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Abstract.
Purpose: The automatic segmentation of multiple sclerosis lesions on magnetic resonance images is an open research
task aiming to bring more reproducibility in the radiological visual assessment of the disease while reducing the
burden of this time-consuming task. The development of artificial intelligence has led to significant improvements in
computer-aided diagnosis tools for radiology. It exists several approaches for the segmentation of multiple sclerosis
lesions using convolutional neural networks. However, the small lesions are frequently neglected by those algorithms
despite their importance. We propose here an adaptable method to improve the detection of small lesions.
Approach: The problem of small lesions detection mainly comes from the under-representation of those lesions at
a voxel level and the segmentation loss function. The presented method consists in weighting the lesion importance
during the training of a convolutional neural network depending on lesion size to correct the impact of voxel lesion
imbalances.
Results: With our method, the lesion segmentation computed with the Dice score is only slightly improved but the
detection sensitivity is significantly improved at the cost of a limited augmentation of lesion false positive rate. The
F1 score has been substantially improved with the correct set of parameters. The improved prediction quality of
segmentation maps has been confirmed visually with the help of a radiologist.
Conclusions: The described method improves the lesion detection by giving more importance to small lesions during
the multiple sclerosis lesions segmentation learning, bringing a better help for radiologists towards a better impact for
the patient care.

Keywords: Artificial intelligence, multiple sclerosis, CNN, small lesions, unbalanced segmentation, detection.
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1 Introduction

Multiple Sclerosis (MS) is a chronic and autoimmune disease affecting the central nervous system

that causes disability and cognitive impairment. The disease has been estimated to touch more

than 2,000,000 people worldwide in 2016 according to Wallin et al.1 and is considered as the com-

monest non-traumatic disabling disease to affect young adults.2 The disease causes inflammatory

demyelination lesions in the brain and spinal cord that lead to axonal degeneration and eventually

neuron death as described by Baecher et al.3
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The diagnosis of the disease is based on the revised McDonald criteria4 in which the Magnetic

Resonance (MR) exam plays an important role by allowing the radiologist to assess the dissem-

ination of the lesions in space and time. Furthermore, the MR exam is particularly used for the

follow-up of the disease to spot possible new and enlarging lesions. Combined with the clini-

cal state evaluated by the EDSS score, the MRI follow-up assess response to treatment, allowing

therapeutic adjustment if necessary.5

The MR T2 sequence is set as the reference sequence to detect MS lesions as hyper-intensities,4

but T2-fluid-attenuated inversion recovery (FLAIR) images are more used in practice since it sup-

presses the hyper-intensities caused by free water while keeping lesion-related hypersignal.

MS lesions screening is performed by radiologists by comparing visually successive MR im-

ages and is considered as a daily repetitive and time-consuming task. Moreover, this implies an

obvious part of subjectivity, essentially depending on the level of expertise of the radiologist. De-

tection has been associated with high inter- and intraobserver variability.6 A performant automatic

segmentation tool for MS lesions would reduce valuable analysis time, bring more reproducibility

and give more metrics previously inaccessible.

A large number of methods for automatic segmentation of MS lesions have been proposed in

the last two decades. These methods are based on statistical models, atlases, machine learning

models and more recently by making use of deep learning as described by Danelakis et al.7 Deep

learning has been extensively used for this segmentation problem for its performances with more

than a hundred articles referenced by Shoeibi et al.8 Other methods, considered less efficient, are

gradually being abandoned.

It has been pointed out by Kaur et al.9 that one of the challenges for MS lesion segmenta-

tion is the variability of lesion size. In particular small lesions are generally less detected or less
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segmented as shown by Vang et al.,10 Coronado et al.11 and Valverde et al.12 This means that

small lesions are less segmented and detected than bigger ones because of lesion heterogeneity

in representation, size and appearance. However, the problem of small lesion detection is seldom

mentioned or addressed despite its impact on the lesion detection and the clinical value of those le-

sions. Among the top-performing methods, on the ISBI MS segmentation challenge13 leaderboard1

the lesion true positive rate (LTPR) or detection sensitivity is rarely above 55% for best methods

with a low lesion false positive rate (LFPR) often lower than 20%. It means that, in general, models

learn to favor detecting correct lesions than detecting a lot of them.

