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FLUCTUATIONS OF THE LOCAL TIMES OF THE SELF-REPELLING RANDOM WALK
WITH DIRECTED EDGES

LAURE MARÊCHÉ

Abstract. In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian
random walk on Z: in this model, the probability that the walk moves from a point of Z to a given neighbor depends on
the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge.
They found this model had a very peculiar behavior, as the process formed by the local times of all the edges, evaluated
at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random
one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit,
about which nothing was previously known. We prove that these fluctuations converge in the Skorohod M1 topology,
as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorohod
topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.

MSC2020: Primary 60F17; Secondary 60G50, 60K35, 82C41.
Keywords: Self-interacting random walks, self-repelling random walk with directed edges, local times, functional
limit theorems, fluctuations.

1. Introduction and results

1.1. Self-interacting random walks. The study of self-interacting random walks began in 1983 in an article of
Amit et al. [1]. Before [1], the expression “self-avoiding random walk” referred to paths on graphs that do not intersect
themselves. However, these are not easy to construct step by step, hence one would consider the set of all possible
paths of a given length. Since one does not follow a single path as it grows with time, it is not really a random walk
model. In order to work with an actual random walk model with a self-avoiding behavior, the authors of [1] introduced
the “true” self-avoiding random walk. It is a random walk on Zd for which, at each step, the position of the process
at the next step is chosen randomly among the neighbors of the current position depending on the number of the
previous visits to said neighbors, with lower probabilities for those that have been visited the most. This process is a
random walk in the sense that it is constructed step by step, but contrary to most random walks in the literature, it
is non-Markovian: at each step, the law of the next step depends on the whole past of the process.

It turns out that the “true” self-avoiding random walk is hard to study. This led to the introduction by Tóth
[13, 14, 15] of non-Markovian random walks with bond repulsion, for which the probability to go from one site to
another, instead of depending of the number of previous visits to the target, depends on the number of previous
crossings of the undirected edge between the two sites, which is called the local time of the edge, with lower probabilities
for the edges that were crossed the most in the past. These walks are much easier to study, at least on Z, because
one can apply the Ray-Knight approach to them. This approach was introduced by Ray and Knight in [11, 2], and
used for the first time for non-Markovian random walks by Tóth in [13, 14, 15]. Since then, it was applied to many
other non-Markovian random walks, such as a continuous-time version of the “true” self-avoiding random walk in [18],
edge-reinforced random walks (see the corresponding part of the review [9] and references therein) and excited random
walks (see [3] and references therein). The Ray-Knight approach works as follows: though the random walk itself is
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not Markovian, if we stop it when the local time at a given edge has reached a certain threshold, then the local times
on the edges will form a Markov chain, which allows their analysis. Thanks to this approach, Tóth was able to prove
scaling limits for the local times process for many different random walks with bond repulsion in his works [13, 14, 15].
The law of the limit depends on the random walk model, but it is always a random process1.

1.2. The self-repelling random walk with directed edges. In 2008, Tóth and Vető [17] introduced a process
seemingly very similar to the aforementioned random walks with bond repulsion, in which the probability to go from
one site to another depends on the number of crossings of the directed edge between them instead of the crossings of the
undirected edge. This process, called self-repelling random walk with directed edges, is a nearest-neighbor random walk
on Z defined as follows. For any set A, we denote by |A| the cardinal of A. Let w : Z 7→ (0,+∞) be a non-decreasing
and non-constant function. We will denote the walk by (Xn)n∈N. We set X0 = 0, and for any n ∈ N, i ∈ Z, we denote
ℓ±(n, i) = |{0 ≤ m ≤ n − 1 | (Xm, Xm+1) = (i, i ± 1)}| the number of crossings of the directed edge (i, i ± 1) before
time n, that is the local time of the directed edge at time n. Then

P(Xn+1 = Xn ± 1) =
w(±(ℓ−(n,Xn)− ℓ+(n,Xn)))

w(ℓ+(n,Xn)− ℓ−(n,Xn)) + w(ℓ−(n,Xn)− ℓ+(n,Xn))
.

Using the local time of directed edges instead of that of undirected edges may seem like a very small change in
the definition of the process, but the behavior of the self-repelling random walk with directed edges is actually very
different from that of classical random walks with bond repulsion. Indeed, Tóth and Vető [17] were able to prove that
the local times process has a deterministic scaling limit, which is in sharp contrast with the random limit processes
obtained for the random walks with bond repulsion on undirected edges [13, 14, 15] and even for the simple random
walk [2].

The result of [17] is as follows. For any a ∈ R, we denote a+ = max(a, 0). If for any n ∈ N, i ∈ Z, we denote by
T±
n,i the stopping time defined by T±

n,i = min{m ∈ N | ℓ±(m, i) = n}, then T±
n,i is almost-surely finite by Proposition 1

of [17] and we have the following.

Theorem (Theorem 1 of [17]). For any θ > 0, x ∈ R, then supy∈R | 1N ℓ+(T±
⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋)− ( |x|−|y|

2 + θ)+| converges
in probability to 0 when N tends to +∞.

Thus the local times process of the self-repelling random walk with directed edges admits the deterministic scaling
limit : y 7→ ( |x|−|y|

2 + θ)+, which has the shape of a triangle. This also implies the following convergence result to a
deterministic limit for the T±

⌊Nθ⌋,⌊Nx⌋.

Proposition (Corollary 1 of [17]). For any θ > 0, x ∈ R, then 1
N2T

±
⌊Nθ⌋,⌊Nx⌋ converges in probability to (|x| + 2θ)2

when N tends to +∞.

