Wael Saideni 
email: wael.saideni@xlim.fr
  
Fabien Courreges 
email: fabien.courreges@unilim.fr
  
David Helbert 
email: david.helbert@univ-poitiers.fr
  
Jean Pierre Cances 
email: cances@ensil.unilim.fr
  
  
  
  
  
  
  
  
  
ViT-SCI: Video Transformer is all you need for Video Compressive Sensing
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In this work, we study a complete framework of Video Compressive Sensing (VCS), from capturing a sequence of video frames in one single compressed measurement to reconstructing the original frames. To our best knowledge, we present the first end-to-end sampling and recovery network built upon video Transformers, widely explored in vision related tasks, to capture long-range spatio-temporal relations. Our proposed Video Transformer for Snapshot Compressive Imaging recovery (ViT-SCI) is based on Spatio-temporal Conventional Multi-Head Attention (ST-ConvMHA) which is an extended version of the fully-connected attention adapted for vision problems. Our comprehensive qualitative and quantitative experiments on several datasets demonstrate that ViT-SCI outperforms previous stateof-the-art methods with much faster reconstruction capacities, which pave the way for applying our algorithm in real-time applications. Indeed, ViT-SCI achieves good quality results in only 8ms to reconstruct video clips of 8 frames. It is able to perform real-time reconstruction of up to 125 measurements per second. Finally, an important ablation study on the Transformer network is provided to inspire future research works aiming to test the abilities of Transformers in vision tasks.

I. INTRODUCTION

With the huge demand for data acquisition and processing, Video Compressive Sensing or precisely Video Snapshot Compressive Imaging (SCI) becomes a promising research direction. It is the task to indirectly capture high dimensional data and encode it into one single 2D compressed measurement to optimize the memory storage of the system and its transmission bandwidth. Then, an efficient reconstruction algorithm is needed to reconstruct the original video from the compressed measurement. For the last decades, practical video recovery approaches are mainly based on convolutional and recurrent neural networks [START_REF] Iliadis | Deep fully-connected networks for video compressive sensing[END_REF]- [START_REF] Iliadis | Deepbinarymask: Learning a binary mask for video compressive sensing[END_REF]. While these models achieve practical performances, the recovery process in video compressive sensing remains very challenging in terms of flexibility, scalability and speed of the training and the testing phases [START_REF] Yuan | Snapshot compressive imaging: Theory, algorithms, and applications[END_REF]. On the one hand, recurrent neural networks are designed to process data sequentially which makes the implementation of parallel computing very difficult and slows down the training phase. Also, processing long sequences through recurrent networks leads to a loss of information and causes the vanishing gradient problem [START_REF] Hochreiter | The vanishing gradient problem during learning recurrent neural nets and problem solutions[END_REF]. To deal with the vanishing gradient problem, one of the most impactful papers in Deep Learning [START_REF] Vaswani | Attention is all you need[END_REF] has proposed the attention mechanism which manages and quantifies the interdependence between input elements. This attention mechanism has contributed towards the designing and the implementation of transformer models. In fact, these models enable the efficient utilization of GPUs by parallelly processing input sequences and then speed up the training phase considerably. In addition, it is challenging to use transfer learning on recurrent models. However, it is practical to use pretrained transformers to reduce the training cost. On the other hand, convolutional neural networks (CNN) are simple to parallelize. Also, for various applications, CNN based models are fast to train but for short input sequences. For long sequences, convolutional models are unable to learn different dependencies among all the possible combinations of the input elements. That's why, it is practical to process long sequences as a whole using transformers. Transformers are thus better than recurrent neural networks and convolutional neural networks for the following reasons:

• Computational complexity per layer: Self-attention layers O(n 2 .d) are faster than recurrent layers O(n.d 2 ) and convolutional layers O(k.n.d 2 ) when the dimensionality d is bigger than the input sequence length n (which is the case in NLP models) [START_REF] Vaswani | Attention is all you need[END_REF]. • The computation can be parallelized: Recurrent networks need O(n) sequential operations. However, self-attention layers can be computed in a parallel manner. • The path length between long-range dependencies: it is more important with recurrent and convolutional layers than with self-attention layers [START_REF] Vaswani | Attention is all you need[END_REF] Bearing the above problems in mind, in this work, we intend to enhance the reconstruction performances by proposing an endto-end transformers model for SCI video reconstruction trying to solve the trilemma of flexibility, scalability and speed. However, applying efficient transformers for various computer vision applications such as SCI reconstruction is still facing several challenges. In fact, famous vision transformers (e.g. ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]) divide input 2D images into several patches which may threaten the local spatial information [START_REF] Li | Localvit: Bringing locality to vision transformers[END_REF] because some low level visual features (e.g. edges, shapes) are divided into different patches. After the patch embedding step, global fully connected self-attention is applied to extract the global interactions between different tokens which ignores local details. Then, for video recovery problems, temporal data may be the key for better performances since missing information in one frame can be reconstructed from adjacent frames. As a result, the idea is to come up with a new transformer based architecture for video snapshot compressive imaging (SCI) with an attention layer that exploit local and spatiotemporal data information.

