the parame-
ters of the acquisition and of the model (i.e. zmin, zmax, I0, a, b,
γ, zs, α and β).

B. Analysis

Figure 2.a shows the evolution of C̃RBzs with respect to ∆, when

η = 1 and for several values of λ. Note that when λ = 0, C̃RBzs

no more depends on η (see Eq. (8)). For ease of comparison
between different λ values, the CRB has been divided by its

minimal value min∆ C̃RBzs .

As can be seen in Fig. 2.a, for all conditions, C̃RBzs presents a
clear minimum, and increases to infinity at large ∆. A contrario,

when ∆ → 0, the behavior of C̃RBzs depends on λ. When λ = 1,
CRBzs stays almost constant and close to its minimal value, as

long as ∆ < 1.3 (red curve in Fig. 2.a). When λ < 1, C̃RBzs → ∞

when ∆ → 0. Indeed, λ < 1 corresponds to β > 0, the case of
a non-ideal sensor. In this case, when ∆ → 0, the number of
scanning points increases. Then, because the photon budget is
fixed, the number of photons per scanning points tends to zero
while the variance β of the electronic noise remains constant.

From the position ∆opt of this minimum, for each λ and η,
we can derive the optimal sampling step δopt = γ ∆opt, pro-
vided γ is known. Fortunately, in many biological configura-
tions an approximate value of γ is generally known, allowing
then to derive an approximate value of δopt. Considering this
point, our goal is then not necessarily to determine the precise
value ∆opt, but more interestingly to determine a range of ∆-
values, for which the performance are close to the optimal CRB
value.

Accordingly, Figure 2.b shows the range of ∆, for which the

increase in C̃RBzs from its minimal value is bounded to 20 %,
as a function of λ. It has been plotted for several values of η
varying from 0 to 10. Note that although η = 0 corresponds to a
situation for which it is not possible to estimate zs (since a = 0),
it has been plotted as the limit case of null signal-to-background
ratio. The larger the area where the increase in CRB is lower

than 20 %, the more robust to an uncertainty on the parameter
γ.

Having an approximate value γ̃ of γ, we can set the value of
the spacing δ so that ∆ = δ/γ̃ corresponds to the middle of the
∆-range (see dashed lines in Fig. 2.b). Furthermore, although
the signal-to-background ratio η = a/b is another unknown
that can strongly varies in the image, it can be seen that the
middle of this ∆-range is almost independent of η, even when
η is varying from 0 to 10. Furthermore, it can be noted that
setting for example ∆ = 1.3 is a robust solution, whatever the
value of λ.

(a)

(b)

Fig. 2. (a) Evolution of C̃RBzs / min∆ C̃RBzs as a function of
∆ = δ/γ and for several values of λ and η. (b) Evolution as
a function of λ (and for several values of η) of the range of

∆-values for which the increase in C̃RBzs with respect to the

optimal value min∆ C̃RBzs is lower than 20 %. Plain curves cor-
respond to the upper and lower bounds of the ∆ ranges and
dashed curves to the middle of the ∆-ranges.

Let us now analyze the robustness of this approach to an er-
ror on γ. We denote γ the true standard deviation of the Gaus-
sian, and γ̃ = γ(1 ± ǫ) the erroneous value used to define the
scanning scheme. With these notations, the reduced parameter

∆ = δ/γ is changed into ∆̃ = δ/(γ(1 ± ǫ)) ≈ ∆(1 ± ǫ). This
means that ∆ has the same relative error ǫ as γ. Figure 3 shows
how an error on γ affects the estimation of zs depending on
noise parameters. To do so, we first set ∆ near its optimal value,
i.e. in the middle of the ∆-range aforementioned (where the in-
crease in CRB with respect to optimal is lower than 20% - see



Fig. 3. Robustness to an error on γ. Evolution of
C̃RBzs / min∆ C̃RBzs as a function of λ in the ideal case where γ
is perfectly known (in blue) and in case of an error on γ of 10%
(purple), 20% (red) and 30% (yellow). These curves have been
plotted for η = 0 (plain lines), η = 1 (dashed lines) and η = 5
(dash-dotted lines).

