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Observation of a non-equilibrium superradiant phase transition in free space

We observe a non-equilibrium phase transition in a driven dissipative quantum system consisting of an pencilshape cloud of up to N ≈ 2000 laser-cooled atoms in free space, optically excited along its main axis. We find that our data are well reproduced by the Driven Dicke model, which assumes a sub-wavelength sample volume, by simply using an effective atom number. By measuring the excited state population of the atoms and the light emitted in the superradiant mode, we characterize the dynamics of the system and its steady-state properties. In particular, we observe the characteristic N 2 scaling of the photon emission rate in the superradiant phase, thus demonstrating steady-state superradiance in free space. Finally, we observe a modification of the statistics of the superradiant light as we cross the phase transition.

Systems of interacting quantum particles at equilibrium exhibit collective phenomena such as the existence of phases and transitions between them. These phases result from an interplay between interactions and the action of external parameters. Many efforts are currently under way, in particular in a quantum simulation approach, to understand equilibrium properties of quantum many-body systems [START_REF] Georgescu | Quantum simulation[END_REF]. Recently, a new class of systems has emerged where dissipation, external drive and interactions compete and give rise to non-equilibrium phases that would not exist without the drive (e.g. [START_REF] Parmee | Phases of driven two-level systems with nonlocal dissipation[END_REF][START_REF] Olmos | Steady-state properties of a driven atomic ensemble with nonlocal dissipation[END_REF][START_REF] Parmee | Signatures of optical phase transitions in superradiant and subradiant atomic arrays[END_REF][START_REF] Muniz | Exploring dynamical phase transitions with cold atoms in an optical cavity[END_REF]). In such systems, phase transitions could occur without the breaking of any symmetry, but with a local order parameter, in stark contrast with both the Landau theory of phase transitions at equilibrium and the case of topological transitions [START_REF] Hannukainen | Dissipation-driven quantum phase transitions and symmetry breaking[END_REF]. One of the simplest drivendissipative quantum systems consists of an ensemble of twolevel atoms, enclosed in a volume smaller that the wavelength of the atomic transition cubed, as described by Dicke [START_REF] Dicke | Coherence in spontaneous radiation processes[END_REF], but now driven by a classical light field [START_REF] Hannukainen | Dissipation-driven quantum phase transitions and symmetry breaking[END_REF][START_REF] Agarwal | Collective atomic effects in resonance fluorescence[END_REF][START_REF] Narducci | Transient and steady-state behavior of collective atomic systems driven by a classical field[END_REF][START_REF] Carmichael | Hysteresis in the spectrum for cooperative resonance fluorescence[END_REF][START_REF] Walls | Non-Equilibrium Phase Transitions in Cooperative Atomic Systems[END_REF][START_REF] Walls | Cooperative fluorescence from n coherently driven two-level atoms[END_REF]. In this socalled driven Dicke model (DDM), the competition between collective coupling of the atoms to the driving field and their cooperative decay was predicted to lead to a transition between a phase where all the atomic dipoles are phaselocked forming a collective dipole coherently driven by the light, and a phase governed by superradiant spontaneous emission [START_REF] Hannukainen | Dissipation-driven quantum phase transitions and symmetry breaking[END_REF]. This model is also expected to exhibit a new type of time crystals [START_REF] Iemini | Boundary time crystals[END_REF]. Besides its fundamental interest, steady-state superradiance is used in cavity systems to generate superradiant lasers [START_REF] Meiser | Prospects for a millihertz-linewidth laser[END_REF][START_REF] Bohnet | A steady-state superradiant laser with less than one intracavity photon[END_REF][START_REF] Norcia | Cold-strontium laser in the superradiant crossover regime[END_REF][START_REF] Laske | Pulse delay time statistics in a superradiant laser with calcium atoms[END_REF][START_REF] Schäffer | Lasing on a narrow transition in a cold thermal strontium ensemble[END_REF], a novel kind of metrologically stable laser sources. Finding cavity-free configurations sustaining steady-state superradiance could simplify experiments and be of interest in metrology.

