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Gerromorpha, also known as semi-aquatic bugs, present the

striking capability to walk on water surface, which has long

attracted the interest of many scientists. Yet our understanding

of the mechanisms associated with their adaptation and

diversification within this new habitat remain largely unknown.

In this review we discuss how new transcriptomic and genomic

resources have contributed to establish the Gerromorpha as an

important lineage to study phenotypic evolution. In particular

we outline the impact of recent comparative transcriptomic

analyses and first published genomes to advance our

understanding of genomic basis of adaptations to water

surface locomotion and sexual dimorphism.
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versité Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale

Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07, France

Corresponding author: Armisén, David (david.armisen@ens-lyon.fr)

Current Opinion in Insect Science 2021, 49:xx–yy

This review comes from a themed issue on Insect genomics

Edited by Shuji Shigenobu

https://doi.org/10.1016/j.cois.2021.12.010

2214-5745/ã 2021 Published by Elsevier Inc.

Introduction
The semi-aquatic bugs (Hemiptera, Heteroptera, Gerro-

morpha) represent a monophyletic group of predatory

insects characterized by the ability to live on the

water-air interface [1]. Of the �900 000 known insect

species (representing approximately 80% of the world’s

species), Gerromorpha is the only lineage where the

entire life cycle takes place in contact with the water

surface. Gerromorpha’s unique locomotory capabilities on

the water-air interface has long attracted scientific inter-

est to understand the biomechanical and evolutionary

process of water walking — a long-standing question that

raised curiosity every time someone has observed them

walking on a pond or lake. Over 200 million years ago, the

ancestor of the Gerromorpha transitioned from terrestrial

habitats to the water surface, leading to a radiation that
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culminated in over 2000 species classified into eight

families [1]. Character state reconstructions suggested

that the ancestral habitat of the Gerromorpha was either

humid terrestrial or marginally aquatic [1–3]. Water stri-

ders subsequently became true water surface dwellers

and colonized a diverse array of niches, including streams,

lakes, ponds, marshes, and the oceans [1,4,5]. The inva-

sion of these new habitats provided access to resources

previously underutilized by insects and made the Gerro-

morpha the dominant group on water [1]. Because of this

striking life history, they have fascinated scientists from

various disciplines, including naturalists, applied mathe-

maticians, ecologists, taxonomists, paleontologists and

evolutionists. However, until recently, understanding

the genetic mechanisms underlying their evolution and

adaptation has been hindered by the lack of genomic

resources, which were mostly limited to DNA barcoding

to study geographical ecosystems and molecular diversity

[6–9] and transcriptomic data for phylogeny reconstruc-

tion [10–12].

The development of new genomics and transcriptomics

approaches based on next-generation sequencing (NGS)

technologies and their decreasing cost in the last decade

have permitted the sequencing of many non-model

organisms. As a result, many long-standing evolutionary

questions could be approached under the light of new

study models offering the appropriate life history context.

In this review we aim to illustrate how sequencing in

various species of the Gerromorpha made it possible to

explore the genomic basis of adaptations, such as water

surface locomotion or sexual dimorphism and sexual

conflict, and opened new paths to establish Gerromorpha

as a model lineage to study phenotypic evolution.

Developmental genetic basis of locomotion
on the water surface
By living on water surface, the Gerromorpha face two

primary challenges: how to remain afloat and how to

generate efficient thrust forward on a fluid substrate

[13–15]. The Gerromorpha evolved two main adaptations

that are thought to be associated with these biomechani-

cal challenges. On one hand, the hairs covering their legs

act as non-wetting structures due to their specific arrange-

ment and density. This adaptation allows to exploit water

surface tension by trapping air between the leg and water

[13–15,16�] (Figure 1a). In the water strider Gerris buenoi,
transcriptomic analyses showed that hydrophobic hairs
optera; Gerromorpha): recent advancesQ1 toward establishing a model lineage for the study of
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Figure 1

(a)

(d) (e) (f)

