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Structured Ambiguity and Sequential
Aggregation*

Antoine Billot† and Xiangyu Qu‡

Abstract

When society notices the possibility for individual priors to be misspeci-

fied, it faces a structured ambiguity while trying to make a collective decision.

Here, we highlight the different principles allowing to overcome such a struc-

tured ambiguity by relying on the consensual core of individual priors. This

is done through a sequential aggregation mechanism. The decision problem

at stake is decomposed into several steps and aggregation is made progres-

sively. Compared to standard synchronized aggregation, the possibilities of

aggregation are then shown to dramatically increase.

JEL classification: D7; D8.

Keywords: Sequential aggregation; Structured Ambiguity; α-Maximin ex-

pected utility; Unanimity.

1 INTRODUCTION

Often, society is required to make economic decisions in the presence of ambiguity.
Thus, when a social planner has to make certain policy choices, she may lack the
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statistically significant data needed to select the most appropriate course of action.
She may also not be able to properly assess the extent to which the models recom-
mended by experts to guide her decisions actually consider all relevant dimensions
of the problem she faces. Even more, these models may produce conflicting rec-
ommendations. This type of concern is evident, for example, in the formulation of
options for environmental economic policy or fiscal policy during a pandemic. With
respect to environmental economic policy, it is often difficult to distinguish the un-
derlying mechanisms that govern environmental policy. The clear lack of effective
data is a hindrance to building a model that is both credible and consensual.

Experts from different fields have developed a wide variety of climate models,
each not only reflecting different design and implementation choices but also mak-
ing very different predictions of global climate change. How, then, to select models
that would correctly calculate the expected loss of each policy and thus identify
the optimal policy via a simple cost-benefit analysis. Similarly, at the beginning
of the Covid crisis, both theoretical knowledge about the virus and relevant data
to help decide on an effective policy were very limited. In a macroeconomic set-
ting, the models used to guide, for example, public debt are again often rather crude
simplifications. Hence, this paper focuses on an old theoretical question for social
authorities, which concerns how to aggregate the preferences of experts given the
ambiguity they face.

To begin, we need to clarify what we mean by ambiguity in this paper. Accord-
ing to Hansen (2014)(p. 947), it is possible to distinguish three different situations
of uncertainty. A first situation is related to the uncertainty inherent to a particular
statistical model. A second concerns uncertainty about the best statistical model to
consider in a set of alternative statistical models, and a third situation has to do with
the possibility that each element of this set of models is actually misspecified. Here,
clearly, we refer to the third form of uncertainty (in the sense of Hansen). Each indi-
vidual, member of society, has his own statistical model built, among other things,
on a probability distribution. Society is then supposed to construct its own social

model by aggregating these different individual models. The society we consider
faces two different sources of uncertainty. The first source of uncertainty relates to
the fact that the individual probabilistic beliefs are not consistent with each other,
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and even vary greatly. This heterogeneity of individual beliefs is widely observed
in reality and has given rise to an abundant literature for many years. The second
source of uncertainty corresponds to the fact that individuals do not have full con-
fidence in the probability distribution that they use to represent their beliefs. This
lack of confidence generally stems from two aspects. First, the process of construct-
ing a model is by nature a simplification and an approximation of the real situation.
Therefore, as Hansen says, the possibility of model misspecification can never be
completely ruled out. Second, the model validation process suffers from a lack of
sufficiently good data, so that the model itself cannot be accurately identified. This
is exactly what Manski, Sanstad and DeCanio (2021) calls partial identification,
as the result of which the related uncertainty is then named deep uncertainty or
structured uncertainty.

We suggest in this paper that society adopts an α-maxmin model (Gilboa and
Schmeidler (1989); Ghirardato, Maccheroni and Marinacci (2004); Gul and Pe-
sendorfer (2015)) to deal with the structured uncertainty generated by the aggre-
gation of individual models. We further assume that each individual model corre-
sponds to the expected utility (EU) one. Therefore, a society has to build its own
model by determining its set of probabilities, selecting its attitude towards ambi-
guity, i.e., the value α, and its social utility. At the same time, this construction
mechanism proceeding by aggregation, it must satisfy certain probing constraints.

First, society considers the set of probability distributions underlying individ-
ual beliefs. From this set, events whose individual probabilities are consistent with
each other, i.e., are collectively consistent, are identified to form the set of unam-

biguous events. For these events, although society recognizes the possibility that
an individual model may be misspecified, it has no really strong argument for devi-
ating from probabilities that are collectively consistent, and so society is assumed
to accept them. For ambiguous events, i.e., events for which individual beliefs are
inconsistent with each other, society is concerned that the credibility of individual
models cannot be properly assessed because it could be that these models are poorly
parameterized. In addition, it considers that possibilities other than just the individ-
ual probabilities cannot be excluded. Consequently, society is led to exclude no
probability that is consistent with that of unambiguous events. In other words, the
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set of social probabilities consists of all possible extensions of probabilities defined
on the unambiguous events. Second, society must specify its attitude towards am-
biguity. We do not comment on whether it is better for society to like ambiguity or
rather to be resistant to it. In other words, we do not seek to promote certain axioms
in order to constrain social attitudes toward ambiguity. While this is an important
issue, we believe that more structure, conditions, and information are needed to
make a reasonable analysis of this issue, and this is clearly beyond the scope of this
paper. Finally, the form of social utility used here is utilitarian. That is, it is defined
as the weighted sum of individual utilities. In fact, the aggregation rule illustrated
above is to some extent consistent with the proposal of Hansen and Sargent (2022).
Indeed, when the individual priors are potentially misspecified, the set of possible
priors identified by society should be a superset of the set of these individual priors.

To this end, we adopt a framework similar to Gilboa, Samet and Schmeidler
(2004) to describe the ambiguity environment. Clearly, the form of social utility
proposed above cannot be justified by applying a traditional aggregation rule and
adopting one of the many versions of the Pareto condition that the literature has re-
cently suggested. The new approach to aggregation that we propose can be broken
down into several steps. The first step is to apply a Pareto condition à la Harsanyi
linking individual preferences and social ones. Since the principle only applies to
acts defined as lotteries, this ensures that the social probabilities on unambiguous
events are collectively consistent while the social utility function corresponds to
the weighted average of individual utilities. Because of its lack of confidence in
individual beliefs, society completely ignores the perceptions and assessments of
individuals about ambiguous events. It rather considers unambiguous events to ap-
proximate and estimate ambiguous ones. Although there are many approximation
and estimation methods, society is supposed to consider only two of them in order
to frame each estimate in an interval. One is an optimistic estimate and the other is
a pessimistic estimate. Hence, for an ambiguous act, thanks to the expected utility
model, the optimistic estimate equates its expected utility with the lowest expected
utility of the unambiguous acts that may dominate it statewisely. Similarly, the pes-
simistic estimate equates its expected utility with the highest expected utility of the
unambiguous acts that are dominated. In this way, society constructs two differ-
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ent models: the first one based on the optimistic estimate is the maxmax model,
while the second one based on the pessimistic estimate is the maxmin model. More
importantly, both models share the same set of probabilities, i.e., all probability ex-
pansions that are based on unambiguous events. Therefore, the next step considers
only the optimistic and pessimistic estimates. If society obeys the Pareto principle
based on these two models as well as the independence principle, then the social
model is exactly the α-maxmin model.

A social utility function defined as a weighted average of individual utilities
is likely to define a consensus for most economists. However, for social beliefs
that take into account all possible expansions of probability distributions for unam-
biguous events, it seems that some would then have a different view. In particular,
these social beliefs might appear too conservative and less intuitive when individ-
uals do not vary much in their probability estimates of ambiguous events. In such
circumstances, it is more reasonable to consider that the domain of social beliefs is
actually a subset of the expansions of all probabilities. In this paper, we also con-
sider this case. In fact, two additional steps in the aggregation process are necessary
to achieve our goal.

First, through their utility representation, unambiguous social preferences are
constructed on the basis of optimistic and pessimistic estimates. It is required that
the associated optimistic and pessimistic preferences obey a principle of unam-
biguous unanimity. It is important to note that the unambiguous social preferences
derived here are in fact incomplete. It turns out that preferences can be represented
by an EU (Bewley (2002)) in which beliefs are found to belong to some subset of
probability expansions. Now, Optimistic and pessimistic preferences can be con-
structed on the basis of optimistic and pessimistic beliefs. Undoubtedly, aggre-
gating the newly derived preferences, again by applying a principle of unanimity,
makes the set of beliefs associated with the α-maximal social preferences a subset
of all probability expansions. In this sequential aggregation mechanism, society is
free to choose any subset of probability expansions: either the set of all individual
probabilities, or a single probability, which then reduces the social model to that of
standard expected utility.