In a nutshell, our contributions are summarized as follows:

• To the best of our knowledge, the proposed algorithm (ViT-SCI) is the first video SCI reconstruction method built upon Transformers. • We used a convolutional attention mechanism in order to exploit spatiotemporal information instead of global fully connected attention layers used in recent vision transformers.

• We provide detailed explanation of our architecture with detailed results and analysis which may be used as reference in future research works, especially on video transformers. 

II. BACKGROUND AND RELATED WORKS

A. Video Snapshot Compressive Imaging

Compressing high-speed videos is already possible due to the huge research work done in video snapshot compressive imaging (SCI). The video SCI system is composed of two main networks: the hardware encoder and the software reconstruction (decoder) network [START_REF] Yuan | Snapshot compressive imaging: Theory, algorithms, and applications[END_REF]. The hardware encoder represents the optical imaging framework and the software decoder denotes the reconstruction algorithm. The hardware encoder aims to compress the 3D video signal into a 2D measurement matrix and the compression is done across the temporal dimension. This compression aims to avoid huge memory storage and transmission bandwidth. The optical system is called the coded aperture compressive temporal imaging (CACTI) [START_REF] Llull | Coded aperture compressive temporal imaging[END_REF] system (Figure 1). In this system, and during one exposure time, the video scene is gathered by an objective lens and then coded by a temporal-variant mask (shifting physical mask [START_REF] Llull | Coded aperture compressive temporal imaging[END_REF], [START_REF] Koller | High spatio-temporal resolution video with compressed sensing[END_REF] or different patterns on a Digital Micromirror Device (DMD) [START_REF] Reddy | P2C2: Programmable pixel compressive camera for high speed imaging[END_REF], [START_REF] Sun | Compressive high-speed stereo imaging[END_REF]). Then, the output is detected by a Charge Coupled Device (CCD) and then integrated into one single measurement frame. From a mathematical perspective, a video SCI system captures a dynamic scene of B frames X ∈ R h×w×B (h and w are the height and the weight of the frame, respectively) which is modulated by a number of masks (B) noted C k ∈ R h×w , k = 1 . . . B, before being integrated into one single measurement frame Y ∈ R h×w by a camera sensor in one exposure time (B frame). This operation is expressed as follows:

Y = B k=1 X k • C k + G, (1) 
where X k and denotes the k th frame, • and G ∈ R h×w denote the Hadamard product and noise, respectively. Then, we define y = V ec(Y ) ∈ R hw and g = V ec(G) ∈ R hw , where V ec represents the vectorization operator. Correspondingly, we define x ∈ R hwB as:

x = [V ec(X 1 ) T , ..., V ec(X B ) T ] T . (2) 
The measurement y can then be expressed as:

y = [D 1 , ..., D B ]x + g, (3) 
where

D b = diag(V ec(C b )) ∈ R hw×hw , for b = 1 . . . B
denotes a diagonal matrix. We have in this case a matrix [D 1 , ..., D B ] that is highly structured and sparse. Depending on the theoretical study in [START_REF] Jalali | Snapshot compressed sensing: Performance bounds and algorithms[END_REF], the original video can be reconstructed from a single compressed measurement frame y and the coding patterns {C k } B k=1 [START_REF] Jalali | Snapshot compressed sensing: Performance bounds and algorithms[END_REF] with a sampling rate of 1 B . The second important part of video SCI is the reconstruction process which aims to recover the original video from the 2D measurement frame and the masks. This process is crucial to have a practical and efficient video SCI system. In the literature, the reconstruction algorithms could be classified into two categories: optimization based methods and Deep Learning based algorithms. The optimization based algorithms, such as GAP-TV [START_REF] Yuan | Generalized alternating projection based total variation minimization for compressive sensing[END_REF], GMM [START_REF] Yang | Video compressive sensing using Gaussian mixture models[END_REF], DeSCI [START_REF] Liu | Rank minimization for snapshot compressive imaging[END_REF], and PnP-FFDNet [START_REF] Yuan | Plug-and-play algorithms for large-scale snapshot compressive imaging[END_REF], require huge computational resources and large reconstruction time. For instance, DeSCI takes hours to generate a 256 × 256 × 8 video from one single measurement frame). In Deep Learning based methods [START_REF] Iliadis | Deep fully-connected networks for video compressive sensing[END_REF]- [START_REF] Iliadis | Deepbinarymask: Learning a binary mask for video compressive sensing[END_REF], this computational problem has been ameliorated. However, some architectures need a large memory and huge time for the training phase. BIRNAT [START_REF] Cheng | BIRNAT: Bidirectional recurrent neural networks with adversarial training for video snapshot compressive imaging[END_REF], for example, can take weeks to train a model of size 256 × 256 × 8 [START_REF] Cheng | Memory-efficient network for largescale video compressive sensing[END_REF]. Obviously, both categories have their advantages and drawbacks, which make this research direction challenging and very promising for the future if we aim to come up with a memory friendly model that consumes less computational cost for our daily life applications.