Fig. 2.b). We then plot the evolution of C̃RBzs / min∆ C̃RBzs as

a function of the noise parameter λ, and computed for ∆̃. The
curves are plotted for several values of the relative error on δ
(ǫ = 0%, 10%, 20%, 30%) and for several values of η. Without
any error on γ (blue curves), choosing ∆ in the middle of the
20% interval leads to a very limited increase in CRB from opti-
mal. With a large 30% error on γ (yellow curve), the increase in
CRB with respect to optimal remains bounded by a factor of 1.4
(1.15 for an error of 20%, see red curve). When λ → 1, i.e. as the
contribution of the electronic noise β decreases, the CRB ratio
tends to 1, which confirms the robustness of this approach to a
certain mis-knowledge on γ.

In situations in which the a priori knowledge on γ is not
precise enough, estimation performance may be far from opti-
mal. To compensate this decrease of performance with respect
to optimal, a possibility is to increase I0. However, it results in
increasing phototoxicity as well. In such situations, it can be
interesting to use an iterative procedure. Rather than directly
sending the whole photon budget I0 on the tissue, we can per-
form a first acquisition with lower intensity, and with δ deter-
mined from Fig. 2.b using the user’s prior on γ. This will then
allow to perform further acquisitions with more precise priors

on γ, and thus with values of C̃RBzs closer to optimal. Last
but not least, such iterative approaches will also progressively
provide a prior knowledge on the location zs. This latter point
has thus to be taken into account in the design of the scanning
strategy, and will be analyzed in the next section.

4. OPTIMAL SAMPLING WITH PRIOR ON THE SURFACE
LOCATION

In the previous section, we assumed no prior information on
the position zs. This led to a uniform distribution of the scan-
ning points over the whole z-range. On practical terms how-
ever, one can sometimes have an approximate prior knowledge
of zs. This prior may come from previous estimation at neigh-

boring points (x, y) or in the context of an iterative procedure
(at given (x, y), an approximate estimation of the surface’s loca-
tion zs precedes a more precise one). When zs is approximately
known, instead of scanning all the available z-space, we rather
perform a few acquisitions around the approximate value of zs.

In this section, we still assume that the K scanning points
are regularly spaced by a constant δ. We study the influence of
K and δ on the estimation performance, knowing that the total
span of the scanning points no more needs to cover the full z-
range [zmin, zmax].

A. CRB expression

The scanning points zk are positioned around the a priori value
of zs. We denote z0 the center of the acquisition interval [z1; zK ],
defined as z0 = (zK + z1)/2. Our goal is to determine the opti-
mal values of K, δ, and of the position z0 of the interval [z1, zK ]
with respect to the amount of prior knowledge we have on zs.

In this case, the CRB of zs can be written as

CRBzs =
γ2

I2
0 a2

(αI0b + β) ·
K2[R̃−1]1,1

∆2
(13)

where the coefficients Λ̃p,q of the matrix R̃ take a different form
than that of in the previous section:

Λ̃p,q =
K

∑
k=1

(Zk − Zs)
p e−

q(Zk−Zs)2

2

µ
K

[
1 + ηe−

(Zk−Zs)2)
2

]
+ (1 − µ)

(14)

with

µ =
αI0b

αI0b + β
and still η =

a

b
(15)

We have introduced a new parameter µ that replaces the param-
eter λ of section 3. Indeed, λ depends on the span Kδ that is no
more fixed to l = zmax − zmin. The parameter µ now represents
the proportion of the signal-dependent noise with respect to the
total amount of noise, considering the background signal only.

