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Multisummability for generalized
power series
Jean-Philippe Rolin, Tamara Servi, and Patrick Speissegger
Abstract. We develop multisummability, in the positive real direction, for generalized power series
with natural support, and we prove o-minimality of the expansion of the real field by all multisums
of these series. This resulting structure expands both RG and the reduct of Ran∗ generated by
all convergent generalized power series with natural support; in particular, its expansion by the
exponential function defines both the gamma function on (0,∞) and the zeta function on (1,∞).

1 Introduction

We generalize the theory of multisummability in the positive real direction, as
discussed in [2, 9, 12], to certain nonconvergent power series with real nonnegative
exponents (introduced in [11, p. 4377]). Examples of such series are Dirichlet series
(after the change of variables s = − log x), and asymptotic expansions of certain
solutions of differential equations [13] and of certain functions appearing in Dulac’s
problem [3].

Our main motivation here comes from o-minimality: summation processes induce
a quasianalyticity property which is usually needed to prove that a given structure is o-
minimal. In their paper [10], Van den Dries, Macintyre, and Marker show that neither
Euler’s gamma function Γ restricted to (0,+∞), nor the Riemann zeta function ζ
restricted to (1,+∞), are definable in the o-minimal structure Ran,exp [10, Theorem
5.11 and Corollary 5.14]. Subsequently, Van den Dries and Speissegger constructed the
o-minimal expansions (Ran∗ , exp) [11, 12] and (RG , exp) [12], and they proved that
ζ↾(0,+∞) is definable in the former, but not in the latter [12, Corollary 10.11], whereas
Γ↾(0,+∞) is definable in the latter [12, Example 8.1]. At the time, it was unknown
whether Γ↾(0,+∞) was definable in the former.

This state of affairs thus left the following question unanswered: is there an
o-minimal expansion of the real field in which both Γ↾(0,+∞) and ζ↾(1,+∞) are definable?
Based on additional information gained from Rolin and Servi’s paper [7] about the
structures (Ran∗ , exp) and (RG , exp), we show in a separate paper (in preparation)
that Γ↾(0,+∞) is not definable in (Ran∗ , exp) either. So to answer the question in the
affirmative, we need to come up with an o-minimal structure that properly expands
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2 J. Rolin, T. Servi, and P. Speissegger

both the expansion of the real field by Γ↾(0,+∞) and the expansion of the real field by
ζ↾(1,+∞).

Indeed, we construct here an o-minimal expansion of the real field that expands
(RG , exp) and in which ζ↾(1,+∞) is definable (see the Main Corollary).

To recap, for an indeterminate X = (X1 , . . . , Xn), we denote by C [[X∗]] the set of
all generalized power series of the form F(X) = ∑α∈[0,∞)n aα Xα , where each aα ∈ C
and the support

supp(F) ∶= {α ∈ [0,∞)n ∶ aα ≠ 0}
is contained in a product A1 ×⋯× An of sets A i ⊂ [0,∞) that are well ordered with
respect to the usual ordering of the real numbers (see [11, Section 4] for details). The
series F(X) converges if there exists r > 0 such that ∥F∥r ∶= ∑α ∣aα ∣rα < ∞; we denote
by C{X∗} the set of all convergent generalized power series [11, Section 5].

The generalized power series that we extend the notion of multisummability to
have special support: we call a set A ⊆ R natural if A∩ (−∞, a) is finite, for every
a ∈ R; and we call a set A ⊆ Rn natural if A ⊆ A1 ×⋯× An with each A i ⊆ R natural.
Restricting our attention to generalized power series with natural support allows us
to use such objects as asymptotic expansions of germs (see Proposition 2.16). This has
already been exploited in [4], where the o-minimality of the expansion of the real field
by certain Dulac germs is proven.

In Sections 2 and 3, we define a notion of multisummability in the positive
real direction for generalized power series of natural support, appropriately named
generalized multisummability in the positive real direction (or simply generalized
multisummability in the real direction when working in the logarithmic chart of the
Riemann surface of the logarithm, as we do throughout this paper). We verify that the
resulting system G∗ of algebras (both of functions and of germs) satisfies the axioms
in [7], leading to the following: let the language LG∗ and the structure RG∗ be as in [7,
Definition 1.21] for our system G∗ of algebras in place of A there.

Main Theorem (1) The structure RG∗ is model complete, o-minimal and polyno-
mially bounded and has field of exponents R.

(2) The structure RG∗ admits quantifier elimination in the language LG∗ ∪ {(⋅)−1}.

By construction, all functions defined on compact polydisks by convergent gener-
alized power series with natural support are definable inRG∗ ; and we show in Section 2
that the same holds for all functions defined on compact sets by standard power series
that are multisummable in the positive real direction. Recall that, for x ∈ [0, e−2],
ζ (− log x) is the sum of the generalized power series ∑∞n=1 x log n , which has natural
support. In particular, both exp↾[0,1] and ζ(− log x)↾[0,e−2] are definable in RG∗ , as is
the function log Γ(x) − (x − 1

2 ) log x on the interval (1,+∞) (see [12, Example 8.1]).
Therefore, Theorem B of [12] gives the following corollary.

Main Corollary (1) The structure (RG∗ , exp) is model complete and o-minimal,
and it admits quantifier elimination in the language LG∗ ∪ {exp, log}.

(2) The functions Γ↾(0,+∞) and ζ↾(1,+∞) are definable in (RG∗ , exp).

As we rely on [7] for the proof of o-minimality of RG∗ , the main contribution of
this paper is the generalization of multisummability in the positive real direction to

https://doi.org/10.4153/S0008414X23000111 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000111


Amalgamating gamma and zeta 3

generalized power series of natural support and the establishment of the axioms in [7]
for the corresponding system G∗ of algebras of functions and germs.

As in [12], our starting point here is a characterization, due to Tougeron [9], of
multisummable power series in terms of infinite sums of convergent power series
of decreasing radii of convergence. Thus, we move to the logarithmic chart of the
Riemann surface of the logarithm, since we are working with arbitrary real exponents.
Then we define a multisummable generalized power series (in the real direction) as the
infinite sum of a sequence of convergent generalized power series with decreasing radii
of convergence and support contained in a fixed natural set (Section 2.4).

The corresponding theory of multisummability in one variable, developed in
Section 2, differs from the classical one in that there is no origin around which we can
use contour integration. One example of a classical result that we cannot generalize is
the following: every classical multisummable power series can be decomposed into a
sum of singly summable series; we do not know if this is the case in the generalized
setting (see Section 2.7 for details). However, we do obtain the crucial quasianalyticity
for our system of algebras (Section 2.6).

Also, as in [12], this approach lends itself naturally to define generalized mul-
tisummability in the positive real direction in several variables, and we follow the
corresponding steps in [12] as closely as possible (Section 3). In Section 4 and 5, we
establish the axioms of [7].

Remark (1) To the best of our knowledge, this is the first time [7] was used to prove
the o-minimality of a structure that was previously unknown to be o-minimal. The
same procedure could be used to obtain the o-minimality (and related results) of the
structures Ran∗ [11], RG [12], and RC [8]. The resulting quantifier elimination given by
[7, Theorem B] is new in each of these cases, and it is used in our forthcoming paper
to show that Γ↾(0,+∞) is not definable in (Ran∗ , exp).

(2) The only closure property needed in [7] but not established in [8, 11, 12] is closure
under infinitesimal substitutions in the convergent variables (Proposition 4.9). The
proof of this in the structures discussed in the previous remark is similar to the proof
given here for G∗.

Finally, from the point of view of generalized multisummability, as in the classical
theory, there is nothing special about the positive real direction. Our generalized
notion works in any other direction, and one could correspondingly come up with
a notion of “generalized multisummability” as done in the classical situation. This
raises some interesting questions in their own right (see Section 2.7), which we do
not address in this paper.

2 Generalized multisummable functions of one variable

2.1 Preliminaries

We denote by

C = C ∪ {−∞}
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4 J. Rolin, T. Servi, and P. Speissegger

the logarithmic chart of the Riemann surface of the logarithm, with the additional
“origin” of C represented by “−∞,” where we convene that Re(−∞) = −∞. For r ∈ R,
we let

H(r) ∶= {u + iv ∈ C ∶ u < r}

be the log-disk of log-radius r. For d , r ∈ R, a log-sector is a set

S(d , r, θ) ∶=
⎧⎪⎪⎨⎪⎪⎩

{u + iv ∈ C ∶ u < r, ∣d − v∣ < θ} ∪ {−∞}, if θ ∈ (0,∞),
H(r), if θ = ∞,

and a log-line is a set

T(d) ∶= {u + iv ∈ C ∶ v = d} ∪ {−∞}.

(We shall mainly focus on the direction d = 0 in this paper.) We extend the standard
topology on C to C by declaring the log-disks as basic open neighborhoods of
−∞. Note that the usual covering map of the Riemann surface of the logarithm is
represented in the logarithmic chart by the exponential function, and we extend it to
a continuous function on C by setting e−∞ ∶= 0. For each d ∈ R, the restriction of ew

to S(d ,∞, π)/{−∞} is injective; its inverse is the branch of the logarithm logd in the
direction d.

We are mostly interested in partial functions onCwith values inC. In this spirit, we
call a set D ⊆ C a log-domain if D ∩C is a domain (in particular, every domain inC is a
log-domain). If D ⊆ C is a log-domain, a log-holomorphic function on D is a continuous
function f ∶ D �→ C such that the restriction of f to D ∩C is holomorphic. For
example, every holomorphic function on a domain in C is log-holomorphic, and the
exponential function is log-holomorphic on C.

2.2 The logarithmic Borel and Laplace transforms

2.2.1 Logarithmic Borel transform

Let d , r ∈ R and θ > π/2, and write S = S(d , r, θ). Let f ∶ S �→ C be such that f↾S0
is

bounded and log-holomorphic, for every closed log-subsector S0 of S. Given a closed
log-subsector S0 = cl(S(d′ , r′ , θ′)) of S with θ′ > π

2 , denote by ∂S0 the directed path
following the boundary of S0 from the “lower left end” to the “upper left end.” We
define the logarithmic Borel transform Bd′ f ∶ T(d′) �→ C in the direction d′ of f by

Bd′ f (w) ∶= ew

2πi ∫∂S0
eew−η

f (η)dη
eη .

We leave it as an exercise to check that Bd′ f only depends on d′, but not on the other
parameters of S0 (as long as they are in the prescribed range). More is true.

Remark 2.1 If θ′ < π and g(z) ∶= f (logd z), for z ∈ exp(S0), then the change of
variables z = ew gives that

(Bd′ f ) (logd z) = z ⋅ (Bd′ g) (z),
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where Bd′ g denotes the Borel transform of g in the direction d′ as defined in [5] (see
also Section 5.2 of [2]). Thus, the following proposition is obtained from Propriétés
1–3 on page 38 of [5].

Proposition 2.2 Set S′ ∶= S (d ,∞, θ − π
2 ).

(1) The function B f ∶ S′ �→ C defined by B f (w) ∶= (BIm w f )(w) is log-holomorphic
on every closed log-subsector S0 of S′.

(2) For every closed log-subsector S0 of S′, there exist C , D > 0 such that

∣B f (w)∣ ≤ CeDeRe w
for w ∈ S0 .

(3) Let α ≥ 0, and assume that for every closed log-subsector S0 of S, we have ∣ f (w)∣ =
O (eα Re w) as w → −∞ in S0. Then, for every closed log-subsector S0 of S′, we have
∣B f (w)∣ = O (eα Re w) as w → −∞ in S0.

Accordingly, we call the functionB f defined in the proposition above the log-Borel
transform of f.

For D ⊆ C and g ∶ D �→ C, we set

∥g∥D ∶= sup{∣g(z)∣ ∶ z ∈ D} .

For later use, we make the bound in Proposition 2.2(2) more precise.

Lemma 2.3 Let S0 = cl(S(d′ , r′ , θ′)) be a closed subsector of S with θ′ ∈ ( π
2 , θ), and

set S′ ∶= S (d′ , r, θ′ − π
2 ) and C ∶= sin( θ−θ′

2 ). Then

∥B f ∥S′ ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∥ f ∥S0
C e , if r ≤ r′ ,
∥ f ∥S0

C ee r−r′

er−r′ , if r ≥ r′ .

Proof Let w ∈ S′; we compute B f (w) by computing Bd f (w), where d ∶= Im w and
the integral is taken along the contour δ ∶= ∂S (d , ρ, α), where α ∶= θ−θ′+π

2 and ρ ∶=
min{Re w , r′}. For η ∈ δ, we distinguish two cases.

Case 1: ∣ Im(w − η)∣ = α. Then Re(ew−η) = cos α ⋅ eRe w−Re η ; since C = − cos α, we
get

1
2π

∣ew ∫
∣ Im(w−η)∣=π

eew−η
f (η)dη

eη ∣ ≤
∥ f ∥S0

2π ∫
∣ Im(w−η)∣=π

ecos α⋅eRe w−Re η
eRe w−Re ηdη

=
∥ f ∥S0

π ∫
ρ

−∞
ecos α⋅eRe w−r

eRe w−rdr

=
∥ f ∥S0

πC
ecos α⋅eRe w−r

∣
ρ

−∞

≤
∥ f ∥S0

C
,

because cos α < 0.
Case 2: Re η = ρ. Then we have

Re(ew−η) ≤ ∣ew−η ∣ = eRe w−Re η = eRe w−ρ ,
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6 J. Rolin, T. Servi, and P. Speissegger

so that

1
2π
∣ew ∫

Re η=ρ
eew−η

f (η) dη
eη ∣ ≤ ∥ f ∥S0

eeRe w−ρ
eRe w−ρ ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∥ f ∥S0
e, if Re w ≤ r′ ,

∥ f ∥S0
eeRe w−r′

eRe w−r′ , if Re w ≥ r′ .

