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Explicit construction of reproducing kernels

In this short Note, we calculate explicitely reproducing kernels for simple Sobolev spaces. In particular, we prove that for each m the reproducing kernel of H m+1 (R 2m ) and of H m+1 (R 2m+1 ) are proportional to the ones of H 2 (R 2 ) and of H 2 (R 3 ), the former being characterized by the modified Hankel function K1, the latter by the modified Hankel function

Introduction and main results

This short Note gives and recalls the exact construction of the reproducing kernels of classical Sobolev spaces, in particular under the idea that, instead of describing first the reproducing kernel on a basis of examples {x i , 1 ≤ i ≤ N }and then of infering the Hilbert space obtained by density of the associated generating family {K xi } 1≤i≤N , we start from the Hilbert space itself, in the line of L. Schwartz [START_REF] Schwartz | Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)[END_REF], and following closely the results of E. De Vito, N. Mucke, and L. Rozasco [START_REF] De | Lorenzo Rosasco Reproducing kernel Hilbert spaces on manifolds: Sobolev and Diffusion spaces[END_REF].

We begin this Note with a simple calculation of the reproducing kernel(s) of H 1 ([0, L]) with the dependency of the chosen norm. In a second part, one of the extremely interesting results of [START_REF] De | Lorenzo Rosasco Reproducing kernel Hilbert spaces on manifolds: Sobolev and Diffusion spaces[END_REF] is that the reproducing kernel for the usual space H s (R d ) using the classical Sobolev norm (1) depends only, in terms of |x -y| 2 of s -d 2 > 0. In particular, when dealing with the case s ∈ N (where one can also deduce the reproducing kernel with an usual variational formulation with finite elements), only two cases appear (using the largest possible Sobolev space of the form H n (R d ) for which the trace is continuous): d odd and d even, with the modified Bessel functions K 1 and K 1 2 . We slightly add a complement to this paper by showing another reproducing kernel of H 2 (R 2 ) associated with a norm equivalent to the classical norm.

The reproducing kernels on H

1 ([0, L]), H 1 0 ([0, L]), H 1 (R)
It is an exercise to obtain the reproducing kernels of these spaces, and the result is as follows.

Lemma 1.

1. The reproducing kernel of H 1 (R) with the usual norm

R (u 2 + (u ) 2 )dx is K 1 (x, y) = 1 2 e -|x-y| . 2. The reproducing kernel of H 1 ([0, L]) is K 2 (x, y) = cosh x cosh y1y<x+cosh(L-x) cosh(L-y)1y>x cosh L . 3. The reproducing kernel of H 1 0 ([0, L]) with the usual norm R (u 2 + (u ) 2 )dx is K 3 (x, y) = cosh x sinh y1y<x+cosh(L-x) sinh(L-y)1y>x cosh L . 4. The reproducing kernel of H 1 0 ([0, L]) with the equivalent norm R (u ) 2 dx is K 4 (x, y) = (L-x)y1y<x+x(L-y)1y>x L .
Proof. We start with H 1 (R) with the usual norm

R (u 2 + (u ) 2 )dx.
One notes that the RK associated with this norm is given by

∀w ∈ H 1 (R) < K x , w >= w(x) ⇔ ∀w ∈ H 1 (R), R (K x w + K x w )dy = w(x).
One then resumes to the ODE K x -K x = 0 on R -{x}, which solution is y → Ae -|y-x| , and one has A = 1 2 thanks to the jump formula and Item 1 of Lemma 1 is proven.

Note that we recover also this kernel thanks to Fourier transform and the fact that the norm is equal to

1 2π R (1 + ξ 2 )|û| 2 dξ. As for H 1 ([0, L]), we have ∀w ∈ H 1 ([0, L]), L 0 (K x w + K x w )dy = w(x) that is K x (y) = A ± cosh(y-x)+B ± sinh(y-x), ±(y-x) > 0. The boundary con- dition K x (0) = K x (L) = 0 yield A -sinh(-x) + B -cosh(-x) = 0, A + sinh(L - x) + B + cosh(L -x) = 0, hence K x (y) = C -cosh y1 y<x + C + cosh(L -y)1 y>x . One observes then that K x = C -sinh y1 y<x -C + sinh(L-y)1 y>x +(C + cosh(L- x) -C -cosh x)δ x , infering the equality C + cosh(L -x) -C -cosh x = 0, then K x = C -cosh y1 y<x + C + cosh(L -y)1 y>x -(C + sinh(L -x) + C -sinh x)δ x
and one obtains the second equality