Thus, the quantity CRBzs depends on the scanning strategy

(K, δ, and z0) only through the quantity K2[R̃−1]1,1/∆2, which
depends on the reduced parameters µ, η, Zs and of course on
Z1, Z2, . . . , ZK (i.e. on ∆ = δ/γ, K, and Z0 = z0/γ the middle of
[Z1; ZK ]). In the following, the goal is to search for the optimal
values of ∆, K and Z0 that minimize this CRB.

The Fisher Information Matrix is non-invertible when K < 3
and in some situations when K = 4. We thus start our analysis
with K = 5, as it corresponds to the simplest situation.

B. Analysis of the CRB when K = 5

Let us assume first that zs is perfectly known. Figure 4.a shows
the evolution of CRBzs / min∆,Z0

CRBzs for K = 5 as a function
of Zs − Z0 and of ∆. This normalized CRB depends on µ, η and
on the acquisition parameters through the reduced variables
Zs − Z0 = (zs − z0)/γ and ∆ = δ/γ. The black-contour plots
correspond to µ = 0 (electronic noise only) and to a signal-to-
background ratio of η → 0. The red-contour plots correspond
to µ = 1(pure signal-dependent noise) and η → ∞. What-
ever the values of η or µ, the minimum of CRBzs is reached for
Z0 = Zs. Then, we have min∆,Z0

CRBzs = min∆ CRBzs |Z0=Zs
,

and ∆opt = argmin∆ CRBzs |Z0=Zs
.

Moreover, when K = 5, we can write from Eq. (13)
and Eq. (14) the quantity min∆ CRBzs |Z0=Zs

as a function of a
single reduced coefficient µη/(µη + 5 − 4µ) instead of both µ
and η. Figure 4.b shows the optimal spacing ∆opt as a function



of this reduced parameter when K = 5 and Z0 = Zs (black
curve). We have also plotted the range of ∆ values for which
the increase in CRB remains within 20%, 50%, and 100% from
the minimal CRB. It appears from these results that in situa-
tions where µ or η are not exactly known, setting for example
∆ = δ/γ = 0.7 can be a robust solution, for which the increase
in CRB always stays lower than 20%.

Fig. 4. Analysis when only K = 5 scanning points are used:
(a) CRBzs / min∆,Z0

CRBzs as a function of ∆ and of the reduced
variable Zs − Z0, with Zs = zs/γ and Z0 = z0/γ, z0 being
the center of the sampling interval. The black-contour plots
correspond to the case where µ = 0 and η → 0, while the red-
contour plots correspond to the case where µ = 1 and η → ∞.
The two crosses correspond to the locations where the CRB for
both cases take their minimum. (b) When z0 = zs, evolution
with respect to the reduced variable µη/(µη + 5 − 4µ) of the
optimal value ∆opt and of the ∆-ranges for which the CRB in-
crease is lower than 20 %, 50 % and 100 % of its minimal value.

In Fig. 4.b, we set Z0 = Zs. It is of course not realistic, since
zs is the parameter to estimate. Since zs – and thus Zs – is only
approximately known, we introduce [Z−

s , Z+
s ], which is the in-

terval of possible Zs-values. In order to take this interval into
account in the optimization of the acquisition parameters, we
still follow a minimax approach: we minimize the worst CRB

value over all Zs taking value in [Z−
s ; Z+

s ]. In other words, the
optimization problem consists in finding the acquisition param-
eters ∆, K, Z0) that minimize

C̃RBzs = max
Zs∈[Z

−
s ,Z+

s ]
K2[R̃−1]1,1/∆2 (16)

As the CRB is symmetric with respect to Z0 − Zs (see Fig. 4.a),
Z0 has to be set in the middle of [Z−

s , Z+
s ]. In the following, we

will thus fix Z0 to (Z+
s + Z−

s )/2.