The deterministic character of these limits makes the behavior of the self-repelling random walk with directed edges
very unusual, hence worthy of study. In particular, it is natural to consider the possible fluctuations of the local times
process and of the T±

⌊Nθ⌋,⌊Nx⌋ around their deterministic limits. However, prior to this paper, nothing was known about
these fluctuations. In this work, we prove convergence in distribution of the fluctuations of the local times process
and of the T±

⌊Nθ⌋,⌊Nx⌋. It happens that the limit of the fluctuations of the local times process is discontinuous, hence
before stating the results, we have to be careful of the topology in which it may converge.

1The model studied by Tóth in [16] has a deterministic limit, but it is not a random walk with bond repulsion, as it is self-attracting :
the more an edge was crossed in the past, the more likely it is to be crossed in the future.
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1.3. Topologies for the convergence of the local times process. For any interval I ⊂ R, let DI be the space of
càdlàg functions on I, that is the set of functions : I 7→ R that are right-continuous and have left limits everywhere in
I. For any function Z : I 7→ R, we denote by ∥Z∥∞ = supy∈I |Z(y)| the uniform norm of Z on I. The uniform norm
on I gives a topology on DI, but it is often too strong to deal with discontinuous functions.

For discontinuous càdlàg functions, the most widely used topology is the Skorohod J1 topology, introduced by
Skorohod in [12] (see chapter VI of [10] for a course), which is often called “the” Skorohod topology. Intuitively, two
functions are close in this topology if they are close for the uniform norm after allowing some small perturbation of
time. Rigorously, for a < b in R the Skorohod J1 topology on D[a, b] is defined as follows. We call Λa,b the set
of functions λ : [a, b] 7→ [a, b] that are bijective, strictly increasing and continuous (they correspond to the possible
perturbations of time), and we denote by Ida,b : [a, b] 7→ [a, b] the identity map, defined by Ida,b(y) = y for all
y ∈ [a, b]. The Skorohod J1 topology on D[a, b] is defined through the following metric: for any Z1, Z2 ∈ D[a, b], we
set dJ1,a,b(Z1, Z2) = infλ∈Λa,b

max(∥Z1 ◦ λ− Z2∥∞, ∥λ− Ida,b∥∞). It can be proven rather easily that this is indeed a
metric. We can then define the Skorohod J1 topology in D(−∞,∞) with the following metric: if for any sets A1 ⊂ A2

and A3 and any function Z : A2 7→ A3, we denote Z|A1 the restriction of Z to A1, then for Z1, Z2 ∈ D(−∞,∞), we
set dJ1(Z1, Z2) =

∫ +∞
0 e−a(dJ1,−a,a(Z1|[−a,a], Z2|[−a,a]) ∧ 1)da. The Skorohod J1 topology is widely used to study the

convergence of càdlàg functions. However, when the limit function has a jump, which will be the case here, convergence
in the Skorohod J1 topology requires the converging functions to have a single big jump approximating the jump of
the limit process. To account for other cases, like having the jump of the limit functions approximated by several
smaller jumps in quick succession or by a very steep continuous slope, one has to use a less restrictive topology, like
the Skorohod M1 topology.

The Skorohod M1 topology was also introduced by Skorohod in [12] (see Section 3.3 of [19] for an overview). For
any a < b in R, the Skorohod M1 distance on D[a, b] is defined as follows: the distance between two functions will
be roughly “the distance between the completed graphs of the functions”. More rigorously, if Z ∈ D[a, b], we denote
Z(a−) = Z(a) and for any y ∈ (a, b], we denote Z(y−) = limy′→y,y′<y Z(y′). Then the completed graph of Z is
ΓZ = {(y, z) | y ∈ [a, b], ∃ ε ∈ [0, 1] so that z = εZ(y−) + (1 − ε)Z(y)}. To express the “distance between two such
completed graphs”, we need to define the parametric representations of ΓZ (by abuse of notation, we will often write
“the parametric representations of Z”). We define an order on ΓZ as follows: for (y1, z1), (y2, z2) ∈ ΓZ , we have
(y1, z1) ≤ (y2, z2) when y1 < y2 or when y1 = y2 and |Z(y−1 ) − z1| ≤ |Z(y−1 ) − z2|. A parametric representation of
ΓZ is a continuous, surjective function (u, r) : [0, 1] 7→ ΓZ that is non-decreasing with respect to this order, thus
intuitively, when t goes from 0 to 1, (u(t), r(t)) “travels through the completed graph of Z from its beginning to its
end”. A parametric representation of Z always exists (see Remark 12.3.3 in [19]). For Z1, Z2 ∈ D[a, b], the Skorohod
M1 distance between Z1 and Z2, denoted by dM1,a,b(Z1, Z2), is inf{max(∥u1 − u2∥∞, ∥r1 − r2∥∞)} where the infimum
is on the parametric representations (u1, r1) of Z1 and (u2, r2) of Z2. It can be proven that this indeed gives a
metric (see Theorem 12.3.1 of [19]), and this metric defines the Skorohod M1 topology on D[a, b]. For any a > 0,
we will denote dM1,−a,a by dM1,a for short. We can now define the Skorohod M1 topology in D(−∞,∞) through
the following metric: for Z1, Z2 ∈ D(−∞,∞), we set dM1(Z1, Z2) =