C + sinh(L -x) + C -sinh x = 1, hence C + = cosh x cosh L , C -= cosh(L-x) cosh L , which proves Item 2 of Lemma 1.
The boundary conditions change for the third case, one has 3 The reproducing kernels on H 2 (R 2 )

K 3 (x, y) = D -sinh y1 y<x + D + sinh(L -y)1 y>x , with D -sinh x = D + sinh(L -x) and D -cosh x + D + cosh(L -x) = 1,
3.1 Case of the usual Sobolev norm in H s (R d ), s > d 2
Under the same analysis as we did in Section 2, the smallest s such that, for Ω ∈ R 2 , H s (Ω) ⊂ C 0 (Ω), is given by the Sobolev inequality H s (Ω) ⊂ C 0 (Ω) for s > 2 2 = 1. One then considers s = 2. Proposition 1.

1. The reproducing kernel of

H s (R d ) with the usual Sobolev norm (1) is given, in the case s = [ d 2 ] + 1 C d |x -y| [ d 2 ]+1-d 2 K d 2 -[ d 2 ]-1 (|x -y|) = C d |x -y| [ d 2 ]+1-d 2 K [ d 2 ]+1-d 2 (|x -y|),
where K ν is the modified Bessel function of the second type, solution of z 2 w + zw -(z 2 + ν 2 )w = 0.

2. The reproducing kernel of H 2 (R 2 ) with the usual Sobolev norm (1) is

|x-y| 4π K -1 (|x -y|) = |x-y| 4π K 1 (|x -y|).

The reproducing kernel of H m+1 (R 2m

) is equal, up to a constant, to the reproducing kernel of H 2 (R 2 ).

The reproducing kernel of H m+1 (R 2m+1

) is equal, up to a constant, to the reproducing kernel of H 2 (R 3 ).

Proof. First of all, following [START_REF] De | Lorenzo Rosasco Reproducing kernel Hilbert spaces on manifolds: Sobolev and Diffusion spaces[END_REF], one can obtain readily the general expression of the RK of the Hilbert space H s (R d ) associated with the usual norm

||u|| 2 H s (R d ) = 1 (2π) n R d (1 + |ξ| 2 ) s |û| 2 dξ. ( 1 
)
We quickly reproduce the proof of [START_REF] De | Lorenzo Rosasco Reproducing kernel Hilbert spaces on manifolds: Sobolev and Diffusion spaces[END_REF]. The RK associated with

H s,d = {H s (R d ), ||u|| H s (R d ) } satisfies K(x, x 0 ) = u, with ∀w ∈ H s , 1 (2π) d R d (1 + |ξ| 2 ) s û(ξ) ŵ(ξ)dξ = w(x 0 ). Using w(x 0 ) = 1 (2π) d R d ŵ(ξ)e ix0ξ
dξ, and as K(x, x 0 ) = K(x -x 0 , 0) we can infer x 0 = 0 and we obtain

(1 + |ξ| 2 ) s û(ξ) = 1 ⇔ û(ξ) = 1 (1 + |ξ| 2 ) s . Hence u(x) = 1 (2π) d R d e ixξ dξ (1 + |ξ| 2 ) s = 1 (2π) d +∞ 0 S d-1 e irω.x dω r d-1 dr (1 + r 2 ) s
The integration on the unit sphere yields a function depending only on r|x|, and reads

u(x) = 1 (2π) d +∞ 0 J d 2 -1 (r|x|)(2π) d 2 (r|x|) 1-d 2 r d-1 dr (1+r 2 ) s = 1 (2π) d 2 |x| 1-d 2 +∞ 0 J d 2 -1 (r|x|) r d 2 dr (1+r 2 ) s = 1 (2π) d 2 |x| 1 2 -d 2 +∞ 0 r|x|J d 2 -1 (r|x|) r d 2 -1 2 dr (1+r 2 ) s .
Define the Hankel transform of a function f :