In Fig. 5, we have plotted the evolution of C̃RBzs as a func-
tion of the uncertainty Z+

s − Z−
s , i.e. the length of [Z−

s , Z+
s ] (see

blue curve for K = 5), when the signal-to-background ratio is
set to η = 2 and the noise parameter to µ = 0.7. This CRB
has been computed for ∆ = 0.7, which is close to the optimal
value ∆opt when Z0 ≈ Zs and K = 5 (see Fig. 4.b). The signal-
to-background ratio is set to η = 2, and the noise parameter is
µ = 0.7. It can be seen that the CRB increases quickly as the
uncertainty Z+

s − Z−
s increases.

Fig. 5. Example, for µ = 0.7 and η = 2, of the evolution of

C̃RBzs as a function of the uncertainty on Zs (i.e. the value
Z+

s − Z−
s ), when ∆ is fixed to 0.7, and when K progressively

increases from K = 5 to K = 14. This CRB has been normal-
ized so that its minimum value (reached when Z+

s − Z−
s = 0

and K = 5) is equal to 1. The value of C̃RBzs computed with
optimal K value has been super-imposed in black dashed line.

C. Analysis of the CRB in the general case

A solution to limit the increase in CRB is to add new scanning
points while keeping ∆ constant. Netherless, it results in the
decrease in the intensity sent per each scanning point, as one
operates at constant photon budget.

In Fig. 5, the evolution of C̃RBzs obtained for K = 6, 7, . . . , 14
has then been added to the curve obtained for K = 5. The lower
envelop of all curves (dashed line) corresponds to minK C̃RBzs ,

i.e. to the values of C̃RBzs for which the best K-value has been
computed for each Z+

s − Z−
s . We can see that changing the num-

ber K of scanning points allows to limit the increase in C̃RBzs

when the uncertainty on Zs increases.
So far, in Fig. 5, we have fixed ∆ to 0.7. We must ad-

dress whether this choice on ∆ is still relevant when the un-
certainty on Zs increases. We have thus plotted in Fig. 6.a



the evolution of minK C̃RBzs (i.e. of C̃RBzs with K set to its
optimal value) for several ∆ values, and still when µ = 0.7
and η = 2. The lower envelope (red curve) provides an over-
all optimal CRB, for which the best K and ∆ are selected for
each uncertainty value Z+

s − Z−
s . This envelope corresponds

to min∆,K maxZs∈[Z
−
s ,Z+

s ]
C̃RBzs (with ∆ = δ/γ varying between

0.01 and 2 with a step of 0.01 for this curve). It appears that
the optimal couple (K, ∆) changes rapidly with the uncertainty
Z+

s − Z−
s . Thus, one cannot rely on a single ∆ to be optimal

in a wide range of Zs uncertainty. One rigorous but fastidious
way to optimize the estimation would be to provide the best
couple of parameters ∆ and K for each Z+

s − Z−
s , and of course

for several values of the parameters µ and η.
To further gain insight in the choice of ∆, we emphasize the

case ∆ = 0.7 (in blue on Fig. 5.b), which has been shown to be
quasi-optimal when Z0 ≈ Zs and K = 5, whatever the values of
µ and η (see Fig. 4.b). As expected, the curve appears near op-
timal at low values of Z+

s − Z−
s , but increases much faster than

optimal for Z+
s − Z−

s > 0.3. As Z+
s − Z−

s becomes larger, the
number of scanning points has to be increased, and we grad-
ually approach the case of estimating zs without prior, dealt
in the previous section. A large number of scanning points at
constant photon budget implies fewer photons per points. The
noise variance is then increasingly dominated by the variance
β of the electronic noise. Therefore, when Z+

s − Z−
s ≫ 1, the

optimization becomes equivalent to the case without prior and
λ → 0. For this case, the optimal choice was around ∆ = 1.3
(see previous section). The curve for which ∆ = 1.3 has thus
been underlined in Fig. 6.a (in green).