∫ +∞
0 e−a(dM1,a(Z1|[−a,a], Z2|[−a,a]) ∧ 1)da. It

can be seen that the Skorohod M1 topology is weaker than the Skorohod J1 topology (see Theorem 12.3.2 of [19]),
thus less restrictive. Indeed, since the distance between two functions is roughly “the distance between the completed
graphs of the functions”, the Skorohod M1 topology will allow a function with a jump to be the limit of functions with
steep slopes or with several smaller jumps. For this reason, the Skorohod M1 topology is often more adapted when
considering convergence to a discontinuous function.
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1.4. Results. We are now ready to state our results on the convergence of the fluctuations of the local times process.
For any θ > 0, x ∈ R, ι ∈ {+,−}, for any N ∈ N∗, we define functions Y −

N , Y +
N as follows: for any y ∈ R, we set

Y ±
N (y) =

1√
N

(
ℓ±(T ι

⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋)−N

(
|x| − |y|

2
+ θ

)
+

)
.

Y ±
N actually depends on ι, but we do not write this dependency in the notation to make it lighter. Moreover, (Bx

y )y∈R
will denote a two-sided Brownian motion with Bx

x = 0 and variance Var(ρ−), where ρ− is the distribution on Z defined
later in (3). We proved the following convergence for the fluctuations of the local times process of the self-repelling
random walk with directed edges.

Theorem 1. For any θ > 0, x ∈ R, ι ∈ {+,−}, the process Y ±
N converges in distribution to (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R
in the Skorohod M1 topology on D(−∞,+∞) when N tends to +∞.

Therefore the fluctuations of the local times process have a diffusive limit behavior. However, it is necessary to use
the Skorohod M1 topology here, as the following result states the convergence does not occur in the stronger Skorohod
J1 topology.

Proposition 2. For any θ > 0, x ∈ R, ι ∈ {+,−}, the process Y ±
N does not converge in distribution in the Skorohod

J1 topology on D(−∞,+∞) when N tends to +∞.

We stress the fact that the use of the Skorohod M1 topology is only required to deal with the discontinuities of the
limit process at −|x| − 2θ and |x|+ 2θ. Indeed, if we consider the convergence of the process on an interval that does
not include −|x| − 2θ or |x|+ 2θ, it converges in the much stronger topology given by the uniform norm, which is the
following result.

Proposition 3. For any θ > 0, x ∈ R, ι ∈ {+,−}, for any closed interval I ∈ R that does not contain −|x| − 2θ or
|x| + 2θ, the process (Y ±

N (y))y∈I converges in distribution to (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈I in the topology on DI given

by the uniform norm when N tends to +∞.

Finally, we also proved the convergence of the fluctuations of T±
⌊Nθ⌋,⌊Nx⌋. For any σ2 > 0, we denote by N (0, σ2)

the Gaussian distribution with mean 0 and variance σ2, and we recall that ρ− will be defined in (3). We then have
the following.

Proposition 4. For any θ > 0, x ∈ R, ι ∈ {+,−}, we have that 1
N3/2 (T

ι
⌊Nθ⌋,⌊Nx⌋ − N2(|x| + 2θ)2) converges in

distribution to N (0, 323 Var(ρ−)((|x|+ θ)3 + θ3)) when N tends to +∞.

Remark 5. Instead of studying the fluctuations of ℓ±(T ι
⌊Nθ⌋,⌊Nx⌋, .), it would seem more natural to consider those

of ℓ±(N2, .). However, the Ray-Knight arguments that allow to study ℓ±(T ι
⌊Nθ⌋,⌊Nx⌋, .) completely break down for

ℓ±(N2, .), and it is not even clear whether these two processes should have the same behavior.

Remark 6. Besides the article of Tóth and Vető [17] that introduced the self-repelling random walk with directed edges,
there have been few other works on this model. These works were motivated by another important question, that of
the existence of a scaling limit for (Xn)n∈N, which means the convergence in distribution of the process ( 1

NαX⌊Nt⌋)t≥0

for some α. Obtaining such a scaling limit for the trajectory of the random walk is harder that obtaining scaling limits
for the local times. Indeed, for the random walks with bond repulsion with undirected edges introduced by Tóth
in [13, 14, 15], the scaling limits for the local times are known since the introduction of the models, but the scaling
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limits for the trajectories are not. Some results were proven by Kosygina, Mountford and Peterson in [4], but they do
not cover all models. For the self-repelling random walk with directed edges, the behavior of the scaling limit of the
trajectory turns out to be surprising. Indeed, Mountford, Pimentel, and Valle proved in [7] that 1√

N
XN converges in

distribution, but Mountford and the author showed in [6] that ( 1√
N
X⌊Nt⌋)t≥0 does not converge in distribution, and

that the trajectories of the walk satisfy a more complex limit theorem, of a new kind.