Combining the two cases, we obtain the lemma. ∎

2.2.2 Logarithmic Laplace transform

We fix an arbitrary direction d ∈ R. Let f ∶ T(d) �→ C be continuous, and assume
that there exist C , D > 0 such that

∣ f (w)∣ ≤ CeDeRe w
for all w ∈ T(d).

We let

U(d , D) ∶= {z ∈ C/{0} ∶ cos(arg z − d) > D∣z∣} ∪ {0}

be the Borel disk of diameter 1
D touching the origin and centered on the ray in direction

d. Correspondingly, we let

V(d , D) ∶= {w ∈ C ∶ cos(Im w − d) > DeRe w} ∪ {−∞}

the log-Borel disk in the direction d of extent − log D; note indeed that U(d , D) =
exp(V(d , D)). We define the log-Laplace transform Ld f ∶ V(d , D) �→ C in the
direction d of f by

Ld f (w) ∶= ∫
T(d)

e−eη−w
f (η)dη.

Remark 2.4 If g(z) ∶= f (logd z), for z ∈ C such that arg z = d, then the change of
variables z = ew gives that

(Ld f ) (logd z) = (Ld g) (z)
z

,

where Ld g denotes the Laplace transform of g in the direction d as defined in [5] (see
also Section 5.1 of [2]). Thus, the following proposition is obtained from Propriétés
1–2 on pages 41 and 42 of [5].

Proposition 2.5 Let φ > 0 and set S ∶= S(d ,∞, φ). Let f ∶ S �→ C, and assume that
for every closed log-subsector S0 of S, the restriction f↾S0

is log-holomorphic and there
exist C, D > 0 such that ∣ f (w)∣ ≤ CeDeRe w

for w ∈ S0. Then:
(1) For each θ ∈ (0, φ), there exists 0 < R(θ) ≤ 1

D such thatLd f has a log-holomorphic
extension L f ∶ V(d , R(θ)) �→ C.

(2) Let α ≥ 0, and assume that for every closed log-subsector S0 of S, we have ∣ f (w)∣ =
O (eα Re w) as w → −∞ in S0. Then, in the situation of part (1), for every closed
log-subsector S0 of V(d , R(θ)), we have ∣L f (w)∣ = O (eα Re w) as w → −∞ in S0.

In view of the previous proposition, we call the union V ∶= ⋃θ∈(0,φ) V(d , R(θ)) a
log-sectorial domain, and we refer to the common extension L f ∶ V �→ C of L0 f of
L0 f given by Proposition 2.5 as the log-Laplace transform of f. Note that, in practice,
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we shall usually restrict the domain of L f to a sector S (d , log R, θ + π
2 ) for suitable

θ ∈ (0, φ) and R > 0 on which it is log-holomorphic.
For f ∶ S(d , r, θ) �→ C as in Section 2.2.1, Proposition 2.2 implies that L(B f )

is defined and log-holomorphic on every closed log-subsector S0 of S(d , r, θ) ∩ V .
Indeed, L is the inverse operator to B (see page 44 of [5]).

Proposition 2.6 For f ∶ S(d , r, θ) �→ C as in Section 2.2.1, we have L(B f ) = f on
S(d , r, θ) ∩ V.

Example 2.7 For α ∈ R, we set pα(w) ∶= eαw . Then, for w ∈ R, we have

L0(pα)(w) = ∫
∞

−∞
e−eη−w

eαηdη

= ∫
∞

0
e−ζ/ew

ζα−1dζ (taking ζ = eη)

= eαw ∫
∞

0
e−ξ ξα−1dξ (taking ζ = ew η)

= Γ(α)eαw .

It follows, by analytic continuation and Proposition 2.5, that L(pα) = Γ(α)pα , and
hence by Proposition 2.6 that B(pα) = pα

Γ(α) .

2.3 Generalized power series with complex coefficients

Let now F(X) = ∑α≥0 aα Xα ∈ C{X∗} be such that ∥F∥r < ∞, for some r > 0. We
explain here how such a series defines a log-holomorphic function on some log-disk.
Denoting by log the principle branch of the logarithm on C/(−∞, 0], we set

zα ∶= eα log z for z ∈ C/(−∞, 0].

Then, for w ∈ S(0,∞, π), we have that

pα(w) = (ew)α ;

in other words, the entire function pα extends the function w ↦ (ew)α ∶
S(0,∞, π) �→ C. Since ∣pα(w)∣ = eα Re w , it follows that the series

F(w) ∶= ∑ aα eαw

converges absolutely and uniformly, for w ∈ H(log r). By Weierstrass’s theorem, the
function F ∶ H(log r)/{−∞} �→ C is holomorphic, and by the previous remarks, we
have

F(w) = F(ew) for w ∈ S(0, log r, π).

It follows, in particular, from [11, Lemma 5.5] that F extends continuously to −∞
and satisfies F(−∞) = F(0). Below, we refer to the log-holomorphic function F thus
defined on H(log r) as the log-sum of F(X).
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8 J. Rolin, T. Servi, and P. Speissegger

2.3.1 Logarithmic Borel transform of convergent generalized power series
with natural support

We again fix F(X) = ∑ aα Xα ∈ C{X∗} and r > 0 such that ∥F∥r < ∞. In addition, we
assume that the support of F(X)—a subset of [0,∞) by definition—is natural. Since
F is defined on H(log r) = S(0, log r,∞), we obtain from Proposition 2.2 that its log-
Borel transform BF is log-holomorphic on C.

In view of Example 2.7, we set

BF(X) ∶= ∑
aα

Γ(α)Xα ,

called the formal Borel transform of F(X). Note that, for σ > 0, we have by Binet’s
second formula (see [14]) that

C(σ) ∶= max
α≥0

σ α

Γ(α) < ∞.

Thus, for any σ > 0, we have that

∥BF∥σ = ∑
(σ/r)α

Γ(α) ∣aα ∣rα ≤ C(σ/r)∥F∥r .(2.1)

Since F has natural support, the sum is finite for all σ ; so the series BF(X) has infinite
radius of convergence, and its log-sumBF is also log-holomorphic onC. In summary:

Proposition 2.8 Let F(X) be a convergent generalized power series with natural
support. Then both BF and BF are log-holomorphic on C, and we have BF = BF.

Proof Since F(X) has natural support, we write F(X) = ∑N
n=0 anrαn with either N ∈

N, or N = ∞ and limn→∞ αn = +∞. For w ∈ C, let S be the closure of the log-sector
S(Im w , log r, π), and define K ∶ ∂S �→ C by

K(η) ∶= 1
2πi

ew−η eew−η
.

For n ∈ N with n ≤ N , let un ∶ ∂S �→ C be defined by

un(η) ∶= an eαn ηK(η) = an pαn(η)K(η),

where pαn is defined as in Example 2.7. Proceeding as in the proof of Lemma 2.3, we
obtain a C > 0 such that

∫
∂S
∣un(η)∣dη ≤ C∣an ∣rαn , for each n.

Since ∥F∥r < ∞, it follows that∑n ∫∂S ∣un(η)∣dη < ∞. If follows from analysis that the
functions un , for each n, as well as ∑n un and ∑n ∣un ∣ are integrable on ∂S and that

BF(w) = ∑
n

an

Γ(αn)
eαn w = ∑

n
an(Bpαn)(w)
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= ∑
n
∫

∂S
un(η)dη = ∫

∂S
(∑

n
un(η)) dη

= ∫
∂S

F(η)K(η)dη = (BF)(w),

as claimed. ∎

2.4 Generalized multisummable functions

We now define generalized multisummable functions inspired by Tougeron’s charac-
terization of multisummable functions [9] and by their presentation in [12]. However,
while it was possible in [12] to refer to the existing literature for summability, it is
not the case in our setting. More precisely, our aim is to show a quasianalyticity
result for our functions analogous to that in [12, Proposition 2.18]. To this end, we
need to introduce suitable Borel and Laplace transforms adapted to the generalized
multisummable framework (see Section 2.5). The presentation turns out to be more
readable in this setting by replacing the usual “Gevrey order” k by 1/k. This leads to
the following definitions.

For R, k ≥ 0, θ > π/2 and p ∈ N, we set

ρR ,k
p ∶= R

(1 + p)k and SR ,k
p ∶= cl (S (0, log R, θk) ∪ H (log ρR ,k

p )) .

Let K ⊆ [0,∞) be a nonempty finite set and r > 1 (note that the situation studied
in [12] corresponds, in the current notation, to π/2 < θ < π and K ⊆ [0, 1], in order to
avoid dealing with the logarithmic chart), and set

MK ∶= max K , μK ∶= min K .(2.2)

Moreover, we fix a natural set Δ ⊆ [0,∞) and set τ ∶= (K , R, r, θ , Δ) (note that Δ = N

in [12]). We define

Sτ ∶= ⋂
k∈K/{0}

S (0, log R, θk) if K ≠ {0}, and Sτ ∶= H(log R) if K = {0}

and, for p ∈ N,

ρτ
p ∶= min

k∈K
ρR ,k

p = ρR ,MK
p

and

Sτ
p ∶= ⋂

k∈K
SR ,k

p .

Remark 2.9 If 0 ∈ K and K′ ∶= K/{0} is nonempty, then Sτ = Sτ′ and Sτ
p = Sτ′

p for all
p, where τ′ = (K′ , R, r, θ , Δ).

Definition 2.10 For each p ∈ N, let fp ∶ Sτ
p �→ C be log-holomorphic, that is, there

exists a log-domain Dp ⊇ Sτ
p and a log-holomorphic gp ∶ Dp �→ C such that fp =

gp↾Sτ
p
. Moreover, we assume that there are generalized power series Fp(X) ∈ C{X∗}
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with support contained in Δ such that ∥Fp∥ρτ
p
< ∞ and

fp(w) = Fp(w) for w ∈ H(log ρτ
p).

Assume also that

∑
p
∥Fp∥ρτ

p
rp < ∞ and ∑

p
∥ fp∥Sτ

p
rp < ∞,

where ∥ fp∥Sτ
p
∶= supw∈Sτ

p
∣ fp(w)∣ denotes the sup norm of fp on Sτ

p . The second of
these finiteness assumptions implies that ∑p fp converges uniformly on Sτ/{−∞} to
a holomorphic function g ∶ Sτ/{−∞} �→ C, while the first implies that this g extends
continuously to −∞, so that the resulting g ∶ Sτ �→ C is log-holomorphic. From now
on, we abbreviate this situation by writing

g =τ ∑
p

fp .

Thus, for a log-holomorphic function f ∶ Sτ �→ C, we set

∥ f ∥τ ∶= inf
⎧⎪⎪⎨⎪⎪⎩

max
⎧⎪⎪⎨⎪⎪⎩
∑

p
∥Fp∥ρτ

p
rp ,∑

p
∥ fp∥Sτ

p
rp
⎫⎪⎪⎬⎪⎪⎭
∶ f =τ ∑

p
fp

⎫⎪⎪⎬⎪⎪⎭
∈ [0,∞];

note that ∥ f ∥τ < ∞ if and only if there exists a sequence fp such that f =τ ∑p fp .

We set

Gτ ∶= { f ∶ Sτ �→ C ∶ f is log-holomorphic and ∥ f ∥τ < ∞} .

It is immediate from this definition that Gτ is a C-vector space under pointwise addi-
tion; moreover, if Δ is closed under addition, then Gτ is closed under multiplication
of functions, making Gτ a C-algebra.

Convention 2.11 If Δ is natural, then so is its closure under addition; so we assume
from now on that Δ is closed under addition.

Example 2.12 Tougeron’s characterization implies that, if MK < 2 (where MK is as
in (2.2)) and f ∶ S (0, R, θMK) �→ C is such that f ○ log is K-summable, then f ∈ Gτ ,
where τ = (K , R, r, θ ,N) for some r > 1.

Definition 2.13 (1) We call a function f generalized multisummable in the real direc-
tion if f ∈ Gτ for some τ as above.

(2) We call a function f generalized K-summable in the real direction if there exist
R′ > 0, r′ > 1, θ′ > π/2 and a natural Δ′ ⊆ [0,∞) such that f ∈ Gτ′ with τ′ =
(K , R′ , r′ , θ′ , Δ′).

Example 2.14 In terms of Example 2.12, Tougeron’s characterization of multi-
summable functions implies that if f is K-summable in the positive real direction,
then f ○ exp is generalized K-summable in the real direction.

Let f ∈ Gτ with associated functions fp and series Fp be as in Definition 2.10 such
that∑p ∥Fp∥ρτ

p
rp < 2∥ f ∥τ and∑p ∥ fp∥Sτ

p
rp < 2∥ f ∥τ . In Proposition 2.16, we show that

f has asymptotic expansion F(ew) at −∞, for the generalized power series F(X) with
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support contained in Δ (and hence natural), defined in (2.3). To do so, say Fp(X) =
∑ ap,α Xα for each p, where each ap,α ∈ R, and write ρp for ρτ

p . Then, for each p and
α, and for arbitrary s ∈ (1, r), we have

∣ap,α ∣ ≤
∥Fp∥ρp

ρα
p

=
∥Fp∥ρp

Rα (p + 1)αMK ≤
∥Fp∥ρp

Rα sp(p + 1)αMK .

Therefore, for each α and arbitrary s ∈ (1, r), we get

∑
p
∣ap,α ∣ ≤

1
Rα ∑

p
(p + 1)αMK ∥Fp∥ρp sp

= 1
Rα ∑

p
∥Fp∥ρp rp(p + 1)αMK ( s

r
)

p

≤ C(s, α)
Rα ∑

p
∥Fp∥ρp rp < ∞,

where C(s, α) ∶= maxp(p + 1)αMK (s/r)p < ∞. So we set

aα ∶= ∑
p

ap,α ,

for each α, and

F(X) ∶= ∑ aα Xα ,(2.3)

which has support contained in Δ.