These two extreme settings ∆ = 0.7 and ∆ = 1.3 lead to per-
formance close to those obtained with optimal ∆ and K settings
(red curve in Fig. 6.a). In Fig. 6.b, we have plotted the ratio of

minK C̃RBzs (i.e. C̃RBzs with optimized K value) for ∆ = 0.7 or

∆ = 1.3, over min∆,K C̃RBzs (i.e. . C̃RBzs with both optimal ∆

and K settings), still when µ = 0.7 and η = 2. It appears that
if we choose ∆ = 0.7 when Z+

s − Z−
s . 2 and ∆ = 1.3 other-

wise, the cost with respect to the optimal min∆,K C̃RBzs value
remains lower than a factor 1.21 i.e. the increase in CRB from
optimal will stay under 21%.

D. Simplified two-spacing strategy

Following this analysis, we propose an alternative strategy to
the systematic determination of the optimal parameters ∆ and
K. This simpler approach is to only consider the setting ∆ =
0.7 for small values of the uncertainty Z+

s − Z−
s , and ∆ = 1.3

otherwise. There remains now to determine the value Z+
s − Z−

s
where the transition between these two solutions occurs. We
have seen that this transition happened for Z+

s − Z+
s ≃ 2 when

µ = 0.7 and η = 2 (see Fig. 6.b). In Fig. 7.a, we have plotted
this transition with respect to µ, and for both η = 5 and η → 0.
For values of Z+

s − Z−
s below this transition, the scanning has

to be done with ∆ = 0.7, while it has to be performed with
∆ = 1.3 above this transition. Furthermore, the optimal values
of K corresponding to each situation have also been reported on
this graph.

Considering this simplified strategy, a question arises: how
much do we lose by using this simplified strategy instead of us-
ing the strategy with optimal ∆ and K? To address this point,

we show in Fig. 7.b (blue curves) the ratio of C̃RBzs obtained

with the simplified strategy and of min∆,K C̃RBzs obtained with
optimal ∆ and K settings. This ratio depends on η, µ and
Z+

s − Z−
s . For the sake of simplicity, we have plotted the worst

(a)

(b)

Fig. 6. Example for µ = 0.7 and η = 2: (a) evolution of C̃RBzs

as a function of the uncertainty on Zs, for different values of
∆ and with selecting for each uncertainty value the optimal
number K of scanning points. This CRB has been normalized
so that its minimum value (reached when Z+

s − Z−
s = 0 and

K = 5) is equal to 1. The blue line corresponds to ∆ = 0.7 and
the green one to ∆ = 1.3. The circle points indicate where the
optimal values of K increase by 1. The red line corresponds
to the optimal setting of both K and ∆ among all possible
values (with ∆ sampled with a step of 0.01). (b) Evolution of

minK C̃RBzs divided by the optimal CRB value min∆,K C̃RBzs

(optimized both on K and ∆), as a function of the uncertainty
Z+

c − Z−
c on Zs, when ∆ is fixed to 0.7 (blue curve) and to 1.3

(green curve).

CRB ratio i.e. the highest ratio over all values of Z+
s − Z−

s as
a function of the noise parameter µ, and for several η values.
It appears that the increase in CRB is very limited. The maxi-
mal increase in CRB is obtained for µ = 0, with a ratio of 1.32
(see blue curve in Fig. 7.b). Note that, to keep performance level
close to optimal, this can be compensated by increasing the pho-
ton budget I0 by 32%.