A key feature of the DDM is the identical (cooperative) coupling of all the atoms to the electromagnetic field, a fact automatically ensured in sub-wavelength samples. However, confining an ensemble of emitters in a sub-wavelength volume is experimentally very challenging in the optical regime. For extended ensembles, the condition of cooperative coupling to the field has thus been realized by placing the emitters in a cavity where they share the same electromagnetic mode * giovanni.ferioli@institutoptique.fr [START_REF] Ritsch | Cold atoms in cavity-generated dynamical optical potentials[END_REF]. Superradiant phase transition [START_REF] Baumann | Dicke quantum phase transition with a superfluid gas in an optical cavity[END_REF][START_REF] Klinder | Observation of a superradiant mott insulator in the dicke-hubbard model[END_REF] and lasing has been observed in this system. Here instead, we realize the DDM in free space, using a pencil-shape cloud of cold atoms, optically excited along its main axis. By measuring both the atomic and photonic degrees of freedom, we observe the transition between the two non-equilibrium phases predicted by the model.

The DDM describes an ensemble of N two-level atoms (states |g and |e ) as a collective spin Ŝ± = ∑ N i=1

σ ± i (here σ - i = |e i g i | = ( σ + i ) † )[22]
. The indiscernability of the atoms with respect to the field restricts the accessible states to the permutationally symmetric ones, |S = N/2, m = -S, ..., S , which form a ladder (see Fig. 1a). The Hamiltonian describing the interaction of this collective spin with a classical light field, resonant with the single-atom transition, is ĤL = (hΩ/2)( Ŝ+ + Ŝ-), with Ω the Rabi frequency. The dynamics of the collective spin is governed by the equation:

dρ dt = - i h [ ĤL , ρ] + Γ 2 (2 Ŝ-ρ Ŝ+ -Ŝ+ Ŝ-ρ -ρ Ŝ+ Ŝ-) , (1) 
where the last term describes the collective spontaneous emission (here Γ is the single-atom decay rate from |e ). In steady-state, this model supports two non-equilibrium phases, depending on the ratio between the drive and the collective dissipation β = 2Ω/(NΓ) [START_REF] Hannukainen | Dissipation-driven quantum phase transitions and symmetry breaking[END_REF]22]. For β < 1, the atomic dipoles phase-lock and the ensemble develops a collective dipole Ŝst = -iΩ/Γ, as represented in Fig. 1(b). As β increases, so does the amplitude of the dipole until it reaches its largest value N/2 for β = 1. Conversely, the total magnetization Ŝz st decreases to 0. For β 1, all the states of the ladder are equally populated (see Fig. 1a), the collective dipole vanishes and superradiance dominates with the characteristic N 2 scaling of the photon emission rate. We will refer to the β < 1-phase as magnetized and the β > 1one as superradiant. In the limit N → ∞, the value β = 1 corresponds to the critical point of a second order phasetransition. These are the two phases that we observe and characterize here.

Our experiment (see Fig. 1c) [START_REF] Glicenstein | Preparation of one-dimensional chains and dense cold atomic clouds with a high numerical aperture four-lens system[END_REF] relies on a cloud of up to 2000 laser-cooled 87 87 Rb atoms is prepared in a dipole trap (not shown), placed between four high-numerical aperture lenses. A resonant laser beam propagates along the main axis of the cloud (1/e 2 -radius of 5 µm). Its linear polarization is perpendicular to the magnetic field B, so that only the σ + component of the light drives the atoms. The emitted light is collected in two different directions by two fiber-coupled avalanche photodiodes, APD// and APD⊥, operating in single photon counting modes. APD⊥ gives access to the atomic excited state population (magnetization). A spatial filtering (SF) separates the laser light from the one emitted axially by the cloud, so that APD// measures the rate of superradiant light emission γ SR (t).

field. The ensemble has axial and radial sizes ax = 20 -25λ and 0.5λ . The mean distance between atoms in the cloud is r ∼ 3/k, so that the coherent dipole interactions can be neglected, especially considering the large driving intensity used in the experiment [22,[START_REF] Glicenstein | Collective shift in resonant light scattering by a one-dimensional atomic chain[END_REF]. As shown below, this pencilshape ensemble of two-level atoms driven along its main axis realizes the DDM, valid for sub-wavelength sample, by simply considering an effective atom number Ñ = Nµ. The parameter µ ∼ ∆Θ/(4π) characterizes the coupling of the extended cloud to its diffraction mode extending over a solid angle ∆Θ [22, [START_REF] Gross | Superradiance: An essay on the theory of collective spontaneous emission[END_REF][START_REF] Allen | Optical resonance and two-level atoms[END_REF][START_REF] Sutherland | Superradiance in inverted multilevel atomic clouds[END_REF], and Ñ is equivalent to the N-atom cooperativity in cavity systems [START_REF] Ritsch | Cold atoms in cavity-generated dynamical optical potentials[END_REF]. Here µ ∼ λ /(2π ax ), allowing us to reach Ñ ∼ 10, a value sufficiently large to observe the crossover between the two non-equilibrium phases of the DDM. After optically pumping the atoms in |g and switching off the trap for ∼ 500 ns, we excite the cloud with 150 ns-long pulses of a resonant laser beam propagating along its main axis. We repeat this procedure 30 times on the same cloud and average over ∼ 2000 clouds. We measure the number of emitted photons in two orthogonal directions with avalanche photodiodes (APDs). The first one (APD⊥), radially aligned, is sensitive to the excited state population n e (t), related to the magnetization s z (t) = 2n e (t) -1. This quantity acts as an order parameter for the system. The second one (APD//) measures the photon emission rate in the superradiant mode γ SR (t) = Γ Ŝ+ Ŝ- [START_REF] Allen | Optical resonance and two-level atoms[END_REF][START_REF] Ferioli | Laser-driven superradiant ensembles of two-level atoms near dicke regime[END_REF].

