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Abstract

Using three-dimensional gyrofluid simulations, we revisit the problem of Alfvén-wave (AW) collisions as building
blocks of the Alfvénic turbulent cascade and their interplay with magnetic reconnection at magnetohydrodynamic
(MHD) scales. Depending on the large-scale value of the nonlinearity parameter χ0 (the ratio between the AW
linear propagation time and nonlinear turnover time), different regimes are observed. For strong nonlinearities
(χ0∼ 1), turbulence is consistent with a dynamically aligned, critically balanced cascade—fluctuations exhibit a
scale-dependent alignment ksin k

1 4q µ ^
-

^ , resulting in a k 3 2
^
- spectrum and k k1 2

 µ ^ spectral anisotropy. At
weaker nonlinearities (small χ0), a spectral break marking the transition between a large-scale weak regime and a
small-scale k 11 5

^
- tearing-mediated range emerges, implying that dynamic alignment occurs also for weak

nonlinearities. At χ0< 1 the alignment angle kq ^ shows a stronger scale dependence than in the χ0∼ 1 regime,
namely ksin k

1 2q µ ^
-

^ at χ0∼ 0.5, and ksin k
1q µ ^

-
^ at χ0∼ 0.1. Dynamic alignment in the weak regime also

modifies the large-scale spectrum, scaling approximately as k 3 2
^
- for χ0∼ 0.5 and as k 1

^
- for χ0∼ 0.1. A

phenomenological theory of dynamically aligned turbulence at weak nonlinearities that can explain these spectra
and the transition to the tearing-mediated regime is provided; at small χ0, the strong scale dependence of the
alignment angle combines with the increased lifetime of turbulent eddies to allow tearing to onset and mediate the
cascade at scales that can be larger than those predicted for a critically balanced cascade by several orders of
magnitude. Such a transition to tearing-mediated turbulence may even supplant the usual weak-to-strong transition.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Space plasmas (1544); Interplanetary
turbulence (830); Alfven waves (23); Magnetohydrodynamical simulations (1966); Magnetohydrodynamics
(1964); Plasma physics (208)

1. Introduction

A wide range of space and astrophysical systems host
turbulent plasmas (e.g., Quataert & Gruzinov 1999; Schekochihin
& Cowley 2006; Bruno & Carbone 2013). The turbulent cascade
transfers energy from the injection scales down to dissipation
scales, where it is converted into heat and nonthermal particles,
thus regulating the energetics and/or dynamics of a system. In
the last decades, the properties of cascading fluctuations in
weakly collisional plasmas have been explored in unprecedented
detail, thanks to in situ measurements from spacecraft missions in
the solar wind (e.g., Goldstein et al. 1995; Alexandrova et al.
2009, 2021; Podesta et al. 2009; Sahraoui et al. 2010, 2020;
Wicks et al. 2010, 2013; Chen 2016; Bruno & Carbone 2013;
Chen et al. 2020; Kasper et al. 2021).

At large (“fluid”) scales, the cascade may be described as
MHD turbulence, with the building blocks of its Alfvénic
component being interactions between counterpropagating
Alfvén waves (e.g., Iroshnikov 1963; Kraichnan 1965; Goldreich
& Sridhar 1995; Howes & Nielson 2013; Oughton &
Matthaeus 2020). This Alfvénic cascade is naturally anisotropic
with respect to the mean-magnetic-field direction, with field-
parallel wavenumbers much less than their field-perpendicular
counterparts, k∥= k⊥. Assuming a critical balance (CB) between
the fluctuations’ linear and nonlinear timescales, this cascade was

originally predicted by Goldreich & Sridhar (1995) to exhibit
a perpendicular spectrum k 5 3µ ^

- and a spectral anisotropy
k k2 3
 µ ^ , to which corresponds a parallel spectrum k 2

µ - . Still,
within the CB assumption, the continuous shearing of fluctua-
tions in the field-perpendicular plane associated with interactions
between counterpropagating AW packets was later taken into
account by Boldyrev (2006), postulating that fluctuations would
be subject to a scale-dependent “dynamic alignment” (or
antialignment) whose angle θk is such that ksin k

1 4q µ ^
- . This

effect results in a 3D anisotropy of the turbulent fluctuations and
a cascade whose spectrum follows k 3 2

^
- , with a k k1 2

 µ ^

spectral anisotropy (the k 2

- spectrum being unaltered; in this

case, k⊥ is related to the shortest length scale λ of these 3D-
anisotropic eddies, which is perpendicular to both the mean-field
and magnetic-fluctuation direction; see Section 4).
Another fundamental aspect of plasma turbulence is the

formation of current sheets (CSs), either as a result of large-
scale, broadband injection (e.g., Politano et al. 1995; Biskamp
& Müller 2000; Zhdankin et al. 2013; Sisti et al. 2021) or of
direct AW-packet interactions (e.g., Pezzi et al. 2017; Verniero
et al. 2018; Ripperda et al. 2021). If sufficiently thin and long
lived, these CSs can be disrupted by tearing and/or magnetic
reconnection (e.g., Carbone et al. 1990; Servidio et al. 2011;
Zhdankin et al. 2015; Agudelo Rueda et al. 2021; Ripperda
et al. 2021), processes that have been suggested to mediate the
nonlinear energy transfer at both MHD (e.g., Carbone et al.
1990; Boldyrev & Loureiro 2017; Mallet et al. 2017b; Comisso
et al. 2018; Dong et al. 2018; Tenerani & Velli 2020) and
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kinetic (e.g., Cerri & Califano 2017; Franci et al. 2017; Loureiro &
Boldyrev 2017; Mallet et al. 2017a) scales. When this disruption
occurs, we refer to the resulting turbulence as a “tearing-mediated”
cascade, whose range at resistive-MHD scales is characterized by a
steep k 11 5

^
- spectrum. The conditions under which a critically

balanced, dynamically aligned cascade can mutate into a tearing-
mediated cascade at a transition scale k 1( )l ~ ^

-
*

* rely on two
criteria: (i) that turbulent eddies are sheared in the field-perpendicular
direction to set up a tearing-unstable configuration, and (ii) that these
eddies live long enough to allow the tearing instability to grow and
disrupt them. While the latter condition depends upon the material
properties of the plasma (e.g., the resistivity η), the former is a
consequence of the dynamic alignment of turbulent fluctuations that
produces eddy anisotropy in the field-perpendicular plane. In this
context, regardless of whether dynamic alignment would have
proceeded indefinitely until dissipation scales (Perez et al. 2012) or
would have been only a limited-range effect tied to the dynamics
occurring at the outer scale (Beresnyak 2012), what matters is that
alignment occurs on enough scales to meet the condition for tearing
instability to grow sufficiently fast (after which alignment will
anyway be—partially or completely—disrupted by reconnection
events; see Section 3.1.3).

In the fluid regime, the coexistence of a turbulent MHD inertial
range with a steeper tearing-mediated regime at smaller (but still,
fluid) scales has been evidenced within two-dimensional (2D)
simulations (Dong et al. 2018). In 3D, MHD simulations of the
plasmoid instability in an inhomogeneous reconnection layer,
leading to a self-sustained turbulent state, have, however, only
reproduced the “small-scale regime” (Huang & Bhattacharjee
2016). A still-debated point concerns the existence of a tearing-
mediated regime in 3D, where there are steep resolution
requirements to separate clearly a so-called “disruption scale”
(at which a tearing-mediated cascade would begin) from the
actual dissipation scale when broadband fluctuations are injected
into the system. Here, we approach this problem by investigating
interactions between counterpropagating AW packets. In this
context, reduced models such as the two-field gyrofluid (2fGF)
model (Passot et al. 2018; Passot & Sulem 2019; Miloshevich
et al. 2021; Passot et al. 2022) can be extremely useful for
isolating and modeling purely Alfvénic turbulence, without being
affected by other modes and/or a plethora of kinetic effects (e.g.,
Howes et al. 2011; Told et al. 2015; Matthaeus et al. 2016; Cerri
et al. 2017, 2018, 2021; Grošelj et al. 2017; Perrone et al. 2018;
Arzamasskiy et al. 2019; González et al. 2019; Squire et al. 2022).

