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ABSTRACT 

Objective: Mycobacterium tuberculosis (Mtb) infections result in a wide spectrum of clinical 

presentations but without proven Mtb genetic determinants. Herein, we hypothesised that 

genetic features of Mtb clinical isolates, such as specific polymorphisms or micro-diversity, 

may be linked to tuberculosis (TB) severity. 

Methods: 234 pulmonary TB patients (including 193 drug-susceptible and 14 mono-resistant 

cases diagnosed between 2017 and 2020 and 27 multidrug-resistant cases diagnosed between 

2010 and 2020) were stratified according to TB disease severity and Mtb genetic features 

were explored using whole genome sequencing, including heterologous single nucleotide 

polymorphism (SNP) calling to explore micro-diversity. Finally, we performed a structural 

equation modelling (SEM) analysis to relate TB severity to Mtb genetic features. 

Results: Clinical isolates from patients with mild TB carried mutations in genes associated 

with host-pathogen interaction, while those from patients with moderate/severe TB carried 

mutations associated with regulatory mechanisms. Genome-wide association study identified 

a SNP in the promoter of the gene coding for the virulence regulator EspR statistically 

associated with moderate/severe disease. SEM and model comparisons indicated that TB 

severity was associated with the detection of Mtb micro-diversity within clinical isolates and 

to the espR SNP.  

Conclusions: Taken together, these results provide a new insight to better understand TB 

pathophysiology and could provide new prognosis tool for pulmonary TB severity. 
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INTRODUCTION 

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) complex remains one of the 

most prevalent and deadly infectious diseases; there were 10 million new cases worldwide in 

2020 which led to 1.5 million deaths (WHO, 2021). Mtb infections result in a wide spectrum 

of clinical outcomes, from latent asymptomatic infection to pulmonary or extra-pulmonary 

manifestations of disease, with an array of symptoms. Such diversity has been historically 

attributed to host and environmental factors, while the Mtb complex was previously 

considered genetically monomorphic (Gagneux and Small, 2007). Many Mtb virulence 

factors are well described but, to date, there are no proven genetic determinants associated 

with virulence, disease progression, or severity of TB (Gagneux, 2018). However, some Mtb 

lineages and sublineages were associated with more severe TB in animal models and also in 

human population studies, suggesting that Mtb genetic factors can affect TB clinical 

presentation and severity (Correa-Macedo et al., 2019; Coscolla, 2017; McHenry et al., 2020).  

Recent Mtb genomic studies have explored the link between specific Mtb polymorphisms and 

TB clinical presentation (Grandjean et al., 2020; Sousa et al., 2020). For instance, several 

compensatory mutations occurring in drug-resistant Mtb clinical isolates were associated with 

more extensive lung damage (Grandjean et al., 2020), and an association was found between 

TB severity and mutations affecting the expression of some components of the ESX-1 

secretion system, a key player in Mtb virulence (Sousa et al., 2020). In addition, next 

generation sequencing (NGS)-based studies have revealed micro-diversity in clinical isolates 

(within hosts, minor variants coexist rather than a clonal colony), and rapid within-host 

microevolution of Mtb has been suggested by several studies (presence of minor variants 

within Mtb clinical isolates longitudinally collected upon TB treatment) (Genestet et al., 

2021; Ley et al., 2019; Lieberman et al., 2016; Nimmo et al., 2020; O‘Neill et al., 2015; 

Vargas et al., 2021). Some of these variants harbour drug-resistance mutations, whilst other 
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carry single nucleotide polymorphisms (SNP) in loci involved in modulation of innate 

immunity and in Mtb cell envelop lipids (Genestet et al., 2021; Ley et al., 2019; Lieberman et 

al., 2016; Nimmo et al., 2020; O‘Neill et al., 2015; Vargas et al., 2021). In other bacterial 

species responsible for chronic infections, micro-diversity has been suggested to impact the 

outcome and severity of illness, being involved in pathogen adaptation to immune response 

and treatment pressure (Ailloud et al., 2019; Azarian et al., 2019; Chaguza et al., 2020; 

Levade et al., 2017). Accordingly, we hypothesised that genetic features of Mtb clinical 

isolates, such as specific polymorphisms or micro-diversity, may be linked to TB severity.  