With the exception of a few rare contributions (Pivato (2022)), theories of aggre-
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gation under uncertainty generally rely on methodological individualism. In other
words, social values are generally determined by individual values. For example,
the social utility function can be a weighted average of the individual functions
(Harsanyi (1955)), the social belief can be a weighted average of the individual be-
liefs (Gilboa, Samet and Schmeidler (2004); Billot and Qu (2021)) or a geometric
average (Dietrich (2021)), etc. Eventually, the range of social beliefs is bounded
by the set of individual beliefs (Crès, Gilboa and Vieille (2011); Alon and Gayer
(2016); Qu (2017); Danan et al. (2016)). Contrary to these previous works, this arti-
cle requires only a principle of partial individualism. That is, it intends to use only
those event probabilities for which individuals are collectively consistent, while re-
taining the other event probabilities incorporating divergent opinions. As discussed
earlier, in situations of structured uncertainty, such as environmental issues, individ-
ual models often lack sufficient theoretical and empirical evidence to be convinc-
ing, and are therefore often subject to misjudgment. The potential for individual
models to be misspecified should therefore encourage society to be more careful in
choosing which model to use, especially for environmental issues, in order to avoid
future catastrophes. Therefore, the main strength of this paper is to provide a novel
and reasonable method for a society to aggregate individual preferences when the
models employed by individuals are likely to be misspecified.

The other major innovation of this article is the sequential aggregation mecha-
nism. Indeed, it does not seem that there are any other paper using such a mecha-
nism. It is well known that synchronized aggregation, i.e., a one-shot mechanism,
usually creates difficulties affecting the aggregation result. For example, Mongin
(1995) and Mongin and Pivato (2020) highlight that unanimity in synchronized ag-
gregation may be spurious. In the case of sequential aggregation, however, it is
possible to decompose the problem into several steps and aggregate the parame-
ters we need in succession. Here, we use the sequential aggregation principle, first
for the social utility function, then for the social beliefs, and thus obtain different
aggregated beliefs per iteration. Compared to synchronized aggregation, sequen-
tial aggregation efficiently extends the possible outcomes of aggregation. In reality,
social decisions are not made piecemeal, but are rather the result of repeated refine-
ment. In this sense, sequential aggregation is a more accurate description of real
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process of social decisions.
This paper is organized as follows. Section 2 contains the framework and ag-

gregation result for the social utility function. Section 3 formally outlines and in-
vestigates the sequential aggregation method and presents the main result. Section
4 considers some extensions of this result. We conclude in Section 5. All proofs are
in the Appendix.

2 THE MODEL

Let (S,Σ) be a σ-measurable space, where S, a set of states, is a separable metric
space and Σ is a σ-algebra of events. Denote by X a set of outcomes, which is as-
sumed to be a connected and compact metric. A typical social act is a Σ-measurable
simple function f : S → X and F is the set of all social acts.1 Society is a set of
individuals I = {1, . . . , n}. Each individual i ∈ I has preferences over F × F ,
that is a binary relation ≿i⊂ F ×F . Social preferences are denoted by ≿⊂ F ×F .
A function V : F → R represents preferences ≿ on F if, for all f, g ∈ F , f ≿ g if
and only if V (f) ≥ V (g).

Definition 1. A function V : F → R is a subjective expected utility (SEU) function
if there exists a unique countably additive, non-atomic probability measure π on Σ,
and a continuous utility function u on X , s.t., for f ∈ F :

(1) V (f) =

∫
S

u(f)dπ.

Assumption 1 — SEU individuals. Each individual preferences ≿i admits a Sav-
age Expected Utility (SEU) representation, i.e., (ui, πi) are the unique pair
that represents ≿i as in (1).

Assumption 1 requires that all individual preferences satisfy Savage’s postulates
and, therefore, are all represented by a SEU. In contrast, in the presence of hetero-
geneous individual beliefs, we do not impose that social preferences admit a SEU

1The topology of pointwise convergence on F is defined as the relative topology with respect to
the product topology on XS .
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representation. This is the main difference between our model and Gilboa, Samet
and Schmeidler (2004) and Mongin (1995). Of course, under objective uncertainty,
Harsanyi (1955) assumes that social preferences are represented by an expected
utility function. When all individuals agree on all events, there is no conflict be-
tween beliefs. It is then natural to suppose that both individuals and society admit
the same form of preference representation. However, when there is a conflict be-
tween individual beliefs, society has to compromise with these divergent beliefs.
It is neither intuitive nor reasonable to determine the form of representation before
setting the rule for aggregating beliefs (See, for instance, Diamond (1967)). For
this reason, it seems that it is more appropriate to assume that social preferences
admit a SEU representation that is limited to those acts for which all individuals
agree on the corresponding events while, for other acts, it remained ‘representation
agnostic’.

Definition 2. An event A is unambiguous if πi(A) = πj(A), for all i, j ∈ I.

Let A be the set of all unambiguous events.2 Thus, an event A is in A if all
individuals agree on its probability. An act f is a lottery if each measurable subset
of outcomes Y is unambiguous, i.e., f−1(Y ) ∈ A , for all Y ⊂ X . We denote by
L the set of lotteries. All individuals agree on the probability of the events used to
define a lottery, and if all individuals agree on all events, then A = Σ. However,
if there is heterogeneity of beliefs, then the set of unambiguous events is only a
subset of Σ and, in general, does not define an algebra. Let us introduce a λ-system

Λ ⊆ 2Ω as a collection of subsets such that:
(i) Ω ∈ Λ,
(ii) if E ∈ Λ, then Ec ∈ Λ, and
(iii) for any countable collection of disjoint events Ek ∈ Λ,

⋃
k Ek ∈ Λ.

Lemma 1. The collection A of unambiguous events is a λ-system.

(All proofs are in the Appendix.)

We say that π : A → [0, 1] is a probability measure on unambiguous events if:
(i) π(∅) = 0 ≤ π(A) ≤ π(S) = 1, for every A ∈ A , and
2An unambiguous event is also an ‘unanimous’ event in terms of individual beliefs.
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(ii) π(
⋃

k Ak) =
∑

k π(Ak), for any countable collection of disjoint events Ak ∈
A .

Note that any probability measure on Σ restricted to A is a probability measure
on A . Thus, π, that is the probability measure on unambiguous events defined by
π(A) = πi(A), for all A ∈ A , is a probability measure on A .

Definition 3. Given a collection of unambiguous events A , a function V : F → R
is a restricted SEU (RSEU) with respect to A if there exist a probability measure
π on A and a continuous utility function u on X , such that, for f ∈ L:

V (f) =

∫
S

u(f)dπ,

and if it is monotonic3 and continuous (in the topology of pointwise convergence).

Assumption 2 — RSEU society. Social preferences ≿ admit a RSEU representa-
tion, i.e., (A , π, u) is the unique triplet that represents ≿ (up to the affine
transformation of u).

By convenience, we say in an undifferentiated way that V , the function that
represents ≿, is a RSEU or that the triplet (A , π, u) is a RSEU. Accordingly, As-
sumption 2 requires that social preferences ≿ satisfy Savage’s postulates restricted
to the lottery set.4

Society is concerned with resolving disagreements between individuals and,
therefore, can only really commit to Bayesian behavior for lotteries.

Harsanyi Pareto condition (HPC). For every lotteries f, g ∈ L, if f ≿i g, for all
i, then f ≿ g.

HPC requires that if all individuals prefer a first lottery to a second lottery, then
society also prefers the first lottery. In terms of individual beliefs, each lottery cor-
responds to an identical von Neumann-Morgenstern (vNM) lottery. Therefore, HPC

3V is monotonic if u(f) ≥ u(g) implies V (f) ≥ V (g).
4We refer to Epstein and Zhang (2001) and Kopylov (2007) for the formal characterization of a

RSEU.
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can be interpreted as a natural extension of the Harsanyi-like objective uncertainty
condition to the subjective uncertainty model.

Definition 4. Given {(ui, πi)}i∈I , a RSEU {(A , u, π)} is collectively consistent if
A is the set of unambiguous events with π(A) = πi(A), for all i and all A ∈ A ,
and it is utilitarian if u is a convex combination of {ui}i∈I . Moreover, a RSEU is
said to be consistently utilitarian if it is both collectively consistent and utilitarian.

The next result characterizes the relation between HPC and a consistently utili-
tarian RSEU.

Theorem 1. HPC holds if and only if social preferences ≿ are represented by a

consistently utilitarian RSEU.

This theorem does not suggest a specific form of representation for all acts in
general. It only restricts social utility to be a convex combination of individual utili-
ties and social beliefs based on unambiguous events to be consistent with individual
beliefs. Since we consider here only the representation of social expected utility re-
stricted to lotteries, this result can be seen as a minimal extension of Harsanyi’s
result from objective uncertainty to subjective uncertainty.

3 DOCTRINES AND SOCIAL OPINIONS

Since all individuals share the same beliefs about each lottery, social preferences
about lotteries, based on HPC, can be conceived as a consensus evaluation of lot-
teries. Note that society agrees only on unambiguous events and thus makes no
judgment about events with heterogeneous estimates.5 If there is no utilitarian con-
troversy about individuals’ tastes, then restricted social preferences should be con-
sensually agreed upon by all individuals. Consequently, these preferences could
serve as a reference for society when it seeks to estimate acts that are not related to
a lottery.