Finally, we investigate the robustness of this simplified strat-
egy to an error on γ. In Fig. 7.b, we have added the ratio
when assuming an error ǫ on γ of 10% (violet curves), 20% (red
curves) and 30% (yellow curves). It can be seen that the conse-



(a)

(b)

Fig. 7. (a) Selection between ∆ = 0.7 (blue zone) and ∆ = 1.3
(green zone) as a function of µ and of the uncertainty on Zs (i.e.
Z+

s − Z−
s ). The frontier between these two situations has been

plotted with a red line. The optimal choice of K has also been
reported on this graph (with frontiers marked with green or
blue lines). These curves have been plotted for η = 0 (plain
lines) and η = 5 (dashed lines). (b) Robustness to the knowl-

edge of γ. Evolution, as a function of µ, of the ratio of C̃RBzs

obtained using the approach proposed in (a) to that of ob-
tained with optimal ∆ and K values. The ratio is computed for
the most unfavorable uncertainty Z+

s − Z−
s , i.e. the uncertainty

that leads to the highest CRB ratio. This ratio has been plotted
first in the ideal case where γ is perfectly known (in blue), and
then in the case of an error on γ of 10% (purple), 20% (red) and
30% (yellow). These curves have been plotted for η = 0 (plain
lines), η = 1 (dashed lines) and η = 5 (dash-dotted lines).

quences of a mis-knowledge of γ in the case of a prior are more
important than that of without prior (cf. previous section and
Fig. 3). For example, an error on γ of 30% leads this time to an
increase in the CRB by a factor of 3.2, which is to compare with
an increase by a factor of 1.4 when having no prior on zs. This
difference comes from the fact that this time, an error on γ will
result in an error on the transition point between the ∆ = 1.3
and ∆ = 0.7 domains, but also on the determination of K. Nev-

ertheless, it should be pointed out that as soon as a prior on zs is
available, a quite good prior on γ can be expected thus limiting
the error on γ and the increase in CRB.

5. CONCLUSION

In this paper, we have proposed a CRB-based approach to op-
timize the scanning strategy along z-axis, given a fixed photon
budget, when the goal is to determine the location zs of a la-
beled biological surface. Here, the fluorescent signal was mod-
eled as a Gaussian shape centered on zs and corrupted by ad-
ditive signal-dependent noise. The problem of estimating zs

at fixed photon budget, depends on numerous parameters: pa-
rameters related to the acquisition process (noise, photon bud-
get, scanning strategy) and parameters related to the model, in-
cluding zs itself. It also depends on the amount of prior knowl-
edge we have on zs. We have shown that in case of regular
sampling, by introducing a controlled loss in the estimation pre-
cision, we can design general scanning strategies that only de-
pend on a few reduced parameters.

Without prior knowledge on zs, the strategy is to scan reg-
ularly the full z-space. In this situation, the optimal spacing
δ between two consecutive scanning points only depends on
γ, which is related to the width of the tissue modeled by the
Gaussian shape, on the signal-to-background ration η, and on
the noise parameter λ, which account for the proportion of
pure signal-dependent noise with respect to the total amount
of noise in the acquisition process. Moreover, when the spacing
is set to 1.3γ, the increase in CRB from its optimal value will al-
ways stay under 20 %, whatever the value of the parameters λ
and η. When prior knowledge on zs is available, a quasi optimal
strategy has been proposed in which two situations may occur.
If the interval of a priori zs-values is thinner than approximately
2γ, the scanning point should be separated by 0.7γ. Otherwise,
they should once again be separated by 1.3γ.

As a perspective, theoretical questions related to this work
remain. In particular, we have only addressed the case of
regular sampling strategies with same intensity sent on all
the scanned points. Although non-regular sampling strategies
should intuitively lead to a lower CRB, notably in the case of an
a priori knowledge on the location of the Gaussian, determin-
ing the optimal sampling over all possible strategies is far from
trivial. Moreover, this will then require a fine study of the trade-
off between the CRB decrease that can be obtained using an ir-
regular sampling, versus the increase in complexity, not only in
term of experimental ease of use but also in term of robustness
to physical parameter variations.