 

METHODS  

Mtb samples, data collection, and ethical considerations 

In this single-centre retrospective study, 234 patients diagnosed with microbiologically-

proven pulmonary TB at the Lyon University Hospital were included. This consisted of 210 

TB patients diagnosed from January 2017 to January 2020, 193 with drug-susceptible Mtb, 14 

mono-resistant to a first line drug and 3 multidrug resistant (MDR) Mtb. Moreover, this 

cohort was enriched with all the 24 MDR Mtb cases diagnosed in our centre with pulmonary 

TB between June 2010 (implementation of the strain biobanking in the lab)  and December 

2016 to enable assessment of the impact of antibiotic resistance on TB disease severity 

(Figure 1) (Genestet et al., 2019b, 2020b). For all Mtb clinical isolates, whole genome 

sequencing (WGS) analysis was performed in routine practice as part of the laboratory 

diagnosis since January 2017, and prior to that only MDR Mtb cases were retrospectively 

sequenced. Demographic (age, sex, continent of birth), clinical (pulmonary, extra-pulmonary 

TB, symptoms, clinical findings, comorbidities [previous history of TB, active hepatitis, HIV, 

diabetes, and immunosuppressive treatment at time of TB diagnosis]), microbiological 

(sputum smear results, time to positivity, antibiotic resistance, lineage, data from WGS), 
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nutritional, and immune data were collected. Only variables for which data was available for 

≥80% of patients between 2 weeks before TB diagnosis and 1 week after initiation of anti-TB 

treatment or nutritional supplementation were considered. Outcomes (cured, fatal outcome, 

and loss to follow-up) were evaluated 2 years after the end of anti-TB treatment.  

 

TB-associated severity indices 

TB-associated severity indices were evaluated at the time of diagnosis, before initiation of 

anti-TB treatment or nutritional supplementation. 

The modified Bandim TBscore considers 5 symptoms (cough, haemoptysis, dyspnoea, chest 

pain, night sweats) and 5 clinical findings (anaemia, tachycardia, positive finding at lung 

auscultation, fever, body mass index [BMI] <18 and <16); 1 point is attributed for each aspect 

and final score is the sum of these. Patients were stratified into 2 severity classes, mild 

(Bandim TBscore ≤4) and moderate/severe (≥5) (Dewi et al., 2020). 

The nutritional status of TB patients was also evaluated using the Malnutrition Universal 

Screening Tool (MUST) that includes 3 variables (unintentional weight loss score [weight 

loss <5% = 0, weight loss 5-10% = 1, weight loss >10% = 2], BMI [>20.0 = 0, 18.5-20.0 = 1, 

<18.5 = 2], and anorexia [if yes = 2]) and the final score is the sum of these (Miyata et al., 

2013). 

 

Mtb culture  

Mtb clinical isolates were processed as previously described (Genestet et al., 2020a). Mtb 

genomic DNA extractions were performed after a single round of culture. Biobanked Mtb 

isolates were inoculated in mycobacterial growth indicator tube (MGIT, Becton Dickinson, 

Sparks, MD) until exponential phase before DNA extraction.  
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WGS and Illumina data analysis 

Genomic DNA of Mtb-positive cultures was purified from cleared lysate and sequenced on 

NextSeq or MiSeq system (Illumina, San Diego, USA) at the GENEPII sequencing platform 

of Lyon University Hospital, as previously described (Genestet et al., 2019b). Reads were 

mapped using the BOWTIE2 to the Mtb H37Rv reference genome (Genbank NC000962.2) 

and variant calling was conducted using SAMtools mpileup, as previously described 

(Genestet et al., 2019b). A valid nucleotide variant was called if the position was covered by a 

depth ≥10 reads and a frequency ≥10%. Regions of genes with repetitive or similar sequences 

were excluded, i.e. regions of pe, ppe, pks, pps, esx gene families The reference genome 

coverage breadth was ≥93% with a mean depth of coverage of ≥50x. Sequences were 

submitted to the European Nucleotide Archive (ENA) under accession number PRJEB53047. 

 

Variant assignment and Mtb α-diversity indices. 

In a previous study, we showed no significant difference in variant detection and frequencies 

between sequencing on direct samples and after subculture on media used in routine practice 

(Genestet et al., 2019a). Moreover, for the present study, 10 isolates were extracted and 

sequenced twice to evaluate the variability in mutation frequencies between sequencing 

experiments. In both sequencing experiments, 52 unfixed mutations were detected at similar 

frequencies (±10%), ranging from 10 to 90% (Supplementary Figure 1A). Accordingly, to 

identify the minimum number of variants in each Mtb clinical isolate, a variant was defined as 

an assembly of mutations at frequencies of ±10% as illustrated in Supplementary Figure 1B. 

Based on that, the α-diversity index for each isolate was calculated by computing the Rao 

index of diversity taking into account genetic distance among variants. We computed genetic 

distance among variants applying Sorensen distance on the presence/absence of 437 mutations 

and consider this information when computing diversity indices. Following Pavoine et al 
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(2016) (Pavoine et al., 2016), we rescaled the distances prior to the analysis (dividing by the 

maximum distance) and use equivalent numbers to allow for comparisons of α-diversities 

among patients. Note that using equivalent numbers implies that α-diversity is equal to 1 

when only one variant is present (no diversity). 