However, for the radiologist, it is more important to spot a maximum of MS lesions for

computer-aided detection (CAD) tools and especially the smallest ones. As a matter of fact, big

lesions are easy to see compared to small lesions that can be missed, especially when the lesion

load is high. In addition, for the detection of new lesions on consecutive MR exam, new lesions

are often small and difficult to spot despite their value for the diagnostic and for the treatment

adjustment. It is also simpler to discard a falsely detected lesion than to spot a not detected one

when using CAD.

A method for a better lesion detection sensitivity and particularly for small lesions is of interest

for clinical use. To the best of our knowledge, the lesion size variability problem is taking into

account during the training of a deep learning model for MS lesion segmentation only by Zhang

et al.14 In their method, they include a lesion-wise module in which all lesions are considered as

spheres with fixed volume centered on the lesion to segment to allow the model to learn lesion

detection without lesion size influence.

First we proposed a simple method for the better detection of small lesions in MS lesion seg-

1available at https://smart-stats-tools.org/lesion-challenge
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mentation using a Convolutional Neural Network (CNN). The method consists in weighting the

loss function for learning MS lesion segmentation in order to prioritize the detection of those

lesions. Then, we evaluate the weighting method on an in-house dataset and show how it can im-

prove the lesion detection for a better radiological CAD. Finally, we evaluated our method on the

ISBI-2015 dataset as an external validation of the method.

2 Materials and methods

The segmentation task consists in assigning for every pixel or voxel in 3D a class: lesion or not

lesion in our case. Whereas the detection suggests that the object of interest is spatially detected

without a voxel-wise constraint, and is most of the time associated with bounding boxes. We can

see segmentation as a particular case of detection. Therefore, the segmentation quality has been

used for white matter and MS lesion to reflect the detection though it is a wrong oversimplification

of the problem as pointed out by Carass et al.15 A good segmentation score can be associated with a

low detection although the detection is, in fact, the most radiologically valued. As a matter of fact,

it is more important to spot any potential lesions than to be absolutely correct on their real volumes

and edges, though both properties are of interest. It is then important to define radiologically

relevant metrics to evaluate, design and train automatic algorithms for MS lesion segmentation

and detection.

2.1 Metrics

For white matter and MS lesion segmentation, the Dice score metric has become a golden-standard

for validating the segmentation quality.15 However, it is a segmentation measurement at a voxel

point of view that does not necessarily reflect the lesion detection. The lesion detection is generally
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evaluated with the F1 score that relies on the same principles but is computed at the lesion scale

instead of the voxel scale.

Both metrics come from the Sørensen formula:

SD =
2|X ∩ Y |
|X|+ |Y |

, (1)

where X and Y are two sets and | · | is the cardinality operator. In the binary context, where only

two classes exist, the Sørensen-Dice can be written:

SD =
2TP

2TP + FP + FN
= 2

PPV × TPR

PPV + TPR
, (2)

where TP is the number of true positives, FP the number of false positives, FN the number of

false negatives, TPR = TP
TP+FN

is the true positive rate or sensitivity and PPV = TP
TP+FP

is the

positive predictive value or precision.

In this paper we adopt the definition of Dice score and F1 score as Carass et al.13 The segmen-

tation Dice score is computed at voxel level whereas the F1 score is computed at a lesion level.

By considering voxel-wise previously described metrics with V prefix and L prefix the lesion-wise

metrics, the Dice and F1 score can be written:

Dice =
2V TP

2V TP + V FP + V FN
= 2

V PPV × V TPR

V PPV + V TPR
, (3)

F1 =
2LTP

2LTP + LFP + LFN
= 2

LPPV × LTPR

LPPV + LTPR
, (4)

where LTP counts lesion overlap between lesion masks, LFP counts predicted lesions that are
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not in the ground truth mask and LFN counts lesions in the ground truth mask that are not in the

predicted mask as formalized by Carass et al.13 Both metrics are the harmonic mean of precision

and sensitivity but computed at a voxel scale for the Dice score and at a lesion scale for the F1

score. They measure then the similarity of two sampled as a compromise between detecting a

maximum of elements in the ground truth (sensitivity) and predicting a minimum of elements that

are not in the ground truth (precision). A common metric used in lesion detection is the lesion false

positive rate LFPR = LFP
LFP+LTP

= 1− LPPV as described by Zhang et al.14

2.2 Lesion size weighting

When applied to MS lesion segmentation, both Dice and F1 score are expected to be maximized

to have a good lesion and voxel lesion detection. However, the implementation of a differentiable

loss function based on F1 score is in practice really complex and that explains why the Dice loss

is generally used.16

The problem of Dice loss is that it is computed at a voxel level, meaning that the lesion scale

is not taken into account at all in the learning. When applied on MS lesion segmentation with

different lesion sizes, this leads the model to learn with more voxel from big lesions than from

voxel from small lesions since their volume is negligible compared to big ones. Since big lesions

are easier to spot and the most prevalent, it conducts the trained model to avoid segmenting small

lesions that do not account much in the loss for a big batch though false positive are still penalized.