Since the social classification of lotteries is based on an evaluation of beliefs
that is common to all individuals, any group or party in a given society can thus

5By convenience, these events can sometimes be said socially ambiguous or simply ambiguous.
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distinguish itself by defending its own system of evaluation of any option. This
system, specific to a particular group, constitutes a doctrine. A doctrine can be,
for instance, naively cautious when its system of evaluation is such that any option
is considered as socially indifferent to the worst outcome that it implies. But a
doctrine can of course be much more sophisticated. Finally, any doctrine is socially
legitimate as long as it leads to a consistently utilitarian RSEU preferences.

Formally, social preferences ≿ are said to match with preferences ≿∗ on F if ≿
agrees with ≿∗ on lotteries, i.e., f ≿ g if and only if f ≿∗ g, for all f, g ∈ L. Thus,
if social preferences ≿ match with ≿∗, then (A , π, u) represents ≿∗ restricted to
L. We say preferences are defining a social opinion if they match with ≿ and if,
as they are issued from a doctrine, they admit a RSEU representation. Let Θ be
a collection of considerate social opinions. For any opinion θ ∈ Θ, ≿θ denotes
the social opinion to which the θ opinion corresponds. The social opinions have an
identical ranking of the lotteries. However, they differ not only in their estimates of
events that are socially ambiguous, but also in their attitudes toward these events.

For instance, a consistent SEU is a social opinion. Given (A , u, π), let Pπ be
the set of all the extensions of π on Σ. We say a social opinion θ is probabilistic if
there is p ∈ Pπ such that:

f ≿θ g ⇔
∫
u(f)dp ≥

∫
u(g)dp.

In this case, we can write θ = p. In a similar manner, a social opinion can be
multiple prior-EU (MEU) in the sense of Gilboa and Schmeidler (1989).

Because of the different doctrines that are expressed, society faces several opin-
ions that are both rational and mutually contradictory. We argue here that society
should respect the following two principles if it intends to formalize its preferences.

Unanimity. For all acts f, g ∈ F , if f ≿θ g, for all θ ∈ Θ, then f ≿ g.

Unanimity states that if, for all social opinions, f is preferred to g, then society
also prefers f . It is a more binding principle for a society than it seems, since no
spurious unanimity in the sense of Mongin (1995) can indeed arise thanks to the
consensus of social opinions on the ranking of lotteries.
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Individual preferences Social preferences on lotteries Social opinions Social preferences on acts
HPC Unanimity

Independence

Figure 1: Preference Aggregation Process

For x, y ∈ X and event A, a binary act, written xAy, describes an act such that
the outcome is x if event A is realized and y otherwise.

Independence. For all acts f, g ∈ F , x, y ∈ X and A ∈ A , if for every θ ∈ Θ,
there exists z ∈ X such that f ∼θ z and g ∼θ zAy, then f ∼ x implies
g ∼ xAy.

Independence states that if, for all social opinions, z is a certainty equivalent of
f and the act g is indifferent to the binary act zAy, then that society is indifferent
between f and x implies that society is also indifferent between g and xAy. SinceA
is an unambiguous event, each social opinion ≿θ measures the difference between f
and g by means of

(
1−π(A)

)
and y and, in addition, society measures the difference

between these two acts from the same elements. Note that this principle applies
only to unambiguous events. Indeed, zAy is a lottery only if A is an unambiguous
event. Social opinions being SEU towards lotteries, therefore, they evaluate the act
g separately from z and y.

Our proposed aggregation process is summarized above in Figure 1.

Remark. In the case of probabilistic social opinions, i.e., when Θ = Pπ, it becomes
necessary to apply a probabilistic principle of unanimity of the following form:
“for any f, g ∈ F , if f ≿θ g, for any θ ∈ Pπ, then f ≿ g”. However, we can
immediately see that this puts no restrictions on social preferences, which limits the
interest of the process we propose. Therefore, it is natural to consider a subset of
all the probabilistic social opinions.

3.1 Pole Opinions

In an environment where societies are constantly inundated with mostly opinion-
ated information via social networks, it is increasingly difficult for individuals to
make independent decisions. It is therefore both prudent and effective to focus on
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the most polar opinions, those that are based on an extreme apprehension of the
environment, which therefore consider in a privileged way the best and worst possi-
ble scenarios. These opinions are thus supposed to reflect two doctrines, one called
conservative, the other progressive.

Definition 5. A social opinion is conservative, written ≿cons if, for any act f ∈ F
and x ∈ X , f ≻cons x whence there is a lottery g ∈ L such that u(f) ≥ u(g) and
g ≻cons x.

Conservative social opinion is characterized by a cautious way of valuing each
option f . Here, the expected utility of an option f is achieved by a sort of approximation-
from-below-process such that it is equal to the highest expected utility associated
to the f -dominated lotteries. As an illustration, let us consider the case of a com-
parison between an option f and a constant act x. The conservative social opinion
does not allow a direct comparison of f with x. Instead, it proposes to make only an
indirect comparison through lotteries that are dominated by f . Since monotonicity
immediately implies that f is preferred to all lotteries that it dominates, it follows
that, if any dominated lottery is preferred to x, then, by transitivity, the option f is
also preferred to x.

Definition 6. A social opinion ≿prog is progressive if, for any act f ∈ F and x ∈ X ,
x ≻prog f whence there is a lottery g ∈ L such that u(g) ≥ u(f) and x ≻prog g.

Similarly, a progressive social opinion cannot directly compare option f with
constant act x. It also applies an indirect comparison. However, a progressive
opinion uses the dominant lotteries to evaluate f in a reckless way this time. If x is
preferred to any dominant lottery, then x is also preferred to option f . According to
this view, the expected utility of an option is equal, through an approximation-from-
above-process, to the lowest expected utility associated to the dominant lotteries.

Why should a society give special consideration to conservative and progressive
opinions? First, both opinions respect the monotonicity and transitivity of prefer-
ences, which ensures that they are indeed rational in the theoretical sense. Second,
these two opinions together determine the lower and upper bounds between which
the utility of an option can vary. The conservative opinion determines the lower
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value and the progressive opinion the upper value. Taking these two opinions into
account thus avoids over- or under-estimating the utility of an option. Finally, and
most importantly, the difference between the two values of an option’s expected
utility could serve as a natural measure of conflict of opinion. Therefore, it can be
expected that society will seek to manipulate this gap in order to strategically use
the extent of the conflict of opinion.

Let Pπ be the collection of all probability extensions of a probability π. It is
easy to see that, for the conservative opinion, if f ≻cons x, then the expected utility
of f is greater than the expected utility of x, for all extensions of π. Therefore, we
can also interpret the conservative opinion such that an option f is preferred to a
constant act x only if its expected utility is greater than the expected utility of x, for
every possible extension of π. Similarly, for the progressive opinion, if x ≻prog f ,
then the expected utility of f is smaller than the expected utility of x, for every
possible extension of π.

Given a subset P ⊆ Pπ of probability extensions of π, we can now define the
notion of generalized maxmin expected utility.

Definition 7. A function V : F → R is a generalized maxmin expected utility

(GMEU) if there exist a nonempty compact and convex set P of probabilities on Σ,
a utility function u on X and a monotonic function W : u(X) × u(X) → R with
V (x) = W

(
u(x), u(x)

)
, for all x ∈ X , such that:

(2) V (f) = W (ufP, u
f
P),

where
ufP ≡ max

p∈P

∫
u(f)dp and ufP ≡ min

p∈P

∫
u(f)dp.

Remark. Given (A , u, π), a GMEU function V is a generalized Hurwicz expected

utility (GHEU) if P = Pπ.

Remark. The definition of a GMEU depends on polar expected utilities, in the
sense that the utility of an act f is determined only by its highest possible expected
utility ufP and its lowest possible expected utility ufP. A particular occurrence of
GMEU is the case of α-MEU utilities:
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Definition 8. A function V : F → R is a α-maxmin expected utility (α-MEU) if
there exist a nonempty compact and convex set P of probabilities on Σ and a utility
function u on X such that:

(3) V (f) = αmax
p∈P

∫
u(f)dp+ (1− α)min

p∈P

∫
u(f)dp,

where α ∈ [0, 1].

Remark. Given (A , u, π), an α-MEU function V is a Hurwicz expected utility

(HEU) if P = Pπ.

Remark. Note that α-MEU includes standard MEU and maxmaxEU as special
cases where α = 0 and α = 1, respectively.

The following theorem shows that if society is only sensitive to conservative
and progressive opinions, then the satisfaction of Unanimity is equivalent to the
existence of uniformly utilitarian GHEU social preferences.

Theorem 2. Suppose Θ = {cons, prog}. Unanimity holds if and only if social

preferences ≿ are represented by a consistently utilitarian GHEU.

A special case of Theorem 2 concerns a society that is sensitive to only one
opinion. For example, if social sensitivity were conservative, then social prefer-
ences would be represented by a standard MEU.