In this work, we provide the first evidence of a tearing-
mediated cascade occurring at MHD scales due to the
interaction of counterpropagating 3D AW packets. For weak
initial nonlinearities, χ0< 1, dynamic alignment of the
relatively long-lived fluctuations leads to a strong, tearing-
mediated cascade that replaces the more customary weak-to-
strong turbulence transition. At χ0∼ 1, a dynamically aligned,
strong MHD turbulent regime is established instead; a tearing-
mediated cascade may eventually emerge, but not at the
Lundquist numbers we are able to explore numerically. New
scalings for weak turbulence subject to dynamic alignment and
for the relevant transition scales are also provided.

2. Two-field Gyrofluid Simulations

2.1. Model Equations

To investigate nonlinear interactions between AW packets
and the resulting multiscale turbulent cascade, we employ the

two-field gyro-fluid (2fGF) model (Passot et al. 2018), in which
small-amplitude, low-frequency fluctuations are taken to be
spatially anisotropic with respect to a mean magnetic field
(viz., k⊥? k∥, where k⊥ and k∥ are the wavenumbers
perpendicular and parallel to the mean field, respectively).
Although this model in general includes the finite inertia of the
electrons, here we consider scales such that k⊥de= 1, where de
is the electron skin depth. Finite electron-inertia effects can
then be ignored and the equations for the number density of
electron gyrocenters, Ne, and the field-parallel component of
magnetic potential, A∥, read

N

t
N B N A, ,

2
0, 1z

e
e e

e
[ ] [ ] ( ) j

b
¶
¶

+ - +  D =^

A

t
N B 0, 2ze( ) ( )

 j
¶

¶
+  - - =

where the Poisson bracket of two fields F and G is defined as
[F, G]B (∂xF)(∂yG)− (∂yF)(∂xG), Δ⊥B ∂xx+ ∂yy is the
Laplacian operator acting perpendicular to B0B B0ez, and the
electrostatic potential j and parallel magnetic-field fluctuations
Bz are related by Bz=M1j and Ne=−M2j. The operators M1

and M2 are represented in Fourier space by M L L1 1
1

2 - and
M L L L L2 3 4 1

1
2 + - , where L1B 2/βe+ (1+ 2τ)(Γ0− Γ1),

L2B 1+ (1− Γ0)/τ− Γ0+ Γ1, L3B (1− Γ0)/τ, and L4B
1− Γ0+ Γ1. Here, n T B8e 0 e0 0

2b p= is the electron plasma
beta, τ= Ti0/Te0 is the ion-to-electron temperature ratio (so
βi= τβe), and b b bI expn n( ) ( ) ( )G - , with In being the first-
type modified Bessel function of order n and argument
b k 22

i
2 r^ (ρiB vth,i/Ωi0 is the ion gyroradius and vth,i 

T m2 i0 i the ion thermal speed). Equations (1) and (2) are
normalized in terms of the ion-cyclotron frequency Ωi0B eB0/mic
and the ion-sound gyroradius ρsB cs/Ωi0, where c T ms e0 i is
the ion-sound speed.
The 2fGF model effectively reproduces the so-called reduced

magnetohydrodynamics (RMHD), or Hall reduced magnetohy-
drodynamics (HRMHD) if τ= 1, when employed at perpend-
icular scales much larger than the ion gyroradius, k⊥ρi= 1 (see
Passot & Sulem 2019 for various limits of the 2fGF model). Our
choice to employ the 2fGF model at MHD scales is motivated by
the fact that it allows us to extend our investigations self-
consistently to include interactions between Alfvénic wave packets
at and below ion scales, which is the subject of a forthcoming
paper. The exact linear eigenmodes of the 2fGF system are given
by the generalized Elsässer potentials, A2 e m j bL  ,
where M M M11 2

2 1
1 2

2
1 2( ) ( )L -D + -^

- . The associated
generalized Elsässer fields are zm= ez ×∇μ±; they reduce to the
usual Elsässer (1950) fields in the MHD limit.

2.2. Simulation Setup

Equations (1) and (2) are discretized and solved on a 6723

grid for a βe= βi= 1 plasma in a periodic cubic box of length
L ℓ2 s0 0

pr= ´ with ℓ 3360
 = .4 A combination of second-

order Laplacian dissipation (with resistivity η) and eighth-order

4 The numerical implementation of the 2fGF model adopts “contracted
variables”, i.e., quantities along the mean-field direction are rescaled according
to a gyrofluid ordering parameter ò= 1. For example, L Lz z

code real( ) ( )= and
k kz z

code 1 real( ) ( )= - . We have verified that an explicit choice of ò does not affect
the following analysis.
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hyperdissipation operators removes energy close to the grid
scale. Our choice of this operator combination and of their
coefficients is such that (i) the dissipation scale is always above
the ion scales, kdissρi 1, so that the inertial range of the
cascade lies in the RMHD regime, and (ii) reconnection, at
least at small values of χ0< 1, is driven by the Laplacian
resistivity η, i.e., there is enough range for a corresponding
tearing-mediated cascade before achieving complete energy
dissipation within the resolution thanks to the hyperresistivity.5

Nevertheless, we anticipate some differences at χ0∼ 1 versus
χ0< 1, especially in that we do not expect to resolve k* (as
predicted by Loureiro & Boldyrev 2017 and Mallet et al.
2017b) when χ0∼ 1.

Two counterpropagating AW packets are initialized from the
following potentials:

k x

k

zsin
exp

1

2
, 3

z
0

0

,0

0
2

( · )
∣ ∣

( )⎜ ⎟
⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥m m

y z

s
=

+
-

- 
 

^






where 0m
 and k e kkz z0 ,0 ,0= + 

^
 are the initial amplitude and

wavevector of the packets (centered at z 0z=  with standard

deviation zs
), and ψ± is a random phase. The packets’ initial

positions and widths are L 40 0z =+ , L3 40 0z =- , and zs =

ℓ 30
 . All simulations have the same initial amount of energy
in the two Elsässer fields, viz. ∫|z+|2 dx= ∫|z−|2 dx,
which is initially carried by modes k L 2 1, 0, 10 0 ( )p =+ and
k L 2 0, 1, 20 0 ( )p = -- . The slight asymmetry in kz,0

 causes
a minor imbalance during the subsequent evolution (of
order 5%; Figure 1, right panel). This is consistent with
the von Karman–Howarth decay law (e.g., Wan et al. 2012 and
references therein), i.e., z t z zd d2 2( ) ( )( ) lµ -


 , with the

similarity length estimated as k1 0l ~
 (implying a slightly

faster decay of z− in our setup).
Three different regimes defined by the initial nonlinearity

parameter of the AW packets are considered: χ0∼ 0.1, ∼ 0.5,

and∼ 1, where χ0= τlin/τnl≈ (k⊥,0δB⊥,0)/(kz,0B0) (e.g., see
Miloshevich et al. 2021). The associated Lundquist numbers
defined using the (second-order) resistivity S0= L0vA/η are
≈ 1.7× 106, ≈ 3.3× 105, and≈ 1.7× 105, respectively; these
correspond to the same magnetic Reynolds number RmB
L0urms/η≈ 2.2× 105 for all simulations. Note that achieving
these values for the Lundquist and magnetic Reynolds numbers
associated to the Laplacian resistivity has been only possible by
simultaneously employing an eighth-order hyperdissipation
operator (whose coefficient has been carefully chosen follow-
ing a detailed convergence study).