It is then observed in most methods that the Dice score is high, the LFPR is close to 0 and the

LTPR close to 0.5, meaning that the model segments almost every time big lesions but does not

take the risk to detect more difficult one (the smallest).

The objective of the presented method is to formalize a differentiable loss function for segmen-
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tation that gets closer to the lesion detection F1 score and especially increases the lesion sensitivity

or LTPR for small lesions. To meet those expectation, the method aims at increasing the impor-

tance of small lesions, which are neglected by most voxelwise segmentation trained models due to

the over-representation of large lesion voxels and to the loss functions.

To give more importance to small lesions, we designed a lesion voxel-weighting method de-

pending on lesion size. The visible lesions on classical MR images vary in volume in a large range

from less than 1 mm3 to a few cm3. A simple linear weighting is not relevant since the volume

range is too large for such a mapping and would either not give enough importance to small lesions

or to big ones. The proposed weighting method is designed:

• to be decreasing or stagnating with lesion size,

• to have a configurable decay to adjust the small and big lesions weight contrast,

• to have limited sensitivity to small size variations in the beginning nor to separate big from

very big lesions from a certain threshold.

The designed weighting method is based on logistic functions for their interesting properties

and “S” shape. Weighting function ω : R+ 7→ R+ is defined as:

ω(vles) = wmax −
(wmax − wmin)

1 + α× e
−kvles
range

, (5)

where vles is the lesion volume, wmax is maximum weighting value, wmin is the minimum weighting

value, α sets the x-axis translation of the curve, range ∈ R+ sets the v range between the minimum

and maximum asymptotes of the curve and k defines the steepness of curve. Weighting function is

illustrated in Figure 1.
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Fig 1 The lesion size weighting function ω(vles) with wmax, wmin, range parameters illustrated

Parameter α is set to have the inflexion point in the middle of the range, which is equivalent

by symmetry to solve:

wmax − ω(0) = ω(range)− wmin =⇒ α =
√
ek.Amax (6)

In practice, wmax, k and α has been considered as constants and the two parameters of interest are:

• wmin which sets the weighting contrast between small and big lesions,

• range that sets the decreasing speed and the threshold between small and big lesions.

In order to improve the lesion detection, and small lesion detection in particular, parameters wmin

and range of the weighting function are investigated in this study.
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2.3 Loss function

The loss function used is basically a weighted Dice loss function calculated at a voxel level. To

weight the lesion voxel depending on the lesion volume, the mapping of weighting function Ω

is firstly generated assigning for each lesion voxel position the value of ω(vles) where vles is the

volume of the lesion in which the voxel belongs. Weighted Dice loss function is written:

WD(P, P̂,Ω) = −2

B∑
b=1

H∑
h=1

W∑
w=1

D∑
d=1

Pb,h,w,dP̂b,h,w,dΩb,h,w,d

B∑
b=1

H∑
h=1

W∑
w=1

D∑
d=1

Pb,h,w,d + P̂b,h,w,d

, (7)

where B ∈ N+ is the batch size, H ∈ N+ the height, Ω ∈ N+ the width, D ∈ N+ the depth,

P ∈ {0, 1}BHWD the ground truth segmentation and P̂ ∈ [0, 1]BHWD the model prediction. The

loss function, by definition, gives more importance to matched voxel with a high weight. It, then,

leads the model to increase its sensitivity for high-weighted voxels that are voxels belonging to

small lesions in this case.

2.4 CNN architecture

The U-net architecture, originally used for segmentation in electronic and photonic microscopy17

has been extensively used for segmentation tasks and particularly in medical images. It has become

a reference architecture for pixel- and voxelwise segmentation and has been successfully adapted

for MS lesion segmentation by multiple research teams. The top-performing methods of MS lesion

segmentation (from Zhang et al.,14 Isensee et al.,18 Kang et al.19) on the ISBI MS segmentation

challenge,13 use U-net like architectures.