Lemma 2.15 There exist D, E > 0 such that for all p ∈ N and all β ≥ 0, we have
777777777777

fp(w) − ∑
α<β

aα , p eαw
777777777777
≤ CDβ (p + 1)βMK

rp ∣eβw ∣ for w ∈ Sτ
p .

Proof Fix p ∈ N and β ≥ 0, and let w ∈ Sτ
p . We distinguish two cases:

Case 1: Re w < log ρp . Then
777777777777

fp(w) − ∑
α<β

ap,α eαw
777777777777
=
777777777777
∑
α≥β

ap,α eαw
777777777777

≤ ∣eβw ∣ ∑
α≥β

∣ap,α ∣ ∣e(α−β)w ∣

≤ ∣eβw ∣ ∑
α≥β

∣ap,α ∣(ρp)α−β

≤
∣eβw ∣
(ρp)β ∥Fp∥ρp

≤ 2 ∣eβw ∣ (p + 1)βMK

Rβrp ∥ f ∥τ ,

which proves the estimate in this case.
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Case 2: Re w ≥ log ρp . Then

777777777777
fp(w) − ∑

α<β
ap,α eαw

777777777777
≤ ∣ fp(w)∣ + ∑

α<β
∣ap,α ∣ ∣eαw ∣ ,

so we further split up the estimate:

∣ fp(w)∣ ≤ ∥ fp∥Sτ
p

≤ ∥ fp∥Sτ
p

∣eβw ∣
(ρp)β as ∣ew ∣ ≥ ρp

= (p + 1)βMK

Rβ ∥ fp∥Sτ
p
∣eβw ∣

≤ (p + 1)βMK

Rβrp 2∥ f ∥τ ∣eβw ∣ ,

while

∑
α<β

∣ap,α ∣ ∣eαw ∣ ≤ ∣eβw ∣ ∑
α<β

∣ap,α ∣(ρp)α−β as α − β < 0 and ∣ew ∣ ≥ ρp

=
∣eβw ∣
(ρp)β ∑

α<β
∣ap,α ∣(ρp)α

≤ ∣eβw ∣ (p + 1)βMK

Rβ ∥Fp∥ρp

≤ ∣eβw ∣ (p + 1)βMK

Rβrp ⋅ 2∥ f ∥τ .

This completes the proof of Case 2 and therefore of the lemma. ∎

Proposition 2.16 (Gevrey estimates) For every closed log-subsector S0 of Sτ , there exist
D, E > 0 such that, for each β ≥ 0,

777777777777
f (w) − ∑

α<β
aα eαw

777777777777
≤ DEβ Γ (βMK) ∣eβw ∣ for w ∈ S0 .

Proof Let D, E > 0 be obtained from Lemma 2.15, and let β ≥ 0. Since Δ ∩ [0, β) is
finite we have, for w ∈ S0,

777777777777
f (w) − ∑

α<β
aα eαw

777777777777
=
777777777777

⎛
⎝∑p

fp(w)
⎞
⎠
− ∑

α<β

⎛
⎝∑p

aα , p
⎞
⎠

eαw
777777777777

≤ ∑
p

777777777777
fp(w) − ∑

α<β
aα , p eαw

777777777777

≤ CDβ ⎛
⎝∑p

(p + 1)βMK

rp
⎞
⎠
∣eβw ∣ by Lemma 2.15.
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Since ∑p
(p+1)βMK

r p ≤ C′(D′)β ββMK for some C′ , D′ > 0 (see, for instance, the proof
of [12, Lemma 2.6]), the proposition now follows from Stirling’s formula for Γ (see
[1]). ∎

Proposition 2.16 implies that F(ew) is an asymptotic expansion of f at −∞; hence,
it is uniquely determined by f (and is, in particular, independent of the particular
sequence { fp}), and we write T f (X) ∶= F(X). The map T ∶ Gτ �→ C [[X∗]] is a C-
algebra homomorphism.

Remark 2.17 Standard methods for proving topological completeness of function
spaces (see, e.g., Rudin’s Real and Complex Analysis) show that the normed algebra
(Gτ , ∥ ⋅ ∥τ) is complete; we leave the details to the reader.

Example 2.18 Assume that K = {0}. If f ∈ Gτ , then T f converges, ∥T f ∥R < ∞
and f = T f . To see this, let f =τ ∑p fp with T fp = ∑α ap,α Xα for each p; then
T f = ∑α aα Xα with aα = ∑p ap,α as above. Since ρτ

p = R for each p, the assump-
tion ∑p ∥T fp∥Rrp < ∞ implies that ∑p,α ∣ap,α ∣Rα < ∞. This implies that the family
{ap,α eαw} is summable on cl H(log R); in particular, the order of summation can be
changed. Thus, we have for w ∈ cl H(log R) that

f (w) = ∑
p

fp(w) = ∑
p
∑
α

ap,α eαw = ∑
α

⎛
⎝∑p

ap,α
⎞
⎠

eαw = ∑
α

aα eαw = T f (w),

as claimed.
Conversely, if F ∈ R [[X∗]] has natural support and satisfies ∥F∥R < ∞, then (the

appropriate restriction of) the function F belongs toGτ , where τ = (K , R, r, θ , Δ)with
K, r, θ and Δ ⊇ supp(F) arbitrary. To see this, simply take f0 ∶= F and fp ∶= 0, for p > 0.

Remark 2.19 Assume that 0 ∈ K and ∣K∣ > 1, and set K′ ∶= K/{0} and τ′ ∶=
(K′ , R, r, θ , Δ). Then, by Remark 2.9, we have Gτ = Gτ′ .

Recall from 2.2 that μK = min K ∈ [0,∞). If μK ≥ 1, then θμK > π
2 , so by Propo-

sition 2.2, the function B f is defined on the sector S (0,∞, θμK − π
2 ). The next

proposition explains in more detail what happens when we apply the Borel transform
to f.

Proposition 2.20 Let f ∈ Gτ , and assume that μK ≥ 1 (in particular, B f is well
defined). Let R′ ∈ (0, R) and r′ ∈ (1, r) be such that R′ ≤ R

e log(r/r′), and set K′ ∶=
{k − 1 ∶ k ∈ K} and τ′ ∶= (K′ , R′ , r′ , θ , Δ). Then B f belongs to Gτ′ and satisfies
T(B f ) = B(T f ).

Proof For p ∈ N, we set ρp ∶= ρτ
p and σp ∶= ρτ′

p . Then, for α ≥ 0, we have

(σp/ρp)α

Γ(α) = (R′

R
)

α (p + 1)α

Γ(α) .
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Claim: There exists C = C(r, r′ , R, R′) > 0 such that

(R′

R
)

α (p + 1)α

Γ(α) ( r′

r
)

p

≤ C ,

for all p ∈ N and α ≥ 0.
To see the claim, note that the function x ↦ fα(x) ∶= (x + 1)α ( r′

r )
x

attains its
maximum at xα = α

log(r/r′) − 1; so this maximum is

fα(xα) =
r
r′

Aα αα ,

with A ∶= (r
′/r)1/ log(r/r′)

log(r/r′) = (e log(r/r′))−1 independent of α. From Binet’s second for-
mula, we get a constant C′′ > 0 such that, for all α ≥ 0,

αα ≤
√

αeα

C′′eϕ(α) Γ(α),

where ϕ(x) is the Stirling function. Since the latter is bounded at∞, there is a constant
C′ > 0 such that

αα ≤ C′
√

αeα Γ(α) ≤ C′e2α Γ(α).

Therefore,

(R′

R
)

α

(p + 1)α ( r′

r
)

p

≤ r
r′
(R′

R
)

α

Aα αα ≤ C′ r
r′
(R′

R
Ke2)

α

Γ(α) ≤ CΓ(α),

where C ∶= C′ r
r′ , because our assumptions on r′ and R′ imply that Ae2 ≤ R

R′ . This
proves the claim.

It follows from the claim that

∥BFp∥σp (
r′

r
)

p

= ∑
(σp/ρp)α

Γ(α) ( r′

r
)

p

∣ap,α ∣ρα
p ≤ C∥Fp∥ρp(2.4)

for each p ∈ N, so that

∑
p
∥BFp∥σp(r′)p ≤ C ∑

p
∥Fp∥ρp rp < ∞.(2.5)

Next, we show∑∥B fp∥Sτ′
p
(r′)p < ∞. If ∣K∣ = μK = 1, then (2.5) also proves thatBF

is convergent and that∑∥B fp∥H(log R′)(r′)p < ∞; this settles the assertion in this case.
So assume that μK > 1 or ∣K∣ > 1. By (2.5), it suffices to show that∑∥B fp∥Sτ′ (r′)p <

∞ and, for k ∈ K/{MK}, that ∑∥B fp∥S k
p
(r′)p < ∞, where we set

σ k
p ∶= ρR′ ,k−1

p and Sk
p ∶= S (0, log σ k

p , θ(k − 1)) .

For the first estimate: since θ(μK − 1) < θμK − π
2 , Lemma 2.3 shows that

∥B fp∥Sτ′ ≤ C ∥ fp∥Sτ , for some constant C > 0 that only depends on θ and θ′.
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For the second estimate: fix k ∈ K/{MK} and set ρk
p ∶= ρR ,k

p , k′ ∶= min(K/[μK , k])
and T k

p ∶= S (0, log ρk
p , θk′). Since θ(k′ − 1) < θk′ − π

2 , Lemma 1.3 shows that

∥B fp∥S k
p
≤ C ∥ fp∥T k

p
eσ k

p /ρ
k
p

σ k
p

ρk
p
= C∥ fp∥T k

p
(eR′/R)

1+p R′

R
(1 + p),

for some constant C > 0 independent of p. Now note that our assumptions on r′

and R′ imply that eR′/R ⋅ r′
r < 1; therefore, D ∶= maxp(1 + p) (eR′/R)

(1+p)
( r′

r )
p
< ∞.

It follows that

∑
p
∥B fp∥S k

p
(r′)p ≤ D∑

p
∥ fp∥T k

p
rp < ∞,

as claimed.
Finally, it remains to show that B f =τ′ ∑p B fp and T(B f ) = B(T f ): set g ∶=

∑p B fp . The above estimates show that g ∈ Gτ′ with T g = ∑p BFp = B(T f ), so we
need to show thatB f = g. Since f = ∑p fp uniformly in Sτ , it follows from integration
theory that B f = B (∑p fp) = ∑p B fp = g, as required. ∎

For later purposes, we note the following special case of Proposition 2.20:

Corollary 2.21 Let f ∈ Gτ , and assume that ∣K∣ ≥ 1 and μK = 1. Let R′ ∈ (0, R)
and r′ ∈ (1, r) be such that R′ ≤ R

e log(r/r′), and set K′ ∶= {k − 1 ∶ k ∈ K} and τ′ ∶=
(K′ , R′ , r′ , θ , Δ). Then B f belongs to Gτ′ and satisfies T(B f ) = B(T f ).

Proof Since μK = 1, we have μK − 1 = 0. So the corollary follows from Proposition
2.20 and Remark 2.19. ∎

2.5 Ramified logarithmic transforms

Let λ > 0. In the classical situation, the ramified Borel transform Bλ f of a function f
is obtained from B f by the change of variables z ↦ zλ . In the logarithmic chart, this
means that Bλ f is obtained from B f by the change of variables w ↦ λw.

2.5.1 Ramified logarithmic Borel transform

Let d , r ∈ R and θ > π, and write S = S(d , r, θλ). We denote by mλ ∶ C�→ C the
logarithmic ramification map defined by mλ(w) ∶= λw.

Let f ∶ S �→ C be such that f↾S̃ is bounded and log-holomorphic, for every closed
log-subsector S̃ of S. Then the map f ○ mλ ∶ S(d/λ, r/λ, θ) �→ C has logarithmic
Borel transform B( f ○ mλ) ∶ S (d/λ,∞, θ − π

2 ) �→ C. We define the log-λ-Borel
transform Bλ f ∶ S (d ,∞, θλ − πλ

2 ) �→ C of f by

Bλ f ∶= (B( f ○ mλ)) ○ m1/λ .

We immediately obtain the following from Proposition 2.2 and Example 2.7.

Corollary 2.22 Let f ∶ S �→ C be such that f↾S̃ is bounded and log-holomorphic, for
every closed log-subsector S̃ of S, and set S′ ∶= S (d ,∞, θλ − πλ

2 ).
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(1) For every closed log-subsector S̃ of S′, the function (Bλ f )↾S̃ is log-holomorphic and
there exist C , M > 0 such that

∣(Bλ f )(w)∣ ≤ CeDe(Re w)/λ
for w ∈ S̃ .

(2) Let α ≥ 0, and assume that for every closed log-subsector S̃ of S, we have ∣ f (w)∣ =
O (eα Re w) as w → −∞ in S̃. Then, for every closed log-subsector S̃ of S′, we have
∣(Bλ f )(w)∣ = O (eα Re w) as w → −∞ in S̃.

(3) For α ≥ 0, we have Bλ pα = pα
Γ(α λ) .

2.5.2 Ramified logarithmic Laplace transform

Let φ > 0 and set S ∶= S(d ,∞, φλ). Let f ∶ S �→ C be a function, and assume that for
every closed log-subsector S̃ of S, the restriction f↾S̃ is log-holomorphic and there
exist C , D > 0 such that ∣ f (w)∣ ≤ CeDe(Re w)/λ

for w ∈ S̃.
Let also θ ∈ (0, φ); then the map f ○ mλ ∶ S (d/λ,∞, θ) �→ C has logarithmic

Laplace transform L( f ○ mλ) ∶ S (d/λ, r/λ, θ + π
2 ) �→ C, for some r ≤ log(D)λ. We

define the log-λ-Laplace transform Lλ f ∶ S (d , r, θλ + πλ
2 ) �→ C of f by

Lλ f ∶= (L( f ○ mλ)) ○ m1/λ .