Corollary 1. Social preferences are conservative, i.e., ≿=≿cons, iff they are rep-

resented by a consistently utilitarian MEU with P = Pπ. In the same way, social

preferences are progressive, i.e., ≿=≿prog, iff they are represented by a consistently

utilitarian maxmaxEU with P = Pπ.

Corollary 1 shows that conservative and progressive opinions are based on the
same basic beliefs, which correspond to Pπ. In reality, they differ only in their sys-
tem of evaluating non-lottery acts. Unanimity requires that society considers only
two opinions when evaluating actions, but it does not specify a precise functional
form for expected utility. This, on the one hand, gives society some flexibility in
choosing the function to represent its preferences in a complex environment. This,
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on the other hand, allows society to remain undecided about the way it intends to
make its decisions. To derive a more concrete form of representation, such as a
α-MEU, Independence is then necessary.

Thus, Theorem 3 below provides an axiomatic characterization of social pref-
erences of type HEU. When society respects both Unanimity and Independence,
then social preferences admit a representation of type α-MEU, where social utility
is defined as a convex combination of individual utilities and social beliefs as any
extension of the probability π.

Theorem 3. Suppose Θ = {cons, prog}. Unanimity and Independence hold if and

only if social preferences ≿ are represented by a consistently utilitarian HEU.

This result characterizes a society that constructs its preferences on the basis of
a weighted average of conservative and progressive opinions. The set of socially
ambiguous events coincide with those shared by the two opinions. Thus, society
advocates that the occurrence of an ambiguous event A should not be evaluated by
a single number, but rather by an interval of numbers. Roughly speaking, the lower
and upper bounds of this interval are then measured by the probability of the largest
unambiguous event contained in A and the smallest unambiguous event containing
A, respectively. One can thus say that the social approach to understanding ‘con-
flicting’ events, or socially ambiguous events, is, in a way, identical to the approach
proposed by Dempster-Shafer for understanding individual uncertainty.

Judging by the widely observed phenomenon of ‘ambiguity aversion’, it is ques-
tionable whether progressive opinion is relevant to the construction of social pref-
erences. It is quite conceivable that conservative opinion is more frequent and pro-
gressive opinion is indeed more rare. However, in a collective decision-making
framework, as Will Durant pointed out, it is often the case that “a united minority
acting against a divided majority” can be influential. Therefore, it is legitimate to
think that a HEU society is descriptively more plausible than a society that would a
priori have been described as MEU.
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3.2 Act Mixture and Opinion Refinement

The conservative and progressive opinions can be considered too extreme. For an
ambiguous event, its conservative estimate is actually even lower than the most
cautious individual estimate. Similarly, its progressive estimate is greater than the
most reckless of the individual estimates. In this subsection, we seek to identify a
possible way to refine the conservative and progressive opinions to avoid an overly
radical social estimate of these ambiguous events.

We know that the conservative and progressive opinions draw from the same set
of social beliefs, i.e., the set of all probability extensions of π. Therefore, the two
opinions are likely to share the same unambiguous preference relation, which we
define below.

Definition 9. For f, g, h ∈ F and A ∈ A , h is a A-mixture of f, g if, for all s,
h(s) ∼ f(s)Ag(s).

We denote the A-mixture of f and g by f [A]g.

Remark. For any preferences ≿∗ on F matching with ≿, the A-mixture of f and g
with respect to ≿∗ is the same as the one with respect to ≿.

Definition 10. Given a social opinion θ ∈ Θ and two acts f, g ∈ F , f is said to be
unambiguously preferred to g, denoted f �θ g, iff, for any h ∈ F :

f �θ g ⇐⇒ f [A]h ≿θ g[A]h, for all A ∈ A .

An act f is unambiguously preferred to another act g if all event-mixtures of f
and g with another act h reproduce between them the same ranking. We note that the
social opinion ≿θ, for θ ∈ {cons, prog}, restricted to lotteries is an unambiguous
preference. However, in general, �θ is defined on F and not intended to be re-
stricted to lotteries only. For example, if one option state-wisely dominates another
option, it is obvious that the former will be unambiguously preferred to the latter.
Similarly, society prefers unambiguously f to g, written f � g, if f [A]h ≿ g[A]h,
for all h ∈ F and A ∈ A . Since conservative and progressive opinions share
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the same beliefs, it is imperative to require that if they both believe that one act is
unambiguously preferable to another, so does society:

Unambiguous unanimity. If f �θ g, for all θ ∈ {cons, prog}, then f � g.

What does unambiguous unanimity imply? First, unambiguous preferences are
a priori incomplete. Therefore, social unambiguous preferences � are Bewley pref-
erences: there exists a subset P of Pπ such that one act is unambiguously preferred
to another if and only if the expected utility of the former is greater than that of the
latter, this for each probability in P. If society respects Unambiguous unanimity,
then unambiguous social preferences can be interpreted as a reference point for the
refinement of social opinions.

Definition 11. A social opinion is pessimistic, i.e., θ = p, if f ⋭ x implies x ≿p f .

A pessimistic opinion holds that a constant act x is always better than any act f
whenever f is not unambiguously preferred to x. In other words, when there is an
event A such that an A−mixture with x is better than the same mixture with f , then
the pessimistic opinion believes that x is a better act.

Definition 12. A social opinion is optimistic, i.e., θ = o, if x ⋭ f implies f ≿o x

An optimistic opinion believes that any act f is better than a constant act x if
x is not unambiguously preferred to f . In other words, whenever there is an event
whose associated mixture with f is better than the same mixture with x, then the
optimistic opinion believes that f is a better act.

See Figure 2 above for the formation of pessimistic and optimistic opinions.
We want to emphasize here that both pessimistic and optimistic opinions depend

on unambiguous social preferences �. Unambiguous unanimity requires only that
� be Bewley-type preferences characterized by P ⊆ Pπ. Therefore, P may as
well contain all probability extensions of π or be a singleton. If P = Pπ, then
the pessimistic and optimistic opinions are absolutely identical to the conservative
and progressive opinions, respectively. If P is a singleton, then the pessimistic and
optimistic opinions coincide and constitute an opinion that can be represented by a
SEU, i.e., what we will call later a Bayesian opinion.
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Figure 2: Opinion Process

In this process, society takes the initiative to influence social opinions. If the
heterogeneity of individual estimates of an ambiguous event is low enough, society
may agree to treat it as an unambiguous event by assigning it a number. As a
result, social opinions will not conflict with respect to the estimation of this event.
Similarly, society can use the minimum and maximum individual probabilities to
estimate each ambiguous event, which will then lead to define P as the convex hull
of the individual probabilities.

The following theorem proposes a formal characterization of a GMEU, which
is a generalization of a GHEU. If society considers only pessimistic and optimistic
opinions, then Unanimity implies that society admits for its preferences a consis-
tently utilitarian GMEU representation.

Theorem 4. Suppose Θ = {p, o}. Unanimity holds if and only if social preferences

≿ are represented by a consistently utilitarian GMEU with P ⊆ Pπ.

Theorem 5 states that if, additionally, Independence is satisfied, then society
must have a consistently utilitarian α-MEU representation.

Theorem 5. Suppose Θ = {p, o}. Unanimity and Independence hold if and only

if social preferences ≿ are represented by a consistently utilitarian α-MEU with

P ⊆ Pπ.

Theorem 5 is a general result, which includes many important results as special
cases. If P is a singleton all being a convex combination of individual beliefs with
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α = 0, then it coincides with the theorem in Gilboa, Samet and Schmeidler (2004).
Similarly, if P is a set consisting of all convex combinations of individual beliefs
with α = 0, then it coincides with the result of Alon and Gayer (2016).

4 SOCIAL OPINIONS AND CONTAMINATION

In the previous sections, we only considered social opinions that were based on lot-
teries or unambiguous preferences. However, in some situations, individual beliefs
or a weighted average of individual beliefs define undoubtedly a reasonable social
opinion. For example, society may be particularly interested in the opinion of a
renowned expert. In this case, society may wish to include this expert opinion in
the set of possible social opinions.

Definition 13. A social opinion is Bayesian, i.e., θ = B, if ≿B admits a SEU
representation and satisfies HPC.

To be a social opinion, Bayesian preferences ≿B must first match with social
preferences ≿ regarding lotteries. Moreover, the Bayesian opinion is also associ-
ated to a probability measure πB on Σ, the algebra of possible events. Since ≿B

satisfies HPC, we can apply the theorem of Gilboa, Samet and Schmeidler (2004),
which immediately implies that Bayesian beliefs πB are defined as a convex com-
bination of individual beliefs.

Proposition 1 (Gilboa, Samet and Schmeidler (2004) Theorem). If a social opinion

is Bayesian, then πB on Σ is a convex combination of individual beliefs {πi}ni=1.

Now we seek to consider social opinions more holistically instead of separately.
According to the above principles, two sharp opinions, such as conservative and
progressive, can together form a moderate social opinion. As Theorem 3 shows, a
moderate opinion can be represented by a consistently utilitarian HEU.