1.5. Proof ideas. We begin by explaining why the limit of the local times process Y ±
N is (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R
and the ideas behind the proofs of Theorem 1 and Proposition 3. To show the convergence of the local times process,
we use a Ray-Knight argument, that is we notice that (ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, i))i is a Markov chain. Moreover, as long as
ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, i) is not too low, the ℓ−(T ι
⌊Nθ⌋,⌊Nx⌋, i+ 1)− ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, i) will roughly be i.i.d. random variables in
the sense that they can be coupled with i.i.d. random variables with a high probability to be equal to them. This
coupling was already used in [17] to prove the convergence of 1

N ℓ+(T±
⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋) to its deterministic limit (for a

given y, the coupling makes this convergence a law of large numbers). However, when ℓ−(T ι
⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋) is too low,

the coupling fails and the ℓ−(T ι
⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋+ 1)− ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋) are no longer i.i.d. We have to prove that
this occurs only around |x| + 2θ and −|x| − 2θ, and most of our work is dealing with what happens there. To show
it occurs only around |x| + 2θ and −|x| − 2θ, we control the amplitude of the fluctuations to prove the local times
are close to their deterministic limit. This limit is large inside (−|x| − 2θ, |x|+ 2θ), so we can use the coupling inside
this interval, thus the ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋+ 1)− ℓ−(T ι
⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋) are roughly i.i.d. there, hence the fluctuations

will converge to a Brownian motion by Donsker’s Invariance Principle. When we are close to |x| + 2θ (the same
reasoning works for −|x| − 2θ) the deterministic limit will be small hence the local times too, and tools of [17] allow
to prove that they reach 0 quickly. Once they reach 0, we notice that for y ≥ |x| + 2θ, if ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋) = 0,
the walk X did not go from ⌊Ny⌋ to ⌊Ny⌋ + 1 before time T ι

⌊Nθ⌋,⌊Nx⌋, so it did not go to ⌊Ny⌋ + 1 before time
T ι
⌊Nθ⌋,⌊Nx⌋, hence ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, j) = 0 for any j ≥ ⌊Ny⌋. Therefore, once the local times process reaches 0, it stays
there. Consequently, we expect ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, ⌊Ny⌋) to be 0 when y > |x| + 2θ, and thus to have no fluctuations
when y > |x| + 2θ, and similarly when y < −|x| − 2θ. This is why our limit is (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R. Since
Proposition 3 only describes convergence away from −|x|−2θ and |x|+2θ, the previous arguments are enough to prove
it. To prove the convergence in the Skorohod M1 topology on D(−∞,+∞) stated in Theorem 1, we need to handle
what happens around −|x| − 2θ and |x|+ 2θ with more precision. We first have to bound the difference between the
local times and the i.i.d. random variables of the coupling even where the coupling fails. Afterwards comes the most
important part of the paper: defining parametric representations of Y ±

N and of the sum of the i.i.d. random variables
of the coupling, properly renormalized and set to 0 outside of [−|x| − 2θ, |x| + 2θ), and then proving that they are
close to each other. That allows to prove Y ±

N is close in the Skorohod M1 distance to a process that will converge in
distribution to (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R in the Skorohod M1 topology and to complete the proof of Theorem 1.
To prove Proposition 2, that is that Y ±

N does not converge in the J1 topology, we first notice that since the J1 topology
is stronger than the M1 topology, if Y ±

N did converge in the J1 topology its limit would be (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R.

However, it is not possible, as (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R has a jump at |x|+ 2θ, while the jumps of Y ±

N have typical
size of order 1√

N
, so the jump in (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R is approximated in Y ±
N by either a sequence of small

jumps or a continuous slope, which prevents the convergence in the Skorohod J1 topology.
Finally, to prove Proposition 4 on the fluctuations of T ι

⌊Nθ⌋,⌊Nx⌋, we use the fact that we have T ι
⌊Nθ⌋,⌊Nx⌋ =∑

i∈Z(ℓ
+(T ι

⌊Nθ⌋,⌊Nx⌋, i) + ℓ−(T ι
⌊Nθ⌋,⌊Nx⌋, i)). It can be checked that |ℓ+(T ι

⌊Nθ⌋,⌊Nx⌋, i)− ℓ−(T ι
⌊Nθ⌋,⌊Nx⌋, i+ 1)| = 0 or 1,
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hence controlling the ℓ−(T ι
⌊Nθ⌋,⌊Nx⌋, i) is enough. By using the coupling for the ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, i+1)− ℓ−(T ι
⌊Nθ⌋,⌊Nx⌋, i)

when ℓ−(T ι
⌊Nθ⌋,⌊Nx⌋, i) is high enough and our estimates on the size of the window in which ℓ−(T ι

⌊Nθ⌋,⌊Nx⌋, i) is neither
high enough nor 0, we can prove that T ι

⌊Nθ⌋,⌊Nx⌋ is close to the integral of the sum of the i.i.d. random variables of
the coupling, which will yield the convergence.

1.6. Organization of the paper. In Section 2, we define the coupling between the increments of the local time and
i.i.d. random variables and prove some of its properties. In Section 3, we control where the local times hit 0, as well
as where the local times are too low for the coupling of Section 2 to be useful. In Section 4, we prove a bound on the
Skorohod M1 distance between Y ±

N and the renormalized sum of the i.i.d. random variables of the coupling set to 0
outside of [−|x| − 2θ, |x| + 2θ) by writing explicit parametric representations of the two functions. In Section 5, we
complete the proof of the convergence of Y ±

N stated in Theorem 1 and Proposition 3. In Section 6, we prove that as
claimed in Proposition 2, Y ±

N does not converge in the J1 topology. Finally, in Section 7, we prove the convergence of
the fluctuations of T±

⌊Nθ⌋,⌊Nx⌋ stated in Proposition 4.
In what follows, we set θ > 0, ι ∈ {+,−} and x > 0 (the cases x < 0 and x = 0 can be dealt with in the same way).

To shorten the notation, we denote TN = T ι
⌊Nθ⌋,⌊Nx⌋. Moreover, for any a, b ∈ R, we denote a ∨ b = max(a, b) and

a ∧ b = min(a, b).