We immediately obtain the following from Proposition 2.5 and Example 2.7.

Corollary 2.23 Let f ∶ S �→ C be a function, and assume that for every closed log-
subsector S̃ of S, the restriction f↾S̃ is log-holomorphic and there exist C , D > 0 such
that ∣ f (w)∣ ≤ CeDe(Re w)/λ

for w ∈ S̃. Let also θ ∈ (0, φ), and let r ≤ log(D)λ be as above
and set S′ ∶= S (d , r, θλ + πλ

2 ).

(1) Let α ≥ 0, and assume that for every closed log-subsector S̃ contained in S, we
have ∣ f (w)∣ = O (eα Re w) as w → −∞ in S̃. Then, for every closed log-subsector S̃
contained in S′, we have ∣(Lλ f )(w)∣ = O (eα Re w) as w → −∞ in S̃.

(2) For α ≥ 0, we have Lλ pα = Γ(αλ)pα .

For f ∶ S(d , r, θλ) �→ C as in Section 2.5.1, Corollary 2.22 implies that Lλ(Bλ f )
is defined and log-holomorphic on every closed log-subsector S̃ contained in
S(d , r, θλ). From Proposition 2.6, we therefore obtain the following corollary.

Corollary 2.24 For f ∶ S(d , r, θλ) �→ C as in Section 2.5.1, we have Lλ(Bλ f ) = f .

2.5.3 Formal Borel and Laplace transforms

Let now F(X) = ∑ aα Xα ∈ C{X∗}. In view of the above, we define the formal λ-Borel
transform

(BλF)(X) ∶= ∑
aα

Γ(αλ)Xα
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the formal λ-Laplace transform

(LλF)(X) ∶= ∑ Γ(αλ)aα Xα .

We get the following corollary from Proposition 2.8.

Corollary 2.25 Let F be a convergent generalized power series with natural support.
Then, both BλF and BλF are log-holomorphic on C, and we have BλF = BλF.

2.5.4 Ramified Borel transforms of generalized multisummable functions

Let K ⊆ (0,∞) be finite and nonempty and λ ≤ μK , and define

K(λ) ∶= {kλ ∶ k ∈ K} and τ(λ) ∶= (K(λ), R1/λ , r, θ) ;

note that f ∈ Gτ if and only if f ○ mλ ∈ Gτ(λ).
Let f ∈ Gτ ; by Corollary 2.22, taking θ there equal to θ ⋅ μK

λ here, the functionBλ f is
defined on the log-sector S (0,∞, θμK − πλ

2 ). Thus, we obtain the following corollary
from Proposition 2.20 and Corollary 2.21.

Corollary 2.26 Let f ∈ Gτ , and assume that μK ≥ λ (in particular,Bλ f is well defined).
Let R′ ∈ (0, R) and r′ ∈ (1, r) be such that (R′)1/λ ≤ R1/λ

e log(r/r′), and set

K′ ∶= {k − λ ∶ k ∈ K , k > λ}

and τ′ ∶= (K′ , R′ , r′ , θ , Δ). Then Bλ f belongs to Gτ′ and satisfies T(Bλ f ) = Bλ(T f ).

2.6 Summation and quasianalyticity

Let K ⊆ [0,∞) be nonempty and finite, and let R > 0, r > 1, θ > π/2, and Δ ⊆ [0,∞) be
natural and closed under addition, and set τ = (K , R, r, θ , Δ). The goal of this section
is to establish the quasianalyticity of the algebraGτ (Theorem 2.28). The key ingredient
is the following summation method.

Proposition 2.27 (Summation) Assume that K = {k1 , . . . , k l} with 0 < k1 < ⋯ < k l <
∞ and l ≥ 1. Let f ∈ Gτ , and set κ1 ∶= k1 and κi ∶= k i − k i−1 for i = 2, . . . , l . Then the
series (Bκ1 ○ ⋯ ○Bκl ) (T f ) converges, and we have

f = (Lκ1 ○ ⋯ ○Lκl ) ((Bκl ○ ⋯ ○Bκ1) (T f )) .

Proof By induction on l. If l = 1, then

Lκ1 (Bκ1(T f )) = Lκ1 (T(Bκ1 f )) by Corollary 2.26

= Lκ1 (Bκ1 f ) by Example 2.18
= f by Corollary 2.24.

So we assume that l > 1 and the proposition holds for lower values of l. Then by
Corollary 2.26, the function Bκ1 f belongs to Gτ′ and satisfies T (Bκ1 f ) = Bκ1(T f ),
where τ′ = (K′ , R′ , r′ , θ , Δ) for K′ ∶= (k2 − k1 , . . . , k l − k1) and some appropriate
R′ > 0 and r′ > 1. From the inductive hypothesis applied to Bk1 f , we get that
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(Bκl ○ ⋯ ○Bκ2) (T (Bκ1 f )) converges, so that

f = Lκ1(Bκ1 f ) (Proposition 2.6)

= Lκ1 [(Lκ2 ○ ⋯ ○Lκl ) ((Bκl ○ ⋯ ○Bκ2) (T(Bκ1 f )))] (ind. case applied to B
κ1 f )

= Lκ1 [(Lκ2 ○ ⋯ ○Lκl ) ((Bκl ○ ⋯ ○Bκ2 ○Bκ1) (T f ))]

= (Lκ1 ○Lκ2 ○ ⋯ ○Lκl ) ((Bκl ○ ⋯ ○Bκ2 ○Bκ1) (T f )) ,

as claimed. ∎
Theorem 2.28 (Quasianalyticity) The map T ∶ Gτ �→ C [[X∗]] is injective.
Proof By Example 2.18 and Remark 2.19, we may assume that K ⊆ (0,∞); so the
theorem follows from Proposition 2.27. ∎

2.7 Open questions

(1) Let f be generalized K-summable in the real direction, where K = (k1 , . . . , k l).
Do there exist generalized (k i)-summable functions g i , for i = 1, . . . , l , such that
f = g1 +⋯+ g l ?

This question is motivated by the following: let f be a K-summable function in
the positive real direction (in the classical sense, at the origin; to avoid branching,
let’s assume k1 > 1

2 ). Then by Example 2.14, the function f ○ exp belongs to
Gτ for some τ = (K , R, r, θ ,N); indeed, Tougeron’s characterization implies that
f ○ exp =τ ∑p fp ○ exp for functions fp that are holomorphic at the origin. This
property of being holomorphic at the origin can be used, via Cauchy integration,
to show that there exist (k i)-summable functions g i , for i = 1, . . . , l , such that f =
g1 +⋯ + g l . However, for general g ∈ Gτ with g =τ ∑p gp , the functions gp ○ log
have essential singularities at the origin, so the Cauchy integration argument used
for f does not work for g ○ log to write g as a sum of a generalized (k i)-summable
functions.

(2) From the point of view of multisummability, there is nothing special about
the real direction chosen here. (We are only interested in the real direction
here, because we are aiming to construct algebras of real functions.) Indeed,
one can similarly define generalized K-summable functions in any direction
d. However, it is not clear to us what the right generalization of “generalized
multisummable” (without specified direction) should be: in the classical case, all
multisummable functions are 2πi-periodic in the logarithmic chart, and they are
defined to be multisummable if they are multisummable in all but finitely many
directions in R/2πZ. In contrast, the logarithmic sums of generalized convergent
power series are not ai-periodic for any a > 0 in general (take, for instance, the
function eαw + eβw with α and β linearly independent over Q), so generalized
multisummable functions in the real direction aren’t either. Possibly, the right way
to define “generalized multisummable” would be to look for something like Stokes
phenomena in differential equations over (quotients of) convergent generalized
power series.

(3) Is there a Ramis–Sibuya theorem (see [6]) for ordinary differential equations
involving quotients of convergent generalized power series? As hinted at in
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Question 2, such a theorem might inform the correct definition of the term
“generalized multisummable.”

3 Generalized multisummable functions in several variables

The extension of the notion “generalized multisummable in the real direction” to
several variables roughly follows the treatment in [12, Section 2] of the notion
“multisummable in the positive real direction,” keeping in mind that we work in the
logarithmic chart. Since we will not need to work with the ramified Borel and Laplace
operators any more, we will revert here to the classical notation for Gevrey orders used
in [12].

It will be useful for the definitions below to set Im(−∞) = arg 0 = 0.

Notation For k = (k1 , . . . , km) ∈ [0,∞)m and w = (w1 , . . . , wm) ∈ C
m

, we put

Σk ∶= k1 +⋯+ km ,
Re w ∶= (Re w1 , . . . , Re wm) and Im w ∶= (Im w1 , . . . , Im wm),

kw ∶= (k1w1 , . . . , kmwm) and k ⋅w ∶= k1w1 +⋯+ kmwm ,
∣w∣ ∶= sup{∣w i ∣ ∶ i = 1, . . . , m} and ∥w∥ ∶= (∣w1∣, . . . , ∣wm ∣),

ew ∶= (ew1 , . . . , ewm).

Moreover, if z = (z1 , . . . , zm) ∈ Cm is such that arg z i ∈ (−π, π) for each i, we also set

log z ∶= (log z1 , . . . , log zm),

where log denotes the standard branch of the logarithm. Finally, if α ∈ [0,∞)m and
r ∈ (0,∞)m , we put

rα ∶= rα1
1 . . . rαm

m and Γ(α) ∶= Γ(α1) . . . Γ(αm).

If X ⊆ C
m

and 1 ≤ ν < m, and if a ∈ Cν and b ∈ Cm−ν , then we let

Xa ∶= {w ∈ Cm−ν ∶ (a, z) ∈ X} and Xb ∶= {w ∈ Cν ∶ (z, b) ∈ X}

be the fibers of X over a and b, respectively.
If r, r̃ ∈ Rm , we write r ≤ r̃ if ri ≤ r̃i for each i (and similarly with “<” in place of

“≤”).

3.1 Convergent generalized power series

Let X = (X1 , . . . , Xm). Similar to the one-variable case, we denote by C [[X∗]] the set
of all generalized power series of the form F(X) = ∑α∈[0,∞)m aα Xα , where each aα ∈ C
and the support

supp(F) ∶= {α ∈ [0,∞)m ∶ aα ≠ 0}

is contained in a Cartesian product of well-ordered subsets of [0,∞) (see [11, Section
4] for details). The series F(X) converges if there exists a polyradius r ∈ (0,∞)m such
that ∥F∥r ∶= ∑α ∣aα ∣rα < ∞; we denote by C{X∗} the set of all convergent generalized
power series [11, Section 5].
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For r ∈ Rm , we let

H(r) ∶= {w ∈ Cm ∶ Re w < r} = H(r1) ×⋯ × H(rm)

be the log-disk of log-polyradius r. For an set D ⊆ C
m

, we set

D∞ ∶= D/Cm .

We call set D ⊆ C
m

a log-domain if D ∩Cm is a domain. If D ⊆ C
m

is a log-domain,
a log-holomorphic function on D is a continuous function f ∶ D �→ C such that the
restriction of f to D ∩Cm is holomorphic.

Let F(X) = ∑α∈[0,∞)m aα Xα ∈ C [[X∗]] such that ∥F∥r < ∞. Similar to Section 2.3,
there is a log-holomorphic function F ∶ H(log r) �→ C, called the log-sum of F, such
that F(w) ∶= F(ew) whenever ∣ Im w∣ < π/2.

3.2 Logarithmic polydomains

We define here the logarithmic versions of the domains discussed in [12, Section 2].
Let r ∈ Rm , θ > π/2 and k ∈ [0,∞)m , and put

Sk(r, θ) ∶= {w ∈ H(r) ∶ k ⋅ ∥ Im w∥ < θ} (log-k-pol ysector).

Note that if m = 1, then Sk(r, θ) = S(0, r, θ/k), where the latter is the sector defined in
Section 2.1. The reason for allowing k i = 0 is that we need our class of log-polysectors
to be closed under taking Cartesian products with log-disks; for instance, if m >
1 and k = (k′ , 0) with k′ ∈ [0,∞)m−1, then Sk(r, θ) = Sk′(r′ , θ) × H(rm). Finally,
our polystrips are “in the real multidirection”; they can easily be defined in any
multidirection,1 but we shall not do this here as we do not need to for our purposes.

Next, for p ∈ N we put, by adapting [12, Section 2] to the logarithmic chart,

Hk
p(r) ∶= {w ∈ H(r) ∶ k ⋅ Re w < k ⋅ r − log(1 + p))} (log-k-polydisk),

Sk
p(r, θ) ∶= Sk(r, θ) ∪ Hk

p(r).

Note that

exp (Hk
p(r)) = Dk

p (er) = {z ∈ D (er) ∶ ∥z∥k < ek⋅r

1 + p
} ,

corresponding to [12, Definition 2.1]. Thus, for a nonempty finite K ⊆ [0,∞)m , we set

SK(r, θ) ∶= ⋂
k∈K

Sk(r, θ),

and for p ∈ N,

SK
p (r, θ) ∶= ⋂

k∈K
Sk

p(r, θ).

1We would change our convention Im(−∞) = 0, for a given multidirection d ∈ Rm , to Im(−∞i) =
di for each i, where∞i denotes the logarithmic origin in the ith coordinate.
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Note that if z ∈ SK
p (r, θ) and t ≤ 0, then t + z ∈ SK

p (r, θ); in particular, SK
p (r, θ) is

connected.

3.3 Generalized multisummable functions

We now fix R ∈ (0,∞)m , r > 1, θ > π/2, a nonempty finite K ⊆ [0,∞)m and a natural
Δ ⊆ [0,∞)m that is closed under addition, and we set τ ∶= (K , R, r, θ , Δ). In this
situation, we write

Sτ ∶= SK(log R, θ) and Sτ
p ∶= SK

p (log R, θ).