We used the MPU-net++2CBND architecture,20 renamed MPU-next in this article. It is a light
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Fig 2 The architecture of the MPU-next model, also referred as MPU-net++2CBND in a previous article.20

U-net-like architecture illustrated in Figure 2. The MPU-next architecture has been designed to be

very light with 22 convolutional layers and 37, 935 learning parameters only. It has been chosen

for its good segmentation performance on small datasets20 and its fast convergence because of its

lightness.
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2.5 Dataset

2.5.1 In-house dataset

We used an in-house dataset from the university hospital of Poitiers gathered by the I3M labora-

tory as dataset for the lesion size study. This dataset is used for the study since it contains high

resolution FLAIR images and to be able to compare the segmentation prediction with the radiolo-

gist who annotated the images. In this way, the radiological feedback of the method comes from

the annotator itself that can confront the prediction and its segmentation. The dataset contains

FLAIR cerebral MR images from 35 different MS diagnosed patients of the university hospital of

Poitiers. Only FLAIR images were gathered since it is the most clinically valued sequence for MS

lesion detection and also the most important for learning.21 The FLAIR images have been acquired

sagittally with a resolution of 1 × 0.5 × 0.5 mm3 resolution by a Verio and a Skyra Siemens MR

scanners with a 3 Tesla magnetic field. The segmentation masks were segmented slice by slice for

each exam by the same radiologist on not preprocessed FLAIR images.

The training set is composed of 20 FLAIR images and the testing set by 15 FLAIR images. The

size of the training set is enough with the light architecture used since 10 images are sufficient.20

The MR images have been carefully distributed in each set equitably regarding the lesion profile

(ie the lesion sizes, locations, density) to make training and testing set as much representative and

comparable as possible.

For the training and testing images were preprocessed by 1mm3 isometric resampling to work

on cubic voxel with a good compromise between memory space and lesion size. Images are skull-
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stripped with the BrainSuite extractor tool, histogram matched22 and the intensities are centered

and reduced to having comparable and in a small range around zero.

2.5.2 ISBI-2015 dataset

The ISBI 2015 MS segmentation challenge132 dataset has been used to compare and validate the

method with other existing methods thanks to the online open submission.

The ISBI training dataset is composed of 21 preprocessed MR exams from different time points

(4 to 5) of five different patient. The exams consist in T1, T2, FLAIR and Proton Density (PD)

images. Ground truth segmentations from two different radiologists are provided for each exam.

The testing dataset is composed by 61 exams from 14 different patients acquired in another

MR scanner. For those examples, the ground truth segmentation is not provided.

All the images have been preprocessed by the challenge organization including registration

steps and 1× 1× 1mm3 resampling. Note that the FLAIR image acquisition resolution is thicker

than the in-house FLAIR images with voxel size of 0.8× 0.8× {4.4, 2.2}mm3.

2.6 Training and testing

Since the best set of parameters {wmin, wmax, range, k, α} is unknown, multiple configurations

have been evaluated. In practice, parameter wmax has been set to wmax = 10, to ensure the loss to

be big enough when wmin is close to 0, given the rare occurrence of small lesion voxels, to avoid

gradient issues due to the float precision when the model begins to be trained. The k parameter

has been fixed in order to be close enough to each asymptote when vles = 0 and vles = range. We

set k = 10 to be close to the asymptote at those points with a distance of ≈ 0.06. Then α is set to

√
e10 = e5 following Equation 6.

2leaderboard available at https://smart-stats-tools.org/lesion-challenge
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In total, 32 combination of weighting parameters wmin and range have been tested, the cor-

responding profiles of the corresponding weighting function are provided in Figure 7 of the ap-

pendix.

Each learning is initiated with the exact same model with the MPU-next architecture initialized

uniformly23 with the same values in order to evaluate the trained model performances without the

initialization factor. Following previous work,20 the model is trained with 32× 32× 32 patch with

a 2, 048 batch size. The models are trained with 6, 144 patches randomly extracted in the brain

volume of each training exams each epoch and are trained 40 epochs. The Adam optimizer24 is

used with a learning rate of 0.0004.

The predictions are generated per patch regularly spaced by 8 voxels in each spatial direction

and spatially averaged to obtain the predicted image. The prediction map is resampled and regis-

tered to the original resolution, it is then binarized with a threshold of 0.5 before being evaluated.

Every test segmentation prediction is evaluated with the Anima segmentation performance

analyzer script3.