2. Coupling of the local times increments with i.i.d. random variables

Our goal in this section will be to couple the ℓ±(TN , i + 1) − ℓ±(TN , i) with i.i.d. random variables and to prove
some properties of this coupling. This part of the work is not very different from what was done in [17], but we
still recall their concepts and definitions. If we fix i ∈ Z and observe the evolution of (ℓ−(n, i) − ℓ+(n, i))n∈N,
and if we ignore the steps at which ℓ−(n, i) − ℓ+(n, i) does not move (i.e. those at which the random walk is not
at i), we obtain a Markov chain ξi whose distribution ξ has the following transition probabilities: for all n ∈ N,
P(ξ(n + 1) = ξ(n) ± 1) = w(∓ξ(n))

w(ξ(n))+w(−ξ(n)) , and so that ξi(0) = 0. Now, we denote τi,±(0) = 0 and for any n ∈ N,
we denote τi,±(n + 1) = inf{m > τi,±(n) | ξi(m) = ξi(m − 1) ± 1}, so that τi,+(n) is the time of the n-th upwards
step of ξi and τi,−(n) is the time of the n-th downwards step of ξi. Then since the distribution of ξ is symmetric, the
processes (ηi,+(n))n∈N = (−ξi(τi,+(n)))n∈N and (ηi,−(n))n∈N = (ξi(τi,−(n)))n∈N have the same distribution, called η,
and it can be checked that η is a Markov chain.

We are going to give an expression of ℓ±(TN , i + 1) − ℓ±(TN , i) depending on the ηi,−, ηi,+. We assume N large
enough (so that ⌊Nx⌋−1 > 0). By definition of TN we have XTN

= ⌊Nx⌋ι1. If i ≤ 0 we thus have XTN
> i, so the last

step of the walk at i before TN was going to the right, so the last step of ξi was a downwards step, and by definition
of ℓ+(TN , i) we have that ξi made ℓ+(TN , i) downwards steps, hence ℓ−(TN , i) − ℓ+(TN , i) = ξi(τi,−(ℓ

+(TN , i))) =
ηi,−(ℓ

+(TN , i)), which yields ℓ−(TN , i) − ℓ+(TN , i) = ηi,−(ℓ
+(TN , i)). In addition, ℓ−(TN , i) = ℓ+(TN , i − 1), hence

ℓ+(TN , i − 1) = ℓ+(TN , i) + ηi,−(ℓ
+(TN , i)). If 0 < i < ⌊Nx⌋ (for ι = −) or 0 < i ≤ ⌊Nx⌋ (for ι = +), the last

step of the walk at i was also going to the right, so we also have ℓ−(TN , i) − ℓ+(TN , i) = ηi,−(ℓ
+(TN , i)). However,

ℓ−(TN , i) = ℓ+(TN , i − 1) − 1, so ℓ+(TN , i − 1) = ℓ+(TN , i) + ηi,−(ℓ
+(TN , i)) + 1. Finally, if i ≥ ⌊Nx⌋ (for ι = −) or

i > ⌊Nx⌋ (for ι = +), then the last step of the walk at i was going to the left, so the last step of ξi was an upwards
step, and ξi made ℓ−(TN , i) upwards steps, therefore ℓ−(TN , i) − ℓ+(TN , i) = ξi(τi,+(ℓ

−(TN , i))) = −ηi,+(ℓ
−(TN , i)),

which yields ℓ−(TN , i) − ℓ+(TN , i) = −ηi,+(ℓ
−(TN , i)). Moreover, ℓ+(TN , i) = ℓ−(TN , i + 1), hence ℓ−(TN , i + 1) =

ℓ−(TN , i) + ηi,+(ℓ
−(TN , i)).

We are going to use these results to deduce an expression of the ℓ±(TN , i) which will be very useful through-
out this work. Denoting χ(N) = ⌊Nx⌋ if ι = − and χ(N) = ⌊Nx⌋ + 1 if ι = +, for i ≥ χ(N) we have
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ℓ−(TN , i) = ℓ−(TN , χ(N)) +
∑i−1

j=χ(N) ηj,+(ℓ
−(TN , j)), and for i < χ(N) we have ℓ+(TN , i) = ℓ+(TN , χ(N) − 1) +∑χ(N)−1

j=i+1 (ηj,−(ℓ
+(TN , j)) + 1{j>0}). Now, we remember that the definition of TN implies ℓι(TN , ⌊Nx⌋) = ⌊Nθ⌋,

so if ι = − we have ℓ−(TN , χ(N)) = ⌊Nθ⌋ and ℓ+(TN , χ(N) − 1) = ℓ−(TN , χ(N)) = ⌊Nθ⌋, and if ι = + we have
ℓ+(TN , χ(N)−1) = ⌊Nθ⌋ and ℓ−(TN , χ(N)) = ℓ+(TN , χ(N)−1)−1 = ⌊Nθ⌋−1. Consequently, we have the following.

If i ≥ χ(N), ℓ−(TN , i) = ⌊Nθ⌋ − 1{ι=+} +
i−1∑

j=χ(N)

ηj,+(ℓ
−(TN , j)).

If i < χ(N), ℓ+(TN , i) = ⌊Nθ⌋+
χ(N)−1∑
j=i+1

(ηj,−(ℓ
+(TN , j)) + 1{j>0}).

(1)

We will also need to remember the following.

(2) If i ≥ χ(N), ℓ−(TN , i)−ℓ+(TN , i) = −ηi,+(ℓ
−(TN , i)). If i < χ(N), ℓ−(TN , i)−ℓ+(TN , i) = ηi,−(ℓ

+(TN , i)).