2.3. Timescales of the Problem

There are three important timescales that govern the
dynamics of the cascade. The first is the interaction time
defined by k v k v2int

1
lin

1
lin

1 1
A A( ) ( ) ( ) ( ) t t t p= + = +- + - - - - + - ,

the time between two consecutive collisions of AW packets. In
our setup, τint= τA/3, where τAB L0/vA is the Alfvén crossing
time. The second timescale is τ*, the time at which the
turbulence reaches its “peak activity”, estimated as a multiple
N* of the nonlinear timescale τnl≈ τA/χ0. Note that smaller
values of χ0 correspond to larger τnl. Usually, a few nonlinear
times are required to reach a peak in the rms current density,
Jrms (e.g., Servidio et al. 2011); we find N*≈ 3 in our
simulations. Fully developed turbulence should thus be reached
after N 9int int 0t t c= ~*

* collisions (Figure 1, left-panel inset,
dotted line). This number is noticeably smaller than implied by
standard weak-turbulence estimates,6 for which τ* would be a
few cascade times; e.g., by analogy, if τ*∼ 3τcasc≈ 3τnl/χ0,
then N 9 0

2c~* (inset, dashed line). The difference between
the data and the weak-turbulence estimate motivates the
introduction of a third timescale, the inverse growth rate of
the tearing instability, t 1( )g - . If 1k k

t
nl, g t

* *
at some scale k*,

Figure 1. Left: time evolution of the root-mean-square (rms) current density, Jrms (normalized to J0 = Jrms(t = 0); time is normalized to the time of peak activity τ*).
The inset reports the (measured) number of collisions N 3int int At t t t= =*

* * required to reach the peak of turbulent activity as a function of the initial nonlinearity
parameter χ0, showing that a fully developed turbulent state is achieved on a timescale shorter than the one associated with the usual weak scaling (using the estimate
τ* ∼ 3τnl, dotted line is 9/χ0; a dashed line 9 0

2c based on the estimate τ* ∼ 3τcasc is also given for reference). Right: time evolution of the rms Elsässer fields, zrms


(normalized to z z t 00 rms( )= =  ). The inset shows the time evolution of the rms nonlinearity parameter χrms.

5 This has been verified by running more than 50 simulations on a 5603 grid
(keeping the resolution fixed by reducing ℓ0

 ) testing different combinations of
dissipation operators and finding their optimal coefficients. See the Appendix
for a summary of these numerical tests.

6 Even at χ0 = 1, our setup may not necessarily satisfy some working
assumptions that are typical of standard weak-turbulence (WT) theory. WT
theory assumes (weak) interactions between a sea of different, randomly
phased waves, whereas in our simulations, the (weak) interactions always occur
between the same two (randomly phased) waves. Although the simulated
turbulence is weak at large scales when χ0 < 1, this somewhat artificial setup
may invalidate the “random-walk argument” leading to the N ∗ ∝ χ−2 scaling
in standard WT theory.
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the tearing instability is able to feed off of the associated
current sheet in the cascade before the host eddy decorrelates
through nonlinear interactions. Such a transition scale in the
strong χ0∼ 1 regime of MHD turbulence has been shown to
scale as k L S0 0

4 7µ* by a number of authors (e.g., Loureiro &
Boldyrev 2017; Mallet et al. 2017b; Comisso et al. 2018).
Because τnl is larger for smaller χ0, this tearing condition
should be easier to satisfy at larger scales (smaller k*) for weak
nonlinearities than in strong turbulence. The idea that a tearing-
mediated range could emerge within a weakly nonlinear
cascade also relies implicitly on the fact that, analogously to
what was postulated by Boldyrev (2006) for strong turbulence,
some sort of dynamic alignment of turbulent fluctuations
occurs in the weak regime as well so that the fluctuations
become 3D anisotropic. In Section 3.1.3 we show that this is
indeed the case and that the observed scalings (which differ
significantly from those predicted for strong turbulence by
Boldyrev 2006) can be explained by a phenomenological
theory for dynamically aligned weak turbulence (Section 4.1).
This argument is one motivation for our focus on χ0< 1, since
it implies that less numerical resolution is required to realize
tearing-mediated turbulence at small χ0 than within a
dynamically aligned, critically balanced state having χ0∼ 1
(Section 4.2). We will additionally argue that CB is induced by
reconnection in the tearing-mediated range, and that this may
explain both the observed fluctuations’ scaling in this range and
the reduced number of AW-packet interactions, Nint 0

1cµ -*

instead of Nint 0
2cµ -* , needed to achieve the peak activity at

low χ0 (Section 4.3).

3. Numerical Results

Simulations are performed for a few τ* (Figure 1),
corresponding to a large number of AW-packet collisions
(e.g., N 200int

tot( ) » at χ0∼ 0.1). If not stated otherwise, the
fluctuations’ properties are determined by averaging over a
time interval Δt≈ 0.8τ* around peak activity.

3.1. Fluctuations’ Properties at Peak Activity

As AW packets shear one another in the plane perpendicular
to B0, they generate strong CSs (evidenced by the short-time
oscillations in Jrms; Figure 1). Each interaction increases the
magnetic shear in the CSs, thus increasing Jrms until “peak
activity” is eventually achieved.

3.1.1. Current-sheet Disruption and Structure of AW Packets

Figure 2 shows perpendicular magnetic-field fluctuations,
δB⊥/Brms, both in the x–z plane (left column) and in the x–y
plane (right column) at t/τ*; 1.35, after turbulence has
developed. At this time, AW packets are still clearly
distinguishable in the x–z plane (left column), with more
fine-scale structure visible within the packets with increasing
χ0 (top to bottom). These are related to CS structures formed
through AW-packet collisions (e.g., Pezzi et al. 2017; Verniero
et al. 2018), which are then affected by the tearing instability
occurring within them. At χ0∼ 0.1, they are well localized in x
and have essentially no structure along z (Figure 2, top-left
panel). The occurrence of finer structures along z (corresp-
onding to the generation of small-k∥ scales; see Section 3.1.2)
increases with increasing χ0 (Figure 2, middle-left and bottom-
left panels, respectively). While the bulk of the AW packets are
still distinguishable in all regimes, the structure of δB⊥ in the

plane perpendicular to B0 exhibits clear differences. The
“relics” of disrupted CSs are especially recognizable at
χ0∼ 0.1, where δB⊥ fluctuations indeed resemble small-scale,
plasmoid-like structures in 2D (i.e., quasi-circular magnetic
structures referred to as “magnetic islands” in 2D, which in 3D
actually manifest as flux ropes; Figure 2, top-right panel). At
χ0∼ 0.5, such structures are also visible, although δB⊥
fluctuations are now less organized into plasmoid-like
structures within the disrupted CSs (this difference reflects on
the low-k⊥ part of the δB⊥ energy spectrum; see Section 3.1.2).
δB⊥ fluctuations are clearly different at χ0∼ 1, where no large-
scale CS structures are distinguishable in the perpendicular
plane (Figure 2, bottom-right panel): This is qualitatively
similar to 3D turbulence arising from broadband injection (see,
e.g., Figure 1 of Cerri et al. 2019).