(b) (c)Exploit of water surface tension

Sexual conflict Sexual dimorphism and hyperallometry Wing polymorphism

Locomotion on water Adaptation to fast flowing streams

Tripod gait

Rowing gait
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(a) The semi-aquatic bugs exploit water surface tension due to increased leg length and bristle density. (b) Gerromorpha species can be classified

according to their body plan, is tightly associated with the mode locomotion employed. Top: Species occupying transitional zones retain the

ancestral body plan (hindlegs longer than midlegs) and move on water using a tripod gait (walking). In these species there is an alternate

movement of both midlegs (orange) and hindlegs (green). Bottom: Species with a derived body plan (midlegs longer than hindlegs) move through

a rowing gait and have specialized in open water zones. In this case hindlegs (green) barely move and are used as rudders while most of the

propulsion is generated from simultaneous movement of the pair of midlegs (orange). (c) Some species inhabiting fast flowing streams evolved

novel traits that increase their locomotion efficiency against water current. This is the case of all species of the genus Rhagovelia, such as

Rhagovelia antilleana in the picture, which have developed a fan-like structure at the tip of the midlegs. The fan increases the contact surface

between the leg and the water and therefore propulsion efficiency. (d) and (e) Most Gerromorpha species present conspicuous sexually dimorphic

traits usually related to differences in body shape and size. In a few cases, trait modification can be extreme and the evolution of these

elaboration are driven by conflict between the sexes or by competition between males. An example of extreme modification can be found in the

antenna of Rheumabates rileyi males (d) which function to grasp females by the eyes during pre-mating struggles. In the case of Microvelia

longipes male’s (e), hindleg are strikingly long and are used as weapons to dominate egg laying sites and, therefore, access to females. (f) Many

Gerromorpha species exhibit a rich variety of wing morphs such is the case of Gerris buenoi where macropterous (green), brachypterous (red),

micropterous (blue) and apterous individuals can be found within the same population.

C

re innervated bristles under the control of the achaete–
ute homologue (ASH) gene and changes in its regulation

ay have contributed to shaping these bristles [17]. On

e other hand, an increase in relative leg length allows to

ffectively distribute weight without breaking the surface

nsion [15,16�]. In Gerromorpha, the Hox gene Ultra-
ithorax (Ubx) controls not only the growth of the hind-

gs, as is the case in crickets and grasshoppers [18,19],

ut also the mid-legs through a novel domain of expres-

on [20]. Changes in Ubx expression led to the evolution

f a derived leg plan where mid-legs are longer than

indlegs. Basally branching lineages retain the ancestral

ody plan with hindlegs being the longest, occupy tran-

tional zones, and move on the water using a tripod gait
Please cite this article in press as: Armisén D, Khila A: Genomics of the semi-aquatic bugs (Hete
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with alternating leg movements which allows them to be

versatile and walk both on water and on land (Figure 1b).

Derived lineages which evolved a derived body plan have

specialized in open water zones and use the rowing gait

through simultaneous sculling motion of the pair of mid-

legs [13–15] (Figure 1b). The hindlegs being shorter act

as rudders. A combination of transcriptomic and experi-

mental analyses showed that species with a derived leg

plan have increased levels of Ubx expression in the hind-

legs linked with a new growth-inhibiting function [21].

They also allowed to identify a previously unknown

target gene of Ubx, named Gamma-interferon-inducible
lysosomal thiol reductase (GILT), with a previously unde-

scribed role in leg elongation that contribute to shape the
roptera; Gerromorpha): recent advancesQ1 toward establishing a model lineage for the study of
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legs of water striders [22]. These findings show that novel

interactions between ancient and highly conserved genes

can contribute to the emergence of adaptive phenotypes.