To couple the ℓ±(TN , i+1)− ℓ±(TN , i) with i.i.d. random variables, we need to understand the ηi,+(ℓ
−(TN , i)) and

the ηi,−(ℓ
+(TN , i)). [17] proved that the following measure ρ− is the unique invariant probability distribution of the

Markov chain η:

(3) ∀i ∈ Z, ρ−(i) =
1

R

⌊|2i+1|/2⌋∏
j=1

w(−j)

w(j)
with R =

∑
i∈Z

⌊|2i+1|/2⌋∏
j=1

w(−j)

w(j)
.

We also denote ρ0 the measure on 1
2 +Z defined by ρ0(·) = ρ−(· − 1

2).
We are now in position to construct the coupling of the ℓ±(TN , i + 1) − ℓ±(TN , i) with i.i.d. random variables

(ζi)i∈Z. The idea is that η can be expected to converge to its invariant distribution ρ−, hence when ℓ±(TN , i) is large,
ηi,∓(ℓ

±(TN , i)) will be close to a random variable of law ρ−. More rigorously, we begin by defining an i.i.d. sequence
(ri)i∈Z of random variables of distribution ρ− so that for i ≥ χ(N) then P(ri ̸= ηi,+(⌊N1/6⌋)) is minimal, and for
i < χ(N) then P(ri ̸= ηi,−(⌊N1/6⌋)) is minimal. We can then define i.i.d. Markov chains (η̄i,+(n))n≥⌊N1/6⌋ for i ≥ χ(N)

and (η̄i,−(n))n≥⌊N1/6⌋ for i < χ(N) so that η̄i,±(⌊N1/6⌋) = ri, η̄i,± is a Markov chain of distribution that of η, and if
η̄i,±(⌊N1/6⌋) = ηi,±(⌊N1/6⌋) then η̄i,±(n) = ηi,±(n) for any n ≥ ⌊N1/6⌋. Since ρ− is invariant for η, if n ≥ ⌊N1/6⌋, the
η̄i,+(n) for i ≥ χ(N) and η̄i,−(n) for i < χ(N) have distribution ρ−. We define the random variables (ζi)i∈Z as follows:
for i ≥ χ(N) we set ζi = η̄i,+(ℓ

−(TN , i) ∨ ⌊N1/6⌋) + 1
2 , and for i < χ(N) we set ζi = η̄i,−(ℓ

+(TN , i) ∨ ⌊N1/6⌋) + 1
2 .

For i ≥ χ(N), (1) implies that ℓ−(TN , i) depends only on the ηj,+, χ(N) ≤ j ≤ i− 1, hence is independent from η̄i,+,
which implies ζi has distribution ρ0 and is independent from the ζj , χ(N) ≤ j ≤ i− 1. This and a similar argument
for i < χ(N) implies the (ζi)i∈Z are i.i.d. with distribution ρ0.

We will prove several properties of (ζi)i∈Z that we will use in the remainder of the proof. In order to do that, we
need the following lemma of [17].

Lemma 7 (Lemma 1 of [17]). There exist two constants c̃ = c̃(w) > 0 and C̃ = C̃(w) < +∞ so that for any n ∈ N,

P(η(n) = i|η(0) = 0) ≤ C̃e−c̃|i| and
∑
i∈Z

|P(η(n) = i|η(0) = 0)− ρ−(i)| ≤ C̃e−c̃n.

Firstly, we want to prove that our coupling is actually useful: that the ζi are close to the ℓ±(TN , i+ 1)− ℓ±(TN , i).
More precisely, we will show that except on an event of probability tending to 0, if ℓ±(TN , i) is large then ζi =
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ηi,∓(ℓ
±(TN , i)) + 1/2, which (1) relates to ℓ±(TN , i+ 1)− ℓ±(TN , i). We denote

B−
1 = {∃ i ∈ {−⌈2(|x|+ 2θ)N⌉, ...., χ(N)− 1}, ℓ+(TN , i) ≥ ⌊N1/6⌋ and ζi ̸= ηi,−(ℓ

+(TN , i)) + 1/2},

B+
1 = {∃ i ∈ {χ(N), ...., ⌈2(|x|+ 2θ)N⌉}, ℓ−(TN , i) ≥ ⌊N1/6⌋ and ζi ̸= ηi,+(ℓ

−(TN , i)) + 1/2}.
(4)

Lemma 7 will allow us to prove the following.

Lemma 8. P(B−
1 ) and P(B+

1 ) tend to 0 when N → +∞.

Proof. By definition, for any i ∈ {−⌈2(|x|+ 2θ)N⌉, ...., χ(N)− 1} we have ζi = η̄i,−(ℓ
+(TN , i) ∨ ⌊N1/6⌋) + 1

2 , which is
η̄i,−(ℓ

+(TN , i))+1
2 when ℓ+(TN , i) ≥ ⌊N1/6⌋. Now, η̄i,− = ηi,− if η̄i,−(⌊N1/6⌋) = ηi,−(⌊N1/6⌋), that is ri = ηi,−(⌊N1/6⌋).