We need to introduce the following norms for generalized power series: let U ⊆
Cm be an open neighborhood of the origin such that ∣z∣ ∈ U for every z ∈ U . For a
generalized power series F ∈ C{X∗}, we set

∥F∥U ∶= sup{∥F∥s ∶ s ∈ cl(U) ∩ (0,∞)n} .

It follows from the previous section that, if ∥F∥U < ∞, then F is convergent and the log-
sum of F extends to a log-holomorphic function F ∶ U �→ C such that ∥F∥U ≤ ∥F∥U ,
where ∥F∥U denotes the sup norm of F on U.

Similar to Section 2.4, we now define generalized multisummable functions in
several variables. The role of the usual norm ∥ ⋅ ∥ρ on generalized power series there is
taken on here by the norm ∥ ⋅ ∥U as defined above, where U = Dk

p (R); note indeed that
z ∈ Dk

p (R) implies ∣z∣ ∈ Dk
p (R), as required. Below, we denote this particular norm

∥ ⋅ ∥U by ∥ ⋅ ∥R ,k , p .
Thus, let fp ∶ Sτ

p �→ C be log-holomorphic and bounded, and assume that there
is a natural set Δ ⊆ [0,∞)m and, for each p, a convergent generalized power series
T( fp)(X) ∈ C{X∗} with support contained in Δ such that ∥T( fp)∥R ,k , p < ∞ and

fp(w) = T( fp)(w) for w ∈ Hk
p (log R) .

Assuming that

∑
p
∥T( fp)∥R ,k , p rp < ∞ and ∑

p
∥ fp∥Sτ

p
rp < ∞,

we have that ∑p fp converges uniformly on Sτ to a log-holomorphic function f ∶
Sτ �→ C. As before, we abbreviate this situation by writing

f =τ ∑
p

fp ,

and we set

∥ f ∥τ ∶= inf
⎧⎪⎪⎨⎪⎪⎩

max
⎧⎪⎪⎨⎪⎪⎩
∑

p
∥Fp∥R ,k , p rp , ∑

p
∥ fp∥Sτ

p
rp
⎫⎪⎪⎬⎪⎪⎭
∶ f =τ ∑

p
fp

⎫⎪⎪⎬⎪⎪⎭
.

Thus, as in Section 2.4, we obtain a Banach algebra

Gτ ∶=
⎧⎪⎪⎨⎪⎪⎩

f ∶ Sτ �→ C ∶ there exist fp such that f =τ ∑
p

fp

⎫⎪⎪⎬⎪⎪⎭
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over C of functions in m variables with norm ∥ ⋅ ∥τ . Note that if m = 1, Gτ as defined
here is the same as Gτ′ defined in Section 2.4, where τ′ = (K′ , R, r, θ , Δ) with K′
obtained from K by replacing all nonzero k ∈ K by 1/k (see the introductory remarks
at the beginning of Section 3).

Arguing as in the one-variable case, if T( fp)(X) = ∑ aα , p Xα for each p, we obtain
a generalized power series T f (X) = ∑ aα Xα , where aα = ∑p aα , p for each α.

3.4 Quasianalyticity

In view of proving our o-minimality result in Section 5, we show in this section that
the map T ∶ Gτ �→ C [[X∗]] is injective. First, we explain the reason why we define the
log-k-polysectors and the log-k-polydisks via scalar products rather than just taking
Cartesian products of the corresponding objects in one variable. This is done because
scalar product behaves well with respect to fibers, as shown in Remark 3.2.

We set μK , i ∶= min{k i ∶ k ∈ K} for i = 1, . . . , m, μK ∶= (μK ,1 , . . . , μK ,m) and

ρτ
p ∶= (

R1

(1 + p)1/μK ,1
, . . . , Rm

(1 + p)1/μK ,m
) .

The next lemma shows that, although the log-k-polydisks are not themselves log-
disks, the set Sτ

p contains a suitable log-disk.

Lemma 3.1 We have H (log ρτ
p) ⊆ HμK

p (log R) ⊆ ⋂k∈K Hk
p(log R) ⊆ Sτ

p.

Proof The first and third inclusions are straightforward. For the second, let k, l ∈
(0,∞)m be such that l ≤ k, p ∈ N and ρ ∈ R; it suffices to show that Hk

p(ρ) ⊆ Hk
p(ρ).

To see this, let w ∈ Hk
p(ρ). Then

k ⋅ Re w = l ⋅ Re w + (k − l) ⋅ Re w < l ⋅ ρ + (k − l) ⋅ Re w − log(1 + p).

Since Re w < ρ as well, it follows that k ⋅ Re w < l ⋅ ρ − log(1 + p), as required. ∎

For the rest of this section, we set x′ ∶= (x1 , . . . , xm−1).

Remark 3.2 Let a ∈ Cm−1
. Set θ(a) ∶= θ − max{k′ ⋅ ∥ Im a∥ ∶ k ∈ K} and

τ(a) ∶= ({km ∶ k ∈ K}, Rm , r, θ(a), Πm(Δ)),

where Πm ∶ Rm �→ R is the projection on the last coordinate. Note that if ∣ Im a∣ is
sufficiently small, then θ(a) > π/2.

If θ(a) > 0, then Sτ(a) is contained in the fiber (Sτ)a of Sτ over a. Moreover, if
Re a < R′ then, for each p ∈ N, the set Hkm

p (log Rm) is contained in the fiber of the set
Hk

p(log R) over a. Therefore, if θ(a) > 0 and Re a < log R′, then Sτ(a)
p is contained in

the fiber (Sτ
p)a , for each p.

Lemma 3.3 Let f ∈ Gτ and a ∈ Cm−1 be such that θ(a) > 0 and Re a < log R′. Then the
function fa ∶ Sτ(a) �→ C, defined by fa(w) ∶= f (a, w), belongs to Gτ(a) and satisfies
∥ fa∥τ(a) ≤ ∥ f ∥τ and T( fa)(Xm) = T( f )(ea , Xm).
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Proof Choose fp , for p ∈ N, such that f =τ ∑ fp . For p ∈ N, let fa , p ∶ Sτ(a)
p �→ C be

defined by fa , p(w) ∶= fp(a, w); these functions are well defined by Remark 3.2, and
fa(w) = ∑p fa , p(w) for every w ∈ Sτ(a).

For each p, we set Fa , p(Xm) ∶= T( fp)(ea , Xm), a generalized power series in the
indeterminate Xm . Since ∥T( fp)∥R ,k , p < ∞ and since, by Remark 3.2, the polyradius
ρ(b) ∶= (∣ea ∣, b) belongs to cl (Dk

p (R)) for every b ∈ cl (Dkm
p (Rm)), we have that

∥Fa , p∥b = ∥T( fp)∥ρ(b) ≤ ∥T( fp)∥R ,k , p ;

in particular, ∥Fa , p∥Rm ,km , p ≤ ∥T( fp)∥R ,k , p and fa , p = Fa , p , for each p. There-
fore, fa =τ(a) ∑ fa , p , that is, fa ∈ Gτ(a). Since the inequality ∑∥Fa , p∥Rm ,km , p rp ≤
∑∥T( fp)∥R ,k , p rp holds for all choices of { fp}, we also get ∥ fa∥τ(a) ≤ ∥ f ∥τ .

Claim The series T( f )(ea , Xm) belongs toR [[X∗m]] and is equal to T( fa)(Xm). ∎

To see this claim, since ∑∥T( fp)∥R ,k , p rp < ∞ and (∣ea ∣, ρτ(a)
p ) ∈ cl (Dk

p (R)) for
each p, it follows from Lemma 3.1 that for each αm ∈ [0,∞) and each p,

∑
α′∈[0,∞)m−1

∣a(α′ ,αm), p ∣ ∣eα′⋅a ∣ ≤
∥T fp∥R ,k , p

(ρτ(a)
p )

αm

=
∥T fp∥R ,k , p

Rαm
m

(1 + p)αm/km

≤
∥T fp∥R ,k , p

Rαm
m

sp (1 + p)αm/km ,

for any s > 1. In particular, for s ∈ (1, r) we have, for each αm ∈ [0,∞), that

∑
p
(∑

α′
∣a(α′ ,αm), p ∣ ∣eα′⋅a ∣) ≤ 1

Rαm
m

∑
p
∥T fp∥R ,k , p rp ( s

r
)

p
(1 + p)αm/km < ∞,

(3.1)

which proves that T( f )(ea , Xm) belongs to R [[X∗m]]. Moreover, since fa ∈ Gτ(a), we
have

T( fa)(Xm) = ∑
p

T( fa , p)(Xm) = ∑
p

Fa , p(Xm).

It follows from (3.1) that for all αm ,

∑
α′

a(α′ ,αm)e
α′⋅a = ∑

α′

⎛
⎝∑p

a(α′ ,αm), p
⎞
⎠

eα′⋅a = ∑
p
∑
α′

a(α′ ,αm), p eα′⋅a .(3.2)

Hence, T( f )(ea , Xm) = ∑p Fa , p(Xm) = T( fa)(Xm), as claimed.

Proposition 3.4 (Quasianalyticity) The map T ∶ Gτ �→ C [[X∗]] is an injective
C-algebra homomorphism.

Proof For the injectivity of T, let f ∈ Gτ be such that T( f ) = 0; we need to show that
f = 0. If m = 1, this is done in Proposition 2.27, so we assume m > 1. Let a ∈ Cm−1

, and
define θ(a) and τ(a) as in Remark 3.2. Assume that θ(a) > π/2 and Re a < R′; by
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Lemma 3.3 and the assumption T f = 0, we obtain fa ∈ Gτ(a) with T( fa) = 0. It follows
from quasianalyticity ofGτ(a) that fa = 0. Since the set of a ∈ Cm−1

for which the latter
holds contains an open set (by Lemma 3.3) and f is holomorphic on its (connected)
domain, it follows that f = 0, as claimed. ∎

As in [12, Corollary 2.19], we now obtain the following corollary.
Corollary 3.5 Let f ∈ Gτ . Then f (−∞, R) ⊆ R if and only if T f ∈ R [[X∗]].

3.5 Monomial division

Let F = ∑a∈[0,∞)m aα Xα ∈ C [[X∗]]. Recall from [11, Section 4] that

ord(F) =
⎧⎪⎪⎨⎪⎪⎩

min{∣α∣ ∶ aα ≠ 0}, if f ≠ 0,
∞, if f = 0.

For i ∈ {1, . . . , m}, we also consider F as an element of
C [[X∗1 , . . . , X∗i−1 , X∗i+1 , . . . , X∗m]] [[X∗i ]], and we denote by ordi(F) the corresponding
order of F in the indeterminate X i . Note that ordi(F) > 0 implies ord(F) > 0, for
each i.
Lemma 3.6 Let f ∈ Gτ and assume that γ ∶= ordm(T f ) > 0. Let also s ∈ (1, r) and set
τ′ ∶= (K , R, s, θ , Δ). Then there exist g ∈ Gτ′ and C = C(s/r) > 0 depending only on s

r
such that ∥g∥τ′ ≤ C∥ f ∥τ′ and

f (w) = eγwm g(w) for w ∈ Sτ′ .

Proof For simplicity, we write ρp = ρτ
p = ρτ′

p and Sp = Sτ
p = Sτ′

p , for each p; recall
that ρp ∈ cl (Dk

p(R)) for each p. Say f =τ ∑p fp with ∑p ∥T fp∥R ,k , p rp ≤ 2∥ f ∥τ and
∑p ∥ fp∥Sp rp ≤ 2∥ f ∥τ ; since each T fp is convergent we may assume, after replacing
each fp by fp − (T fp)γ if necessary,2 that ordm(T fp) ≥ γ for each p. So there are Gp ∈
C [[X∗]] with support contained in supp(T fp) (and hence natural) such that T fp =
Xγ

mGp ; since ∥T fp∥ρp = ργ
p,m∥Gp∥ρp , it follows that Gp has radius of convergence at

least ρp , and that

fp(w) = eγwm gp(w) for w ∈ H(log ρp),

where gp ∶= Gp for each p. We extend gp to all of Sp by setting gp(w) ∶= fp(w)/eγwm

for w ∈ Sp/H(log ρp).
Since ∥T fp∥ρp = ργ

p,m∥T gp∥ρp , for each p, we get

∑
p
∥T gp∥ρp sp = ∑

p

∥T fp∥ρp

ργ
p,m

sp ≤ 1
Rγ

m
∑

p
∥T fp∥ρp rp(1 + p)km ( s

r
)

p
≤ C∥g∥τ

for some C = C(s/r) > 0 depending only on s
r . It follows, on the one hand, that

∑
p
∥gp∥H(log ρp)s

p ≤ C∥g∥τ

2Where (T fp)γ denotes the truncation of T fp at the exponent γ with respect to the indetermi-
nate Xm .
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as well. On the other hand, since ∥T gp∥Sp/H(log ρp) ≤ ρ−γ
p,m∥T fp∥Sp/H(log ρp), the same

argument as above also proves that ∑p ∥gp∥Sp/H(log ρp)sp ≤ C∥g∥τ . Therefore, the
function g ∶ Sτ′ �→ C defined by g ∶= ∑p gp belongs toGτ′ and satisfies ∥g∥τ′ ≤ C∥g∥τ

and f (w) = eγwm g(w) for w ∈ Sτ′ , as claimed. ∎

3.6 Generalized multisummable germs

Similar to Section 2 of [12], we let (Tm , ≤) be the directed set of all tuples τ =
(K , R, r, θ , Δ) as above, where τ = (K , R, r, θ , Δ) ≤ τ′ = (K′ , R′ , r′ , θ′ , Δ′) if and only
if K ⊇ K′, R ≤ R′, r ≤ r′, θ ≤ θ′ and Δ ⊇ Δ′. Then Sτ′ ⊆ Sτ whenever τ′ ≤ τ and in this
situation, for f ∈ Gτ , the restriction f↾Sτ′ belongs to Gτ′ . The directed limit of the
directed system (Gτ ∶ τ ∈ Tm) under these restrictions is the set Gm of germs at −∞
of functions in Gτ , as τ ranges over Tm . This Gm is a C-algebra containing the germs
at −∞ of the functions eγz i , for i = 1, . . . , m and γ ≥ 0, and we extend each norm ∥ ⋅ ∥τ
to all of Gm by setting ∥ f ∥τ ∶= ∞ whenever g ∉ Gτ .