We start by investigating the dynamics of the magnetization during the application of a laser excitation pulse. First, we fix the Rabi frequency of the laser driving to Ω = 4.5Γ and vary N. Examples of experimental curves for different N are reported in Fig. 2 (a). For low N, the dynamics is well described by the solution of the two-level optical Bloch equations (OBEs), indicating independent atom behavior. As N increases, we observe a reduction of the frequency and amplitude of the oscillations, until they vanish for the largest N. We fit each curve by the analytical solution of OBEs [START_REF] Loudon | The quantum theory of light[END_REF], with an effective Rabi frequency Ω Eff and the decay rate as free parameters. Figure 2(b) reports the fitted values of Ω Eff , which decrease as N increases. Second, we perform the complementary experiment where we fix Ñ 9 and vary Ω. We observe oscillations of n e only above a critical driving strength Ω c , and Ω Eff becomes comparable to Ω only in the strongly driven regime (Ω > 10Γ).

Our observations can be explained in the framework of the DDM. When driven by the laser, the ensemble develops a collective dipole Ŝ-, which in turn radiates a field whose amplitude inside the cloud is ÊSc = -ihΓ Ŝ-/d (d is the dipole matrix element of the eg transition) [START_REF] Walls | Non-Equilibrium Phase Transitions in Cooperative Atomic Systems[END_REF][START_REF] Walls | Cooperative fluorescence from n coherently driven two-level atoms[END_REF]22].

The field E Eff in the cloud results from the superposition of the laser field E L = hΩ/d and of E Sc , yielding an effective Rabi frequency Ω Eff = dE Eff /h = Ω -iΓ Ŝ-. For a resonant excitation, Ŝis purely imaginary so that |Ω Eff | ≤ Ω: the collective dipole gives rise to a π-shifted field which screens the laser field. Qualitatively, the screening increases with the amplitude of the collective dipole, hence with N. To compare quantitatively the data to the DDM, we solve numerically Eq. ( 1) to get n e (t), and fit the solution with the same functional form as for the data. The only free parameter in the simulation is µ = Ñ/N. We find a good agreement between the theoretical prediction and the experimental results for µ 0.005, as shown in Fig. 2(b,c). Considering the errors on the determination of the cloud sizes and atom numbers, this value is consistent with the inferred one (see [22]).

We also calculate the steady-state solution of Eq. ( 1) to extract Ŝand thus Ω Eff , using the value of µ obtained above. As visible in Fig. 2(b,c), the steady-state values of Ω Eff matches the ones extracted from the dynamics. This fact indicates that, for β = 2Ω/Γ Ñ < 1, the collective coherence giving rise to the screening is established inside the cloud in a timescale (∼ 1/ ÑΓ) faster than the driving period 1/Ω. Thus, Ω Eff ≈ Ω -iΓ Ŝst . The existence of the threshold in Ω observed in Fig. 2(b,c) can now be understood: for a given Ñ, and for β ≤ 1 (magnetized phase), Ŝst = iΩ/Γ, so that Ω Eff ≈ 0 up to a critical driving strength Ω c /Γ = Ñ/2 where the dipole reaches its largest amplitude. For Ω Ω c (β 1), the system is saturated, Ŝst vanishes, and Ω Eff Ω. Conversely, for a fixed value of Ω/Γ > 1, increasing Ñ drives the system from the superradiant phase (β > 1) where the collective dipole increases with Ñ, hence Ω Eff decreases, to the magnetized phase (β < 1) where Ω Eff ≈ 0.