 

Genome-wide association study (GWAS) 

Mtb genomes were assembled using SPAdes-3.14.1 with --careful -t 16 --cov-cutoff auto 

options. DBGWAS 0.5.4 was then run on the 234 pulmonary clinical isolates for which the 

Bandim TBscore was available. The contigs obtained from the assembly step were used as 

input, and the Bandim phenotypes (mild grade [Bandim TBscore ≤4] and moderate/severe 

grade [≥5]), with default options except -nh=3, -SFF=p100, -nb-cores=6, -nc-

db=Resistance_DB_for_DBGWAS.fasta-pt-b=uniprot_sprot_bacteria_for_DBGWAS.fasta. 

The two latter options allowed nucleotide and protein level annotation of the results using 

databases that are available from the DBGWAS repository (Jaillard et al., 2018). 

 

Phylogenetic analyses 

SNP sequence alignment were purged from any non-phylogenetically informative position 

using goalign (v0.3.5). A phylogenetic tree was computed by maximum likelihood using the 

GTR model with RAxML-ng (v1.0.3) and the Stakamakis ascertainment correction. Bootstrap 

was performed to check for phylogenetic robustness using 100 replicates (Supplementary 

Figure 2). Inference of TB severity profile along phylogenetic trees was performed using 

pastml (v1.9.34). Trees were visualised using iTOL (v6) (Letunic and Bork, 2016). 

Polymorphisms were explored in terminal branches of the phylogeny (fixed mutations) and 

within the micro-diversity of Mtb samples (unfixed mutations). On the one hand, the precise 

distribution of Mtb mutations was explored to identify mutational signature typical of 
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oxidative damage (increased changes C > T and G > A); on the other hand, differential 

selection pressure analyses at the level of the gene functional categories were conducted by 

performing a simple count of non-synonymous and synonymous mutations, and by estimating 

the selective pressure measured as the dN/dS ratio using the Contrast-FEL method (Fixed-

Effect site-Level) in the HyPhy package (Kosakovsky Pond et al., 2021). Significant 

differences between selection pressures acting on the 2 groups at the level of the gene 

functional categories were tested using re-sampling as described by Coscolla et al. (Coscolla 

et al., 2021); 30 re-samplings were sufficient to detect significant differences. 

 

Statistical analysis 

Univariate analysis 

Data were expressed as count (percentage, %) for dichotomous variables and as median 

(interquartile range [IQR]) for continuous values. The number of missing values was excluded 

from the denominator. For dichotomous variables, Fisher‘s exact or χ2 test was used as 

appropriate. For continuous values, the non-parametric Mann-Whitney U test or unpaired t-

test was used to compare groups as appropriate and according to the Shapiro-Wilk test of 

normality. Statistical analyses were performed using GraphPad Prism® for Windows version 

5.02 (GraphPad Software, La Jolla, CA, USA). p-value < 0.05 was considered significant.  

 

Structural equation modelling of severity 

To gauge the effect of demographic (age, sex) and clinical (HIV, diabetes, hepatitis, immuno-

suppressive treatment, previous history of TB, double location of infection) variables, as well 

as Mtb genetic features (lineage, antibiotic resistance, occurrence of micro-diversity, 

occurrence of mutations [SNP identified by GWAS or unfixed mutations in the ―regulatory 

protein‖ gene functional category]), we performed a latent variable structural equation model 
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(SEM) (Grace, 2006) linking all of these variables to a latent severity score, assumed to be 

expressed through 3 markers: the Bandim TBscore, the BMI, and the unintentional weight 

loss percentage of patients, which are strongly associated with poor prognosis (WHO, 2013). 

We assumed that the Bandim TBscore, expected to be the best marker of severity, was 

correlated with the other 2 markers. The model was fitted through maximum likelihood using 

the R package ‗lavaan‘ (Rosseel, 2012). The importance of explanatory variables was 

assessed using model comparison based on the corrected Akaike Information Criterion (AICc) 

(Akaike, 1973; Hurvich and Tsai, 1989); from model-specific AICc values we deduced 

variable weights using the sum of Akaike weights of all models including the focal variable, 

based on classic methods (Burnham and Anderson, 2002; Massol et al., 2007). When 

representing the results of SEM, we give standardised coefficient values to allow for 

comparison between explanatory variables. 