Definition 14. A social opinion is moderate, θ = m, if ≿m admits a consistently
utilitarian HEU representation.

Let’s introduce now the notion of contamination when applied to a MEU.
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Definition 15. Given (A , u, π), a function V : F → R is a contamination maxmin
expected utility (cMEU) if there exist a probability measure p on Σ, a nonempty
compact and convex set P of probabilities on Σ and a utility function u on X such
that:

(4) V (f) = ϵ

∫
u(f)dp+ γmax

q∈P

∫
u(f)dq + (1− ϵ− γ)min

q∈P

∫
u(f)dq,

where ϵ, γ ∈ [0, 1] and ϵ+ γ ≤ 1.

Theorem 6 characterizes cMEU social preferences by satisfying Unanimity and
Independence applied to both Bayesian and moderate social opinions.

Theorem 6. Suppose Θ = {B,m}. Unanimity and Independence hold if and only

if social preferences ≿ are represented by a consistently utilitarian cMEU with

P = Pπ and p is a convex combination of {πi}ni=1.

Similarly, we could consider another aggregate opinion, the so-called neutral

social opinion, which would aggregate pessimistic and optimistic opinions in the
same way that the Bayesian opinion aggregates conservative and progressive opin-
ions. Then, by Unanimity and Independence with respect to Bayesian and neutral
opinions, we could characterize a consistently utilitarian cMEU by a smaller set of
social beliefs, i.e., P ⊂ Pπ.

Note that our analysis at this point focuses only on a binary opposition of social
opinions. What would happen if we expanded the set of social opinions to include
all of the opinions we discussed above other than in pairs of antagonistic opinions?
As observed by Crès, Gilboa and Vieille (2011) and Qu (2017), in the case of mul-
tiple opinions, a stronger axiom than Unanimity and Independence is then needed
to characterize the representation.

In Theorem 6, we implicitly assume that opinions aggregate sequentially. We
first aggregate conservative and progressive opinions into a moderate opinion. Next,
we aggregate moderate and Bayesian opinions into cMEU social preferences. How-
ever, the order of aggregation of opinions does not affect the representation of social
preferences. At each step of this sequential aggregation, the binary opposition of
the opinions leads to build a new opinion referring to a kind of linear average of the
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two antagonistic opinions. Therefore, as long as the aggregated opinions proceed
from a binary opposition, the additive form is maintained

5 CONCLUSION

Analyzing the conditions for collective economic decision-making is a difficult
problem. Economists have developed many models that should logically allow
decision-makers, after studying the nature of the practical problems they encounter,
to appropriate the right model and, consequently, to make more efficient social de-
cisions. However, decision-makers are often confronted with a double complexity:
that of the scientific systems they are asked to study, as is the case for the analysis
of global warming for example, and that of the economic models with which they
are asked to build an efficient representation of their preferences and the choices
available to them. This double complexity generates a considerable structured un-
certainty. The major consequence of structured uncertainty is that, even if many
different models have been developed, no one can ever be totally free of the risk of
misspecification...

It is therefore crucial that this kind of structured uncertainty be taken into ac-
count at the very heart of the social decision-making mechanism, and in the study
of political choices. The drawbacks of the most famous methods currently used,
such as linear aggregation, are well known and particularly well documented in the
literature. We conceive our contribution as an alternative approach. We propose an
aggregation process that is based on a principle of partial individualism that is less
restrictive than standard methodological individualism. Our results suggest that a
model of social belief formation based on the consideration of unambiguous and
unanimous individual beliefs is a promising way to develop and address how so-
ciety can make decisions when it is known that individual models are generally
misspecified.
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A APPENDIX — PRELIMINARIES AND PROOF OF LEMMA 1

LetB0(Σ) is the vector space generated by the indicator functions of the elements of
Σ, endowed with the supnorm. We denote by ba(Σ) the set of all bounded, finitely
additive set functions on Σ, and by ∆(Σ) the set of all probabilities on Σ. We know
that ba(Σ), endowed with the total variation norm, is isometrically isomorphic to
the norm dual ofB0(Σ). Therefore, the weak topology, w∗, of ba(Σ) coincides with
the eventwise convergence topology. Given a nonsingleton interval K in the real
line, B0(Σ, K) is the set of the functions in B0(Σ) taking values in K.

We recall that a binary relation ≿ on B0(Σ, K) is:

• preordered if it is reflexive and transitive;

• continuous if φn ≿ ϕn, for all n ∈ N, φn → φ and ϕn → ϕ imply φ ≿ ϕ;

• Archimedean if the sets {λ ∈ [0, 1] : λφ + (1 − λ)ϕ ⪰ η} and {λ ∈ [0, 1] :

η ≿ λφ+ (1− λ)ϕ} are closed in [0, 1], for all φ, ϕ, η ∈ B0(Σ, K);

• affine if, for all φ, ϕ, η ∈ B0(Σ, K) and all α ∈ (0, 1), φ ≿ ϕ iff αφ + (1 −
α)η ≿ αϕ+ (1− α)η;

• monotonic if φ ≥ ϕ implies φ ≿ ϕ;

• nontrivial if there exists φ, ϕ, η ∈ B0(Σ, K) such that φ ≿ ϕ but not ϕ ≿ φ.

Lemma A1. A binary relation ≿ is a nontrivial, continuous, affine, and monotonic

preorder on B0(Σ, K) iff there exists a nonempty subset P of ∆(Σ) such that:

(5) φ ≿ ϕ⇐⇒
∫
φdp ≥

∫
ϕdp for all p ∈ P.

Moreover, cow
∗
(P) is the unique weak-closed and convex subset of ∆(Σ) represent-

ing ≿ in the sense of above expression.

Given a functional I : B0(Σ) → R, I is said to be:

• monotonic if I(φ) ≥ I(ϕ), for all φ, ϕ ∈ B0(Σ) such that φ ≥ ϕ;
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• constant additive if I(φ+ a) = I(φ) + a, for all φ ∈ B0(Σ) and a ∈ R;

• positively homogeneous if I(aφ) = aI(φ), for all φ ∈ B0(Σ) and a ≥ 0;

• constant linear if it is constant additive and positively homogeneous.

A probability measure π is convex-ranged if, for every 0 < r < 1 and every
A ∈ A , there is a subset B ⊂ A with B ∈ A such that π(B) = rπ(A). Then
a countably additive non-atomic measure is convex-ranged. Define now a function
µ : Σ → [0, 1] such that, for any E ∈ Σ : µ(E) = sup{π(A) : A ⊂ E and
E ∈ A }. Since π is countably additive, it is straightforward to show that the
supremum can be reached. Call A ∈ A the core of E if A ⊆ E and π(A) = µ(E)

with A unique for a set of zero measure.
Let A ∈ A , M = {1, . . . ,m} and {Bi}i∈M be a finite partition of A. Let

M be the set of all nonempty subsets of M and define, for J ∈ M, M(J) as
{K ∈ M : K ⊂ J}. For BJ = ∪j∈JBj , let CJ be the core of BJ . Note that
CM = A. The unanimous split {ÊJ}J∈M ⊂ A of {Bi}i∈M is inductively defined
as follows: (1) for all i ∈M , Ê{i} = C{i}, and (2) for all J such that |J | > 1:

ÊJ := CJ \
( ⋃
K∈M(J),K ̸=J

ÊK
)
.

Note that {ÊJ}J∈M is a unanimous partition ofA such that
⋃

K∈M(J) Ê
J ⊂ BJ , for

all J ∈ M, and µ(AJ) = π(CJ) =
∑

K∈M(J) µ(Ê
K). Moreover, for every simple

act f ∈ F with range {x1, . . . , xm}, let {ÊJ(f)} be the ideal split of {f−1(xi)}.

Lemma A2. Let f ∈ F with range {x1, . . . , xm}. Then, (f∗, f ∗) ∈ F2 such that

(f∗(s), f
∗(s)) =

(
argxi

mini∈J u(xi), argxi
maxi∈J u(xi)

)
, for s ∈ ÊJ(f), is an

envelope of f .

Lemmas A1-2 are standard. Proofs are then omitted.

Lemma 1. The collection A of unambiguous events is a λ-system.

Proof of Lemma 1. The two first conditions of the definition of a λ-system are ob-
viously satisfied. We only show the condition (iii) holds. Suppose a countable
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sequence of disjoint events An ∈ A . Since A is a subset of the σ-algebra Σ, it is
clear that the union of the eventsA =

⋃
nAn belongs to Σ. By σ-additivity of every

πi, we have πi(A) =
∑

n πi(An). For every An and i, j, πi(An) = πj(An). Hence,
if πi(A) = πj(A), for every i, j, it implies that A ∈ A .

B APPENDIX — PROOF OF THEOREM 1

Theorem 1. HPC holds if and only if social preferences ≿ are represented by a

consistently utilitarian RSEU.

The proof of the necessity part is straightforward. We only demonstrate the
sufficiency one.

Proof of Theorem 1. Assume HPC holds. We first show that, for all A ∈ A , if
πi(A) = p ∈ [0, 1], for all i, then π(A) = p, where π(.) represents social beliefs.