B. From NLP to computer vision

Since there is various high-level analogies between video processing and NLP, we decided to take advantage of this architecture for our video reconstruction purpose. In fact, video and sentences have sequential features. In addition, if a word can be understood from the context in a sentence, patches could be reconstructed based on the contextual features gathered from the rest of the video or to be precise from the tokens having similar features based on the computations of the attention layer.

C. Transformers in computer vision

Transformers are originally proposed in 2017 [START_REF] Vaswani | Attention is all you need[END_REF] as a simple and scalable architecture in language translation and successfully dominate natural language processing (NLP) tasks [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF], [START_REF] Radford | Improving language understanding by generative pre-training[END_REF]. Indeed, transformers are based on self attention mechanism which is a highly efficient technique to learn the correlations between input features and update the embeddings in parallel. Thus, in contrast to recurrent architectures, transformers based models allow modelling long dependencies between input data components and handle parallel processing. Thus, they are known by their scalability to very highcomplexity models. Recently, transformers start to improve computer vision tasks. They have been used in various computer vision applications such as classification [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF], [START_REF] Wang | Non-local neural networks[END_REF], video segmentation [START_REF] Carion | End-to-end object detection with transformers[END_REF], object detection [START_REF] Wang | End-to-end video instance segmentation with transformers[END_REF] and video inpainting [START_REF] Liu | Fuseformer[END_REF].

D. Challenges in computer vision applications

Although transformers are becoming a research trend in the last two years because of their excellent performances, they are facing some crucial challenges in the computer vision field including the fact that they require a large amount of data to be trained and the associated high computational costs (in terms of computational time and memory resources needed for processing) [START_REF] Liu | Video swin transformer[END_REF].

III. OVERVIEW OF THE PROPOSED ARCHITECTURE:

VIT-SCI As illustrated in Figure 2, ViT-SCI consists of three main modules: low frequency feature extraction module, deep feature extraction module and a video reconstruction module. These 3 modules are preceded by a measurement normalization phase aiming to generate a preprocessed video. The entire training process is shown in Algorithm 1.

A. Preprocessed Video and Measurement Energy Normalization

The output of the compressive sensing acquisition phase is the measurement matrix Y ∈ R h×w . Having the measurement matrix Y and the coding patterns (masks) C ∈ R h×w×B , we preprocessed the training data before feeding our deep learning algorithm. One of the preprocessing techniques that have been applied recently [START_REF] Cheng | BIRNAT: Bidirectional recurrent neural networks with adversarial training for video snapshot compressive imaging[END_REF], [START_REF] Cheng | Memory-efficient network for largescale video compressive sensing[END_REF], [START_REF] Wang | Metasci: Scalable and adaptive reconstruction for video compressive sensing[END_REF] is measurement energy normalization. In fact, the measurement matrix Y is not usually energy normalized which requires a normalization process to fit into the neural network. Technically, the energynormalized measurement matrix Ȳ can be expressed as:

Ȳ = Y B k=1 C k , (4) 
where represents the matrix dot division. Figure 3, which describes the preprocessing approach (the illustrated frames are extracted from the training dataset), shows that the energynormalized measurement matrix Ȳ presents more visual information than the initial measurement matrix Y . Obviously, Ȳ can be defined as the estimated average of the original B high-speed frames X ∈ R h×w×B . Then, in order to generate a preprocessed video from the energy-normalization measurement matrix Ȳ and the coding patterns C ∈ R h×w×B , we process the following concatenation along the 3 rd dimension:

I = [ Ȳ • C 1 , ..., Ȳ • C B ] 3 ∈ R h×w×B . (5) 
The preprocessed video I, preserving the background and some main objects of the frames as illustrated in Figure 3, will feed the reconstruction network.