3.1.2. Fluctuations’ Spectrum and Anisotropy

As a result of AW interaction and CS disruption, a cascade
of δB⊥ fluctuations develops (Figure 3). At χ0∼ 0.1 and∼ 0.5
(green and blue curves, respectively), the δB⊥ energy spectra
exhibit a break at k⊥ρi≈ 0.05 (Figure 3, top-left panel), which
we identify as the transition scale k*. Both simulations indeed
show a “small-scale” MHD spectrum below k* proportional to
k a
^
- with spectral index 2.1 α 2.3 (Figure 3, bottom-left
panel), consistent with predictions for tearing-mediated turbu-
lence (viz. between k 11 5

^
- and k ;19 9

^
- see, e.g., Mallet et al.

2017b; Boldyrev & Loureiro 2017; Comisso et al. 2018;
Tenerani & Velli 2020). Such a spectral break is instead not
present in the χ0∼ 1 case, consistent with the expectation
that strong turbulence would require a larger S0 to resolve k*
(see Section 4.2). At k⊥ρi 0.05, however, the two regimes
develop a different power law (although of limited extent),
close to −3/2 at χ0∼ 0.5 and to −1 at χ0∼ 0.1. Although it
would be appealing to interpret the −3/2 spectrum within the
context of a dynamically aligned, strong MHD turbulent
cascade (Boldyrev 2006; Chandran et al. 2015; Mallet &
Schekochihin 2017), we found χk< 1 at k⊥< k* (not shown).
Analogously, the −1 spectrum may be due to a not-yet-
developed large-scale turbulent state, or perhaps to nonlocal
transfer between the AW packets and the disruption scale
through CS structures (cf. Figure 4 in Franci et al. 2017).
Nevertheless, fluctuations at both χ0∼ 0.1 and∼ 0.5 show a
spectral anisotropy k∥/k⊥ consistent with the weak-turbulence
regime at k⊥< k* (i.e., k const; » Figure 3, right panel). A
possible alternative explanation for the above spectra in terms
of dynamic alignment in weak turbulence is provided in
Section 4. On the other hand, the formation of a k 3 2

^
- spectrum

at χ0∼ 1 (Figure 3, left panels, red curve) is consistent with
dynamic alignment in strong MHD turbulence. This seems to
be confirmed by the measured spectral anisotropy k k1 2

 µ ^
(Figure 3, right panel).

3.1.3. Fluctuations’ Alignment Angle

As anticipated in Section 2.3, the possibility of activating a
tearing-mediated cascade relies not only on the fact that
turbulent eddies are sheared in the field-perpendicular direction
to set up a tearing-unstable configuration but also on the
requirement that these eddies live long enough to allow tearing
instability to grow and disrupt them. The former is a
consequence of the dynamic alignment of turbulent fluctuations
in that plane, which ultimately gives the fluctuations a 3D
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Figure 2. Isocontours of δB⊥/Brms in the x–z plane at y = L0/2 (left column) and in the x-–y plane at z = L0/2 (right column), at t/τ* ; 1.35 (in the developed
turbulent regime) for initial nonlinearity parameter χ0 ∼ 0.1, ∼ 0.5, and ∼ 1 (from top to bottom). Recall that B0 is along z. Insets: isocontours of δB⊥/Brms averaged
over z (see lagrange.oca.eu/fr/silvio-cerri/3794-animations for animations).

5

The Astrophysical Journal, 939:36 (13pp), 2022 November 1 Cerri et al.

http://lagrange.oca.eu/fr/silvio-cerri/3794-animations


spectral anisotropy. However, once reconnection sets in, the
effect of the eddies’ disruption by the tearing instability is to
interrupt the achieved cascade-induced alignment by producing
plasmoid-like structures (i.e., replacing the elongated sheet-like
structure of the eddy in the field-perpendicular plane with
quasi-circular magnetic islands—flux ropes, in 3D); this
process instead increases the alignment angle (i.e., produces
“misalignment”; see, e.g., Mallet et al. 2017b; Boldyrev &
Loureiro 2017; Comisso et al. 2018). This is interpreted by
Mallet et al. (2017b) in terms of a discrete and recursive view
of the cascade: Once the cascade enters the tearing-mediated
range λ λ*, there will be a “reset” of the fluctuations’
alignment angle and amplitude due to the eddy disruption—
increasing the former and decreasing the latter—followed by a
range in which these fluctuations cascade further toward
smaller scales while re-aligning until the condition for tearing-
induced disruption is achieved, again “resetting” the alignment
and amplitude, and so on until dissipation sets in (see
discussion in their Section 6). On the other hand, Boldyrev &
Loureiro (2017) and Comisso et al. (2018) assume that, below
λ*, the fluctuations will keep misaligning with decreasing
scale, with the scaling sin 4 5q lµl

- . This scaling is based
solely on the physics of tearing instability, i.e., on the scalings
of the nonlinear Coppi mode (Coppi et al. 1976) and thus
formally belongs to a pure tearing-mediated cascade (i.e.,
occurring homogeneously in space and time). The recursive-
disruption view of Mallet et al. (2017b) also produces a scale-
dependent alignment angle, which is constrained within an
envelope whose boundary scales as λ−4/5 (see Section 7.2.3 in
Schekochihin 2020). This 4/5 envelope can be interpreted as
the strongest alignment sustainable in the tearing-mediated
range, but it is not clear a priori what would emerge as a global
feature in k space (i.e., resulting from a spatial average). The
main difference between these two views depends on the
details behind the X-point collapse (for a detailed discussion,
see Section 7.4.1 in Schekochihin 2020). Although these
two interpretations are not incompatible in term of the
resulting fluctuations’ spectrum, they could differ in terms of
the effective scale-dependent alignment angle that can be
measured.

We offer here a different point of view, somewhat complemen-
tary to the two summarized above. One can actually think about
the ensemble of turbulent fluctuations as dynamically aligning (via
the usual, non-tearing-mediated cascade) and misaligning (through
tearing) in a patchy fashion in space and time, rather than stepwise
in k space. This will likely result in a complicated convoluted state
when globally averaged over the ensemble (i.e., not necessarily
providing a clean, global k4 5

^ scaling). Here, we illustrate this
patchy-in-time behavior by distinguishing between those periods
when the AW packets are shearing one another during their
interaction (“overlap”) and those periods during which the AW
packets are instead far apart (“free cascade”). This will demonstrate
that both states, a dynamically aligned cascade and a tearing-
mediated misaligning cascade, are recursively realized in time.
On the other hand, by performing the same time average as done
for the fluctuations’ spectra (which are indeed not affected by
distinguishing between the above stages), we have found that
sin ql exhibits ambiguous scalings (not shown). For our setup, viz.,
AW-packet collisions, taking into account the patchiness in space
appears to be less important (especially in the χ0∼ 0.1 regime,
where the largest-scale fluctuations affect much less the tearing-
mediated regions). However, we expect that in simulations with
broadband injection, this spatial patchiness should be carefully
taken into account in order to capture the correct scalings of
misalignment in the tearing-mediated range.
Analogously to the calculation of wavenumber anisotropy

(Cho et al. 2002), we estimate the alignment angle θ between
the velocity- and magnetic-field fluctuations at k⊥ using7

u b

u b
sin , 4k

k k k
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Figure 3. Left: δB⊥ energy spectrum and its local slope vs. k⊥ρi. Spectra are time-averaged over 0.9  t/τ*  1.7. Right: spectral anisotropy k∥/k⊥ averaged over the
same time interval (k∥(k⊥) is obtained using the method presented in Cho et al. (2002)). Relevant power laws are provided for reference.