Below, we write −∞ ∶= (−∞, . . . ,−∞). Note that f (−∞) = (T f )(0), since T f is
the asymptotic expansion of f at −∞; hence f (−∞) = 0 if and only if ord(T f ) > 0.

Lemma 3.7 Let f ∈ Gm .

(1) For g ∈ Gm and τ ∈ Tm , we have ∥ f g∥τ ≤ ∥ f ∥τ∥g∥τ .
(2) If f (−∞) = 0, then limτ ∥ f ∥τ = 0, where the limit is taken over the downward

directed set Tm .
(3) If f (−∞) ≠ 0, then f is a unit in Gm .
(4) If f (−∞) = 0, then there are γ i > 0 and f i ∈ Gm for i = 1, . . . , m such that f = eγ1 z1 ⋅

f1 +⋯+ eγm zm ⋅ fm .
(5) If m > 1, then the germ f (−∞, ⋅) belongs to Gm−1.

Proof Parts (2)–(4) are similar to Lemma 2.14 in [12], using Lemma 3.6 for part (4).
Part (5) follows from Lemma 3.3 with ν = 1. ∎

Similar to [12, Section 3], we set C{X∗}τ ∶= T(Gτ), for τ ∈ Tm , and C{X∗}G ∶=
T(Gm). We refer to the latter as theC-algebra of all generalized multisummable series in
the indeterminates X; note that C{X∗}G = ⋃τ∈Tm C{X∗}τ . We make each C{X∗}τ
into an isomorphic copy of Gτ by setting ∥T f ∥τ ∶= ∥ f ∥τ , for f ∈ Gτ ; and we extend
each norm ∥ ⋅ ∥τ to all of C{X∗}G by setting ∥F∥τ ∶= ∞ for F ∉ C{X∗}τ .

Extending our notation of log-sum of convergent generalized power series, we also
shall write F ∶= T−1(F), for F ∈ C{X∗}τ .

3.7 Mixed series

We now consider additional indeterminates Y = (Y1 , . . . , Yn), and we defined mixed
series similar to [12, Section 3]. Thus, for τ ∈ Tm and ρ ∈ (0,∞)n , and for F =
∑β∈Nn Fβ(X)Y β ∈ C{X∗}τ [[Y]], we set

∥F∥τ ,ρ ∶= ∑
β
∥Fβ∥τ ρβ
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and

C{X∗; Y}τ ,ρ ∶= C{X∗}τ {Y}ρ = {F ∈ C{X∗}τ [[Y]] ∶ ∥F∥τ ,ρ < ∞} .

The latter is a Banach C-algebra with respect to the former norm. We sometimes refer
to the indeterminates X i as the generalized Gevrey variables and to the indeterminates
Yj as the convergent variables. Each F = ∑β Fβ(X)Y β ∈ C{X∗; Y}τ ,ρ defines a log-
holomorphic function F ∶ Sτ × D(ρ) �→ C by setting

F(w , y) ∶= ∑
β

Fβ(w)yβ .

As in Section 3.6, we set

C{X∗; Y}G ∶= ⋃
τ∈Tm ,ρ∈(0,∞)n

C{X∗; Y}τ ,ρ ,

and we extend each norm ∥ ⋅ ∥τ ,ρ to all ofC{X∗; Y}G by setting ∥F∥τ ,ρ ∶= ∞whenever
F ∉ C{X∗; Y}τ ,ρ . Ordering the productTm × (0,∞)n by the product order, we obtain
the following generalization of Lemma 3.7.

Lemma 3.8 Let F ∈ C [[X∗; Y]]G.

(1) For G ∈ C{X∗; Y}G, τ ∈ Tm and ρ ∈ (0,∞)n , we have ∥FG∥τ ,ρ ≤ ∥F∥τ ,ρ∥G∥τ ,ρ .
(2) If F(−∞, 0) = 0, then lim(τ ,ρ) ∥F∥τ ,ρ = 0, where the limit is taken over the down-

ward directed set Tm × (0,∞)n .
(3) If F(−∞, 0) ≠ 0, then F is a unit in C{X∗; Y}G.
(4) If m > 1 and X′ = (X2 , . . . , Xm), then F(0, X′ , Y) belongs to C{(X′)∗; Y}G.
(5) C{X∗; Y}G is complete in each norm ∥ ⋅ ∥τ ,ρ .
(6) C{X∗; Y}G ⊆ C{(X , Y)∗}G.

Proof Parts (1)–(4) follow from Lemma 3.7. Part (5) is just a restatement of the fact
that each C{X∗; Y}τ ,ρ is a Banach algebra. Part (6) is proved along the lines of [12,
Lemma 3.5]. ∎

Recall that F ∈ C [[X∗; Y]] is regular in Yn of order d if F(0, 0, Yn) = uYn+ terms in
Yn of higher degree, with u ∈ Cnonzero. Using Lemma 3.8, the proof of [9, Proposition
4.1] now establishes the following proposition, where Y ′ = (Y1 , . . . , Yn−1).

Proposition 3.9 Let f ∈ C{X∗; Y}G, and assume that n > 0 and F is regular in Yn of
order d. Then the series F factors uniquely as F = GH, where G ∈ C{X∗; Y}G is a unit
and H ∈ C{X∗; Y ′}G [Yn] is monic in Yn of degree d.

4 Substitutions

In this section, we introduce the substitutions discussed in Sections 1.8 and 1.15
of [7]. Let m′ , n′ ∈ N and X′ = (X′1 , . . . , X′m′) and Y ′ = (Y ′1 , . . . , Y ′n′) be indetermi-
nates. Denote by {X , Y} the set {X1 , . . . , Xm , Y1 , . . . , Yn} and let σ ∶ {X , Y} �→
R [[(X′)∗, Y ′]] be a map. We call σ a substitution if each σ(X i) is normal in the
following sense:
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(*) There exist a i ∈ [0,∞), nonzero γ i ∈ [0,∞)m′ , λ i ∈ (0,∞), and
H i ∈ R [[(X′)∗, Y ′]] such that H i(0) = 0 and σ(X i) = a i + (X′)γ i (λ i +
H i((X′)∗ , Y ′)).

If σ is a substitution such that σ(0) = 0 (in particular, a i = 0 for each i), then σ extends
to a unique C-algebra homomorphism σ ∶ C [[X∗, Y]] �→ C [[(X′)∗, Y ′]] by using,
for each r > 0 and ε ∈ C [[(X′)∗, Y ′]] with ε(0) = 0, the binomial theorem

(λ + ε)r = ∑
i∈N

(r
i
)λr−i ε i .

In this situation, we write σF in place of σ(F) for F ∈ C [[X∗ , Y]]. If all σ(X i) and
σ(Yj) lie in a subring A of C [[(X′)∗, Y ′]], then we refer to σ also as a substitution σ ∶
{X , Y} �→ A. Note that, in this situation, we have σ(R [[X∗, Y]]) ⊆ R [[(X′)∗, Y ′]].

Remark While general substitutions do not extend to all of C [[X∗ , Y]], we describe
particular substitutions below that do extend to certain subalgebras of C{X∗, Y}G.

Let σ ∶ {X , Y} �→ R{(X′)∗ , Y ′}G be a substitution. For each σ(X i), we let γ i ,
λ i and H i be as in (∗); by Lemma 3.8, we have H i ∈ R{(X′)∗ , Y ′}G as well. We call
τ′ ∈ Tμ and ρ′ ∈ (0,∞)ν σ-admissible if each σ(X i) and σ(Yj), as well as each H i ,
belongs to R{(X′)∗, Y ′}τ′ ,ρ′ , and we have ∥H i∥τ′ ,ρ′ < ∣λ i ∣ for each i.

Let τ′ ∈ Tμ and ρ′ ∈ (0,∞)ν be σ-admissible. Then σ induces a log-holomorphic
map σ̃ ∶ Sτ′ × D(ρ′) �→ C

m+n
by setting

σ̃i(w′ , y′) ∶= γ i ⋅w′ + log (λ i + H i(w′ , y′))

for i = 1, . . . , m (where log denotes the standard branch of the logarithm), and

σ̃ j ∶= σ(Yj)

for j = 1, . . . , n. (Note that, for each i, we have exp ○ σ̃i = σ(X i).)

Example 4.1 (1) (Permutation of Gevrey variables) For a permutation π ∈ Σm , μ = m
and ν = n, the substitution defined by σ(X i) ∶= X′π(i) and σ(Yj) ∶= Yj .

(2) (Blow-up chart in the Gevrey variables) σ is any of the blow-up charts (1) or (2)
found in [7, Definition 1.13], also referred to as regular blow-up charts and singular
blow-up charts, respectively.

(3) (Ramification of a Gevrey variable) Here, m′ = m and n′ = n, and we have
σ(X i0) = (X′i0

)α for some α ≥ 0 and i0 ∈ {1, . . . , m}, σ(X i) = X′i for each i ≠ i0,
and σ(Yj) = Y ′j for each j.

(4) (Translation) For (a, b) ∈ (0,∞)m ×Rn , put m′ ∶= ∣{i ∶ 1 ≤ i ≤ m, a i = 0}∣ and
n′ ∶= n + m − m′, and choose a permutation π ∈ Σm such that π({i ∶ 1 ≤ i ≤
m, a i = 0}) = {1, . . . , m′}. Then the translation by (a, b) is the substitution
defined by σ(Xπ(i)) ∶= X′i for i = 1, . . . , m′, σ(Xπ(m′+ j)) ∶= aπ(m′+ j) + Y ′j for j =
1, . . . , m − m′, and σ(Yj) ∶= b j + Y ′m−m′+ j for j = 1, . . . , n.

(5) (Infinitesimal substitution in the convergent variables) Here, n > 0, σ(0) = 0,
σ(X i) = X i for each i and σ(Yj) ∈ R{(X′)∗, Y ′}G for each j, where X′ =
(X′1 , . . . , X′m′) and Y ′ = (Y ′1 , . . . , Y ′n′) with m′ and n′ arbitrary.
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Note that for each of these substitutions σ , every corresponding τ′ and ρ′ is σ-
admissible. Also, while permutations and blow-up charts extend to all of C [[X∗, Y]],
translations do not in general do so.

We start with an elementary lemma similar to [12, Lemma 4.3]. The essential
difference between the proofs here and those in [12, Section 4] is that we cannot
use Taylor expansion to compute the series after substitution as in [12, Lemma 4.2];
instead, we have to rely on our additional assumptions built into the norms ∥ ⋅ ∥τ .

Lemma 4.2 Let X′ ∶= (X1 , . . . , Xm−1), and let σ ∶ {X , Y} �→ R[X′ , Y] be the substi-
tution given by σ(X i) ∶= X i if i < m, σ(Xm) ∶= Xm−1 and σ(Yj) ∶= Yj for each j. Then
for every F ∈ C{X∗ , Y}G, we have σF ∈ C{(X′)∗ , Y}G and σF = F ○ σ̃ (as germs of
functions).

Proof Fix τ = (K , R, r, θ , Δ) ∈ Tm and ρ ∈ (0,∞)n . Similar to [12, Lemma 4.3], we
set

K′ ∶= {(k1 , . . . , km−2 , km−1 + km) ∶ k ∈ K} and R′ ∶= (R1 , . . . , Rm−2 , min{Rm−1 , Rm}).

Moreover, we set

Δ′ ∶= {(α1 , . . . , αm−2 , αm−1 + αm) ∶ α ∈ Δ} ;

since the projection of Δ′ on each of the first m − 2 coordinates is the same
as of Δ, and since Πm−1(Δ′) ⊆ Πm−1(Δ) + Πm(Δ), this Δ′ is natural. So we
set τ′ ∶= (K′ , R′ , r, θ , Δ′) ∈ Tm−1; we get from the proof of [12, Lemma 4.3] that
σ̃ (Sτ′ × D(ρ′)) ⊆ Sτ × D(ρ) and, for each p, that σ̃ (Sτ′

p × D(ρ′)) ⊆ Sτ
p × D(ρ). The

lemma then follows from the following more precise statement:

Claim For F ∈ C{X∗, Y}τ ,ρ , we have σF ∈ C{(X′)∗ , Y}τ′ ,ρ such that ∥σF∥τ′ ≤ ∥F∥τ

and σF = F ○ σ̃ . ∎

To prove the claim, let F ∈ C{X∗, Y}τ ,ρ ; we distinguish two cases.
Case 1: n = 0. Choose convergent Fp ∈ C{X∗ , Y} such that F =τ ∑p Fp ; as in Case

1 of the proof of [12, Lemma 4.3], it follows that ∑p ∥Fp∥Sτ′
p

rp ≤ ∥F∥τ and σF =
F ○ σ̃ . Also, let k′ be defined for K′ as k is defined for K; it remains to show that
∑p ∥σFp∥R′ ,k′ , p rp < ∞. Let s ∈ Dk′

p (eR′); then we have ∥σFp∥s = ∥Fp∥σ(s), for each
p ∈ N, by the definition of these norms. Since σ(s) ∈ Dk

p (eR), by the above, we obtain

∑
p
∥σFp∥s rp = ∑

p
∥Fp∥σ(s) rp ≤ ∑

p
∥Fp∥R ,k , p rp .

Since s ∈ Dk′
p (eR′) was arbitrary, it follows that ∑p ∥σFp∥R′ ,k′ , p rp ≤ ∑p ∥Fp∥R ,k , p rp ,

so that σF ∈ C{(X′)∗, Y}τ′ ,ρ . Moreover, since this argument works for all sequences
of convergent Fp ∈ C{X∗ , Y} such that F =τ ∑p Fp , we also get ∥σF∥τ′ ≤ ∥F∥τ in this
case.