 

RESULTS 

TB cohort characterisation  

Among the 234 pulmonary TB patients included in this study, 123 had mild disease and 111 

moderate/severe disease according to their Bandim TBscore. The median [IQR] age of the 

study population was 35 [25-58] years, and a majority were male (66.2%). Most of the 

patients originated from Europe or Africa, which is consistent with the local epidemiology 

(Barbier et al., 2018; Genestet et al., 2020b). No difference was found in terms of 

comorbidities according to severity group (Table 1). 

As expected, the rate of fatal outcome was more frequent in the moderate/severe-grade group. 

A poorer nutritional status was also observed in this group, including lower median BMI, 

greater median unintentional weight loss, higher median malnutrition universal screening tool 

(MUST) score, as well as lower median serum albumin, sodium, and chloride levels. 
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Regarding the immune status, the median level of serum C-reactive protein (CRP), CRP to 

albumin ratio, as well as white blood cell, neutrophil and monocyte counts, and neutrophil to 

lymphocyte and monocyte to lymphocyte ratios were higher in the moderate/severe grade 

group. Conversely, the median haemoglobin level, eosinophil, and lymphocyte counts, as well 

as the lymphocyte to CRP ratio were lower in this group (Table 1). 

The proportion of smear-positive patients was higher in the moderate/severe-grade group and 

accordingly the median time to positivity (TTP) of Mtb cultures was lower (Table 2). For 

both groups, Mtb isolates genetic diversity (Table 2, Figure 2 and Supplementary Figure 2) 

reflected the local epidemiology (Genestet et al., 2020b). No difference was observed between 

groups regarding Mtb resistance profile (Table 2). Nevertheless, the proportion of Mtb 

isolates for which micro-diversity was detected (α-diversity >1) was higher in the 

moderate/severe-grade group, but without difference in the median magnitude of α-diversity 

(Table 2). Of note, no association was observed between Mtb isolate α-diversity magnitude 

and smear results (Supplementary Figure 3A) or the TTP of Mtb cultures (Supplementary 

Figure 3B). 

 

Mtb genetic characteristics according to TB severity  

We explored the distribution of TB severity profile along the Mtb phylogeny of the strains 

identified in the present study. Both mild and moderate/severe grade severity profiles were 

found in several sublineages of each lineage, supporting the inference that this feature evolved 

recurrently along with Mtb evolution (Figure 2).  

To detect Mtb genetic adaptation according to TB severity, we explored polymorphisms in 

terminal branches of the phylogeny of Mtb samples and within the micro-diversity of Mtb 

samples through unfixed mutations, both suggestive of ongoing adaptation.  
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Previous studies have suggested that severe symptoms are associated to a mutational signature 

typical of oxidative damage (increased changes C > T and G > A) (Moreno-Molina et al., 

2021). Then the precise distribution of Mtb mutations was explored between the mild grade 

and the moderate/severe grade groups (Figure 3). Differences were observed in the 

distribution of mutation in the terminal branches, i.e. fixed mutations of the phylogeny 

(Figure 3A and B), with a slightly stronger ROS mutational signature in the moderate/severe 

grade group (p<0.0001; Figure 3C), but not within the micro-diversity of Mtb isolates 

(p=0.3132; Figure 3D-F).  

We then explored the distribution of these mutations across Mtb gene functional categories. 

No difference was observed for the distribution of non-synonymous (p=0.1614) nor 

synonymous mutations (p=0.4815) across gene functional categories in the terminal branches 

of the phylogeny (Figure 4A). We explored whether some gene functional categories 

exhibited signs of differential selection pressure in the mild-grade versus moderate/severe-

grade group. In the terminal branches of the phylogeny, the gene functional category 

―virulence, detoxification, adaptation‖ exhibited both a higher non-synonymous/synonymous 

mutation ratio (p=0.045; Figure 4C) and a higher dN/dS for Mtb strains from the mild grade 

group (p=6.6x10
-8

; Supplementary Table 1). Regarding unfixed variants within Mtb clinical 

isolates, a difference was observed in the distribution of non-synonymous mutations across 

gene functional categories (p=0.0238) but not in the distribution of synonymous mutation 

(p=0.9019, Figure 4B). The gene functional category ―cell wall and cell processes‖ exhibited 

both a higher non-synonymous/synonymous mutation ratio and a higher dN/dS in the mild 

grade group, and the gene functional category ―regulatory proteins‖ did so in the 

moderate/severe grade group (Figure 4D and Supplementary Table 2).  

To characterise the potential Mtb genetic determinants of TB severity, we performed a 

genome-wide association study (GWAS). GWAS identified a SNP, G4323355C, located in 
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the promoter of the gene espR, a gene coding for a regulatory protein of the Mtb ESX-1 

secretion system. This SNP was more frequent among Mtb isolates from the moderate/severe-

grade group (15/110, 13.5%) than the mild-grade group (4/123, 3.3%; p=0.0069).  