7 In order to estimate sin kq ^ correctly, it is important to employ the averaging
procedure 〈|δu⊥,λ × δb⊥,λ|〉/〈|δu⊥,λ||δb⊥,λ|〉 instead of a normalized version
〈|δu⊥,λ × δb⊥,λ|/(|δu⊥,λ||δb⊥,λ|)〉. This is needed to select the “dynamically
relevant” fluctuations, i.e., the averaging procedure should reflect the fact that,
at a given scale λ, the fluctuations that contribute the most to the turbulent
dynamics are those whose amplitudes are close to the rms value at that scale;
see discussion in Mason et al. (2006).
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where the perpendicular direction is defined with respect to a
scale-dependent mean field, 〈B〉λ, obtained by eliminating
modes with k⊥> k/2∼ 1/(2λ) from B. Results for different
simulations are shown in Figure 4, where we distinguish
between the two main phases discussed above. During the
interaction of the AW packets (“overlap”; top row), fluctuations
get highly sheared and sin kq ^ clearly shows their tendency to
align at decreasing scales. In the χ0∼ 1 case, fluctuations align
such that ksin k

1 4q ~ ^
-

^ , which matches the prediction by
Boldyrev (2006). Note that, although this simulation seems to
support the idea that dynamic alignment in strong turbulence is
an effect that proceeds all the way down to dissipation
scales (as observed by Perez et al. 2012), the limited resolution
in our simulations cannot exclude the possibility that alignment
is a finite-range effect that is tied to the dynamics at the outer
scale and thus might stop before the dissipation scales are
reached in the cascade (as claimed by Beresnyak 2012). The
cases with smaller values of χ0, on the other hand, exhibit
stronger alignment: roughly as k 1 2

^
- for χ0∼ 0.5 (perhaps

reducing to k 1 4
^
- at the smallest scales, also showing small-

scale flattening in some cases), and something in between k 1
^
-

and k 1 2
^
- for χ0∼ 0.1 (also exhibiting small-scale flattening in

some cases). This behavior may be explained by the theory
presented in Section 4.1. When AW packets are instead far
apart (“free cascade”; bottom row), the fluctuations’ dynamics
is dominated by the tearing-mediated cascade and sin kq ^

exhibits a tendency to misalign. However, while the χ0∼ 0.1
regime misaligns fluctuations roughly as k4 5

^ for k⊥> k* in all
cases (as predicted by Boldyrev & Loureiro 2017), the
intermediate χ0∼ 0.5 case also shows times with a slightly
weaker misalignment at k⊥> k* in addition to the 4/5 scaling
(somewhat between k3 5

^ and k1 2
^ ). This weaker dependence of

the alignment angle at χ0∼ 0.5 can be interpreted as the effect
of some nonnegligible amount of the spatial patchiness

discussed above, which is present in this regime despite our
simple setup of AW-packet collisions (see Figure 2, middle
row). During this “relaxation” stage, we also observe a weak
misalignment for χ0∼ 1, following approximately k1 3

^ (with-
out any obvious spectral breaks). We do not have any obvious
explanation for this behavior at the moment, and further
investigation would be required to address this point.

4. Dynamic Alignment and Reconnection in Weak Alfvénic
Turbulence

Dynamic alignment of turbulent fluctuations is a necessary
condition for the cascade to realize a tearing-mediated regime. To
explain the evidence for this regime occurring in our simulations,
we take a step back and postulate how dynamic alignment would
affect the standard weak-turbulence phenomenology.
In this section, we provide a phenomenological description

of weak turbulence in which dynamic alignment is occurring
and discuss its implications for possible transitions to CB and/
or tearing-mediated turbulence. For this purpose, we first
establish our notation. Let us call λ the perpendicular length of
fluctuations in the direction perpendicular to both the mean
magnetic field at such scale, 〈B〉λ, and the perpendicular (to
〈B〉λ) magnetic-field fluctuations δb⊥,λ (in Alfvénic units).
Then, ℓλ and ξλ are the lengths of such fluctuations along 〈B〉λ
and along δb⊥,λ, respectively.8 Quantities evaluated at the
injection scale are adorned with a “0” subscript. Following
Figure 3 of Boldyrev (2006), we define θλ as the angle between
the flow- and magnetic-field fluctuations perpendicular to 〈B〉λ
at scale λ, δu⊥,λ and δb⊥,λ, respectively. At the same time, if
〈B〉λ differs from B0 by an angle ql, the angle between δuλ and
〈B〉λ is 2 p q- l. These two angles scale as θλ∼ λ/ξλ and

ℓq x~l l l, the total alignment angle between δuλ and δbλ

Figure 4. Variation of the alignment angle with scale for different initial values of the nonlinearity parameter χ0 and at different times within developed turbulence
(0.9  t/τ*  1.7): sin( )q vs. k⊥ρi at times when AW packets spatially overlap (top row) and when they are far apart (bottom row). Scale-dependent alignment is
computed using Equation (4). Relevant power laws are provided for reference.

8 This distinction between the two scale-dependent transverse directions λ
and ξ is ignored in Equation (4), consistent with the assumption that angular
spectral averaging makes the difference between the variation scales transverse
to the local field and the ambient field subdominant.
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being ub 2 2 1 2( ) f q q+l l l (see Section 2 of Boldyrev 2006). In
general, dynamic alignment weakens nonlinear interactions,

z z z z z 2 · ·( ) ( )d d d d f d l ~ ~ ~l l l
+ - - + , and simulta-

neously increases the cascade time nl,
2

A A
2t t t t f~ ~l l l

-

ℓ z v0
2

A
2( ) ( )l d - , where now fλ is the angle between zd l

+ and
zd l
-, τA= ℓ0/vA, and v v constA A,0= = .9 (Note that, while we

use the angle fλ (or, ubfl ) in the phenomenological scaling, it is
actually sinfl (or sin ubfl ) that enters the nonlinear term, so that
its effect on nonlinearities is symmetric with respect to the fact
that zd l

+ and zd l
- (or, δuλ and δbλ) can either align or

counteralign.) In the following, we assume balanced turbulence
at large scales,10 |δz+|2≈ |δz−|2, so that ubfl scales as fλ, and
we use the alignment angle θλ between δu⊥,λ and δb⊥,λ

fluctuations as the relevant angle in the following phenomen-
ological scalings. In fact, we will see that the scaling ubf q~l l
holds in all cases of interest. Moreover, θλ is the angle most
relevant for the cascade of δb and δu fluctuations (this can be

seen from the nonlinear terms, e.g., (δu ·∇)δb, in which the
contribution from δu∥,λ to δu ·∇, which is the one associated
with the angle ql, is subdominant by a factor of k∥/k⊥= 1).

4.1. Dynamic Alignment at Weak Nonlinearities

The fluctuations’ scaling laws are derived by assuming
a constant energy flux throughout each scale of the inertial
range, viz. b const2d t e~ =l l , and by adopting the weak-
regime cascade time nl,

2
At t t~l l . Taking into account

alignment in τnl,λ∼ λ/(θλδbλ), this leads to b vAd ~l
ℓ v ℓ0 A

3 1 4 1 2
0

1 2( ) ( )e q ll
- and ℓ v ℓb 0 A

3 1 2 1
0

2 ( ) ( ) ( )l e q lµd l
- .