Let pk = 1
2k

, where k ∈ N. Take A ∈ A such that πi(A) = pk, for all
i. We prove now, by induction, that π(A) = pk. If k = 1, then πi(A) = 1

2

and A ∈ A . We claim that π(A) = 1
2
. Suppose it is wrong, and wlog (without

loss of generality) assume that π(A) > 1
2
. Therefore, there exist x, y ∈ X such

that xAy ≻ xAcy. However, for all i, xAy ∼i xA
cy, which, by HPC, implies:

xAy ∼ xAcy, i.e., a contradiction. A similar argument works for the case where
π(A) < 1

2
. Hence, πi(A) = 1

2
, for all i, implies that π(A) = 1

2
. Now, suppose that

πi(A) =
1
2k

, for all i, implies that π(A) = 1
2k

. Assume that πi(A) = 1
2k+1 , for all

i. We then want to show that π(A) = 1
2k+1 . Suppose it is wrong and wlog assume

that π(A) > 1
2k+1 . By Lyapunov Theorem, there exists a subset B ⊂ Ac such that

πi(B) = 1
2k+1 , for all i. So, B ∈ A and A ∩ B = ∅ imply that A ∪ B ∈ A .

Since πi(A ∪ B) = 1
2k

, for all i, by assumption, we have π(A ∪ B) = 1
2k

, which
means π(B) < 1

2k+1 . Similarly, there exists a subset C ⊂ (A∪B)c s.t. πi(C) = 1
2k

,
for all i. Hence, πi(A ∪ C) = 1

2k
= πi(B ∪ C), for all i, which implies that

π(A ∪ C) = 1
2k

= π(B ∪ C). However, the first equality means that π(C) < 1
2k+1 ,

while the second equality means that π(C) > 1
2k+1 , that is a contradiction. The

same argument works for the case where π(A) < 1
2k+1 .

Now, first, take an arbitrary rational number p ∈ (0, 1). Then p admits a finite
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dyadic expansion:

p =
m∑
k=1

xk
2k
,

where xk ∈ {0, 1}. Take A ∈ A s.t. π(A) = p, for all i. Therefore, there exists a
partition {A1, . . . , Am} of A s.t. πi(Ak) =

xk

2k
, for all i and k = 1, . . . ,m. Thanks

to the above analysis, we have π(Ak) =
xk

2k
, for all k = 1, . . . ,m. It is immediate

to see that π(A) = p. Second, take an arbitrary irrational number p ∈ (0, 1) and A
s.t. πi(A) = p, for all i. Suppose π(A) ̸= p and assume π(A) > p. There exists
a rational number q s.t. π(A) > q > p. We can find an event B s.t. A ⊂ B and
πi(B) = q, for all i. This requires that π(B) = q < π(A), which contradicts the
fact that A ⊂ B implies π(A) ≤ π(B). A similar argument works for the case
where π(A) < p. Hence, finally, π(A) = p.

We show now that the social utility u is a convex combination of individual
utilities. Note that, for any nonnegative numbers p1, . . . , pm s.t.

∑m
k=1 pk = 1,

there exists a partition {Ak}mk=1 of S s.t. π(Ak) = πi(Ak) = pk, for all i and k.
Therefore, for any vNM lottery L defined over X , we can construct an act f ∈ L
s.t. the lottery L corresponds to the distribution on X generated by f . Conversely,
any finitely valued act f ∈ L defines a distribution over X , which is a vNM lottery.
In restricting preferences over L, we can apply Harsanyi Theorem to conclude that
u is a convex combination of {ui}ni=1.

C APPENDIX — PROOF OF THEOREM 2

Several notions and intermediate results are necessary.
A set function ν : Σ → [0, 1] is a capacity if ν(∅) = 0, ν(S) = 1 and A ⊆ B

implies ν(A) ≤ ν(B). Given π on A , we define set functions µ∗, µ
∗ : Σ → [0, 1]

by: for A ∈ Σ,

(6) µ∗(A) = sup
B⊂A
B∈A

{π(B)} and µ∗(A) = inf
A⊂B
B∈A

{π(B)}.

Lemma C1. µ∗ and µ∗ are capacities on Σ .
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We omit the proof since it is straightforward.
Recall now the notion of Choquet integration. For any capacity ν and integrand

a : S → R, the Choquet integral is defined by:

c

∫
adν =

∫ ∞

0

ν({s : a(s) ≥ t})dt+
∫ 0

−∞
[ν({s : a(s) ≥ t})− 1]dt.

Therefore, a function V : F → R is said to be a Choquet expected utility (CEU)
function if there exist a function u on X and a capacity µ on Σ s.t., for f ∈ F :

V (f) = c

∫
u(f)dµ.

Lemma C2. The conservative social opinion ≿cons is represented by a function

Vc : F → R, where, for all f ∈ F: Vc(f) = minp∈Pπ u(f)dp. Similarly, the

progressive social opinion ≿prog is represented by Vg : F → R, where, for all

f ∈ F: Vg(f) = maxp∈Pπ u(f)dp.

Proof of Lemma C2. We will prove the result for Vc. The proof for Vg is analogous
and, therefore, omitted.

First, show that for f ∈ F : Vc(f) = sup{
∫
u(g)dπ : u(f) ≥ u(g) and g ∈ L}.

By monotonicity, for all g ∈ L, if u(f) ≥ u(g), then Vc(f) ≥
∫
u(g)dπ. Therefore,

it is clear that Vc(f) ≥ sup{
∫
u(g)dπ : u(f) ≥ u(g) and g ∈ L}. Now, suppose

that Vc(f) > sup{
∫
u(g)dπ : u(f) ≥ u(g) and g ∈ L}. We want now to derive

a contradiction. Since f is a simple act, there exist x, y in {x1, . . . , xm}, which is
the outcome set of the act f , s.t. u(x) ≥ u(z) ≥ u(y), for all z ∈ {x1, . . . , xm}.
Therefore, x ≿ f ≿ y. Since u(X) is convex, we know there exists xf ∈ X s.t.
xf ∼ f , which implies u(x) > sup{

∫
u(g)dπ : u(f) ≥ u(g) and g ∈ L}. Again,

by convexity of u(X), there is a y ∈ X such that: u(x) > u(y) > sup{
∫
u(g)dπ :

u(f) ≥ u(g) and g ∈ L}. As a result, f ≿c y while there is no g ∈ L s.t. u(f) ≥
u(g) and g ≻cons y, which contradicts the definition of the conservative social
opinion. Therefore, for f ∈ F , Vc(f) = sup{

∫
u(g)dπ : u(f) ≥ u(g) and g ∈ L}.

Second, we want to show that, for f ∈ F ,

c

∫
u(f)dµ = sup{

∫
u(g)dπ : u(f) ≥ u(g) and g ∈ L}.
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Notice that, according to Schmeidler (1989), CEU satisfies monotonicity, which
means, if u(f) ≥ u(g), that c

∫
u(f)dµ ≥ c

∫
u(g)dµ. When g ∈ L, c

∫
u(g)dµ =∫

u(g)dπ. Therefore, we have: c
∫
u(f)dµ ≥ sup{

∫
u(g)dπ : u(f) ≥ u(g) and g ∈

L}. Take an act f ∈ F . Wlog, we can write f = x1A1x2A2 · · ·xmAm, where
u(x1) > u(x2) > · · · > u(xm). So,

c

∫
u(f)dµ =

m−1∑
k=1

[u(xk)− u(xk+1)]µ(∪k
j=1Aj) + u(xm).

Let ÊJ(f) be the ideal split of {f−1(xi)}. Consider g ∈ L defined by, for all
s ∈ S, g(s) = argmini∈J u(xi) if s ∈ ÊJ(f). We want to show that:∫

u(g)dπ = sup{
∫
u(g)dπ : u(f) ≥ u(g) and g ∈ L}.

For 1 ≤ k ≤ m, we write ÊJ
≤k(f) :=

⋃
J{ÊJ(f) : J ⊆ {1, 2, . . . , k} and k ∈ J}.

Since x1 ≻ x2 ≻ . . . ≻ xm, we can rewrite g in the following way: for all s ∈ S,
g(s) = xk if s ∈ ÊJ

≤k(f). We know that, for every 1 ≤ k ≤ m,
∑k

j=1 π
(
ÊJ

≤j(f)
)
=

π(C{1,...,k}), which implies π(ÊJ
≤k(f)) = π(C{1,...,k})− π(C{1,...,k−1}). Therefore:

Vc(g) =
m∑
k=1

u(xk)π(Ê
J
≤k(f))

=
m∑
k=1

u(xk)[π(C
1,...,k)− π(C1,...,k−1)]

=
m∑
k=1

u(xk)[µ∗(∪k
j=1Aj)− µ∗(∪k−1

j=1Aj)]

= c

∫
u(f)dµ.