 

Structural equation model (SEM) of TB severity  

We performed a SEM analysis to relate TB severity to various explanatory variables. We 

focused on host variables independent of the stage of TB disease and Mtb genetic features, 

including those identified above, for the association with TB severity. Regarding the latter, to 

exclude a risk of bias, subsequent statistical analyses were conducted on the cohort without 

enrichment with MDR Mtb strains, which yilded confirmatory results (Supplementary Table 

3). The TB severity was assessed using the Bandim TBscore, as well as the BMI and 

proportion (%) of unintentional weight loss. As expected, SEM found that severity markers 

were correlated with each other. None of the host variables explored had an impact on the TB 

severity. Among Mtb genetic features, the model showed that only the detection of micro-

diversity within Mtb clinical isolates affected TB severity (positive estimated standardized 

coefficient of 0.52 for α-diversity >1; Figure 5A). The importance of all host and Mtb 

variables evaluated for TB severity was assessed using model comparisons and indicated that 

the best model was composed of Mtb α-diversity >1 and the presence of the mutation 

identified by GWAS (Figure 5B and Supplementary Figure 4). 

 

DISCUSSION 

The present study found that Mtb clinical isolates from patients with mild TB carried 

mutations in genes associated with host-pathogen interaction, while Mtb isolates from patients 

with moderate/severe TB carried mutations associated with regulatory mechanisms. 

Moreover, a GWAS-based approach identified a SNP in the promoter of the espR gene coding 
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for a regulatory protein, which was found to be statistically associated with TB severity. This 

SNP is located 144 pb upstream the coding sequence, 1 nucleotide downstream from the 

transcriptional start site of espR, suggesting a potential impact of this mutation on the 

regulation of this gene, as previous studies showed that the 200 bp sequence immediately 

upstream of the coding sequence is required for the complete expression of espR (Cao et al., 

2015). EspR level has a direct influence on the expression of the espACD operon, coding for 

the major Mtb virulence determinants the ESX-1 system, and protein expression. 

Furthermore, EspR is required for ESX-1-dependent ESAT-6 secretion (Anil Kumar et al., 

2016; Cao et al., 2015). Accordingly, it would be of interest to further explore the role of this 

SNP on espR expression, and subsequently on the secretion of ESAT-6 and the effect in an in 

vitro model of host-pathogen interaction. It is of note that positive selection on other 

regulatory proteins, such as PhoR, has been reported (Chiner-Oms et al., 2019), and, taken 

together, these results point to an overall adaptation to host-pathogen interaction for Mtb 

strains from patients with moderate/severe disease through regulatory protein involvement.   

The finding herein that there was a selection on genes from the ―virulence, detoxification, 

adaptation‖ functional category, as illustrated by a higher non-synonymous/synonymous ratio 

is concordant with that reported previously (Tantivitayakul et al., 2020). As was the finding 

that oxidative damage developed upon severe TB disease may be a driver of Mtb diversity 

(Moreno-Molina et al., 2021). The integration of the severity status of patients could help to 

better understand the diverse patterns detected in previous studies exploring the key genetic 

components involved in sublineage epidemic success (Chiner-Oms et al., 2019; 

Tantivitayakul et al., 2020). At the same time, in-depth analysis of the impact of Mtb 

polymorphisms on host-pathogen interaction would help to better understand their 

involvement in TB pathophysiology.  
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Furthermore, we applied SEM to identify and evaluate direct and latent interlinkages between, 

on the one hand, Mtb infection clinical specificities and Mtb isolates‘ genetic features and, on 

the other hand, TB disease severity, to pinpoint the positive and negative influences in this 

regard. Going beyond the classical linear regression analyses, SEM examines the causal 

relationships among variables, while controlling simultaneously for measurement error. SEM 

allowed us to determine the degree of correlation (path coefficients) that capture the 

importance of a certain path of influence from cause to effect, and it was found that the 

presence of Mtb micro-diversity within clinical isolates led to greater clinical TB severity. 

This result needs to be confirmed in an independent prospective validation study. 