B. Low Frequency Feature Extraction Module

Given the preprocessed video I ∈ R B×c×h×w (c denotes the number of channels), we use 5 residual blocks followed by LeakyReLU activation function in order to learn low frequency features F low ∈ R B×c×h×w as:

F low = N f e (I), (6) 
where N f e denotes the network designed to extract low frequencies features from the input video I.

C. Positional encoding

In contrast to standard neural networks, Transformer based models are permutation-invariant. However, ViT-SCI necessitates accurate position information. As a result, we add a fixed 3D positional encodings, including spatial and temporal information, to the features generated by the low frequency features extraction module of the input I. The 3D positional encoding (PE) [START_REF] Wang | End-to-end video instance segmentation with transformers[END_REF] is defined as:

P E 3D (pos, i) = sin(β k .pos) for i = 2k cos(β k .pos) for i = 2k + 1, (7) 
where β = 

D. Deep Feature Extraction Module

We have specifically developed a new transformer encoder for video SCI recovery that achieves deep features extraction. The idea behind the deep feature extraction module is to build a network aiming to learn non-linear mapping to enable video reconstruction. This transformer encoder maps the input video space to a higher dimensional feature space. The deep features F deep ∈ R B×c×h×w , extracted by the encoder, can be expressed as:

F deep = N transf ormer (F low ). ( 8 
)
where N transf ormer denotes the application the deep feature extraction module. 1) Spatio-Temporal Convolutional Multi-Head Attention (ST-ConvMHA) It has been proved in previous research works [START_REF] Cao | Video superresolution transformer[END_REF], [START_REF] Wu | Cvt: Introducing convolutions to vision transformers[END_REF] that fully-connected self-attention originally developed in [START_REF] Vaswani | Attention is all you need[END_REF] is not suitable for computer vision tasks and especially for video reconstruction models. In fact, fully-connected self-attention is used to extract global interactions between different tokens which neglects local information. Also, it ignores the temporal dimension which is a crucial information in video processing related tasks. In addition, in [START_REF] Cao | Video superresolution transformer[END_REF], it has been theoretically proved that fully-connected self-attention layers used for vision tasks may cause the vanishing gradient problem destabilizing the training process. Bearing in mind the aforementioned limitation of the fullyconnected self-attention layer, deep feature module, which enables to map the features to a series of continuous models, is mainly based on the Spatio-Temporal Convolutional Multi-Head Attention (ST-ConvMHA) layer designed to extract spatial-temporal information and the similarities between different tokens. Our proposed ST-ConvMHA is a stack of parallel convolu- tional multi-head attention layers that allow a better understanding of the different aspects of the input feature maps F low ∈ R B×c×h×w . ST-ConvMHA is based on convolutional projections applied for Query(Q), Key(K) and Value(V) embeddings, respectively and a patch-wise non-local attention model using unfold and fold operations inspired from [START_REF] Mou | COLA-Net: Collaborative attention network for image restoration[END_REF]. The first step in calculating ST-ConvMHA is replacing the existing position-wise linear projections in the fully-connected self-attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF] with convolutional projections using three different convolutional layers with trainable elements W Q , W K and W V . This embedding step, aiming to learn the spatial features of the different frames, can be expressed as follows:

Q = EmbQ(F low ) = W Q ⊛ F low K = EmbK(F low ) = W K ⊛ F low V = EmbV (F low ) = W V ⊛ F low , (9) 
where ⊛ denotes the convolution operation and Emb is the embedding step. The second step in the calculation process is using the unfold operation to extract sliding local tokens from Q, K and V tensors. The kernel size used in this operation is H patch × W patch and the stride is s = H patch or s = W patch . As illustrated in Figure 4, the output of the unfolding operation is three groups of 3D tokens. Each group contains N 3D tokens (N = BW H W patch ×H patch ). Each token has the size of dim patch = c × W patch × H patch . This process is expressed as follows:

Q 1 , Q 2 , ..., Q N = Θ(Q) = Θ(W Q ⊛ F low ) K 1 , K 2 , ..., K N = Θ(K) = Θ(W K ⊛ F low ) V 1 , V 2 , ..., V N = Θ(V ) = Θ(W V ⊛ F low ), ( 10 
)
where Θ is the unfolding operation and Q, K, V ∈ R B×c×W patch ×H patch The third step is to reshape the Query and the Key tensors into 1D vector of size dim patch × N . The reshaping operator is subsequently denoted by ∆. Then, we calculate the score (the similarity matrix) by calculating the dot product of the matrix of the reshaped query and the matrix of the reshaped key. This score (similarity matrix) is related to all embedding patches of the video which guarantee the learning of the spatial-temporal details. Then, the obtained scores are divided by the square root of each patch in the current head layer since we are implementing a muti-head attention layer, motivated by [START_REF] Vaswani | Attention is all you need[END_REF]. Then, we pass the result through a softmax operation. In fact, the softmax layer will determine the importance of patches corresponding to other patches. The fourth step is to multiply each value vector by the output of the softmax layer. The third and fourth steps are expressed as follows:

Attention(Q i , K i , V i ) = sof tmax( Q i Ki T dim patch n heads )V i (11)
Finally, we apply the folding operation Γ in order to combine the sliding local blocks of size N × c × W patch × H patch into one large containing tensor (feature map) of size B × c × W × H. Then, we apply a convolutional layer W f to generate the final feature map.

The ith attention head process can be expressed:

head i = W i f ⊛ Γ(sof tmax( QK T dim patch n heads )V ),
i.e, when expanding the expressions of Q i , K i and V i :

head i = W i f ⊛Γ(sof tmax( Θ(∆(W i Q ⊛ F low )) × Θ(∆(W i K ⊛ F low )) T dim patch n heads ) Θ(W i V ⊛ F low )) (12)
And the overall process of the St-ConvMHA layer is summarized as follows:

ST -ConvM HA = Concat(head 1 , ...head h )W O , ( 13 
)
where h is the number of heads or the number of parallel convolutional attention layers. The implemented ST-ConvMHA enables to deeply learn spatial-temporal features in comparison with the fullyconnected self-attention mechanism.

2) Feed-Forward Network

As shown in Figure 4, the ST-ConvMHA layer is followed by a Feed Forward Network (FFN) [START_REF] Vaswani | Attention is all you need[END_REF]. It is applied to every attention tensor to transform them into a form that can feed the next transformer encoder layer. In fact, the parallelization process is enabled by the FFN, because it processes all the attention tensors at one time.

E. Video Reconstruction Module

In the reconstruction module, we recover the video frames from processing the deep features generated by the transformer encoder as:

O rec = N rec (F deep + F low ), (14) 
where N rec is the reconstruction network. O rec depends on F deep and F low to stabilize the training phase. The final output of out approach is the aggregation of the output of the reconstruction module O rec while the input preprocessed video I:

O f = O rec + I. (15) 

F. Training Process and Loss Function

In our implementation (Algorithm 1), we optimize the parameters of ViT-SCI by minimizing the reconstruction error: the loss function used is the mean square error (MSE):

L = N n=1 B k=1 ∥O fn,k -G tn,k ∥ 2 2 , (16) 
where O fn,k is the final output or the k th reconstructed frame of the n th training video using ViT-SCI, and G tn,k is the corresponding ground truth frame. for i = 1 : n epochs do 4:

for All training video sequences do

5: Load Y , C k , G t 6: Ȳ ← Y B k=1 C k 7: I ← [ Ȳ • C 1 , ..., Ȳ • C B ] 3 8:
F low ← N f e (I)

9:
F lowP E ← F low + P E 10:

for d = 1 : N umberOf AttentionLayers do 11:

for h = 1 : n heads do 12:

Att h ← Attention(F lowP E )

13:

end for 14:

F deep ← F F N (Att i ) 15:
end for 16:

O rec ← N rec (F deep + F lowP E ) 17: O rec ← O rec + I 18:
Obtain loss: end for 22: end while

L = N n=1 B k=1 ∥O fn,k - G tn,k ∥ 2

IV. PERFORMANCE EVALUATION, COMPARISON AND

DISCUSSION

In this section, we describe the implementation framework and compare the performances of the proposed reconstruction method with several state-of-the-art methods.

A. Datasets

To train our algorithm, we use DAVIS2017 [START_REF] Pont-Tuset | The 2017 davis challenge on video object segmentation[END_REF] dataset, designed for video object segmentation applications, since video SCI algorithms can be applied on any video scene and there is no specific dataset for the training phase. The original DAVIS2017 dataset has only 90 video scenes (6242 frames of size 854 × 480). For an efficient training in a video SCI context, we prepare the dataset by transforming and reformatting it. In fact, we generate 6516 video scenes of size 8 × 256 × 256. Then, we test our trained model on six evaluation datasets: Aerial, Drop, Kobe, Runner, Traffic, and Vehicle.