3 Results and analysis

The problem of detecting small lesions is not obvious in most evaluations because most segmen-

tation are evaluated regardless of lesion size and metrics are mostly aggregated into statistical

descriptors calculated by patient with truly distinct lesion profiles. We propose here to deepen the

problem of lesion detection and segmentation through analysis at the patient and lesion level. In

this section, we show how it is important to consider the lesion size and discuss the improvements

3https://anima.irisa.fr/
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brought by our method.

3.1 The lesion size

The size-adaptative method is based on the observation that the described model trained with the

common Dice loss gives an acceptable Dice score but a bad F1 score when averaged by patients.

So, even if the voxel-wise segmentation is acceptable, the quality of lesion detection is low. The

performances vary a lot from an exam to another and are particularly low for patients with small

and few lesions.
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Fig 3 The frequency of lesions depending on the lesion volume in the in-house dataset in (a) and the frequency of
voxels depending on the lesion volume they belong to (b). The volume range is not linear to avoid flatten representation
due to a large volume range. The frequencies are calculated on the test set to be comparable with other results.

In Figure 3(a) 2% of lesions are less than 3mm3, 10% of lesions have a volume in [3, 5], 17%

of lesions have a volume in [5, 10] and 55% of lesions have a volume inferior to 26 mm3 in the

test set. This indicates that most of the lesions are really small lesions with a volume inferior to 26

mm3. But, compared to the voxel representation of those lesion in Figure 3(b), the small lesions
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with a volume inferior to 26 mm3 represents less than 4% of voxels whereas very large lesions

with a volume superior to 1000 mm3 represent 63% of lesion voxels whereas they represent only

3% of lesions. This phenomenon is a problem since segmentation losses is computed at a voxel

level and results in a over-representation of big lesion voxels.

3.2 Size-adaptative method

The size adaptative method is always compared to the performances of the model learned without

weighting, with the Dice loss.

3.2.1 Patient-wise

Dice F1 LTPR LFPR
0.5990 0.4883 0.4490 0.4236

Table 1 Average performances of the model trained with the simple Dice loss for an exam of the in-house test set.
LTPR is the lesion detection sensitivity and LFPR is the lesion false positive rate.

In Figure 4 and Table 1, we can see the voxel-wise segmentation performances in Dice score

and detection performances in terms of F1 score, LTPR and LFPR averaged per patient.

For all metrics, we observe different behaviors when wmin ≤ 0.01. For each metric, when

wmin ≤ 0.01 and range ≤ 100, the worst performances are obtained, lower than the scores ob-

tained without weighting in Table 1. This indicates that the rapid and abrupt separation of large

and small lesion weights (see Figure 7 in appendix) leads to an overall decrease in lesion detection

and segmentation quality. When the range increases with the same values of wmin, we observe an

improvement which shows that by keeping the same values of weights, but spreading them more

over the size range, the model learns to detect more lesions and segment them better.
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Fig 4 Average performances of the model trained with weighted Dice loss with the set of tested parameters wmin

and range for an exam of the in-house test set. Voxel-wise segmentation is measured in Dice score (a), the lesion
detection is measured in F1 score (b), in LTPR (c) and in LFPR (d). For each metric, the color blue indicates that the
value is inferior to the corresponding metric of the model trained without weighted Dice loss (Table 1) and the red
color indicates that it is superior.

In Figure 4, we observe that by decreasing wmin to 2, and 1, and decreasing range to 100

and 50 there is an increase in Dice score, F1 and LTPR while there is no real trend on LFPR. The

LFPR is even higher than without weighting for almost every weighting function evaluated. This

observation remains consistent with the weighting which is designed to improve the detection of

small lesions that are generally more difficult to spot and more easily confused with healthy brain

structures.

The weighting functions tested in Figure 4 only slightly improve the Dice score up to 0.6103 for
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wmin = 2 and range = 50 compared to 0.5990 without weighting in Table 1. Voxel segmentation

is thus slightly improved, however, lesion detection is drastically improved with an F1 score up

to 0.5943 for the same values of wmin and range compared to an F1 score of 0.4883 without

weighting. The gain in F1 score is explained by the drastic increase in LTPR brought by the

method up to 0.7289 on average for wmin = 1 and range = 50. On the other hand, the LFPR

is slightly higher between 0.45 and 0.5 for the best F1 scores against 0.4236 without weighting.