Previous studies showed that mixed infections with genetically distinct Mtb strains is 

associated with poor treatment outcome of TB (Gan et al., 2016; Mohajeri et al., 2016; Shin et 

al., 2018), but only few studies explored the association between Mtb micro-diversity and TB 

outcome or severity. For instance, the study reported by Nimmo et al. found that Mtb 

diversity did not affect TB outcome (Nimmo et al., 2020); this apparent inconsistency with 

our observations may result from the different read-outs used (outcome versus severity score 

at time of diagnosis) and different statistical analysis (logistic regression versus SEM). The 

results presented herein are, however, in accordance with another study that found that greater 

TB severity was associated with an increase of within-host Mtb micro-diversity, and 

particularly so in pre-mortem Mtb isolates (O‘Neill et al., 2015). Although we have shown 

that there is no association between bacterial load and detection of Mtb micro-diversity, it is 

still unclear whether Mtb micro-diversity is a cause (better Mtb adaptation to treatment, to 

immune pressure, and/or to various niches) or a consequence (tissue breakdown allowing 

sampling of Mtb variants usually inaccessible and/or lower immune response reducing 

selection pressure) of the TB severity.  
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In addition, no association was found herein between the magnitude of Mtb α-diversity and 

TB severity. This may be because the analysis was based on the minimum number of variants 

estimated through whole genome sequencing (WGS) data to calculate Mtb α-diversity, which 

could lead to underestimate micro-diversity in some Mtb clinical isolate. Nevertheless, 

detection of unfixed mutations at the level of WGS (meaning mutation frequencies between 

10 and 90%) was sufficient to observe a strong association between Mtb micro-diversity 

detection and TB severity. It is of note that in cancer and microbiological research, calling 

algorithms for low frequency variants have been developed (Xu, 2018) and may be adapted to 

Mtb WGS data. WGS of Mtb isolates could therefore be envisioned as an all-in-one solution 

to detect antibiotic resistance (Genestet et al., 2020a), to infer Mtb transmission chains, to 

perform epidemiological monitoring (Genestet et al., 2020b, 2019b), but also as a prognosis 

tool; the latter would be of value to identify those who would most benefit most from 

additional management measures, such as therapeutic drug monitoring (Alsultan and 

Peloquin, 2014). 

In conclusion, Mtb micro-diversity within a clinical isolate and the mutation in the promoter 

of the gene espR identified by GWAS are related to disease severity. If further confirmed in a 

larger independent prospective validation study, this could be a useful to identify early-on 

those at high risk of severe TB in order to ensure optimal management. 
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Figure 1: Flowchart of TB patients included in the study 

Among the 309 TB patients routinely diagnosed, 69 had exclusively microbiologically-proven 

extra-pulmonary TB and were excluded as this study focused on pulmonary TB. Thirty other 

patients were excluded due to missing data not allowing calculation of TB severity score 

using the Bandim TBscore. Besides, this cohort was enriched with the 24 multidrug resistant 

(MDR) Mtb cases diagnosed in our centre between 2010 and 2016 to enable assessment of the 

impact of antibiotic resistance on TB disease severity. 
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Figure 2: TB severity profile of studied samples and inference of its evolution along the 

Mtb phylogeny. The phylogeny was reconstructed by Maximum Likelihood that identified 

all branches with a strong bootstrap support (Supplementary Figure 1). Tree is displayed with 

arbitrary branch length to improve visibility. Green branches: mild grade TB severity group; 

red branches: moderate/severe grade TB severity group. From the inside, rings are coloured 

by Mtb lineages, drug resistance profile, and occurrence of micro-diversity within clinical 

isolate (see legend). INHR: isoniazid mono-resistant, RIFR: rifampicin mono-resistant; 

PZAR: pyrazinamide mono-resistant; MDR: multidrug resistant; NR: not reported 
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Figure 3: ROS mutational signature according to TB severity 

Distribution of mutations in terminal branches of the phylogeny of Mtb samples (A-C; 

n=21754 mutations explored) and in unfixed mutations within Mtb clinical isolates (D-F; 

n=437 mutations explored) in the mild-severity grade (A and D) and the moderate/severe-

grade groups (B and E). Each type of mutation was explored (A-B and D-E) and a focus was 

made on ROS mutational signature (C and F). Fisher‘s exact or χ2 test was used to compare 

mild-severity grade and moderate/severe-grade groups, as appropriate.  
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Figure 4: Non-synonymous/synonymous mutations ratio in the gene functional 

categories according to TB severity. 

Distribution of non-synonymous and synonymous mutations (A-B) and non-

synonymous/synonymous mutation ratio (C-D) across gene functional categories in the 

terminal branches of the phylogeny of Mtb samples (A-C; n=21729 mutations explored) and 

in unfixed mutations within Mtb clinical isolates (B-D; n=437 mutations explored) in the 

mild-severity grade and the moderate/severe-grade groups. Fisher‘s exact or χ2 test was used 

to compare mild-severity grade and moderate/severe-grade groups, as appropriate. IP: 

Information pathways; CH: Conserved hypotheticals; CWCP: Cell wall and cell processes; 
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IMR: Intermediary metabolism and respiration; RP: Regulatory proteins; VDA: Virulence, 

detoxification, adaptation; LM: Lipid metabolism; ISP: Insertion sequences and phages; 

NonSyn: Non-synonymous SNP; Syn: Synonymous SNP. *p<0.05 

 

Figure 5: Structural equation modelling (SEM) and the best model examining the effect 

of host and bacterial factors on pulmonary TB severity. 