B. Data Augmentation

In order to deal with the problem of overfitting, data augmentation is a commonly used pre-processing technique aiming to generate more data than RNN and CNN based models, becoming greater in terms of size. Since transformerbased models in general require more data, augmenting the diversity of the training dataset will enhance the performances of our proposed ViT-SCI [START_REF] Touvron | Training data-efficient image transformers distillation through attention[END_REF]. After the data augmentation process consisting in cropping, rotating, and flipping input videos, the dataset becomes larger with 417024 video scenes (3 336 192 frames). Data augmentation has significantly enhanced the performances of our model.

C. Compared methods and performance metrics 1) Compared methods

Several state-of-the-art methods are used to evaluate the performances of our proposed approach for the video SCI reconstruction, including two iteration-based reconstruction algorithms:

• GAP-TV [START_REF] Yuan | Generalized alternating projection based total variation minimization for compressive sensing[END_REF] • DeSCI [START_REF] Liu | Rank minimization for snapshot compressive imaging[END_REF] and a recent deep learning based reconstruction algorithms:

• BIRNAT [4]
2) Performance metrics To quantify the performances of the evaluated algorithms, we use well known frames quality evaluation metrics: the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index(SSIM) [START_REF] Hore | Image quality metrics: PSNR vs. SSIM[END_REF].

D. Implementation details

The ViT-SCI algorithm has been implemented using Pytorch framework [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]. We use the Mean Square Error (MSE) as a loss function in the main implementation. To minimize the MSE function, we use Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with an initial learning rate of 0.0003 (the learning rate is reduced by 5% every 5 epochs). The performance evaluation of the different approaches is done on an NVIDIA RTX 2080 GPU (8GB GDDR6). Our method is trained for 100 epochs and it took about 190 hours to train the entire ViT-SCI network.

E. Network architecture

In the ST-ConvMHA, we used three convolutional layers to learn the spatial information of each frame. The output of the ST-ConvMHA layer passes through a convolutional layer to generate the final feature map. To decrease the computational cost of our model, we use gray scale frames for the training process (c = 1). The low frequency feature extraction module has 5 residual blocks. The deep feature extraction module uses 4 transformer encoder layers. The final video reconstruction module has 30 residual blocks.

F. Ablation study

In this section, we study the core implementation of ViT-SCI through a profound experimental study to demonstrate the effectiveness of our model design choices.

1) Frame size

Table I reports that ViT-SCI has larger computational cost (Training Time) when having higher spatial resolution. Indeed, about 155 more hours is required to train our model on DAVIS dataset with a spatial resolution of 80 × 80 than on the same dataset with a spatial resolution of 64 × 64. This large computational cost can threaten the scalability of the model while maintaining efficiency. However, we notice from Figure 5 and 6 that training ViT-SCI on smaller images with smaller spatial dimensions does not affect quality performances as much. Therefore, we believe that our model can be extended to process larger training datasets. 

2) Positional Embeddings

In Transformer based architectures, positional embeddings is of huge importance since all tokens are taken parallelly. The 3D positional encoding used in this implementation indicates the spatial and temporal positional embeddings which refers to the position in the video scene. To investigate the importance of our 3D positional embedding module, we conduct the following experiments (with 2 attention heads):

• No 3D positional embedding • 3D (Spatiotemporal) positional embedding The experiments, illustrated in Figure 7, shows that the model trained with 3D positional embeddings achieves better performances (+4.65% in terms of PSNR by passing from 30.1939 to 31.5969 and +1, 47% in terms of SSIM by passing from 0.9084 to 0.9218). This result proves that the positional information of every token is implicitly provided in the Transformer based architectures. However, it is important to enhance this positional information with explicitly implemented positional embeddings.

3

) Number of heads

We have carried out a series of experiments by training our model with one single attention head and with some independent attention layers applied in parallel to answer the famous question that has already been asked in [START_REF] Michel | Are sixteen heads really better than one?[END_REF]: "Are Sixteen Heads Really Better than One?" or "is more than one head even needed?". From the figures of Table II, it is clear that the training time slightly increases with the number of heads, while the performances do not follow a monotonic behavior and even don't show significant differences.

We can further notice from Figure 8 and 9 that the model is not sensitive to the number of attention heads. Therefore, one single attention head is sufficient, thus reducing the training computational cost. This may be explained by the fact that we have trained our approach on small sized video clips where the number of dynamic objects is limited and multiple heads are not needed to detect and learn syntactic relations between different objects. However, we believe that with higher temporal and spatial resolution datasets, pruning the attention heads in our model will result in significant performance degradation. Therefore, as suggested in [START_REF] Voita | Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned[END_REF], it is advisible to retain more than one attention head and enhance formula 13 to:

ST -ConvM HA = i Concat i (λ i head i )W O , (17) 
where λ i is a learnable parameter offering the capability to the neural network to learn more effective interactions between attention heads.