The agreement between the data and the DDM obtained using µ as a single free-parameter is the demonstration that our extended cloud is equivalent to a subwavelength ensemble of Ñ atoms, for which the model is applicable. This striking result, already noticed of the non-driven case [START_REF] Gross | Superradiance: An essay on the theory of collective spontaneous emission[END_REF][START_REF] Allen | Optical resonance and two-level atoms[END_REF][START_REF] Sutherland | Superradiance in inverted multilevel atomic clouds[END_REF], allows us to investigate the transition between the two nonequilibrium phases predicted by the DDM. To do so we now focus on the steady-state properties of the system.

The steady-state values of the magnetization s z (APD⊥) and emission rate γ SR (APD//) are measured by averaging over a 50 ns-time window before the end of the driving pulse. We report in Fig. 3 (a,b) these values as a function of β = 2Ω/( ÑΓ) for three Ñ, together with the theoretical predictions of the DDM. The data, plotted as a function of the scaled parameter β , show both for s z and γ SR a crossover between two phases. It becomes steeper as Ñ increases and should tend towards a phase transition for Ñ → ∞ [START_REF] Walls | Non-Equilibrium Phase Transitions in Cooperative Atomic Systems[END_REF][START_REF] Walls | Cooperative fluorescence from n coherently driven two-level atoms[END_REF].

To characterize further the phases, we study the dependence of γ SR with Ñ. Fig. 3(c) presents two examples corresponding to different Ω's, together with a polynomial fit γ SR ∝ Ñα . As reported in Fig. 3(d), the exponent α varies from below 1 in the weak driving regime to 2 in the strong driving one, as was also observed for superradiant lasers [START_REF] Bohnet | A steady-state superradiant laser with less than one intracavity photon[END_REF][START_REF] Schäffer | Lasing on a narrow transition in a cold thermal strontium ensemble[END_REF]. Once again, this is expected from the DDM. For β 1 (superradiant phase), the populations of Dicke states are saturated and the dipole 

N (0) as a function of β for Ñ 7. Grey line: theoretical prediction from the DDM for g

(2)
N,DDM (0). Error bars: standard deviation of the data evaluated in a window of 5 ns centered around t = 0. vanishes: superradiant spontaneous emission dominates, and Ŝ+ Ŝ-∝ Ñ2 . Conversely, in the magnetized phase (β < 1) the system develops a collective dipole, and

γ SR = Ŝ+ Ŝ-≈ | Ŝ-| 2 = Ω 2 /Γ 2 ,
independent of Ñ. In the crossover between the two regimes, Ŝ+ Ŝ-∼ Ñ [22]. The same analysis applied to the numerical solution of the DDM yields results in very good agreement with the data, as shown in Fig. 3

(d).

As seen above, the transition separates a phase where a collective dipole is driven by the laser, from a phase where collective spontaneous emission dominates. We therefore expect a change in the statistics of the light emitted by the cloud as we move through the crossover. To explore this, we measure the steady-state intensity correlations at equal times g

(2)

N (0) = ( Ê- s (t)) 2 ( Ê+ s (t)) 2 /| Ê- s (t) Ê+ s (t) | 2 of
the light field Ês emitted in the superradiant mode in the far field. To do so we place a 50/50 fibered beamsplitter after the lens collecting this mode, and one APD in each output port [START_REF] Loudon | The quantum theory of light[END_REF]. We register the simultaneous coincidences in 1 ns time bins, for the last 50 ns of the laser pulse. Figure 4 presents the measured value of g N (0) 1 below threshold (β ≤ 1), indicating that the light has the same statistics than the one of the driving laser field, as expected for a classical dipole in steady-state; in the strong driving regime, g

N (0) saturates around 1.45, thus showing bunching. To compare to the prediction of the DDM, and as Ê+ s ∝ Ŝ- [START_REF] Loudon | The quantum theory of light[END_REF], we calculate g

(2) [START_REF] Hassan | Intensity fluctuations in a driven dicke model[END_REF][START_REF] Carmichael | Analytical and numerical results for the steady state in cooperative resonance fluorescence[END_REF]. The result is presented in Fig. 4. Despite the lack of quantitative agreement with the experimental data, the DDM also predicts a change in the light statistics at the transition. The quantitative mismatch between the data and the model requires further theoretical investigations. In particular, it may be that despite the good agreement between the DDM and the data observed for the magnetization and γ SR , the model is too simple to calculate the statistical properties of the light emitted by an extended sample, as it ignores the spatial correlations between atoms.