Hence, there exists p∗ ∈ Pπ s.t. p∗(Ak) = µ∗(∪k
j=1Aj) − µ∗(∪k−1

j=1Aj). That is,
c
∫
u(f)dµ =

∫
u(f)dp∗ ≥ minp∈Pπ u(f)dp. However, u(f) ≥ u(g) implies that, for

all p ∈ Pπ,
∫
u(f)dp ≥

∫
u(g)dp =

∫
u(g)dπ. So, minp∈Pπ u(f)dp ≥

∫
u(g)dπ =

c
∫
u(f)dµ. Hence, we have

∫
u(f)dµ = minp∈Pπ u(f)dp.
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Recall now that ufP ≡ maxp∈P
∫
u(f)dp and ufP ≡ minp∈P

∫
u(f)dp.

Theorem 2. Suppose Θ = {cons, prog}. Unanimity holds if and only if social

preferences ≿ are represented by a consistently utilitarian GHEU.

The proof of the necessity part is straightforward. We only prove the sufficiency
one.

Proof of Theorem 2. From previous analysis, we know that, for f, g ∈ F , f ≿cons g

iff ufPπ
≥ ugPπ

and f ≿prog g iff ufPπ
≥ ugPπ

. Thus, Unanimity implies f ≿ g,
whenever ufPπ

≥ ugPπ
and f ≿prog g iff ufPπ

≥ ugPπ
. Therefore, there exists a

monotonic function W : u(X) × u(X) → R s.t. W (ufPπ
, ufPπ

) = W (ugPπ
, ugPπ

),
whenever ufPπ

= ugPπ
and ufPπ

= ugPπ
. Thus, for any act f , the associated pair

(ufPπ
, ufPπ

) characterizes the indifference class with respect to f . Hence, W is a
representation of ≿ on F .

D APPENDIX — PROOF OF THEOREM 3

Theorem 3. Suppose Θ = {cons, prog}. Unanimity and Independence hold if and

only if social preferences ≿ are represented by a consistently utilitarian HEU.

The necessity part is straightforward and, therefore, omitted. Then, we just
show the sufficiency part. The proof consists of demonstrating, step by step, three
intermediate lemmas, i.e., Lemma D1-3. Observe first that {u(f) : f ∈ F} = {ϕ ∈
B0(Σ) : ϕ = u(f), for some f ∈ F} = B0(Σ, u(X)). Wlog, assume that [−1, 1] ⊂
u(X). Define I on B0(Σ, u(X)) a follows: for all f ∈ F , I(u(f)) = V (f). Note
that f ≿ g iff I(u(f)) ≥ I(u(g)), for all f, g ∈ F . Moreover, I(1) = 1.

Lemma D1. I is positively homogeneous.

Proof of Lemma D1. For φ ∈ B0(Σ, u(X)) and a ≥ 0, show that I(a ·φ) = aI(φ).
Let f ∈ F be an act s.t. I(φ) = V (f). Let x0 ∈ X be defined by u(x0) = 0.
By continuity and monotonicity, there exists x ∈ X s.t. u(x) = V (f). Consider
a ∈ (0, 1). Thanks to the convexity of π, there exists a subsetA ∈ A s.t. π(A) = a.
Let g ∈ F be defined as follows: for all s ∈ S, g(s) ∼ f(s)Ax0. Since u(g(s)) =
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a ·u(f(s)), for all s, we have: V (g) = I(aφ). Furthermore, note that f and g admit
the same ideal splitting. Therefore, V ∗(g) = V ∗(f [A]x0) and V∗(g) = V∗(f [A]x0),
that is:

c

∫
u(g)dµ∗ = a · c

∫
u(f)dµ∗ and c

∫
u(g)dµ∗ = a · c

∫
u(f)dµ∗.

Hence, if f ∼∗ x∗ and f ∼∗ x∗, then g ∼∗ x∗Ax0 and g ∼∗ x∗Ax0. By Inde-
pendence, we have g ∼ xAx0, which means V (g) = a · u(x) = a · V (f). Hence,
I(aφ) = aI(φ), for a ∈ (0, 1). If a = 0 or a = 1, the result holds trivially. If a > 1,
then 1

a
I(a · φ) = I(φ) according to the above argument. This ends the proof.

It is now sufficient to extend I by homogeneity to all B0(Σ). Note that I is
monotone and positively homogeneous on B0(Σ).

Lemma D2. I is constant additive.

Proof of Lemma D2. Let φ ∈ B0(Σ) and a ∈ R. We want to show I(φ + a · 1) =
I(φ) + a. Let f ∈ F be s.t. u(f) = 2φ and x ∈ X be s.t. u(x) = 2a. Also,
by continuity and monotonicity, there is y ∈ X s.t. f ∼ y. By convexity of π,
take A ∈ A s.t. π(A) = 1

2
. Define act g ∈ F by for all s, g(s) ∼ f(s)Ax. So,

u(g(s)) = u(f(s))+u(x)
2

for all s, which implies u(g) = φ+ a ·1. Since f and g have
identical ideal splitting, we must have g ∼∗ f [A]x and g ∼∗ f [A]x. Therefore,

c

∫
u(g)dµ∗ =

1

2

[
c

∫
u(f)dµ∗+u(x)

]
and c

∫
u(g)dµ∗ =

1

2

[
c

∫
u(f)dµ∗+u(x)

]
.

Let y ∼∗ f ∗ and y ∼∗ f∗. Then, g ∼∗ y∗Ax and g ∼∗ y∗Ax. According to
Independence, we have g ∼ yAx. Therefore, I(φ + a · 1) = 1

2
(u(y) + u(x)) =

φ+ a.

Let B0(A ) denote the set of all real-valued A -measurable finite valued func-
tions. For φ ∈ B0(Σ), let

φ∗ = arg inf
ϕ∈B0(A )

ϕ≥φ

I(ϕ) and φ∗ = arg sup
ϕ∈B0(A )

φ≥ϕ

I(ϕ)

Note that, for f ∈ F , Vg(f) = I(u(f)∗) and Vc(f) = I(u(f)∗).
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Lemma D3. Let I : B0(Σ) → R be a monotonic constant linear functional. Then,

there exists unique α ∈ [0, 1] such that, for all φ ∈ B0(Σ), I(φ) = αI(φ∗) + (1−
α)I(φ∗).

Proof of Lemma D3. By Theorem 2, we know that I(φ) = W (I(φ∗), I(φ
∗)). Since

I is homogeneous and constant additive, we have, for α ∈ [0, 1] and a ∈ R:

W (αφ∗, αφ
∗) = αW (φ∗, φ

∗),

W (φ∗ + a · 1, φ∗ + a · 1) = W (φ∗, φ
∗) + a.

Note that I(φ−I(φ∗)) = W (I(φ∗)−I(φ∗), I(φ
∗)−I(φ∗)) = W (0, I(φ∗)−I(φ∗)).

Therefore:

W (I(φ∗), I(φ
∗)) = W (0, I(φ∗)− I(φ∗)) + I(φ∗)

= W (0, 1)(I(φ∗)− I(φ∗)) + I(φ∗).

Let α = W (0, 1). We have: I(φ) = αI(φ∗) + (1 − α)I(φ∗). Let also φ be s.t.
I(φ∗) = 0. Then, monotonicity implies that I(φ) = α > 0.

This ends the proof of Theorem 3.

E APPENDIX — PROOF OF THEOREM 4 AND 5

The proofs of Theorem 4 and 5 proceed in six steps, corresponding to six lemmas,
i.e., Lemma E1-6. Lemma E1-3, which do not assume Independence, are sufficient
for the proof of Theorem 4. Lemma 4-6, which assume Independence, are used to
derive Theorem 5.

The necessity of both theorems are standard, we hence omit it.

Lemma E1. There exists a unique non-empty convex and compact set P ⊆ Pπ of

probabilities on Σ such that, for all f, g ∈ F:

f � g ⇐⇒
∫
u(f)dp ≥

∫
u(g)dp for all p ∈ P.
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Proof of Lemma E1. By definition of the binary relation �, we know, for all h ∈ F
and A ∈ A , that:

f � g ⇐⇒ I(u(f [A]h)) ≥ I(u(g[A]h))

⇐⇒ I(π(A)u(f) + (1− π(A))u(h)) ≥ I(π(A)u(g) + (1− π(A))u(h))

Since π has a convex range on A , for each λ ∈ [0, 1], there exists A ∈ A s.t.
λ = π(A). Therefore, for all λ ∈ (0, 1) and h ∈ F : f � g ⇐⇒ I(λu(f) +

(1 − λ)u(h)) ≥ I(λu(g) + (1 − λ)u(h)). Now, we define ⪰ on B0(Σ, u(X)) as
follows: for all φ, ϕ ∈ B0(Σ, u(X)): φ ⪰ ϕ ⇐⇒ I(λφ + (1 − λ)ψ) ≥ I(λϕ +

(1 − λ)ψ),∀ψ ∈ B0(Σ, u(X)), λ ∈ (0, 1]. Hence, it is straightforward that f �

g ⇔ u(f) ⪰ u(g). Therefore, ⪰ is obviously a non-trivial, monotonic and conic
preorder on B0(Σ, u(X)). According to Bewley (2002) or Ghirardato, Maccheroni
and Marinacci (2004), we know that there exists a unique non-empty convex and
compact set P of probabilities on Σ s.t., for all φ, ϕ ∈ B0(Σ, u(X)): φ ⪰ ϕ ⇐⇒∫
φdp ≥

∫
ϕdp, for all p ∈ P. We are left to show that P ⊆ Pπ. Suppose it is

wrong, i.e., there exists p ∈ P s.t. p /∈ Pπ. Since Pπ contains all extensions of π, p
is not an extension of π. So there exists A ∈ A s.t. p(A) ̸= π(A). Wlog, assume
p(A) ≥ π(A). Then, for u(x) > u(y), we have: u(x)P (A) + u(y)(1 − P (A)) >

u(x)π(A) + u(y)(1 − π(A)). By continuity of u, there exists z ∈ X such that:
u(x)P (A) + u(y)(1 − P (A)) > u(z) > u(x)π(A) + u(y)(1 − π(A)). Therefore,
z �θ xAy, for all θ ∈ {p, o} and z ⋭ xAy, which contradicts Unanimity.