This behavior is consistent with the objective of method to detect more lesions and particularly the

smallest ones. In fact, without weighting, the learned model detects less than half of the lesions

with a LFPR close to 42% whereas with the right set of weights we can detect more than 68%

of the lesions or even 73% in average per patient with a higher LFPR of 3% to 8%. In these

cases, weighting increases drastically the lesion detection with an F1 score around 0.59 against

0.49 without the proposed method.

On average (per patient), the best segmentations and lesion detections are achieved for wmin =

2 with range = 50 with better (lower) LFPR also and for wmin = 1 with range = 50 for better

TPR. Matching these results with the weighting model, we have the best detection performance

by weighting small lesions 5 to 10 times more than large lesions with a progressive separation of

lesions by volume up to 50mm3.

3.2.2 Lesion-wise

Figure 5 shows the detection capacity of the model trained with the best sets of weighting pa-

rameters ie wmin ∈ {1, 2} and range ∈ {50, 100} depending on lesion size. The same analysis

performed on all tested weighting functions is available in Figures 8, 9 and 10 of appendix. In

Figure 5 it appears plainly that the presented method improvement comes from a significantly bet-
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Weighted Dice LossDice Loss

(a) LTPR (b) LFPR(a) LTPR
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Fig 5 The lesion detection in LTPR (a), LFPR (b) and F1 score (c) depending on the lesion volume in mm3 of the
four best weighting functions in blue with range ∈ {50, 100} and wmin ∈ {1, 2} and without weighting in red. The
performances of all tested weighting functions are available in Figures 8, 9 and 10 of appendix. Computed on the
in-house test set.

ter LTPR. It means that more small lesions are detected with the method. However, the LFPR, ie

the rate of false lesions detected among all predicted lesions, is slightly higher in general, but not

as far as the sensitivity is improved. It means that, with the weighting method, the model learns a

new lesion detection compromise between sensitivity and precision and detects far more lesions at

the cost of detecting some not existing ones.
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The F1 score, more commonly used to assess the detection performance, is the harmonic mean

of LTPR and PPV (1 - LFPR). The F1 score of best methods depending on the lesion volume is

illustrated in Figure 5(c). In this figure, the benefit of the proposed weighting method in lesion

detection is mostly for small lesions with volume in [3, 25]mm3. However, compared to the distri-

bution of lesion size in Figure 3(a), the lesions with volume in [3, 25] mm3 represents more than

52% of lesions. So, the proposed method improves the detection of small lesions that represents

more than half of lesions. The smallest lesions with a volume less than 3mm3 do not have a good

F1 score since the LFPR is very high for those lesions despite the good LTPR up to 75% depending

on weighting parameters range and wmin.

To summarize, the proposed method, with the right set of parameters, improves the detection

of small lesions, and particularly the detection sensitivity. Small lesions are the most represented

lesions and also the more difficult to spot for a radiologist. The proposed method, then, helps to

improve the value of automatic MS lesion segmentation tools for radiologists where it is the most

valued.

3.3 Radiological confirmation of the method

The radiological assessment of the method was performed on multiple test patients with different

weighting parameters sets. For clarity, we have illustrated the observations with the example in

Figure 6.

In this figure, we observe, for this example, at first that the unweighted segmentation (the

reference) and the radiologist segmentation are very close, except for a small lesion not segmented

by the model near the gray matter of the right brain cortex. Some parts are over-segmented and
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Fig 6 Visualization of ground truth segmentation and predicted segmentations on an example of the in-house dataset
without weighting and with weighting functions with range ∈ {50, 1000} and wmin ∈ {0.1, 2, 6}.

others under-segmented compared to the reference segmentation. When wmin = 0.1, we observe

that the largest lesions are not segmented at all, indicating that the smallest lesions are overly

favored during training. However, with range augmenting from 50 to 1,000, the model tends to
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segment bigger lesions which is consistent with weighting model.

The segmentation for wmin = 6 is very close to the unweighted segmentation which is consis-

tent with the results in Figure 4 and is explained by only a small difference in weighting between

different lesion sizes.

For wmin = 2, new small lesions are segmented that are not on the radiological segmentation.

However, after verification, these are edges of lesions that were not segmented, very small lesions

that were not seen on the radiological segmentation and one false positive lesion. With wmin = 2,

we observe that the increase of range from 50 to 1000 eliminates the smallest segmented lesions,

which remains consistent with the weighting function, indeed, the passage from large to small

lesions is more progressive and spread out, which decreases the importance of very small lesions.