Regarding the variables associated with TB patients, we focused on variables independent of 

the stage of TB disease, meaning age, sex, ongoing HIV, hepatitis, diabetes, and/or 

immunosuppressive treatment (Immunos. treat.), history of TB, and extra-pulmonary 

manifestation (EPTB, both pulmonary and extra-pulmonary). Concerning Mtb genetic 
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features, Mtb lineages (lineage 1, lineage 2, lineage 3, M. africanum and M. bovis, in contrast 

with lineage 4), resistance profile (isoniazid mono-resistant [INHR], pyrazinamide mono-

resistant [PZAR], rifampicin mono-resistant [RIFR], multidrug resistant [MDR], in contrast 

with susceptible), detection of Mtb micro-diversity within clinical isolates (Diversity), 

detection of unfixed mutation in the ―regulatory protein‖ gene functional category (Unfixed 

mut. RP) and the mutation identified by GWAS (Mut. GWAS) were considered. 

Unidirectional arrows between variables indicate regression and are associated with 

standardised regression coefficients. Bidirectional dashed arrows among severity markers 

indicate correlations. Blue edges indicate positive coefficients or correlations, red edges, 

negative coefficients or correlations. Residual variance terms are omitted for clarity. p-value 

< 0.05 was considered significant. *p<0.05, ** p <0.01, *** p <0.001. (A) Graphical 

representation of the maximal model (with all variables). (B) Graphical representation of the 

best model. 
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Table 1: Patient characteristics 

 Total population 

n=234 

Mild-grade 

disease 

n=123 

Moderate/severe-

grade disease 

n=111 

p-value 

 

TB severity score      

Bandim TBscore 4 [3-6] 3 [2-4] 6 [5-7] <0.0001 

Demography     

Age (years) 35 [25-58] 38 [26-60]  32 [22-54]  0.0335 

Sex (male) 155 (66.2%) 85 (69.1%) 70 (63.1%) 0.3366 

Geographical origin,     0.1044 

Europe 91 (38.9%) 56 (45.5%) 35 (31.5%)  

Africa 116 (49.6%) 53 (43.1%) 63 (56.8%)  

Asia 23 (9.8%) 11 (8.9%) 12 (10.8%)  

America 4 (1.7%) 3 (2.4%) 1 (0.9%)  

Comorbidities     

EPTB 68 (29.1%) 32 (26.0%) 36 (32.4%) 0.3141 

HIV 15 (6.4%) 7 (5.9%) 8 (7.2%) 0.7919 

Hepatitis 24 (10.3%) 9 (7.4%) 15 (13.5%) 0.1378 

Diabetes 26 (11.1%) 18 (15.0%) 8 (7.3%) 0.0941 

Immunosuppressive therapy 21 (9.0%) 11 (9.2%) 10 (9.0%) 1.0000 

History of TB 18 (7.7%) 9 (7.6%) 9 (8.2%) 1.0000 

Outcomes    0.0021 
Cured 218 (93.2%) 114 (92.7%) 104 (93.7%)  

Fatal outcome 8 (3.4%) 1 (0.8%) 7 (6.3%)  

Unknown 8 (3.4%) 8 (6.5%) 0 (0%)  