For convenience, the reader can find all of these definitions in
the first column of Table 1.
When alignment is ignored, one obtains the usual weak-turbulence

scalings (hereafter “W0”) b W0 1 2( )d lµl and b
W0 2 ( )( ) l lµd . This

case does not include the fluctuations’ anisotropy in the plane
perpendicular to the mean magnetic field (i.e., turbulent eddies are
very elongated “spaghetti”-like structures). It achieves CB at scale

ℓ ℓ v MCB
W0

0 0 A
3 1 2

0 A,0( )( )l e c~ » , where MA,0∼ u0/vA is the
Alfvénic Mach number at injection (see second column of Table 1
for a summary of these scalings). Next we discuss how this picture
might be modified by dynamic alignment. For the sake of clarity and
simplicity, we consider here only two limiting cases that may be
relevant for the interpretation of our simulation results; the general
case will appear in a separate publication.
Using the maximal-alignment argument by Boldyrev (2006), in

which ql and θλ scale in the same way (as does ubfl ), one obtains
1 2q q l~ µl l (hereafter “WI”). This case develops 3D eddies

with very elongated “fettuccine”-like structure (λ decreases faster
than ξλ∝ λ1/2, eventually attaining λ= ξλ= ℓ0). This regime is
characterized by a spectrum k 3 2µ ^

- , as in Boldyrev (2006), but
with k const ~ instead of k k1 2

 µ ^ . In this “WI” case, CB is
reached at ℓ ℓ v MCB

WI
0 0 A

3
0
2

A,0
2( )l e c~ ~ , i.e., at scales typically

smaller than those of “W0” due to weaker nonlinearities induced

Table 1
Scalings Pertaining to Relevant Quantities and Critical Scales when Dynamic Alignment is Included in the Weak Turbulence Regime (Phenomenological Derivation;

a “∼” Relating the Various Quantities to Their Scaling is Understood)

Standard Weak Regime Moderately Weak Asymptotically Weak
Definition without Alignment with Alignment with Alignment

(“W0”) (“WI”) (“WII”)

ql ξλ/ℓ0 L ℓ0
1 2( )l const (=θλ)

θλ λ/ξλ L ℓ0
1 2( )l (λ/ℓ0)

eddies elongated tubes elongated ribbons extended sheets
shape (“spaghetti”) (“fettuccine”) (“lasagna”)

τnl,λ/τA ℓ v b1
0 A( )( )q l dl l

- ℓ0
1 4

0
1 2( )lL- ℓ0

1 4
0

1 4( )lL- const0
1 4L =-

δbλ/vA ℓ0
1 4 1 2

0
1 2( )q lL l

- l0
1 4

0
1 2( )lL ℓ0

1 4
0

1 4( )lL const0
1 4L =

l vb 0 A
2 ( )d ℓ0

1 2 1
0

2( )q lL l
- l0

1 2
0

2( )lL ℓ0
1 2

0
3 2( )lL ℓ0

1 2
0( )lL

λCB/ℓ0 nl, ACBt t~l 0
1 2L Λ0 L

λ*/ℓ0 1t
nl,g t ~l l

* *
L S0

1 9
0

4 9L- - S0
1 12

0
1 3L- -

Notes. A “0” subscript denotes quantities evaluated at the injection scale, k 1l ~ ^
- refers to the fluctuation’s wavelength perpendicular to both a scale-dependent mean

magnetic field 〈B〉λ and to the fluctuations δbλ themselves, τA = ℓ0/vA is the Alfvén (“linear”) time, and v v constA A,0= = is the Alfvén speed. We have introduced
ℓ v M0 0 A

3
0
2

A,0
2 e cL ~ , where u u0 0

2
0 0

2
0
2

Ae e t c t~ ~ ~ is the energy cascade (and injection) rate per unit mass, 0 nl,0
2

A A 0
2t t t t c~ ~ is the cascade time at

the outer scale, and χ0 = τA/τnl,0 and MA,0 = u0/vA are the nonlinearity parameter and Alfvénic Mach number at injection, respectively. Finally,
S ℓ b vt

A 0
1 2

0
3 2

A
1 2( ) ( )g t l d~l l

- - is the maximal tearing growth rate (Loureiro & Boldyrev 2017; Mallet et al. 2017b), where S0 B ℓ0vA/η is the Lundquist
number evaluated at the outer scale.

9 In general, it is not obvious whether one should define the alignment angle
with respect to the fluctuations δuλ and δbλ or to the Elsässer fields zd l

+ and
zd l
-. In fact, while both the original theory by Boldyrev (2006) and a number of

in situ spacecraft measurements and of simulations’ analyses focus on the
former, showing the tendency of δuλ and δbλ to align with decreasing
scales (e.g., Mason et al. 2006, 2011; Matthaeus et al. 2008; Podesta et al.
2009; Hnat et al. 2011; Perez et al. 2012), it should be the latter that
directly enters the nonlinear term in the Elsässer formulation of the MHD
equations (i.e., it is the δz± that shear one another into alignment; see, e.g.,
Beresnyak & Lazarian 2006; Beresnyak 2012; Chandran et al. 2015; Mallet &
Schekochihin 2017). Nevertheless, dynamic alignment of both δuλ and δbλ and
of zd l

+ and zd l
- are indeed simultaneously taking place (e.g., Wicks et al. 2013;

Mallet et al. 2016). The angles between the two sets of fields are ultimately
related by cross-helicity and residual energy, and both angles scale with λ in
the same way under certain circumstances (see, e.g., Schekochihin 2020 for a
more detailed discussion on this matter).
10 Assuming balance at large scales does not imply that a scale-dependent
imbalance and residual energy are not present, and actually, it can be seen from
simple geometrical arguments that dynamic alignment indeed requires that both
develop along the cascade.
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by alignment. All of these scalings are conveniently summarized
in the third column of Table 1. In this regard, we mention that a
≈−3/2 spectrum had been observed previously in high-resolution
simulations of weak MHD turbulence by Meyrand et al. (2015);
in these simulations, such a spectrum was found either as a large-
scale range before transitioning into a smaller-scale standard
weak-turbulence spectrum k 2~ ^

- , or as the fluctuations’ spectrum
when artificially removing k∥= 0 modes (which indeed do not
belong to the weak regime). The authors also report the
emergence of strong intermittency, which they relate to the
presence of intense current sheets (and perhaps one would
recognize some plasmoid-like structures as well; see their Figure
1), in the plane perpendicular to B0. Although the realization of
such a field-perpendicular anisotropy would indeed require some
sort of dynamic alignment, the authors did not focus on this type
of analysis, so at this stage we can only mention a plausible,
qualitative connection with our predicted scalings.

Considering an asymptotically weak regime with δb/B0= 1
(hereafter “WII”), one can ignore the angle ql between 〈B〉λ
and B0 with respect to θλ (hence, ubf q~l l). Since q is finite for
finite δb, we consider ℓ const0 q x q~ ~l l l, so that

const 0x x~ ~l and thus θλ∼ λ/ξλ∝ λ. This case develops
eddies that shrink only in the direction defined by λ, i.e.,
“lasagna”-like sheets (e.g., λ= ξ0< ℓ0 for very oblique AWs;
this is reminiscent of our χ0∼ 0.1 simulation). This regime is
characterized by scale-invariant fluctuations b constd ~l ,
which thus produce a spectrum k 1µ ^

- , and by the fact that the
cascade never reaches CB (because alignment depletes the
nonlinearities so that constnl,t ~l ). These scalings are repeated
in the last column of Table 1. In this regard, it is worth
mentioning that (rapid) scale-dependent alignment between
δu⊥ and δb⊥ fluctuations (or antialignment between zd l

+ and
zd l
-) has been reported to occur in the −1 spectral range of

solar-wind turbulence by Wicks et al. (2013). This ensemble of
aligning fluctuations was measured to constitute the majority of
the fluctuations’ population and to be the one responsible for
the resulting −1 spectrum (structure functions show scale-
independent behavior of δb⊥ in that range; their Figure 1); they
were interpreted as “nonturbulent” fluctuations, i.e., belonging
to noninteracting (or weakly interacting) counterpropagating
AWs. Despite the fact that here we do not take into account the
effect of imbalance or residual energy, one may relate the
fluctuations’ behavior in Wicks et al. (2013) to the basic ideas
underlying our “WII” case. In fact, in order to have dynamic
alignment, such a population of counterpropagating AWs have
to be shearing one another—and thus have a small, but finite,
amount of nonlinear interactions (i.e., to be in the asympto-
tically weak χ= 1 regime discussed above).