N,DDM (0) = ( Ŝ+ ) 2 ( Ŝ-) 2 /| Ŝ+ Ŝ-| 2
In conclusion, we have realized the DDM in free space and observed the predicted transition between a magnetized and a superradiant non-equilibrium phase. Our observations raise important questions that deserve further investigations. In particular, what is the microscopic justification of the validity of the DDM in free-space for an extended cloud simply using an effective atom number [START_REF] Debnath | Lasing in the superradiant crossover regime[END_REF][START_REF] Zhang | Monte-carlo simulations of superradiant lasing[END_REF]? This works also opens promising prospects for the realization of superradiant laser in free space, e.g. using thermal atomic beams [START_REF] Jäger | Superradiant emission of a thermal atomic beam into an optical cavity[END_REF]. Finally, increasing the density of the sample could lead to the regime where dipole-dipole interactions between atoms play a role and stabilize exotic non-equilibrium phases [START_REF] Parmee | Phases of driven two-level systems with nonlocal dissipation[END_REF][START_REF] Olmos | Steady-state properties of a driven atomic ensemble with nonlocal dissipation[END_REF][START_REF] Muniz | Exploring dynamical phase transitions with cold atoms in an optical cavity[END_REF][START_REF] Parmee | Bistable optical transmission through arrays of atoms in free space[END_REF].

part of the field radiated by a dipole D = d Ŝ-:

E Sc = D 4πε 0 1 r 3 - ik r 2 (3 cos 2 θ -1) + k 2 sin 2 θ r e ikr ,
(SM12) using hΓ = d 2 k 3 /(3πε 0 ), with k = ω 0 /c. The real part of E Sc gives rise to the coherent part of the dipole-dipole interaction. It diverges for r → 0 and is assumed to lead to a renormalization of the resonance frequency ω 0 . For the extended sample considered in the experiment, we also neglect the real part of E Sc : it would lead to a shift ∆ω of the transition frequency in the low excitation intensity limit, and as here the mean interatomic distance fulfills kr ∼ 3, we expect ∆ω Γ. Moreover, for the Rabi frequencies used in the experiment, the shift is suppressed further [START_REF] Glicenstein | Collective shift in resonant light scattering by a one-dimensional atomic chain[END_REF].

II. PREDICTIONS OF THE MODEL

In order to get an intuition about the phases predicted by the DDM, we present here analytical and numerical, steady-state solutions of Eq. (SM4) for the range of parameters Ω/Γ and Ñ accessible in our experiment.

A. Steady-state solution of the semi-classical approach

Equations (SM10) and (SM11) predict that either Ŝ-= -iΩ/Γ, in which case Ŝz = (N/2) 1β 2 with β = 2Ω/(NΓ) < 1, or Ŝz = 0 and Ŝ-= iN/(2β ), for β > 1.

The value β = 1 thus appears as a critical point separating two regimes: (i) for β < 1, the collective spin vector lies on the N-atom Bloch sphere of radius N/2, and rotates around the x-axis, from the z-axis to the equatorial plane (y-axis) as β increases up to 1. The angle θ between the spin Ŝ and the z-

axis is such that tan θ = | Ŝ-|/| Ŝz | = β / 1 -β 2 ;
(ii) when β ≥ 1, the component Ŝz is locked to 0, while the component Ŝalong the y-axis decreases as β increases.

B. Numerical solutions of the DDM

Figure SM1 shows the results for the collective dipole Im[ S -], the magnetiztion s z , the effective Rabi frequency Ω Eff = Ω -iΓ S -and the superradiant emission rate γ SR as a function of the excitation laser Rabi frequency Ω. We observe two regimes.

In the first one, corresponding to Ω/Γ ≤ N/2, the collective dipole Im[ S -] is proportional to Ω and the screening of the driving field by the field scattered by the collective dipole is efficient. To better understand the screening, we consider the limiting case where Ω/Γ N/2. We may then restrict ourselves to the two lowest Dicke Thus, despite the saturation of the lowest Dicke states, a collective dipole corresponding to a collective Bloch vector can develop even close to the equatorial plan. This would be impossible for a two-level system and this is a feature of the ladder of Dicke states.

In the second regime, Ω/Γ N/2, the system is saturated, the collective dipole S -→ 0, and the population of each Dicke state |S, m is ρ m,m = 1/(N + 1). Calculating the sum in Eqs. (SM5), we get γ SR = N(N + 2)/6, independent of Ω.