Case 2: n > 0. This case literally follows the proof of Case 2 of [12, Lemma 4.3],
which we reproduce here for the convenience of the reader. We let F = ∑ Fβ(X)Y β

with each Fβ ∈ C{X∗}τ . By Case 1, each σFβ belongs to C{(X′)∗}τ′ with ∥σFβ∥τ′ ≤
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∥Fβ∥τ . Hence, σF belongs to C{(X′)∗; Y}τ′ ,ρ and satisfies ∥σF∥τ′ ,ρ ≤ ∥F∥τ ,ρ , and it
remains to show that σF = F ○ σ̃ . For each d ∈ N, we put

Fd(X , Y) ∶= ∑
Σβ≤d

Fβ(X)Y β ∈ C{X∗; Y}τ ,ρ .

By the same argument as before, each σFd belongs to C{(X′)∗ , Y}τ′ ,ρ , and since each
Fd has finite support (as a series in Y), we get σFd = Fd ○ σ̃ . Clearly limd→∞ Fd(w , y) =
F(w , y) for all (w , y) ∈ Sτ × D(ρ). Moreover, since σ ∶ C [[X; Y]] �→ C [[X′ , Y]] is a
homomorphism, we have

∥σF − σFd∥τ′ ,ρ = ∥σ(F − Fd)∥τ′ ,ρ
= ∑

Σβ>d
∥σFβ∥τ′ ρβ ≤ ∑

Σβ>d
∥Fβ∥τ ρβ ,

so that limd→∞ σFd(w′ , y) = σF(w′ , y) for all (w′ , y) ∈ Sτ′ × D(ρ). Hence,

σF(w′ , y) = lim
d→∞

σFd(w′ , y) = lim
d→∞

(Fd ○ σ̃)(w′ , y) = (F ○ σ̃)(w′ , y)

for all (w′ , y) ∈ Sτ′ × D(ρ), which finishes the proof.

We now proceed to proving closure under each of the substitutions in Example 4.1.

4.1 Permutations

Let σ be a permutation of {1, . . . , m} and, for x ∈ Cm
, we denote by σ(x) the tuple

(xσ(1) , . . . , xσ(m)). For τ ∈ Tm , we set

σ(τ) ∶= (K , σ(R), r, θ , σ(Δ)) ;

note that σ ∶ Tm �→ Tm is a bijection.

Lemma 4.3 For τ ∈ Tm and ρ ∈ (0,∞)n , we have F ∈ C{X∗, Y}τ ,ρ if and only if σF ∈
C{X∗ , Y}σ−1(τ),ρ , and for such F, we have σF = F ○ σ̃ and ∥σF∥σ−1(τ),ρ = ∥F∥τ ,ρ .

Proof The proof follows the general strategy of the proof of Lemma 4.2, but is easier
and left to the reader. ∎

4.2 Blow-up charts

We let 1 ≤ j < i ≤ m and λ > 0 and consider the regular blow-up chart πλ
i , j ; the singular

blow-up charts are handled similarly, but are actually easier to deal with and are left
to the reader. Permuting the Gevrey variables if necessary, we assume that j = m − 1
and i = m; to simplify notation, we write σ = πλ

m ,m−1.
Fix τ ∈ Tm and ρ ∈ (0,∞)n . Similar to [12, Lemma 4.7], we now choose θ′ ∈

(π/2, θ) and ρ0 > 0 such that km ∣ arg(λ + v)∣ < θ − θ′ for all v ∈ D(2ρ0) and all k ∈ K.
We set k′ ∶= (k1 , . . . , km−2 , km−1 + km) for k ∈ K, l ∶= max{km ∶ k ∈ K} and R′m−1 ∶=
min{Rm−1 , Rm , Rm

(λ+2ρ0)l }, as well as

K′ ∶= {k′ ∶ k ∈ K} and R′ ∶= (R1 , . . . , Rm−2 , R′m−1),
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Δ′ ∶= Πm−1(Δ) and, finally, τ′ ∶= (K′ , R′ , r, θ′ , Δ′) and ρ′ ∶= (ρ0 , ρ). By Claims 1 and
2 in the proof of [12, Lemma 4.7], we have σ̃ (Sτ′ × D(ρ′)) ⊆ Sτ × D(ρ) and, for each

p, that σ̃ (Sτ′
p × D(ρ′)) ⊆ Sτ

p × D(ρ).

Proposition 4.4 For F ∈ C{X∗ , Y}τ ,ρ , we have σF ∈ C{(X′)∗ , Y ′}τ′ ,ρ′ such that
σF = F ○ σ̃ and ∥σF∥τ′ ,ρ′ ≤ C∥F∥τ ,ρ , where C ≥ 1 is independent of F.

Proof Let F ∈ C{X∗ , Y}τ ,ρ ; again, we distinguish two cases.
Case 1: n = 0. Then F ∈ C{X∗}τ , and we choose convergent Fp ∈ C{X∗} such

that F =τ ∑p Fp . As in the proof of [12, Lemma 4.7], for each p, ν ∈ N, we define
fp,ν ∶ Sτ′

p �→ C and fν ∶ Sτ′ �→ C by

fp,ν(w′) ∶= 1
ν!

∂ν (Fp ○ σ̃)
∂vν (w′ , 0) and fν(w′) ∶= 1

ν!
∂ν (F ○ σ̃)

∂vν (w′ , 0).

The argument there shows that, for each ν, we have fν = ∑p fp,ν on Sτ′ with ∥ fν∥Sτ′ ≤
∥F∥Sτ /(2ρ0)ν . Hence,∑ν ∥ fν∥Sτ′ ρν

0 ≤ ∥F∥Sτ , and it follows from Taylor’s theorem that

(F ○ σ̃) (w′ , y) = ∑
ν

fν(w′)yν on Sτ′ × D(ρ0).

So it remains to show that each fν belongs to Gτ′ ; to do so, we define k′ for K′ as k was
defined for K, and we establish the following claim.

Claim Each fp,ν is given by a generalized power series Fp,ν with support in Δ′ such
that ∥Fp,ν∥R′ ,k′ , p ≤ C ⋅ ∥Fp∥R ,k , p/(2ρ0)ν , where C > 0 is independent of F, p or ν. ∎

To see the claim, we use [11, Lemma 6.5]—or more precisely, the following modifi-
cation of it: the stated hypotheses there, namely, that τ ≤ ρ, τm < λ and τγ

m−1(λ + τm) <
ρm , were sufficient for the purposes of that paper, but not quite necessary to obtain
the same conclusion from the proof of that lemma. Indeed, it suffices to assume
that τ i ≤ ρ i for all i ≠ m, that τm < λ and that τγ

m−1(λ + τm) ≤ ρm to obtain the same
conclusion, and we shall verify these weaker hypotheses below (with γ = 1) in order
to apply that lemma here, without further mention of this discrepancy.

On the one hand, by Taylor’s theorem, we have for each p that

(Fp ○ σ̃) (w′ , y) = ∑
ν

fp,ν(w′)yν on Sτ′
p × D(ρ0).

On the other hand, using the binomial formula, we have for each p that

σFp = ∑
ν

Fp,ν(X′) ⋅ Xν
m with Fp,ν(X′) = 1

ν!
∂ν(σFp)

∂Xν
m

(X′ , 0);

note that each Fp,ν has support contained in Δ′.
We now fix an arbitrary s′ ∈ cl (Dk′

p (log R′)) ∩ (0,∞)m−1 and set s ∶= (s′ , 2ρ0) and
t ∶= σ(s). By Claim 2 of [12, Lemma 4.7], we have t ∈ cl (Dk

p(log R)). Since s i = t i , for
i = 1, . . . , m − 1, sm = 2ρ0 < λ, and sm−1(λ + sm) = tm , we get from [11, Lemma 6.5] a
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constant C ≥ 1, independent of F, p, or ν, such that

∥σFp∥s ≤ C∥Fp∥t ≤ C∥Fp∥R ,k , p .

Since ∥σFp∥s = ∑ν ∥Fp,ν∥s′ sν
m by definition of ∥ ⋅ ∥s , it follows that

∥Fp,ν∥s′ ≤
C

(2ρ0)ν ∥Fp∥R ,k , p , for each p and ν.

Since s′ ∈ cl (Dk′
p (log R′)) ∩ (0,∞)m−1 was arbitrary, we finally get

∥Fp,ν∥R′ ,k′ , p ≤
C

(2ρ0)ν ∥Fp∥R ,k , p , for each p and ν.

Finally, we get from [11, Lemmas 5.9(2,3) and 6.3(4)] that fp,ν = Fp,ν , for each p and
ν. This finishes the proof of the claim.

It follows from the claim that fν =τ′ ∑p fp,ν . Moreover, since the claim holds for
all sequences Fp such that F =τ ∑p Fp , we also get that ∥ fν∥τ′ ≤ C ⋅ ∥F∥τ/(2ρ0)ν for
each ν. It follows that ∥σF∥τ′ ,ρ0 = ∑ν ∥ fν∥τ′ρν

0 ≤ C∥F∥τ , which finishes the proof of
the proposition in Case 1.

Case 2: n > 0. Let F = ∑β∈Nn Fβ(X)Y β . Then ∥σF∥τ′ ,ρ′ = ∑β∈Nn ∥σFβ∥τ′ ,ρ0 ρβ , so
the proposition in Case 2 follows from Case 1 as in the proof of Lemma 4.2.

4.3 Ramifications

Let σ be a ramification of the Gevrey variable X i0 as in Example 4.1(3). Permuting
coordinates, we may assume that i0 = 1. Fix τ ∈ Tm and ρ ∈ (0,∞)n . We define

K′ ∶= {(k1/α, k2 , . . . , km) ∶ k ∈ K} ,

R′ ∶= (R1/α
1 , R2 , . . . , Rm) ,

and

Δ′ ∶= {(β1/α, β2 , . . . , βm) ∶ β ∈ Δ} ,

and we set τ′ ∶= (K′ , R′ , r, θ , Δ′); then Δ′ is natural, and we have σ̃ (Sτ′ × D(ρ)) ⊆
Sτ × D(ρ) and σ̃ (Sτ′

p × D(ρ)) ⊆ Sτ
p × D(ρ) for each p.

Proposition 4.5 For F ∈ C{X∗, Y}τ ,ρ , we have σF ∈ C{(X′)∗ , Y ′}τ′ ,ρ such that
σF = F ○ σ̃ and ∥σF∥τ′ ,ρ ≤ ∥F∥τ ,ρ .

Proof We let F ∈ C{X∗, Y}τ ,ρ , and we reduce to the case n = 0 as in the proof of
Lemma 4.2. In this case, we let k′ be defined for K′ as k is defined for K, and we choose
convergent Fp ∈ C{X∗} such that F =τ ∑p Fp .

Fix p and let s ∈ Dk′
p (R′) ∩ (0,∞)m be a polyradius. Then σ(s) ∈ Dk

p(R) by the
above and ∥σFp∥s = ∥Fp∥σ(s) ≤ ∥Fp∥R ,k , p . Since s ∈ Dk′

p (R′) was arbitrary, this shows
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that ∥σFp∥R′ ,k′ , p ≤ ∥Fp∥R ,k , p . Since we obviously have ∥σFp∥Sτ′
p
≤ ∥Fp∥Sτ

p
, it follows

that σF ∈ C{(X′)∗}τ′ and σF = F ○ σ̃ .
Moreover, since the above inequalities hold for all choices of Fp such that F =τ

∑p Fp , it follows that ∥σF∥τ′ ≤ ∥F∥τ . ∎

4.4 Translations

Let σ ∶ {X , Y} �→ R{(X , X′)∗, Y ′}G be the translation by a point (a, b) ∈ [0,∞)m ×
Rn .

Proposition 4.6 Let τ ∈ Tm and ρ ∈ (0,∞)n be such that ∥(a, b)∥ ≤ (R, ρ). Then, for
every F ∈ C{X∗ , Y}τ ,ρ , we have σF ∈ C{(X′)∗, Y ′}G and σF = F ○ σ̃ .

Proof We may assume that all but one of the coordinates of (a, b) are zero. If a i ≠ 0
for some i, we may assume, after permuting the Gevrey variables if necessary, that
i = m. This case is handled similarly to the proof of Proposition 4.4, except that we use
[11, Lemma 6.6] instead of [11, Lemma 6.5] (with a similar weakening of hypotheses
for the former as used above for the latter). So we assume that b j ≠ 0 for some j; in this
case, we adapt the usual Taylor expansion argument for convergent series to obtain
the conclusion (details are left to the reader). ∎

4.5 Infinitesimal substitutions

We recall the following observations.

Lemma 4.7 Let τ = (K , R, r, θ , Δ) ∈ Tm and X′ = (X′1 , . . . , X′n), and let F ∈ C{X∗}τ .

(1) For any τ′ ≥ τ, we have F ∈ C{X∗}τ′ with ∥F∥τ′ ≤ ∥F∥τ .
(2) The series G(X , X′) ∶= F(X) belongs to C{(X , X′)∗}τ′ with ∥G∥τ′ = ∥F∥τ , where

τ′ = (K′ , R′ , r, θ , Δ′) with K′ ∶= {(k, 0) ∶ k ∈ K}, R′ ∶= (R, S) for any S > 0, and
Δ′ ∶= Δ × Γ for any natural Γ ⊆ [0,∞)n .

Proof Part (1) is a consequence of the discussion in Section 3.6. For part (2), note
that Sτ′ = Sτ × H(log S) and Sτ′

p = Sτ
p × H(log S), so that ∥G∥τ′ = ∥F∥τ . ∎

Remark 4.8 We also need the following (crude) estimates from combinatorics. Let
n ∈ N.