Impact of taxon-restricted genes on
evolutionary innovations
Increased bristle density and leg elongation are modifi-

cation of two ancestral traits shared by all insects. In

addition to these modifications, novelties or key innova-

tions have evolved and allowed the conquest of physically

challenging niches, such as fast-flowing streams, by a

strikingly speciose genus called Rhagovelia. Species from

genus Rhagovelia have developed a unique structure, the

propelling fan, which enabled this lineage to sustain

permanenet movement on fast flowing waters (Figure 1

c). This structure folds and unfold synchronously with leg

movement, effectively acting like a propelling fan, which

increases the propelling impulse with a high energetic

efficiency [23��]. The family Veliidae contains 61 genera

and about 900 species. Interestingly, half of these species

are in the genus Rhagovelia and all of them have propel-

ling fans (Polhemus). It is possible that this innovation

contributed significantly to the impressive success of

Rhagovelia. Comparative transcriptomic and experimental

analyses found two taxon-restricted genes, geisha and

mother-of-geisha, at the origin of this evolutionary innova-

tion [23��]. More precisely, transcriptomic data links this

new structure with a first emergence of mother-of-geisha in

the Hemiptera, with an unknown function, followed by a

taxon-specific duplication, leading to geisha, and a com-

bined control of the fan development [23��]. With more

than 400 known Rhagovelia species, the genus offers an

exquisite model to further study the impact of taxon-

restricted genes on rapid adaptive radiation.

Semi-aquatic bugs as models to study sexual
conflict and dimorphism
Semi-aquatic bugs represent an historically prominent

model for the study of sexual selection and sexual conflict,

which are known to drive phenotypic divergence of the

sexes [24–26]. In many species, males are favoured to

mate repeatedly but females pay increasing fitness costs

for multiple mating [27]. This conflict is often illustrated

with evasive or struggling behaviour in females [28–30].

As a result, escalation could drive the evolution of grasp-

ing traits in males [26,31,32��] and anti-grasping trait in

females [26,33].

Males of the water strider Rheumatobats rileyi present one

of the most spectacular trait modifications with a deep

remodelling of their antenna morphology to grasp

females’ eyes during pre-mating struggles (Figure 1d).

Study of this trait identified a novel function of the gene

distal-less (dll) in male antennae morphogenesis due to a

late expression during nymphal development [32��].
Other striking adaptations are the hyperallometric legs

with relation to body size in the males of Microvelia
Please cite this article in press as: Armisén D, Khila A: Genomics of the semi-aquatic bugs (Heter
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longipes (Figure 1e). Those exaggerated legs are used

by males to fight other males and dominate egg-laying

sites where they mate and guard females. Interestingly,

sexual selection favouring longer legs conflicts with loco-

motion efficiency and, therefore, natural selection.

Recent analysis confirmed the role of Ubx in leg elonga-

tion [34��]. A significant finding in this model was the

determination that the gene Bone Morphogenetic Protein 11
(BMP11) was a master regulator of growth for both body

size and all three legs in M. longipes [34��]. More impor-

tantly, it regulates hyperallometry of the hindlegs by

regulating the allometric slope. RNAi knockdown of

BMP11 also showed a reduced fight intensity associated

with decrease in legs length [34��]. This result showing a

genetic correlation between several traits, including body

and leg size and fighting behaviour, suggests that pleiot-

ropy play a role in the evolution of adaptive sexually

selected traits [35,36]. Future works could exploit the

diversity of Microvelia, with a variable number of qualita-

tive sexually dimorphic traits and fighting intensities, to

further explore the impact of sexual selection and sexual

conflict on genome evolution.

Advances following the first published
Gerromorpha genomes and their impact on
future research
Transcriptomic data analyses have greatly contributed to

the study of the genomics of evolutionary adaptations in

Gerromorpha. However, they were limited to identifying

the genes involved without further detail of the causal

mutations and the role of selection. Recent advances in

next generation sequencing and associated cost reduction

made it possible to sequence the complete genomes of

two Gerromorpha species named G. buenoi and M.
longipes. These new resources opened the door to more

in-depth analysis and laid the road for genomic research in

the years to come.

An example of causal mutations identified thanks to

genome data are the cumulative amino acid changes in

G. buenoi opsins. Visual ecology of the water striders at the

air-water interface has drawn considerable interest [37,38]

with experimental works establishing their sensitivity to

both green and blue wavelengths [39]. Yet blue opsin is

consistently absent in Gerromorpha and other Hetero-

ptera [40�]. Thanks to genome sequencing and analysis, a

tandem repeat cluster of four green opsins genes was

described, and one of the paralogs was be identified as

having accumulated all amino acid residue changes

described in sensitivity shifts from green to blue in

butterflies [40�,41,42]. This suggests that the sensitivity

of Gerris to blue was regained through conversion of the

green-sensitive sequence.