Future work will also need to implement and test experimen-
tally the proposed scanning strategy on real biological tissues.
The main advantage of this strategy is that it can be easily im-
plemented in 3D-scanning microscopes with targeted illumina-
tion such as proposed in [12, 24, 25]. Moreover, an adaptive
scanning scheme can be derived from the proposed approach.
In this case, the estimation of zs can be converted to a prior
for the next round of estimation, while the interval of a priori
zs-values [z−s , z+s ] can directly be linked to the CRB of zs ob-
tained from Eq. 4 e.g. as z+s − z−s ≈ 3

√
CRBzs for efficient es-

timators using a typical 3-σ confidence interval. Next step is
then to recover the surface that best fits the set of zs estimates
ẑi obtained from the z-scans performed at different (xi , yi) co-
ordinates (i = 1, 2, 3, . . .). Furthermore, depending on the a
priori on the surface model – particularly its smoothness – the
optimal choice of the set of coordinates (xi, yi) that achieves



the best trade-offs between the precision of surface estimation
and photon budget is an interesting perspective of this work.
Eventually, it is worth noting that this paper focused on the
estimation precision of zs only, even though the whole param-
eters of the model – including the width of the tissue – were
estimated simultaneously. It would be interesting to draw scan-
ning schemes that consider jointly the estimation precision of
the position and of the width of the biological surface.

A. FISHER INFORMATION MATRIX FOR ZS ESTIMA-
TION

Let θ = (zs, γ, a, b)T the model parameter vector to es-
timate. The log-likelihood of the acquired sample χ =
{s(z1), . . . , s(zK)} is equal to

ℓ(χ|θ) = −
1

2

K

∑
k=1

ln {2π[αr(zk) + β]} −
1

2

K

∑
k=1

[s(zk)− r(zk)]
2

αr(zk) + β

The Fisher information matrix J is the 4 × 4 matrix so that, for
n, m ∈ J1, 4K,

[J]n,m = −

〈
∂2ℓ(χ|θ)

∂θn∂θm

〉

=
K

∑
k=1

∂r(zk)

∂θn

∂r(zk)

∂θm

1

αr(zk) + β

[
1 +

α2

2αr(zk) + 2β

]

with θn denoting the nth component of vector θ. As in [15], as
soon as the number of counts on the sensor is not too small, the
Fisher information matrix J becomes

[J]n,m =
K

∑
k=1

∂r(zk)

∂θn
·

∂r(zk)

∂θm
·

1

αr(zk) + β
(17)

with

∂r(zk)

∂zs
=

aI0

K

zk − zs

γ2
exp

[
−
(zk − zs)2

2γ2

]

∂r(zk)

∂γ
=

aI0

K

(zk − zs)2

γ3
exp

[
−
(zk − zs)2

2γ2

]

∂r(zk)

∂a
=

I0

K
exp

[
−
(zk − zs)2

2γ2

]

∂r(zk)

∂b
=

I0

K

(18)

Following Eq. (17) and Eq. (18), J can be written as

J =
I2
0

K2




a2

γ2 Λ2,2
a2

γ2 Λ3,2
a
γ Λ1,2

a
γ Λ1,1

a2

γ2 Λ3,2
a2

γ2 Λ4,2
a
γ Λ2,2

a
γ Λ2,1

a
γ Λ1,2

a
γ Λ2,2 Λ0,2 Λ0,1

a
γ Λ1,1

a
γ Λ2,1 Λ0,1 Λ0,0




(19)

with Λp,q expressions given in Eq. (6). The CRB on zs is thus

CRBzs = [J−1]1,1 =
[adj(J)]1,1

det J
(20)

where adj(J) denotes the adjugate matrix of J, and det(J) de-
notes the determinant of J. The cofactor [adj(J)]1,1 is the de-
terminant of the submatrix of J formed by removing the first
row and first column. By developing the expression of the de-
terminants of both matrices, and by using the expression of R

given in Eq. (5), we obtain that det(J) = (
I2
0 a

K2γ
)4 det(R) and

[adj(J)]1,1 = ( I0
K )6( a

γ )
2[adj(R)]1,1, which lead to Eq. (4).
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