Nutritional status     

BMI (kg/m²) 20.2 [17.7-22.4] 21.3 [20.0-23.9]  18.0 [16.2-20.4] <0.0001 

Weight loss (%) 8.0 [4.5-12.3] 5.9 [2.9-9.0] 11.4 [6.9-15.4] <0.0001 

MUST score 3 [1-5] 1 [0-3] 4 [4-6] <0.0001 

Serum albumin (g/L) 30.1 [26.0-36.9] 34.3 [29.2-40.4] 28.8 [23.7-31.8] <0.0001 

Total protein (g/L) 75 [70-81] 75 [70-80]  76 [70-81]  0.7830 

Sodium (mmol/L) 137 [134-139] 138 [137-139]  135 [133-138]  <0.0001 

Potassium (mmol/L) 4.0 [3.8-4.3] 4.0 [3.8-4.4] 4.1 [3.8-4.3] 0.3829 

Chloride (mmol/L) 103 [100-106] 104 [102-106]  102 [99-104] <0.0001 

Immune status     

CRP (mg/L) 47 [13-98] 21 [6-78] 72 [23-110] <0.0001 

CRP to Albumin ratio 16.6 [4.0-38.7] 6.6 [1.7-28.9] 27.4 [9.3-45.1]  <0.0001 

Haemoglobin (g/L) 120 [104-137] 130 [116-141] 111 [97-128] <0.0001 

White blood cells (G/L) 6.9 [5.3-9.0] 6.5 [4.9-8.5]  7.5 [6.0-9.8]  0.0071 

Neutrophils (G/L) 4.6 [3.2-6.2] 4.1 [2.8-5.5]  5.1 [3.8-6.6]  0.0006 

Eosinophils (G/L) 0.09 [0.03-0.18] 0.12 [0.06-0.22] 0.075 [0.02-0.14]  0.0003 

Basophils (G/L) 0.03 [0.02-0.05] 0.03 [0.02-0.05] 0.03 [0.01-0.05]  0.3824 

Monocytes (G/L) 0.62 [0.46-0.84] 0.58 [0.41-0.76] 0.70 [0.49-1.03]  0.0061 

Lymphocytes (G/L) 1.41 [0.89-2.01] 1.54 [0.95-2.14] 1.23 [0.87-1.63]  0.0057 

Neutrophil to lymphocyte ratio 3.5 [1.9-5.5] 2.9 [1.5-4.5]  4.5 [2.7-6.8]  <0.0001 

Monocyte to Lymphocyte ratio 0.48 [0.29-0.71] 0.40 [0.26-0.59] 0.58 [0.40-0.83] <0.0001 

Lymphocyte to CRP ratio 31.2 [11.5-138.3] 76.9 [18.3-286.4]  17.9 [9.3-48.1] <0.0001 

Data were expressed as count (%) for dichotomous variables and as median [interquartile 

range] for continuous values. The number of missing values was excluded from the 

denominator. For dichotomous variables, Fisher‘s exact or χ2 test was used as appropriate. 
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For continuous values, non-parametric Mann-Whitney U test or unpaired t-test was used to 

compare groups as appropriate according to Shapiro-Wilk normality test. p-value < 0.05 was 

considered significant. EPTB: extrapulmonary tuberculosis; unknown outcome: loss to 

follow-up or follow-up in another care facility; HIV: human immunodeficiency virus; MUST: 

malnutrition universal screening tool; BMI: body mass index; CRP: C-reactive protein. 

 

 

Table 2: Microbiological characteristics of Mtb isolates  

 Total population 

n=234 

Mild-grade disease 

n=123 

Moderate/severe-

grade disease 

n=111 

p-values 

Type of sample    0.0696 

Bronchial aspiration 63 (27%) 41 (33%) 22 (20%)  

Biopsy 10 (4%) 6 (5%) 4 (4%)  

Sputum 137 (59%) 61 (50%) 76 (68%)  

BAL 16 (7%) 10 (8%) 6 (5%)  

Stomach tube 8 (3%) 5 (4%) 3 (3%)  

Smear-positive isolates 111 (47%) 48 (39%) 63 (57%) 0.0087 

TTP (days) 10.5 [6-17] 12.5 [7-18]  8 [5-15]  0.0022 

Lineages    0.2816 

L1 8 (3%) 3 (2%) 5 (4%)  

L2 32 (14%) 18 (15%) 14 (13%)  

L3 13 (6%) 10 (8%) 3 (3%)  

L4 169 (72%) 87 (71%) 82 (74%)  

M. africanum 5 (2%) 1 (1%) 4 (4%)  

M. bovis 7 (3%) 4 (3%) 3 (3%)  

Resistance profile    0.2898 

Susceptible 193 (82%) 97 (79%) 96 (87%)  

INH monoR 11 (5%) 6 (5%) 5 (5%)  

RIF monoR 2 (1%) 1 (1%) 1 (1%)  

PZA monoR  1 (0.4%) 0 (0%) 1 (1%)  

MDR 27 (11%) 19 (15%) 8 (7%)  

α-diversity >1 123 (53%) 38 (31%) 85 (77%) <0.0001 

Magnitude of α-diversity >1  1.89 [1.51-2.19] 1.92 [1.55-2.33]  1.87 [1.49-2.05]  0.4495 

Data were expressed as count (percentage, %) for dichotomous variables and as median 

[interquartile range] for continuous values. For dichotomous variables, Fisher‘s exact or χ2 

test was used as appropriate. For continuous values, non-parametric Mann-Whitney U test 

was used to compare groups. p-value < 0.05 was considered significant. BAL: 
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bronchoalveolar lavage; TTP: time to positivity of Mtb culture. INH: isoniazid, RIF: 

rifampicin; PZA: pyrazinamide; monoR: mono-resistant; PZA monoR: Mtb isolates resistant 

to PZA excluding M. bovis; MDR: multi-drug resistant. 

 

                  