4) Number of extraction blocks

The extraction network is important to extract the main features of input frames. Thus, we trained ViT-SCI with different numbers of extraction blocks to evaluate their impact on performances. As reported in Table III, the computational cost increases linearly with the number of extraction blocks. Indeed, about 11 more hours is needed when increasing the extraction blocks from 1 to 5. In addition, the average of the quality figures increases also when adding more extraction blocks (Figure 10). However, Figure 11 shows that the optimal number of extraction blocks can depend on the testing dataset. On the one hand, Aerial, Kobe and Traffic perform better with 5 extraction blocks. While on the other hand, Drop, Runner and Vehicle have better reconstruction quality with only 3 extraction blocks. 

5) Number of reconstruction blocks

The reconstruction module can also significantly impact the quality performances of ViT-SCI. Therefore, finding an optimal trade-off between the computational cost and the number of reconstruction blocks can be very challenging. So, we trained our model on 3 different numbers of reconstruction blocks and we compared our model's quality performances. It is obvious that the training time increases when increasing the number of reconstruction blocks since about 1.000.000 more model parameters must be learned when adding 10 reconstruction blocks. The average PSNR and SSIM results on 6 test sets, presented in Figure 12, show ViT-SCI performs well with 30 reconstruction blocks. However, when we study each dataset separately in Figure 13, we notice that Aerial, Kobe and Traffic need 30 reconstruction blocks for better PSNR and SSIM performances while Drop, Runner and Vehicle are well reconstructed with only 20 reconstruction blocks. 

6) Number of ST-ConvMHA Attention layers or depths

To explore the impact of the number of ST-ConvMHA attention layers on the performances of ViT-SCI, we trained our model with different attention layers or depths. Each layer has 8 attention heads. Table V shows that the number of learnable parameters increases linearly when increasing the number of the encoder layers and the training becomes computationally heavier. This ablation study aims to find the smallest number of attention layers that gives better quality performances to ensure the trade-off between the output quality and the computational cost. Figure 14 shows that 2 attention layers performs well, outperforming the same model configuration but with 1 and 4 attention layers on the average reconstruction quality on the 6 testing datasets. However, we notice from Figure 15 that these better quality performances are valid on Drop, Runner and Vehicle. For Aerial, Kobe and Traffic, 4 attention layers are needed for better reconstruction quality. These results prove that for some datasets deeper is better but it is not always the case for every dataset. We notice also, from Table V and Figure 14 and 15, that the difference in performance is very small because we train our model on very short videos of 8 frames so we believe that with larger datasets the difference can be more noticeable. 

G. Main simulation results

After confirming our design choices by means of the ablation study, we perform experiments to compare our proposed ViT-SCI algorithm with the state-of-the-art approaches on video compressive sensing. The quantitative results are summarized in Table VI, from which we compared the reconstruction quality of different reconstruction models and their recovery speed. For PSNR and recovery speed measured, our ViT-SCI achieves the best results among the video reconstruction methods with good SSIM results. On Arial dataset, ViT-SCI slightly outperforms BIRNAT in terms of the reconstruction quality (+1.49% and +0.5% for PSNR and SSIM, respectively) and largely outperforms GAP-TV (+32.23% and +10.19% for PSNR and SSIM, respectively) and DeSCI (+28.33% and +8.37% for PSNR and SSIM, respectively) on the same metrics. On Kobe dataset, a limited improvement is noticed over DeSCI (+0.55%) in terms of PSNR. DeSCI performs better in terms of SSIM on Kobe dataset. The quantitative results prove the efficiency of our proposed approach, based on an attention mechanism, on complex background datasets. Table VI, also shows that DeSCI has better PSNR and SSIM performances on Drop, Runner and Traffic datasets over our Transformer based approach. These results can be justified because our training dataset rarely includes high speed motions. So, our model is not well trained (BIRNAT also) to reconstruct video scenes with very high speed motions. In figure 16, we show the qualitative results of our ViT-SCI compared with the-state-of-the-art. Our ViT-SCI could synthesize finer details and clearer edges on the six evaluation datasets which confirm the quantitative results and illustrate the effectiveness of the ST-ConvMHA module on the reconstruction process. Further, considering a real-time application, the most interesting performances of the experimental results remains those of the recovery time. Our algorithm is able to reconstruct a video scene of size 8×64×64 in about one centisecond which is faster than BIRNAT by 12 times and much faster than the leader of the optmization based methods DeSCI by 730×10 +3 times. Specifically, ViT-SCI can achieve good results in only 8ms. So, it is able to perform real-time reconstruction of up to 125 measurements per second. Both the quantitative and qualitative results prove the ViT-SCI can be used as a reconstruction model in a video compressive sensing framework in real-time applications because of the good quality performances and especially the excellent recovery time.