4.2. Dynamically Aligned, Weak Turbulence Meets
Reconnection

Given the above scalings, cascading fluctuations should
develop an anisotropy perpendicular to 〈B〉λ that increases
significantly faster than the one associated with a strong
cascade (ξ/λ∝ λ−1 for “WI” and∝ λ−1/2 for “WII”, instead
of∝λ−1/4 in Boldyrev 2006). At the same time, turbulent
eddies at a given scale live longer for weaker nonlinearities,
leaving more time for tearing instability to grow. Thus, a
transition to tearing-mediated turbulence should occur at larger
scales when starting from a weakly nonlinear regime.

The critical scale λ* at which tearing can grow on top of
turbulent eddies is determined by requiring that the tearing

growth timescale is comparable to the eddy lifetime,
1t

nl,g t ~l l
* *

. Following Loureiro & Boldyrev (2017) and Mallet

et al. (2017b), we adopt S ℓ b vt
A 0

1 2
0

3 2
A

1 2( ) ( )g t l d~l l
- -

for the maximal tearing growth rate, where S0B ℓ0vA/η is the
Lundquist number evaluated at the outer scale. The transition
scales in the “WI” and “WII” limits are summarized in Table 1.
The “WI” case can either transition to the “Boldyrev (2006)-

type” of strong turbulence or to a tearing-mediated cascade:
Since M SWI

CB
WI

0
20 9

A,0
20 9

0
4 9( ) ( )l l c~ - - -

*
, this means that

tearing-mediated turbulence will prevail over the critically balanced
cascade à la Boldyrev (2006) when M S0 A,0

1
0

1 5c < - - . In this case,
one requires only that MA,0∼ 0.1 and S0∼ 105 for the transition to
the usual critically balanced cascade to be replaced by a transition
to a tearing-mediated range for any χ0< 1. On the other hand,
tearing completely replaces the usual CB transition in case “WII”.
For instance, adopting a fixed Lundquist number S0 across all
regimes, one finds that M SWI CB

0 A,0
2 9

0
8 63( )( ) ( )l l c~ -

* * and
M SWII CB

0 A,0
1 6

0
5 21( )( ) ( )l l c~ -

* * , where ℓ SCB
0 0

4 7( )l ~ -
* is

the predicted transition scale in the strong, critically balanced
regime (for χ0∼ 1 and MA,0∼ 1) (Loureiro & Boldyrev 2017;
Mallet et al. 2017b; Boldyrev & Loureiro 2017). More specifically,
using the parameters of our χ0∼ 0.5 simulation for case “WI”, we
predict a transition scale that is≈ 6 times larger than the
corresponding scale in the strong regime. Analogously, employing
the parameters of the χ0∼ 0.1 simulation for case “WII”, we find a
transition scale that would be∼ 60 times larger than the one
predicted following a cascade à la Boldyrev (2006).

4.3. Conjecture of Tearing-driven CB

At this point, one may be tempted to derive the scalings
for the tearing-mediated range in the weak regime by
substituting τnl,λ with 1t tt g~l l in the cascade time,11 so that

t 2
A

1( )t t t~l l
- . However, a main feature of the weak regime,

namely that ℓ ℓ const0= =l , cannot hold if the cascade is
mediated by tearing. This is because tearing will produce
reconnecting magnetic islands and thereby generate smaller
scales in the magnetic-field fluctuations, both in the perpend-
icular direction (λ and ξλ) and the parallel direction (ℓλ). How
would ℓλ change, then? Since ttl is now the timescale over
which δbλ fluctuations are generated at λ< λ*, it is reasonable
to consider that timescale to be the actual transfer time, viz.,

tt t~l l. Therefore, because of the condition
t

nl,t t~l l and the
fact that nl,

2
At t t~l l holds up to scale λ∼ λ*, it follows that

t
A,t t~l l (note that τA is not scale-independent anymore

below λ*). This argument can explain the reduced number of
AW-packet interactions required to achieve a fully developed
turbulent state in our χ0∼ 0.5 and χ0∼ 0.1 simulations, viz.,
Nint 0

1cµ -* (Figure 1, left-panel inset). This indicates that, at
scales λ< λ*, CB should be expected to hold. We therefore
conjecture that tearing drives the cascade toward CB and to the
usual −11/5 spectrum of tearing-mediated turbulence.

5. Discussion and Conclusions

Using 3D gyrofluid simulations, we have investigated how
the turbulent dynamics arising from collisions of

11 Incidentally, this would lead to b v ℓ v S ℓW,t
A 0 A

3 1 3
0
1 3

0( ) ( )( )d e l~l , so that
the spectrum would be kb

W,t 3 3 ( ) lµ ~d ^
- and the alignment angle at λ < λ*

would increase (i.e., fluctuations would misalign) as kW,t 1( )q lµ ~l
-

^.
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counterpropagating AW packets with different large-scale
nonlinearity parameter χ0 is modified by tearing instability.

For strong initial nonlinearities (χ0∼ 1), we observe a regime
consistent with dynamically aligned, critically balanced MHD
turbulence (Boldyrev 2006), i.e., fluctuations align accordingly to

ksin k
1 4q ~ ^

-
^ , resulting in a k 3 2

^
- spectrum with k k1 2

 µ ^
spectral anisotropy. Tearing does not appear to modify the cascade,
consistent with theoretical expectations given the Lundquist
numbers we are able to afford in our numerical simulations.

As the initial nonlinearities are lowered (χ0< 1), however, a
spectral break marking the transition between large-scale weak
turbulence and small-scale tearing-mediated turbulence appears.
The presence of a tearing-mediated range for small χ0 implies
that dynamic alignment occurs also at weak nonlinearities.
In particular, for these cases the alignment angle shows a
stronger scale dependence than found in the critically balanced
regime, namely ksin k

1 2q ~ ^
-

^ at χ0∼ 0.5, and ksin k
1q ~ ^

-
^ at

χ0∼ 0.1: This, combined with the increased lifetime of turbulent
eddies at small χ0, allows tearing to onset and mediate the
cascade at scales larger than those predicted for a strong MHD
cascade. Dynamic alignment in the weak regime also determines
a modification to the large-scale spectrum, roughly scaling as
k 3 2
^
- for χ0∼ 0.5 and as k 1

^
- for χ0∼ 0.1.

Regardless of the large-scale nonlinearity parameter, the
emerging tearing-mediated range is consistent with the
predicted k 11 5

^
- spectrum and a scale-dependent (mis)align-

ment of the fluctuations following something close to
ksin k

4 5q ~ ^^ (Mallet et al. 2017b; Boldyrev & Loureiro 2017;
Comisso et al. 2018). These scalings, together with the fact that
in our simulations the number of AW-packet interactions
necessary to achieve a fully developed turbulent state for these
low-χ0 regimes is reduced with respect to the weak-turbulence
expectation (viz. 0

1cµ - instead of 0
2cµ - ), support our

conjecture of a “tearing-induced” transition to CB.
A phenomenological theory of dynamically aligned turbu-

lence at weak nonlinearities that can explain these spectra and
the transition to the tearing-mediated regime is provided. In
particular, it is shown that, depending on the nonlinearity
parameter at injection and on the large-scale Alfvénic-Mach
and Lundquist numbers, the transition to tearing-mediated
turbulence may compete with (if not completely supplant) the
usual transition to CB; and that such a transition scale at small
nonlinearities can be larger than the one implied by a critically
balanced MHD cascade by several orders of magnitude, if the
Lundquist number of the system is large enough (cf. Mallet
et al. 2017b; Boldyrev & Loureiro 2017; Comisso et al. 2018).
We expect such a shift of the transition scale λ* to scales larger
than those implied by a strong MHD cascade to be a general
consequence of the fact that dynamic alignment occurs also in
the weak regime, regardless of the precise physics of tearing
(i.e., resistive or collisionless); the precise scaling of such a
transition scale, on the other hand, will clearly depend upon the
microphysics of tearing (e.g., Loureiro & Boldyrev 2017;
Mallet et al. 2017a).