Lemma E2. For each φ ∈ B0(Σ, u(X)), we have: minp∈P
∫
φdp ≤ I(φ) ≤

maxp∈P
∫
φdp.

Proof of Lemma E2. The proof is made by negation. First, suppose that there exists
φ ∈ B0(Σ, u(X)) s.t. I(φ) < minp∈P

∫
φdp. Let f ∈ F and x ∈ X be s.t.

u(f) = φ and u(x) = ϕ. Suppose that f ∼ x. Then, I(φ) = I(ϕ). However, for all
λ ∈ (0, 1] and ψ ∈ B0(Σ, u(X)), we have: I(λφ+(1−λ)ψ) > I(λϕ+(1−λ)ψ),
which implies that f � x. This contradicts the assumption whereby f ∼ x. A
similar argument works when I(φ) > maxp∈P

∫
φdp.

Lemma E3. The optimistic social opinion ≿o is represented by Vo s.t., for f ∈ F ,
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Vo(f) = maxp∈P
∫
u(f)dp. Moreover, the pessimistic social opinion ≿p is repre-

sented by Vp s.t., for f ∈ F , Vp(f) = minp∈P
∫
u(f)dp.

Proof of Lemma E3. Prove the result for Vo. The proof for Vg is analogous and,
therefore, omitted. Note that ≿o admits a restricted SEU representation. So, by
monotonicity and continuity, for each act f ∈ F , there exists xf ∈ X s.t. xf ∼o f .
If xf ⋭ f , then there exist g ∈ F and A ∈ A s.t. f [A]g ≻ xf [A]g. By definition
of ≿o, we have f ≻o xf . Hence, xf � f . This implies that u(xf ) ≥

∫
u(f)dp, for

all p ∈ P, which means u(xf ) ≥ maxp∈P
∫
u(f)dp. Now, suppose that, for some

f ∈ F , u(xf ) > maxP∈P
∫
u(f)dP . Take xmin be s.t. u(f(s)) ≥ u(xmin), for all

s. Then, there exists an event A ∈ A such that: u(xf ) > maxP∈P
∫
u(f)dP =

u(xfAxmin). Let z ∈ X be s.t. z ∼ xfAxmin. We have: xf ≻o z � f , which then
implies xf ≻o f , that is a contradiction. In conclusion, Vo(f) = maxp∈P

∫
u(f)dp,

represents ≿o.

Theorem 4. Suppose Θ = {p, o}. Unanimity holds if and only if social preferences

≿ are represented by a consistently utilitarian GMEU with P ⊆ Pπ.

Proof of Theorem 4. As seen previously, we know that, for f, g ∈ F , f ≿p g iff
ufP ≥ ugP and f ≿o g iff ufP ≥ ugP. Thus, Unanimity implies f ≿ g, whenever
ufP ≥ ugP and f ≿o g iff ufP ≥ ugP. Therefore, there exists a monotonic function W :

u(X)× u(X) → R s.t. W (ufP, u
f
P) = W (ugP, u

g
P), whenever ufP = ugP and ufP = ugP.

Thus, for any act f , the associated pair (ufP, u
f
P) characterizes the indifference class

with respect to f . Hence, W is a representation of ≿ on F .

Theorem 5. Suppose Θ = {p, o}. Unanimity and Independence hold if and only

if social preferences ≿ are represented by a consistently utilitarian α-MEU with

P ⊆ Pπ.

The proof is based on the three following lemmas:

Lemma E4. I is positively homogeneous.

Proof of Lemma E4. For φ ∈ B0(Σ, u(X)) and a ≥ 0, show that I(a ·φ) = aI(φ).
Let f ∈ F be s.t. I(φ) = V (f) and let x0 ∈ X be s.t. u(x0) = 0. By continuity
and monotonicity, there exists x ∈ X s.t. u(x) = V (f). Take now a ∈ (0, 1).

33



Because of the convexity of π, there exists A ∈ A s.t. π(A) = a. Let an act g ∈ F
be defined by, for all s ∈ S, g(s) ∼ f(s)Ax0. Since u(g(s)) = a · u(f(s)), for all
s, we have V (g) = I(aφ). Furthermore, note that Vo and Vp satisfy homogeneity
and constant additivity. Therefore, Vo(g) = aVo(f) and Vp(g) = aVp(f). Hence,
let x∗, x∗ ∈ X be s.t. f ∼o x

∗ and f ∼p x∗. Then, g ∼o x
∗Ax0 and g ∼p x∗Ax0.

By Independence, we have g ∼ xAx0, which leads to V (g) = a · u(x) = a · V (f).
Thus, I(aφ) = aI(φ), for a ∈ (0, 1). If a = 0 or a = 1, the result holds trivially.
If a > 1, then 1

a
I(a · φ) = I(φ) according to the above argument. This ends the

proof.

By homogeneity, we now extend I to all B0(Σ). Note that I is monotone and
positively homogeneous on B0(Σ).

Lemma E5. I is constant additive.

Proof of Lemma E5. Let φ ∈ B0(Σ) and a ∈ R. We want to show that I(φ+a·1) =
I(φ) + a. Let f ∈ F be s.t. u(f) = 2φ and x ∈ X be s.t. u(x) = 2a. In addition,
by continuity and monotonicity, there is y ∈ X s.t. f ∼ y. By the convexity of π,
take A ∈ A s.t. π(A) = 1

2
. Define act g ∈ F by, for all s, g(s) ∼ f(s)Ax. Hence,

u(g(s)) = u(f(s))+u(x)
2

, for all s, which implies u(g) = φ + a · 1. Since Vo and Vp
are constant additive, we have Vo(g) = 1

2
Vo(f) + a and Vp(g) = 1

2
Vp(f) + a. Let

y∗, y∗ ∈ X be s.t. f ∼o y
∗ and f ∼p y∗. Then, g ∼o y

∗Ax and g ∼p y∗Ax. By
Independence, we have g ∼ yAx. Therefore, I(φ + a · 1) = 1

2
(u(y) + u(x)) =

φ+ a.

Lemma E6. There exists a unique α ∈ [0, 1] s.t. I(φ) = αI∗(φ) + (1− α)I∗(φ).

Proof of Lemma E6. Since I satisfies homogeneity and constant additivity, accord-
ing to Lemma E5, there exists a unique α ∈ [0, 1] s.t. the above expression
holds.

This ends the proof of Theorem 5.
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F APPENDIX — PROOF OF THEOREM 6

Theorem 6. Suppose Θ = {B,m}. Unanimity and Independence hold if and only

if social preferences ≿ are represented by a consistently utilitarian cMEU with

P = Pπ and p is a convex combination of {πi}ni=1.

Since the necessity part is straightforward, we only prove the sufficiency one.

Proof of Theorem 6. For all acts f, g ∈ F , f ≿B g iff ufp∗ ≥ ugp∗ and f ≿m g iff
αufPπ

+ (1− α)ufPπ
≥ αugPπ

+ (1− α)ugPπ
. Unanimity implies the existence of W :

u(X)×u(X) → R s.t.: W (ufp∗ , αu
f
Pπ
+(1−α)ufPπ

) ≥ W (ugp∗ , αu
g
Pπ
+(1−α)ugPπ

),
whenever ufp∗ ≥ ugp∗ and αufPπ

+(1−α)ufPπ
≥ αugPπ

+(1−α)ugPπ
). Hence, V (f) =

W (ufp∗ , αu
f
Pπ

+ (1 − α)ufPπ
) represents social preferences ≿. Since ≿B and ≿m

are constantly independent, a similar argument can be used as in Lemmas E4 and
E5 and Independence implies that I defined as I(u(f)) = V (f) is homogeneous
and constantly additive. Therefore, Lemma D3 yields the existence of a unique
ε ∈ [0, 1] s.t., for f ∈ F , V (f) = εufp∗ + (1− ε)(αufPπ

+ (1− α)ufPπ
).
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