L Hankel (f )(y) = +∞ 0 f (x)J ν (xy)(xy) 1 2 dx = y µ+ 1 2 K ν-µ (y) 2 µ Γ(µ + 1) (2) 
One then uses the formula from Erdeyli, Tome 2 [START_REF] Erdeyli | Tables of integral transforms[END_REF] (expression (20) in Hankel transforms), for f (x) = x ν+ 1 2 (1+x 2 ) -µ-1 , where one applies µ = s-1, ν = d 2 -1 We have finally, using the Bessel modified function of the second kind

K ν u(x) = 1 (2π) d 2 |x| 1 2 -d 2 |x| s-1 2 K d 2 -s (|x|) 2 s-1 Γ(s) = |x| s-d 2 (2π) d 2 2 s-1 Γ(s) K d 2 -s (|x|).
The application of this result to the case d = 2, s = 2 yields thus (correcting a typo of [START_REF] De | Lorenzo Rosasco Reproducing kernel Hilbert spaces on manifolds: Sobolev and Diffusion spaces[END_REF] and adding K ν = K -ν 9.66 of [START_REF] Abramovitz | Stegun Handbook of mathematical functions, with tables and[END_REF])

K H2,2 (x, y) = |x -y| 4π K -1 (|x -y|) = |x -y| 4π K 1 (|x -y|) (3) 
where we observe that z ν K ν (z) bounded when ν > 0 (9.6.9 of [START_REF] Abramovitz | Stegun Handbook of mathematical functions, with tables and[END_REF]), this kernel is thus bounded. Moreover, if we consider the limiting case with for s ∈ N , that is 

s = d+1 2 if d is odd and s = d 2 + 1 if d is even, one has K H s,d (x, y) =    2 1-s (2π) d 2 Γ(s) |x -y|K -1 (|x -y|) = 2 1-s (2π) d 2 Γ(s) |x -y|K 1 (|x -y|), d even 2 1-s (2π) d 2 Γ(s) |x -y| 1 2 K -1 2 (|x|) = 2 1-s (2π) d 2 Γ(s) |x -y| 1 2 K 1 2 (|x|), d odd 3.2 Case of a modified Sobolev norm With another norm of H s (R d ) for s > d 2 , namely ||u|| H s (R d , * ) = 1 (2π) d R d (1 + |ξ| 2s )|û(ξ)| 2 dξ, (4) 
K H s (R d , * ) (x, y) = 1 (2π) d 2 |x| 1 2 -d 2 L Hankel (g s,d )(|x -y|)
where

g s,d (r) = r d-1 2 -d 2 1 + r 2s
and the Hankel transform is given by (2).

Proof. We see that here exists two constants c -and c + such that

∀u ∈ H s (R d ), c 1 ||u|| H s (R d ) ≤ ||u|| H s (R d , * ) ≤ c 2 ||u|| H s (R d ) .
These constants are respectively the maximum and the minimum of 1+|ξ| 2s (1+|ξ| 2 ) s . This proves the item 1 of this proposition.

For the second one, one has, similarly This proves the second item of Proposition 2.
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 04 which yields the result of Item 3 of Lemma 1. Finally, using the H 1 0 norm, one has ∀w ∈ H 1 0 ([0, L]), L (y)w (y)dy = w(x) ⇒ -K 4 = δ x hence K 4 (x, y) = Ay1 y<x + B(L -y)1 y>x , and one uses K 4 continuous at x = y to obtain the result of Item 4 of Lemma 1.
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 1112 ∀w ∈ H s (R d ), < u x0 , w >= u(x 0 ) ⇔ u x0 (y) = u 0 (y-x 0 ), with û0 (ξ) = 1 |ξ| 2s . Hence u 0 (x) = 1 (2π) d R d e ix.ξ 1+|ξ| 2s dξ = 2π) d +∞ 0 r d-1 dr 1+r 2s S d-1 e ix.rω d S d-1 ω = Hankel (g s,d )(|x|).

  The norms ||u|| H s (R d ) and (4) are equivalent 2. The reproducing kernel of H s (R d ) with the norm (4) is
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