From observation of the predicted segmentations, we see that with wmin values approaching 0,

there is a tendency to ignore large lesions and prefer only smaller ones. For wmin values at 2 and 1

and range values at 50 and 100, we observed very good segmentations with some false negatives.

Several small lesions that are not detected without weighting are detected with this weighting.

More generally, when observing the different segmentations, we found that the best performing

models tend to segment more widely at the edge of lesions than the reference radiologist segmen-

tation, thus lowering the Dice score without influencing the radiological analysis of the segmen-

tation itself. The noisiest images were also the images on which the models performed the least

well, however, the models were not trained with data augmentation which could have alleviated

this problem, at least in part. The learned models segmented fewer lesions at the base of the skull.

In fact, this area contains artifacts that creates local hyper-intensities that are not lesions and it

contains few lesions in general. The models have therefore learned to recognize this area and to

avoid to segment any hypersignals in this volume.
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A few lesions have been confirmed to be missed by our radiologist but segmented by the model.

This last observation points out an interesting fact: an automatic segmentation model, although

imperfect, can help a practitioner by detecting lesions that are not very prominent or too small to

be obvious, especially with our weighting method.

3.4 Evaluation on the ISBI-2015 challenge dataset

The method has been trained on the ISBI-2015 challenge dataset and evaluated by the organization

on their test set. The models were trained with every available MR sequence provided (T1, T2,

FLAIR and Proton Density) in order to stay consistent with the challenge and to allow the model

to work not only with upsampled FLAIR image to grasp the brain anatomy in working resolution.

Data augmentation has also been performed in order to help the model to generalize and to improve

prediction on unseen data domain since the test dataset is not acquired with the same machine.

The data augmentation performed consists in random flip in 3 dimensions, random blur, random

gaussian noise and random anisotropy as implemented in the TorchIO library.25

The method is evaluated and compared on the ISBI-2015 challenge dataset on Table 2. Our

method outperforms the other known published attempts in terms of lesion sensitivity with a LTPR

of 0.623 for wmin = 1 and range = 100. However, the LFPR reaches 0.457, F1 score is 0.521 and

the Dice score is 0.576 which are outperformed by most of other recent approaches in Table 2.

Compared to the unweighted method, the weighted MPU-next with wmin = 1 and range = 100

allows a substantial gain in Dice score (+0.060), F1 score (+0.106), LTPR (+0.301) for a loss of

0.215 in LFPR.

Surprisingly, the other evaluated weighting parameters ({wmin = 1, range = 50}, {wmin =

2, range = 50}, {wmin = 2, range = 100}) did not perform as well as in Figure 4 computed
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Method Dice F1 LTPR LFPR
Weighted MPU-next wmin = 1, range = 100 (ours) 0.576 0.521 0.623 0.457

Multi-view CNN26 0.627 0.533 0.568 0.498
All-Net14 0.639 0.663 0.533 0.122
nn-Unet18 0.679 0.645 0.523 0.159

Weighted MPU-next wmin = 2, range = 100 (ours) 0.561 0.505 0.495 0.356
Ensembling Models27 0.622 0.645 0.491 0.151

Multi-Dimensional GRU28 0.629 0.605 0.487 0.201
Geo-loss29 0.643 0.618 0.480 0.132

Weighted MPU-next wmin = 1, range = 50 (ours) 0.463 0.524 0.476 0.293
Location-aware CNN30 0.501 0.426 0.429 0.577

Imagine focal31 0.584 0.569 0.414 0.087
Multi-branch CNN32 0.611 0.556 0.410 0.139
Cascaded 3D CNN33 0.630 0.512 0.367 0.153

Weighted MPU-next wmin = 2, range = 50 (ours) 0.449 0.451 0.365 0.255
MPU-net34 0.632 0.429 0.347 0.347

MPU-next without weighting 0.516 0.415 0.322 0.242
Table 2 Comparison of average performances on the ISBI-2015 challenge dataset with known published attempts and
our method with weighting functions with range ∈ {50, 100} and wmin ∈ {1, 2} and without weighting ordered by
LTPR.

on the in-house dataset used for the rest of the study. This can be explained by the fact that the

in-house dataset and the ISBI-dataset have a really different lesion size distribution and so the

optimal weighting setting is different. As a matter of fact, the in-house dataset has been segmented

on FLAIR images acquired with a fine resolution of 1 × 0.5 × 0.5 mm3 against an acquisition

resolution of 0.8× 0.8× {4.4, 2.2} mm3 for the ISBI-2015 training FLAIR images which results

in augmenting the minimal discernible lesion size.