Our results suggest a more complex scenario than the
simplistic picture of weak-to-strong transition in Alfvénic
turbulence and shed new light on the existence of different
large-scale regimes that coexist with tearing-mediated turbu-
lence. This may have significant implications for small-scale
dissipation and turbulent heating in space and astrophysical
plasmas. Moreover, depending on the Lundquist number, a
dynamically aligned weak cascade will undergo a transition to

tearing-mediated turbulence at scales larger than the scales at
which a standard weak cascade would meet the usual CB
condition. Because this implies that a cascade in k∥ is realized
earlier in k (and with larger fluctuation amplitudes), our new
scalings may have significant implications for the scattering
efficiency of cosmic rays in astrophysical environments in
which Alfvénic turbulence is injected with small nonlinearities
and/or at small Alfvénic-Mach numbers (e.g., Chandran 2000;
Yan & Lazarian 2002, 2008; Fornieri et al. 2021; Kempski &
Quataert 2022).
Finally, our results and the basic ideas underlying our new

scalings can be viewed in connection with in situ measure-
ments of solar-wind turbulence. For instance, a (rapid) scale-
dependent alignment between δu⊥ and δb⊥ fluctuations (or,
antialignment between zd l

+ and zd l
-) has been reported to occur

in the large-scale −1 range of solar-wind turbulence by Wicks
et al. (2013). In particular, it was shown that such an ensemble
of aligning fluctuations constitutes the majority of the
fluctuations’ population and that they are responsible for the
resulting −1 spectrum (viz., structure functions reveal a scale-
independent behavior of δb⊥ in that range); these fluctuations
were interpreted as “nonturbulent” fluctuations belonging to
quasi-non-interacting, counterpropagating AWs. Since a finite,
however small, amount of nonlinear interactions is required to
occur for counterpropagating AWs to shear one another and
induce dynamic alignment, we suggest that this may be the case
for the aligning population observed by Wicks et al. (2013),
thus potentially pertaining to an asymptotically weak (χ= 1)
regime as discussed in our scalings (Section 4.1, case “WII”).
Another intriguing piece of in situ measurement is the one
recently taken by Parker Solar Probe within the magnetically
dominated corona (Kasper et al. 2021). Among other features,
the magnetic-field spectrum in that region exhibits a transition
between a −3/2 range and a steeper ≈−2.2 slope occurring at
scales (frequencies) much larger (smaller) than the ion
characteristic scales (frequencies), which may be a hint of a
potential large-scale, tearing-mediated range. While further
studies are definitely needed to investigate the fluctuations’
properties across this transition (e.g., estimated strength of
nonlinearities, spectral anisotropy, etc.) in order to understand
what type of transition we are observing, our theory in the
moderately weak regime (Section 4.1, case “WI”) provides an
alternative scenario to interpret the measurements by Kasper
et al. (2021).
While the underlying processes highlighted by the above

in situ spacecraft measurements may be the same on which our
scalings are founded (namely, dynamic alignment in the weak
regime, followed by a large-scale transition to tearing-mediated
turbulence), we caution as a final remark that these connections
are purely conceptual, as our theory does not take into account
imbalance or residual energy. With these being outside the
scope of the current work, a more detailed theory that also
includes these effects will be explored in a following paper.
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Appendix
Numerical Resolution, Lundquist Number, and Dissipation

Operators

In this appendix, we summarize the outcome of various
numerical tests that have been performed in preparation for the
production runs. These tests focused on (i) the effectiveness of
the numerical dissipation, (ii) the ability to identify clearly a
tearing-mediated range, and (iii) the effect of employing
different dissipation operators.

Point (i) has been addressed by increasing the resolution
while fixing the large-scale properties and the dissipation
parameters. The results of this convergence test are shown in
the left panel of Figure 5, in which the time-averaged spectrum
of δB⊥ (and its local slope) versus k⊥ℓ0 is reported for the
χ0∼ 0.1 regime and for two large-scale Lundquist number
cases, S; 1.4× 106 (yellow dashed and black dotted lines) and
S; 1.7× 106 (green solid and black dashed lines) at different
small-scale resolutions. The overlap of the spectra and of their
local slopes at increased resolution shows the effectiveness of
the dissipation parameters employed (hereafter referred to as
“optimal”).

Point (ii) has been addressed by keeping the small-scale
resolution and (optimal) dissipation parameters fixed, while the
Lundquist number S= L0vA/η has been varied by changing the
injection scale L0. A summary of this study is reported in the
left panel of Figure 5, in which spectra of δB⊥ (and their local
slopes) versus k⊥ℓ0 are shown for different Lundquist numbers
at χ0∼ 0.5 (upper spectra, in blue shades and different line
styles) and at χ0∼ 0.1 (lower spectra, green/yellow/orange/
black colors and different line styles). Although the existence

of a −11/5 range seems to be visible already at the lowest
Lundquist numbers, a reliable and fairly extended tearing-
mediated spectrum is obviously achieved only at the largest
separation of scales (i.e., larger L0 at fixed dissipation scales,
corresponding to larger S). In this context, the values
S; 1.7× 106 and S; 3.3× 105 for the χ0∼ 0.1 and
χ0∼ 0.5 regimes, respectively, were considered to provide a
satisfactory result.
Finally, the impact of the dissipation order has been explored

by varying the operators employed and/or by taking a
combination of different orders. The outcome is summarized
in the right panel of Figure 5, which shows spectra of δB⊥ and
their local slopes versus k⊥ρi in the χ0∼ 0.5 regime when
using (a) only a Laplacian operator (∝k2, orange dashed line;
note that to obtain a −11/5 range for this case, the dissipation
level is insufficient and thus energy accumulates at the smallest
scales of the system–and so the simulation is considered to be
“unresolved”), (b) only an eighth-order operator (∝ k8, light-
blue dashed–three-dotted line), or (c) a combination of
Laplacian and eighth-order operators (blue solid line; this
simulation corresponds to the purple dashed line in the left
panel of Figure 5, i.e., S; 2.8× 105 on a 5603 grid). Although
the fluctuations’ spectrum for the case with only Laplacian
dissipation clearly shows a slight rise of the spectral slope at
k⊥ρi> 0.2, it overlaps in the range k⊥ρi 0.2 with the
spectrum obtained from the (well-resolved) simulation employ-
ing both Laplacian and eighth-order dissipation operators.
We are therefore confident that, in the latter case, the break
scale k 0.07ir »*̂ and the −11/5 slope in the range
0.08 k⊥ρi 0.2 are due to the usual resistive reconnection
(while the additional hyperresistivity simply completes the
energy dissipation at the smallest scales of the system). On the
other hand, there is no clear signature of a tearing-mediated
−11/5 range in the spectrum obtained from the simulation
employing only an eighth-order dissipation operator; although
an apparent break at k⊥ρi∼ 0.06 followed by a≈− 1.85 slope
in the range 0.07 k⊥ρi 0.15 seems to be present, this may
be due to other effects rather than (hyperresistive)
reconnection (which would instead exhibit a− 19/7≈− 2.7
slope, according to predictions by Boldyrev & Loureiro 2017).
The reason for this slope in the purely hyperresistive case is not
clear at this stage and will require further investigation.
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the chosen dissipation parameters. Right: time-averaged δB⊥ spectrum and its local slope vs. k⊥ρi at χ0 ∼ 0.5 for different combinations of dissipation operators, viz.,
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