We also plot in Fig. SM2 Ω Eff and γ SR as a function of N for different Ω. We confirm that for N ≥ 2Ω/Γ the screening from the collective dipole operates, and that γ SR → Ω 2 /Γ for N → ∞. We also observe that for increasing values of N starting from 1, γ SR ∝ N α , with α decreasing from 2 to 0. Such a decrease is observed in the experiment (Fig. 3(c)) C. Analytical derivation of the phase transition prediction of a second-order phase transition in the thermodynamics limit (N → ∞), following Ref. [START_REF] Walls | Cooperative fluorescence from n coherently driven two-level atoms[END_REF]. The field operator Ê+ Eff inside the cloud is the superposition of the classical laser field Ê+ L and of the fields scattered by all the atoms, Ê+ sc = -ihΓ Ŝ-/d. Hence, Ê+ Eff = Ê+ L -ihΓ Ŝ-/d, leading to

Ω 2 = h2 d 2 Ê- L E + L ≈ Ω 2 Eff + N 2 Γ 2 4 σ + σ -, (SM13) 
with Ŝ-= N σ -/2 and Ω 2 Eff = h2 Ê-Eff E + Eff /d 2 . We have neglected here the terms E - order N only. Each two-level atom in the cloud is driven by the effective Rabi frequency Ω Eff , hence:

σ + σ -= 1 2 2Ω 2 Eff /Γ 2 1 + 2Ω 2 Eff /Γ 2 (SM14)
in steady-state and on resonance (∆ = 0) [START_REF] Allen | Optical resonance and two-level atoms[END_REF]. Introducing β = 2Ω/(NΓ) and x = 2Ω Eff /(NΓ) yields:

β 2 = x 2 + N 2 x 2 /2 1 + N 2 x 2 /2 . (SM15) Considering that N 1, x 2 ≈ β 2 -1 for β ≥ 1, hence β ≥ 1 ⇒ x ≈ β 2 -1 . (SM16)
For β < 1, we get x 1, so that:

β 2 ≈ N 2 x 2 /2 1 + N 2 x 2 /2 ⇒ x ≈ √ 2 N β 1 -β 2 . ( SM17 
)
These two last equations show the existence of a critical point for β = 1, with Ω Eff = 0 for β < 1 when N → ∞, reminiscent of a second order phase transition. It may look inconsistent to obtain Ω eff = 0 while Ŝ-= -iΩ/Γ = 0 in the case β < 1, as the effective field is the source of Ŝ-. However, for large but finite N, Ω Eff = O(1/N) [Eq.(SM17)], so that Ŝ-∝ NΩ Eff remains finite. Figure SM3 shows the numerical solution of Eq. (SM15) for N = 20, together with the analytical solution of Eq. (SM16).

III. COOPERATIVE COUPLING BETWEEN AN ATOMIC ENSEMBLE AND A DIFFRACTION MODE

In this section, we evaluate the cooperative coupling between a generic atomic distribution and a diffraction mode in free space. The intensity emitted in a direction k by a cloud containing N atoms is given by [START_REF] Allen | Optical resonance and two-level atoms[END_REF]:

I N (k) = I 1 (k) N ∑ i σ z i + 1 2 + N ∑ i = j e ik•(r i -r j ) σ + i σ - j ( 
SM18) where I 1 (k)( σ z i + 1)/2 is the single atom intensity. The first term on the right side of Eq. (SM18) is the incoherent intensity emitted by the system. The second term describes the correlations between different atoms and is responsible for the coherent part of the emission.

As done in [START_REF] Allen | Optical resonance and two-level atoms[END_REF] for the non-driven case, we now assume a collective, factorizable atomic state of the N atoms, excited by a laser with a wavevector k L :

σ + i σ - j ≈ σ + i σ - j = | σ + | 2 e -ik L •(r i -r j )
. The coherent part of the radiation is then:

I coh N (k) = I 1 (k)| σ + | 2 N ∑ i = j e i(k-k L )•(r i -r j ) . ( SM19 
)
Introducing the structure factor:

Γ(k, k L ) = 1 N 2 N ∑ i = j e i(k-k L )(r i -r j ) (SM20)
leads to:

I coh N (k) = N 2 I 1 (k)| σ + | 2 Γ(k, k L ) . (SM21) 
In analogy with cavity QED, we define the cooperative coupling between an extended cloud and a diffraction mode (extending over a solid angle ∆Θ) as C free = P coh N /(NP 1 ) where P coh N is the power radiated by N atoms into the diffraction mode, i.e., P coh N = 4π dΩ k I N (k) and P 1 is the power radiated by a single atom in 4π. In the weak driving regime, | σ + | 2 ≈ ( σ z i + 1)/2 and we get:

C free = N 2 4π dΩ k I 1 (k)Γ(k, k L ) N 4π dΩ k I 1 (k) = Nµ . (SM22)
As the structure factor Γ(k, k L ) has non-zero values only in ∆Θ, µ ∼ ∆Ω/(4π). This derivation shows that the cooperativity is nothing but the shape factor introduced in the context of the (non-driven) superradiance in extended clouds [START_REF] Allen | Optical resonance and two-level atoms[END_REF][START_REF] Sutherland | Superradiance in inverted multilevel atomic clouds[END_REF]. Note that the value of µ depends on the direction of the excitation laser.