4 Discussion

The automatic MS lesion segmentation can be included into CAD systems for helping radiologists

in a daily, tiring and time-consuming task. Given, the context of the disease, it is radiologically

more valuable to detect any lesion suspicion than to be sure on prediction. Indeed, it is easier to

discard a false detected lesion (such as artifacts or non pathological thin hyperintensities in con-
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tact with the ventricles) than to spot undetected lesions. In clinical practice, it is essential for the

follow-up not to miss any new lesion, even if it is very small, because that may change the medical

care. Moreover, the detection is crucial when assessing the spatial and temporal dissemination of

lesions that are required for the diagnostic. However, most performing methods for MS lesion seg-

mentation, rely on voxel-wise classification losses that give more importance to big lesion voxels

even if small ones have a better radiological value. It results, most of the time, in a competitive

voxel-wise segmentation with a limited capacity to detect small lesions. In this work, we focused

on giving more importance to small lesions, during model training, in order to improve small lesion

detection for a better radiological value.

We showed that, with our weighting method, we can significantly improve the small lesion

detection and the lesion detection in general since small lesions are the most frequent. The lesion

detection is improved in terms of sensitivity with a LTPR improvement of 0.28 on our in-house

dataset and of 0.30 on the ISBI-2015 challenge test set. This improvement is accompanied by an

improved Dice score of about 0.01 on our in-house dataset and 0.06 on the ISBI-2015 test set and

an increased F1 score from 0.49 to 0.59 on our in-house dataset and from 0.415 to to 0.521 on the

ISBI test. The LFPR, however, increases up to 0.8%.

Small lesions are the more difficult to discover, especially when the lesion load is important.

Furthermore, the new lesions on successive MR exams are the most crucial to detect in spite of

their often limited size. The presented method has an important radiological significance given

the applied context, since less perceptible lesions are more spotted and the overall sensitivity is

improved. The high LFPR on smallest lesions can be partially explained by the existing difficulty

to detect those lesions by radiologists and consequently by the absence of some of these small

lesions in the segmented ground truth. Cases of missing segmented lesions in our in-house dataset
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have been observed resulting in wrong false positive leading to a biased increase of LFPR. In the

same way, in the ISBI-2015 dataset, some lesions, especially small ones, were spotted by only one

radiologist segmentation over the two available pointing out the difficulty of spotting small lesions.

The weighting method has, however, to be adapted depending on the dataset and acquisition

resolution. More the resolution is fine more the small lesions have to account in the segmentation

loss of the learning model. The proposed weighting can be easily reused with other models and

methods in order to improve the lesion detection and the radiological contribution for a better

adoption of such tools for a better patient care.

Appendix A: Additional figures and results

The appendix contains the profile of all tested weighted function ω in Figure 7. It also gather the

performances in terms of LTPR (Figure 8), LFPR (Figure 9) and F1 score (10) when training with

those weighted functions depending on the lesion size on the in-house dataset.

25



0

5

10

w
m

in
 =

 8
.0

0

5

10

w
m

in
 =

 6
.0

0

5

10

w
m

in
 =

 4
.0

0

5

10

w
m

in
 =

 2
.0

0

5

10

w
m

in
 =

 1
.0

0

5

10

w
m

in
 =

 0
.1

0

5

10

w
m

in
 =

 0
.0

1

0 500 1000
range = 50

0

5

10

w
m

in
 =

 0
.0

01

0 500 1000
range = 100

0 500 1000
range = 500

0 500 1000
range = 1000

Fig 7 Profiles of the tested weighting functions ω. wmax is set to 10 and only wmin and range are varying. range sets
the distance between the maximal and minimal asymptotes and wmin gives the minimum weighting value associated
to the largest lesions.
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Fig 8 The lesion detection sensitivity (LTPR) depending on the lesion size with all tested weighting functions ω with
varying wmin and range in blue and without weighting in red. Computed on the in-house test set.
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Fig 9 The lesion detection false positive rate (LFPR) depending on the lesion size with all tested weighting functions
ω with varying wmin and range in blue and without weighting in red. Computed on the in-house test set.
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Fig 10 The lesion detection F1 score depending on the lesion size with all tested weighting functions ω with varrying
wmin and range in blue and without weighting in red. Computed on the in-house test set.
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