The genomes also revealed the presence of a significant

number of gene duplication events, but their role remains

unknown. One of such duplications is found in the Insulin
optera; Gerromorpha): recent advancesQ1 toward establishing a model lineage for the study of
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C

eceptor (InR) family. Genomic and transcriptomic anal-

ses suggest the the new InR copy was the result of retro-

sertion, mostly because this copy lacks any introns [40�],
 mechanism also reported in Pyrrhocoroidea [43]. How-

ver, the insulin pathway and InR duplications have been

escribed amongst other insects as having a role on

ontrolling wing polyphenisms in planthoppers [44]

nd Pyrrhocoris apterus [43]. Future works should investi-

ate the impact of duplications in such important gene

milies on the development and evolution of water

riders.

ithin the Gerromorpha, a conspicuous variety of wing

ngths, apterous, micropterous and/or macropterous, and

ssociated muscle development have been described

,45] (Figure 1e). In species with wing polymorphism,

opulation composition is associated with dispersal strat-

gies as well as habitat quality [46] and will depend on a

ombination of both genetic factors and selective pres-

res [47–50] like population density [51,52], food scar-

ity [53], salinity [54], temperature [55], dryness [56],

hotoperiod [57], water quality [58] and sex ratio [59].

ombined with first published genomes, approaches such

s epigenetics and population genetics open new research

pportunities to study such highly plastic trait. Indeed, as

evelopment of each wing morphs is in many cases

ependent on condition, epigenetic changes are expected

 play a major role in regulating wing development. The

vailability of a high-quality genome will allow to map

nd detect those epigenetic changes and correlate them

ith genes either known to be involved in wing develop-

ent pathway or identified through comparative tran-

riptomics analyses. Future studies could then explore

e distribution of those modifications, as well as potential

olymorphisms, between and within populations over

me, effectively opening the door to study microevolu-

onary events.

he Gerromorpha can also be a model to study the role of

pigenetic changes in the development and evolution of

xaggerated sexually selected traits. The length of M
longipes males’ hindlegs is dependent on both nutrition

take and genetic factors [60�]. This interaction raises

e question of what are the genes involved, what is the

le of epigenetics, and how the combined action of

olymorphism and epigenetic mechanisms impacts gene

xpression and phenotypic variation. While some

dvances were made on the genetic control of male leg

ngth variation, nothing is known about potential epige-

etic mechanisms. However, the recent publication of M
longipes genome laid the necessary foundation for the

udy of the role of epigenetic mechanisms in generating

henotypic variation within the same population.

inally, other important adaptative traits, involving phys-

logy, behaviour and morphology, are well described in

arious Gerromorpha species. These include adaptations
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such as salinity tolerance [61,62], long distance signalling

[63], adjustment of jumping behaviour in females [64�] or

coevolution of seminal receptacle and sperm morphology

[65]. However, despite their importance to the study of

phenotypic evolution, there are no works investigating

the genomic basis of these adaptations. We believe that

future works using a similar combined approach of tran-

scriptomics, genomics and epigenetics as we described

here, could be of great interest to further increase our

understanding of adaptation using these traits as study

models. To do so it will also be necessary to expand the

currently limited number of molecular biology techni-

ques available in Gerromorpha to include for example

CRIPR-Cas9 genome editing.

Conclusions
Recent advances in next generation sequencing technol-

ogies have made possible to overcome many of the

limitations to study the genetic and genomic basis of

adaptation in non-model organisms. In the semi-aquatic

bugs, first transcriptomic data laid the foundations of

comparative analyses that helped to understand the

development of important adaptive traits. More recently,

Gerromorpha genomes have opened new research oppor-

tunities and will allow to apply approaches such as epi-

genetics and population genetics. The Gerromorpha, due

to the abundance of conspicuous adaptive phenotypes,

can become a new model lineage to study various aspects

of phenotypic evolution including morphology, physiol-

ogy and behaviour.
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