H. Discussion

As supported by our ablation study, we want to highlight that optimizing the hyperparameters of our proposed architecture is non trivial and strongly depends on the dynamics and information content of the input videos. Owing to limitations in computational ressources, we could not achieve a fully satifying optimization of the hyperparameters. Furthermore the videos size had to be restricted to afford the training process. Theses limitations prevented our algorithm from reaching its best potential. Future researches should tackle these limitations by devising a memory optimized architecture.

V. CONCLUSION

Designing efficient video compressive sensing reconstruction algorithms has been very challenging in inverse problems. Inspired by recent advances in Deep learning and motivated by the huge success of Transformer-based architectures in NLP, we propose the first video SCI reconstruction algorithm built upon Transformers. in this model, the recovery approach is viewed as an end-to-end decoding task. The proposed approach, trained on DAVIS dataset, achieves state-of-the-art quality performance on 6 different simulation datasets. Also, it is much faster than all existing approaches since it is able to perform real-time acquisition and reconstruction of up to 125 measurements per second. A complete ablation study is provided to justify the choice of some hyperparameters. We strongly believe that our algorithm can pave the way for more research work on video compressive sensing based on recent advances in Deep Learning. Also, we assume that ViT-SCI is now ready to be widely exploited in energy-efficient real-time applications. 

  • ViT-SCI achieves strong results on DAVIS2017 training dataset in comparison with other video SCI reconstruction algorithms based on Deep Learning architectures and optimization methods. The remaining paper is organized as follows: Section II discusses related works in video compresive sensing and Transformer based architectures. In Section III, we present the main architecture behind ViT-SCI. In Section IV, we evaluate the performance of our proposed algorithm in a video SCI context with an extensive ablation study on different hyperparameters. Finally, Section V provides conclusion and the main perspectives of our research work.
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 1 Fig. 1. Schematic of the CACTI system
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  pos is the position the corresponding dimension, d c represents the size of the channel dimension and k ∈ N s.t. k ∈ [0, d 6 ].
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 2 Fig. 2. The architecture of the proposed ViT-SCI for video reconstruction in Video Snapshot Compressive Imaging
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 5 Fig. 5. Ablation study on the effect of the frame size in training video clips: the average quality performances (Left: in terms of PSNR; Right: in terms of SSIM) on 6 test datasets
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 8 Fig. 8. Ablation study on the effect of the number of attention heads: the average quality performance(Left: in terms of PSNR; Right: in terms of SSIM) on 6 test datasets
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 16 Fig. 16. Reconstructed frames of GAP-TV, DeSCI, E2E-CNN, BIRNAT and ViT-SCI on six simulated video SCI datasets

  

  

  

  

  

TABLE VI AVERAGE

 VI PSNR(DB), SSIM AND RUN TIME(IN SEC) PER MEASUREMENT FOR DIFFERENT APPROACHES ON 6 EVALUATION DATASETS. BEST RESULTS ARE IN BOLD, SECOND BEST RESULTS ARE IN GRAY

	Algorithms	Aerial	Drop	Kobe	Runner	Traffic	Vehicle Average
		22.09	27.73	25.74	31.29	24.17	24.72	25.95
	GAP-TV [20] 0.8719	0.9141	0.7909	0.9177	0.7515	0.8700	0.8526
		8.0	8.0	8.1	8.1	8.3	8.2	8.12
		22.76	36.51	31.08	38.48	31.59	26.05	31.07
	DeSCI [22]	0.8866	0.9840	0.9278	0.9609	0.9138	0.9140	0.9311
		6168.2	6336.9	6396.5	6331.5	6215.3	6258.8	6284.5
		28.74	32.77	28.96	35.41	26.49	28.23	30.10
	BIRNAT [4]	0.9560	0.9626	0.8594	0.9337	0.8199	0.9019	0.9056
		0.1050	0.1097	0.1056	0.1057	0.1087	0.1132	0.1079
		29.21	35.40	31.25	37.67	28.15	25.40	31.18
	Ours	0.9608	0.9759	0.9047	0.9509	0.8696	0.8161	0.9130
		0.0092	0.0090	0.0089	0.0079	0.0089	0.0080	0.0086