We now calculate µ for the specific geometry of our experiment.

For circularly polarized dipoles, I 1 (k) = I 1 (φ , θ ) = (1 + cos 2 φ sin 2 θ )/2, with θ and φ the polar and azimuthal angles with respect to the quantization axis. ( k = (cos θ , sin θ cos φ , sin θ sin φ )). Then, P 1 ∝ 8π/3. To calculate Γ(k, k L ) and P coh N , we replace the sum over discrete positions by an integral over a continuous density distribution ρ(r):

Γ(k, k L ) = d 3 r ρ(r) e ir(k-k L ) 2 .
(SM23)

Assuming a Gaussian density ρ(r) with r.m.s. size ax along x and rad in ŷ and ẑ, setting k L along x, we obtain:

P coh N ∝ π π 0 dθ sin θ 1 + sin 2 θ 2 × exp[-(k rad sin θ ) 2 ] exp[-(k ax ) 2 (cos θ -1) 2 ] . (SM24) 
A Taylor expansion of the second exponential in the integral indicates that the integrant is non negligible in the solid angle ∆Θ/(4π) ∼ µ ∼ λ /(2π ax ). With the experimental values ax and rad , we get µ 2.5 × 10 -3 , a factor 2 smaller than the value used in the main text, obtained as a free parameter. However, a precise estimation of the trap size is challenging and subjected to overestimation (due to radiation pressure effects for instance). Considering a 50% error in the measure of ax makes the result consistent with the value used in the main text.

Finally, we stress that the structure factor, and consequently the value of µ, depends both on the cloud geometry and the direction of the excitation laser k L . In previous works [START_REF] Ferioli | Laser-driven superradiant ensembles of two-level atoms near dicke regime[END_REF][START_REF] Glicenstein | From superradiance to subradiance: exploring the many-body dicke ladder[END_REF], we excited the same atomic ensemble, but perpendicularly to the main axis. This led to a value of µ smaller than the one achieved here by one order of magnitude. Consequently, in that case, Ñ 1, making it impossible to observe the phase transition.

  FIG. 1. Non-equilibrium phases in the Driven Dicke Model. (a) Populations of the N + 1 states in the Dicke ladder (N = 10), corresponding to the vectors reported in (b). (b) Bloch-sphere representation of the collective spin predicted by the steady-state DDM, for different values of β . The collective dipole is Ŝ-= -i Ŝy . (c) Experimental setup. A pencil-shape cloud of laser-cooled87 Rb atoms is prepared in a dipole trap (not shown), placed between four high-numerical aperture lenses. A resonant laser beam propagates along the main axis of the cloud (1/e 2 -radius of 5 µm). Its linear polarization is perpendicular to the magnetic field B, so that only the σ + component of the light drives the atoms. The emitted light is collected in two different directions by two fiber-coupled avalanche photodiodes, APD// and APD⊥, operating in single photon counting modes. APD⊥ gives access to the atomic excited state population (magnetization). A spatial filtering (SF) separates the laser light from the one emitted axially by the cloud, so that APD// measures the rate of superradiant light emission γ SR (t).
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 2 FIG. 2. Collective dynamics during excitation. (a) Excited state population n e (t) during the laser pulse measured with APD⊥ (temporal bins: 1 ns), for different N. Black line: solution of OBEs. Colored line: fit using the analytical solution of the OBEs. (b,c) Colored diamonds: experimental values Ω Eff as a function of Ñ = Nµ (b) and of Ω (c). Error bars on Ω Eff from the fit. Uncertainties on Ñ and Ω: 10% shot-to-shot fluctuations. Blue dots: prediction from the solution of the time-dependent DDM fitted as in the experiment. Continuous blue lines: Ω Eff from the steady state of the DDM.

FIG. 3 .