We deduce P(B−
1 ) ≤ P(∃ i ∈ {−⌈2(|x| + 2θ)N⌉, ...., χ(N) − 1}, ri ̸= ηi,−(⌊N1/6⌋)). Now, for any i < χ(N), we have

P(ri ̸= ηi,−(⌊N1/6⌋)) minimal, thus smaller than C̃e−c̃⌊N1/6⌋ by Lemma 7. Consequently, when N is large enough,
P(B−

1 ) ≤ 3(|x|+ 2θ)NC̃e−c̃⌊N1/6⌋, which tends to 0 when N → +∞. The proof for P(B+
1 ) is the same. □

Unfortunately, the previous lemma does not allow to control the local times when ℓ±(TN , i) is small. In order to do
that, we show several additional properties. We have to control the probability of

B2 ={∃ i ∈ {−⌈2(|x|+ 2θ)N⌉, ...., ⌈2(|x|+ 2θ)N⌉}, |ζi| ≥ N1/16}

∪ {∃ i ∈ {−⌈2(|x|+ 2θ)N⌉, ...., χ(N)− 1}, |ηi,−(ℓ+(TN , i)) + 1/2| ≥ N1/16}

∪ {∃ i ∈ {χ(N), ...., ⌈2(|x|+ 2θ)N⌉}, |ηi,+(ℓ−(TN , i)) + 1/2| ≥ N1/16}.

Lemma 9. P(B2) tends to 0 when N tends to +∞.

Proof. It is enough to find some constants c > 0 and C < +∞ so that for any i ∈ {−⌈2(|x|+2θ)N⌉, ...., ⌈2(|x|+2θ)N⌉}
we have P(|ζi| ≥ N1/16) ≤ Ce−cN1/16 , for any i ∈ {−⌈2(|x|+2θ)N⌉, ...., χ(N)−1} we have P(|ηi,−(ℓ+(TN , i))+1/2| ≥
N1/16) ≤ Ce−cN1/16 , and for all i ∈ {χ(N), ...., ⌈2(|x| + 2θ)N⌉} we have P(|ηi,+(ℓ−(TN , i)) + 1/2| ≥ N1/16) ≤
Ce−cN1/16 . For all i ∈ Z, ζi has distribution ρ0, which has exponential tails, hence there exists constants c′ =
c′(w) > 0 and C ′ = C ′(w) < +∞ so that for i ∈ {−⌈2(|x| + 2θ)N⌉, ...., ⌈2(|x| + 2θ)N⌉} we have P(|ζi| ≥ N1/16) ≤
C ′e−c′N1/16 . We now consider i ∈ {−⌈2(|x| + 2θ)N⌉, ...., χ(N) − 1} and P(|ηi,−(ℓ+(TN , i)) + 1/2| ≥ N1/16) (the
P(|ηi,+(ℓ−(TN , i)) + 1/2| ≥ N1/16) can be dealt with in the same way). Equation (1) implies ℓ+(TN , i) depends only
on the ηj,− for j > i, hence is independent of ηi,−. This implies P(|ηi,−(ℓ+(TN , i))+1/2| ≥ N1/16) =

∑
k∈NP(|ηi,−(k)+

1/2| ≥ N1/16)P(ℓ+(TN , i) = k). Therefore the first part of Lemma 7 implies P(|ηi,−(ℓ+(TN , i)) + 1/2| ≥ N1/16) ≤∑
k∈N

2C̃ec̃/2

1−e−c̃ e
−c̃N1/16

P(ℓ+(TN , i) = k) = 2C̃ec̃/2

1−e−c̃ e
−c̃N1/16 , which is enough. □

We will also need the following, which is a rather standard result of large deviations.

Lemma 10. For any α > 0, ε > 0, P(max0≤i1≤i2≤⌈Nα⌉ |
∑i2

i=i1
ζi| ≥ Nα/2+ε) tends to 0 when N → +∞.
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Proof. Let 0 ≤ i1 ≤ i2 ≤ ⌈Nα⌉, let us study P(|
∑i2

i=i1
ζi| ≥ Nα/2+ε). We know the ζi, i ∈ Z are i.i.d. with distribution

ρ0, and it can be checked that ρ0 is symmetric with respect to 0, so from that and the Markov inequality we get

P

(∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣ ≥ Nα/2+ε

)
≤ 2P

(
i2∑

i=i1

ζi ≥ Nα/2+ε

)
= 2P

(
exp

(
1

Nα/2

i2∑
i=i1

ζi

)
≥ exp(N ε)

)

≤ 2e−Nε
E

(
exp

(
1

Nα/2

i2∑
i=i1

ζi

))
≤ 2e−Nε

i2∏
i=i1

E

(
exp

(
1

Nα/2
ζi

))
.

(5)

Now, if ζ has distribution ρ0, we can write exp( 1
Nα/2 ζ) = 1 + 1

Nα/2 ζ +
1
2(

1
Nα/2 ζ)

2 exp( 1
Nα/2 ζ

′) with |ζ ′| ≤ |ζ|. Since ρ0
is symmetric with respect to 0, we have E(ζ) = 0, therefore

E

(
exp

(
1

Nα/2
ζ

))
= 1 + E

(
1

2

(
1

Nα/2
ζ

)2

exp

(
1

Nα/2
ζ ′
))

≤ 1 +
1

2Nα
E

(
ζ2 exp

(
1

Nα/2
|ζ|
))

.