(1) Given k ∈ N, the number of elements β ∈ Nn such that ∑ β = k is bounded above
by kn , because {β ∈ Nn ∶ ∑ β = k} ⊆ {1, . . . , k}n .

(2) For β ∈ Nn and k ∈ N, the number of ways to write β as the sum of at most ∑ β
many nonzero elements in Nn is bounded above by 2n∑ β . To see this, note that
if n = 1, then each such sum corresponds to a strictly increasing k-tuple 0 < a1 <
⋯ < ak = β with k ≤ β = ∑ β; so there are at most 2β = 1 +∑β

k=1 (
β
k) many ways

to write β as the sum of at most β many nonzero natural numbers. The claim for
general n follows.

(3) For γ ∈ Nn′ and k ∈ N, denote by N(γ, k) the number of ways to write γ as the
sum of exactly k many nonzero elements in Nn′ . Then, for any nonzero β ∈ Nn ,
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we have

N (γ,∑ β) = ∑
γ1+⋯+γn=γ

⎛
⎝

n
∏
j=1

N (γ j , β j)
⎞
⎠

.

Let σ be an infinitesimal substitution as in Example 4.1(5); in particular, we
may assume that n > 0. Let τ = (K , R, r, θ , Δ) ∈ Tm and ρ ∈ (0,∞)n , and let F =
∑β∈Nn FβY β ∈ C{X∗, Y}τ ,ρ . By Lemma 3.8(2), there exist τ′ ∈ Tm′ and ρ′ ∈ (0,∞)n′

such that

∥σ(Yj)∥τ′ ,2n′+1 ρ′ ≤
ρ j

2
for j = 1, . . . , n;(4.1)

in particular, we have σ̃ (Sτ × Sτ′ × D(ρ′)) ⊆ Sτ × D(ρ). For each j, we write σ(Yj) =
∑γ∈Nn′ G j,γ(X′)(Y ′)γ with G j,γ ∈ C{(X′)∗}τ′ , and we write τ′ = (K′ , R′ , r, θ , Δ′)
(we can always reduce to the case where r and θ are the same for both τ and τ′).

By Lemma 4.7(2), we have Fβ ∈ C{(X , X′)∗}η1
for each β, where

η1 = (K1 , (R, R′), r, θ , Δ × Δ′)
with K1 ∶= {(k, 0) ∶ k ∈ K}. Again by Lemma 4.7(2), and by Lemma 4.3, we have
G j,γ ∈ C{(X , X′)∗}η2

for each j and each γ, where

η2 = (K2 , (R, R′), r, θ , Δ × Δ′)
with K1 ∶= {(0, k) ∶ k ∈ K′}. So from Lemma 4.7(1), we get that each Fβ and each
G j,γ belongs to C{(X , X′)∗}η , where η = (L, (R, R′), r, θ , Δ × Δ′) with L ∶= K1 ∪ K2.
Moreover, Lemma 4.7 implies that ∥Fβ∥η ≤ ∥Fβ∥τ and ∥G j,γ∥η ≤ ∥G j,γ∥τ′ for each β,
j, and γ.

Proposition 4.9 For F ∈ C{X∗ , Y}τ ,ρ , we have σF ∈ C{(X , X′)∗ , Y ′}η ,ρ′ such that
σF = F ○ σ̃ and ∥σF∥η ,ρ′ ≤ A∥F∥τ ,ρ , for some absolute constant A > 0.

Proof A first computation (left to the reader) shows that, for β ∈ Nn , we have

(σ(Y))β = ∑
γ∈Nn′

Hβ ,γ(X′)(Y ′)γ ,

where

Hβ ,γ(X′) = ∑
γ1+⋯+γn=γ

⎛
⎜
⎝

n
∏
j=1

⎛
⎜
⎝

∑
δ1+⋯+δβ j=γ j

⎛
⎝

β j

∏
p=1

G j,δ p(X′)
⎞
⎠
⎞
⎟
⎠

⎞
⎟
⎠

and each γ j and δ p belongs to Nn′ and is nonzero. Therefore,

σF(X , X′ , Y ′) = ∑
β

Fβ(X)σ(Y)β = ∑
γ

⎛
⎝∑β

Fβ(X)Hβ ,γ(X′)
⎞
⎠
(Y ′)γ .

By the above, we have

∥Fβ∥η ≤
∥F∥τ ,ρ

ρβ(4.2)
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for each β, and setting ρ̃ ∶= 2n′+1ρ′,

∥G j,γ∥η ≤
∥σ(Yj)∥τ′ , ρ̃

(ρ̃)γ ≤
ρ j/2
(ρ̃)γ(4.3)

for each j and γ. Therefore, denoting by N(γ, k) the number of ways to write γ as the
sum of k many nonzero elements in Nn′ , we get for each β and γ from Remark 4.8(3)
that

∥Hβ ,γ∥η ≤ ∑
γ1+⋯+γn=γ

⎛
⎜
⎝

n
∏
j=1

⎛
⎜
⎝

∑
δ1+⋯+δβ j=γ j

⎛
⎝

β j

∏
p=1

ρ j/2
(ρ̃)δ p

⎞
⎠
⎞
⎟
⎠

⎞
⎟
⎠

= ∑
γ1+⋯+γn=γ

⎛
⎜
⎝

n
∏
j=1

⎛
⎜
⎝

∑
δ1+⋯+δβ j=γ j

(ρ j/2)β j

(ρ̃)γ j

⎞
⎟
⎠

⎞
⎟
⎠

= ∑
γ1+⋯+γn=γ

⎛
⎝

n
∏
j=1

(
(ρ j/2)β j

(ρ̃)γ j N (γ j , β j))
⎞
⎠

= ∑
γ1+⋯+γn=γ

⎛
⎝
(ρ/2)β

(ρ̃)γ
⎛
⎝

n
∏
j=1

N (γ j , β j)
⎞
⎠
⎞
⎠

= (ρ/2)β

(ρ̃)γ N (γ,∑ β) .

Also, since N (γ, k) = 0 for k > ∑ γ, it follows from Remark 4.8(2) that

∥Hβ ,γ∥η ≤ 2n′⋅∑ γ ⋅ (ρ/2)β

(ρ̃)γ .(4.4)

So for each γ, we get
OOOOOOOOOOOO
∑

β
(Fβ Hβ ,γ)

OOOOOOOOOOOOη

≤ ∥F∥τ ,ρ
2n′⋅∑ γ

(ρ̃)γ ⋅ ∑
β
( 1

2
)
∑ β

.

However, since∑β ( 1
2)
∑ β = ∑∞k=0 (∑∑ β=k 1) ( 1

2)
k ≤ C ∶= ∑k

kn

2k by Remark 4.8(1), we
conclude that

OOOOOOOOOOOO
∑

β
(Fβ Hβ ,γ)

OOOOOOOOOOOOη

≤ C ⋅ ∥F∥τ ,ρ
2n′⋅∑ γ

(ρ̃)γ ,

where C > 0 is an absolute constant. Finally, since (ρ̃)γ = 2(n
′+1)∑ γ ⋅ (ρ′)γ , we obtain

OOOOOOOOOOOO
∑

β
(Fβ Hβ ,γ)

OOOOOOOOOOOOη

≤
C ⋅ ∥F∥τ ,ρ

2∑ γ ⋅ (ρ′)γ .(4.5)
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Multiplying by (ρ′)γ and summing over γ, therefore, yields

∥σF∥η ,ρ′ ≤ C ⋅ ∥F∥τ ,ρ
⎛
⎝∑γ

( 1
2
)
∑ γ⎞

⎠
≤ CD∥F∥τ ,ρ

for some absolute constant D > 0, as required. ∎

5 Closure properties and o-minimality

The goal of this section is to verify, for those mixed series of Section 3.7 with only
real coefficients, the closure properties listed in Paragraphs 1.8 and 1.15 of [7]. We will
adopt the notations of the latter, and we need to define the real algebras Am ,n ,r . So
let m, n ∈ N, and let r = (s, t) = (s1 , . . . , sm , t1 , . . . , tn) ∈ (0,∞)m+n be a polyradius of
type (m, n). (While we used the letter R for polyradii in the previous sections to mirror
notations in [12], we use the letters r, s, and t to mirror corresponding notations in [7].)
We set

Ts
m ∶= {τ = (K , R, ρ, θ , Δ) ∈ Tm ∶ R > s}

and define the R-algebras

R{X∗ , Y}r ∶= ⋃
τ∈Ts

m
u>t

C{X∗, Y}τ ,u ∩R [[X∗ , Y]]

and

Am ,n ,r ∶= ⋃
τ∈Ts

m

{F↾(−∞,s)×D(t)∶ F ∈ C{X∗, Y}τ ,t ∩R [[X∗, Y]]} .

Recall from [7, Notation 1.7] the following definitions:

Im ,n ,r ∶= (0, s1) ×⋯ × (0, sm) × (−t1 , t1) ×⋯ × (−tn , tn),
Îm ,n ,r ∶= [0, s1) ×⋯ × [0, sm) × (−t1 , t1) ×⋯ × (−tn , tn) .

In particular, each f ∈ Am ,n ,r defines a continuous function f ∶ Îm ,n ,r �→ R by setting

f (x , y) ∶= f (log x , y);

this f is real analytic on Im ,n ,r . We let Am ,n ,r be the R-algebra of all such functions
obtained from R{X∗, Y}r , and we define the R-algebra homomorphism Tm ,n ,r ∶
Am ,n ,r �→ R{X∗, Y}r by letting Tm ,n ,r f be the (by quasianalyticity) unique F ∈
R{X∗ , Y}r such that f (x , y) = F(log x , y). We leave it to the reader to verify Prop-
erties (1)–(5) and (8) of [7, Paragraph 1.8]. Properties (6) and (7) follow from Lemma
3.8(4,5).

Let {Am ,n ∶ m, n ∈ N} be the corresponding family of algebras of germs, as defined
in [7, Section 1.2]. By Proposition 4.6, every f ∈ Am ,n ,r is A-analytic, as defined in [7,
Definition 1.10].

It now remains to verify the properties listed in [7, Paragraph 1.15] for the corre-
sponding family A of algebras of germs. Property (1) there is obvious here; Property
(3) follows from Lemma 4.3; Property (5) follows from Proposition 4.9; and Property
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(6) follows from Proposition 3.9. The remaining properties are handled below; we fix
arbitrary τ = (K , R, r, θ , Δ) ∈ Tm and ρ ∈ (0,∞)n .

5.1 Monomial division

Let F ∈ C{X∗, Y}τ ,ρ .
First, we let α > 0 and assume that F = Xα

1 G with G ∈ C [[X∗, Y]]. We write F =
∑β∈Nn Fβ(X)Y n and G = ∑β∈N Gβ(X)Y n with each Fβ ∈ C{X∗}τ and each Gβ ∈
C [[X∗]], and we set τ′ ∶= (K , R, s, θ , Δ) for some fixed (but arbitrary) s ∈ (1, r).
Then, by Lemma 4.3 and Lemma 3.6, there exist C > 0 (depending only on s

r ) such
that ∥Gβ∥′τ ≤ C∥Fβ∥τ , for each β. It follows that ∑β ∥Gβ∥τ′ρn ≤ C∥F∥τ ,ρ , so that G ∈
C{X∗ , Y}τ′ ,ρ .

Second, we let n ∈ N and assume that F = Y n
1 G with G ∈ C [[X∗, Y]]. Then by

definition, we have ∥F∥τ ,ρ = ρn
1 ∥G∥τ ,ρ , so that G ∈ C{X∗, Y}τ ,ρ .

Putting together the two cases discussed here proves Property (2) of [7, Paragraph
1.15].

5.2 Setting a variable equal to 0

Let F ∈ C{X∗ , Y}τ ,ρ , and write F = ∑β∈Nn Fβ(X)Y n with each Fβ ∈ C{X∗}τ .
Applying Lemma 3.3 with ν = 1 and a = −∞ = log 0 followed by Lemma
4.3, we get that Fβ ,0 ∶= Fβ(X1 , . . . , Xn−1 , 0) ∈ C{(X1 , . . . , Xn−1)∗ , Y}μ(a) with
∥Fβ ,0∥μ(a) ≤ ∥Fβ∥τ , for each β ∈ Nn . Hence, F0 ∶= F(X1 , . . . , Xn−1 , 0, Y) belongs to
C{(X1 , . . . , Xn−1)∗ , Y}μ(a),ρ ; this proves Property (4) of [7, Paragraph 1.15].

5.3 Blow-up charts

Here we refer to the blow-up charts (1)–(5) of [7, Definition 1.13]. Closure under
blow-up charts (1) (regular blow-ups) is proved by Proposition 4.4; closure under
blow-up charts (2) (singular blow-ups) is similar, but easier and left to the reader.
Blow-up charts (3) are infinitesimal substitutions and thus are handled by Proposition
4.9. For blow-up charts (4), note that C{X∗ , Y}G ⊆ C{(X1 , . . . , Xm+1)∗ , Y}G by
Lemma 3.8(6); so closure under these blow-up charts follows from closure under
blow-up charts (2) and Proposition 4.9. Closure under blow-up charts (5) follows
again from Proposition 4.9. This proves Property (7) of [7, Paragraph 1.15].

As the results of [7] do not make use of the Weierstrass Preparation Theorem
(which is in general not available in the quasianalytic setting), we may dispense with
proving this property here.

Proof of Main Theorem The previous discussion implies that our system A of
algebras satisfies Conditions (1) and (4) of [7, Proviso 1.20]. Moreover, Condition
(2) is implied by Proposition 4.6, while Condition (3) follows from Proposition 3.4.
So the theorem follows from [7, Theorems A and B]. Finally, note that it suffices to
add the reciprocal function to obtain quantifier elimination, as all real powers with
nonnegative exponents are already in the language LG∗ . ∎
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