 3 FIG. 3. Onset of the superradiant phase. (a,b) Experimental steady-state values of s z and γ SR as a function of β , for different atom numbers Ñ. Lines: predictions of the DDM. (c): examples of the dependence γ SR ∝ Ñα in the weak (black empty-circles, Ω 2.5 Γ) and strong (red triangles, Ω 10Γ) driving regimes. (d) Exponent α of the fit. Grey line: prediction of the DDM. Error bars on s st z and γ st SR : standard error on the mean. For α: error from the fit.

FIG. 4 .

 4 FIG. 4. Intensity correlations at equal time in the superradiant mode. Diamonds: g

( 2 )

 2 N (0) as a function of β . It does show a modification of the statistics of the emitted light around the transition: g

  FigureSM1shows the results for the collective dipole Im[ S -], the magnetiztion s z , the effective Rabi frequency Ω Eff = Ω -iΓ S -and the superradiant emission rate γ SR as a function of the excitation laser Rabi frequency Ω. We observe two regimes.In the first one, corresponding to Ω/Γ ≤ N/2, the collective dipole Im[ S -] is proportional to Ω and the screening of the driving field by the field scattered by the collective dipole is efficient. To better understand the screening, we consider the limiting case where Ω/Γ N/2. We may then restrict ourselves to the two lowest Dicke states, |N/2, -N/2 and |N/2, -N/2 + 1 , corresponding respectively to |G = |ggg...g and |W = (|egg...g + |geg...g + ...|ggg...e )/ √ N. The matrix element of the collective dipole connecting the two states is d √ N, with d the single-atom dipole, so that the decay

  FIG. SM2. Steady state values of Ω Eff , and γ SR as a function of N, for Ω/Γ = (1.1, 4.5, 11) (red dots, blue squares, black diamonds).

  FIG. SM3. DDM and second order phase transition. Comparison between the numerical solution of Eq. (SM15) for N = 20 (black line), and the analytical solution x = β 2 -1 (red dashed line), showing the existence of a critical point for N → ∞.
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The Driven Dicke model considers a system of N-twolevel atoms (resonant frequency ω 0 ), all located at the same position and driven by a laser field with Rabi frequency Ω and detuning ∆ with respect to the transition frequency. Since the system size is much smaller than λ , the state evolution is restricted to the N + 1 permutationally symmetric states containing m excitations [START_REF] Dicke | Coherence in spontaneous radiation processes[END_REF]. One thus introduces a collective spin operator Ŝ = ∑ N i=1 σi /2 (σ i are the Pauli matrices), and the relevant Hilbert space is spanned by the eigenstates of Ŝz , |S = N/2, m , with -N/2 ≤ m ≤ N/2. The actions of the collective spin operators on these states are:

where A m = S(S + 1)m(m + 1).

The Hamiltonian describing the interaction of the collective spin with the light is given by

Importantly, the coherent (spin-exchange) component of the dipole-dipole interactions between atoms is ignored in this simplified model: one simply assumes that it leads to a renormalization of the resonant frequency ω 0 . The dynamics of the system is governed by the following master equation:

In the |S, m basis, and for the resonant case ∆ = 0, it leads to a system of N(N + 1)/2 coupled differential equations for the matrix elements ρ m,m = S, m|ρ|S, m :

They can be easily solved numerically for the small atom numbers considered here. From the solutions, we then evaluate the expectation values of the following operators:

(SM5)

B. Semi-classical approach

The DDM has a semi-classical limit for N 1 when considering the average value of the collective spin Ŝ = ( Ŝx , Ŝy , Ŝz ) [START_REF] Hannukainen | Dissipation-driven quantum phase transitions and symmetry breaking[END_REF]. To see it, we use:

combined with the master equation (SM3) and the commutation relations of the spin operators. This leads to the set of coupled, non-linear equations (for ∆ = 0):

We now assume that for large spins (i.e. N 1), Ŝα Ŝβ ≈ Ŝα Ŝβ for α = β . Neglecting the dissipative terms Γ Ŝx,y of O(N) only, we then obtain a set of equations that conserves the total spin Ŝ 2 = Ŝ2

x + Ŝ2 y + Ŝ2 z = N 2 /4. If we now consider that Ŝx (0) = 0, then Ŝ-(t) = -i Ŝy and the system reduces to two coupled equations:

The first equation shows explicitly that the dipole Ŝis driven by the effective Rabi frequency.

C. Field scattered by the collective dipole inside the cloud

We used in the main text the field radiated inside the cloud by the collective dipole ÊSc = -ihΓ Ŝ-/d. This expression corresponds to the limit r → 0 (Dicke limit) of the imaginary