Moreover, ρ0 has exponential tails, hence there exists constants C < +∞ and c > 0 so that E(ζ2ec |ζ|) ≤ C. When
N is large enough, 1

Nα/2 ≤ c, therefore E(exp( 1
Nα/2 ζ)) ≤ 1 + C

2Nα ≤ exp( C
2Nα ). Together with (5), this yields

P(|
∑i2

i=i1
ζi| ≥ Nα/2+ε) ≤ 2e−Nε

e(i2−i1+1) C
2Nα ≤ 2e−Nε

e(⌈N
α⌉+1) C

2Nα ≤ 2eCe−Nε when N is large enough. We deduce
that when N is large enough, P(max0≤i1≤i2≤⌈Nα⌉ |

∑i2
i=i1

ζi| ≥ Nα/2+ε) ≤ (⌈Nα⌉+1)22eCe−Nε , which tends to 0 when
N tends to +∞. □

We also prove an immediate application of Lemma 10, which we will use several times. If we define

B−
3 =

{
max

−⌊(|x|+2θ)N⌋−N3/4≤i1≤i2≤−⌊(|x|+2θ)N⌋+N3/4

∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣ ≥ N19/48

}
,

B+
3 =

{
max

⌊(|x|+2θ)N⌋−N3/4≤i1≤i2≤⌊(|x|+2θ)N⌋+N3/4

∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣ ≥ N19/48

}
,

we have the following lemma.

Lemma 11. P(B−
3 ) and P(B+

3 ) tend to 0 when N tends to +∞.

Proof. Since the (ζi)i∈Z are i.i.d., P(B+
3 ) = P(B−

3 ) = P(max0≤i1≤i2≤2⌈N3/4⌉ |
∑i2

i=i1
ζi| ≥ N19/48), which is smaller

than P(max0≤i1≤i2≤⌈N37/48⌉ |
∑i2

i=i1
ζi| ≥ N19/48) when N is large enough. Moreover, Lemma 10, used with α = 37/48

and ε = 1/96, yields that the latter probability tends to 0 when N tends to +∞. □

3. Where the local times approach 0

The aim of this section is twofold. Firstly, we need to control the place where ℓ−(TN , i) hits 0 when i is at the
right of 0, as well as the place where ℓ+(TN , i) hits 0 when i is at the left of 0. Secondly, we have to show that even
when ℓ±(TN , i) is close to 0, the local times do not stray too far away from the coupling. For any N ∈ N, we denote
I+ = inf{i ≥ χ(N) | ℓ−(TN , i) = 0} and I− = sup{i < χ(N) | ℓ+(TN , i) = 0}. We notice that ℓ+(TN , I−) = 0, and
from the definition of TN we have ℓ+(TN , i) > 0 for any 0 ≤ i ≤ χ(N)− 1, hence I− < 0. We first state an elementary
result that we will use many times in this work.
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Lemma 12. For any i ≥ I+ or i ≤ I− we have ℓ±(TN , i) = 0.

Proof. Since ℓ+(TN , I−) = 0 and the random walk is at ⌊Nx⌋ι1 > 0 at time TN , the random walk did not reach I−

before time TN , thus ℓ±(TN , i) = 0 for any i ≤ I−. Moreover, ℓ−(TN , χ(N)) > 0 by definition of TN , hence I+ > χ(N)
thus XTN

< I+ hence ℓ−(TN , I+) = 0 implies the random walk did not reach I+ before time TN , thus ℓ±(TN , i) = 0
for any i ≥ I+. □

We will also need the auxiliary random variables Ĩ+ = inf{i ≥ χ(N) | ℓ−(TN , i) ≤ ⌊N1/6⌋} and Ĩ− = sup{i <

χ(N) | ℓ+(TN , i) ≤ ⌊N1/6⌋}.

3.1. Place where we hit 0. We have the following result of control on I+ and I−.

Lemma 13. For any δ > 0, P(|I− + (|x|+ 2θ)N | ≥ N δ+1/2) and P(|I+ − (|x|+ 2θ)N | ≥ N δ+1/2) tend to 0 when N
tends to +∞.

Proof. The idea is to control the fluctuations of the local times around their deterministic limit: as long as ℓ±(TN , i)
is large, the ℓ±(TN , i + 1) − ℓ±(TN , i) will be close to the i.i.d. random variables of the coupling, so the fluctuations
of ℓ±(TN , i) around its deterministic limit are bounded and ℓ±(TN , i) can be small only when the deterministic limit
is small, that is around −(|x|+ 2θ)N and (|x|+ 2θ)N . We only spell out the proof for I−, as the argument for I+ is
similar. The fact that P(I− + (|x|+ 2θ)N ≤ −N δ+1/2) tends to 0 when N tends to +∞ comes from inequalities (51)
and (53) of [17], so we only have to prove that P(I− + (|x|+2θ)N ≥ N δ+1/2) tends to 0 when N tends to +∞. Since
I− ≤ Ĩ−, it is enough to prove that P(Ĩ−+(|x|+2θ)N ≥ N δ+1/2) tends to 0 when N tends to +∞. Since by Lemma 8
we have that P(B−

1 ) tends to 0 when N tends to +∞, it is enough to prove P(Ĩ−+(|x|+2θ)N ≥ N δ+1/2, (B−
1 )

c) tends
to 0 when N tends to +∞. We now assume N is large enough, Ĩ− + (|x| + 2θ)N ≥ N δ+1/2 and (B−

1 )
c. Then there

exists i ∈ {⌈−(|x|+2θ)N +N δ+1/2⌉, ..., χ(N)− 1} so that ℓ+(TN , i) ≤ ⌊N1/6⌋ and ℓ+(TN , j) > ⌊N1/6⌋ for all j ∈ {i+
1, ..., χ(N)−1}. Thus, by (1) we get ⌊Nθ⌋+

∑χ(N)−1
j=i+1 (ηj,−(ℓ

+(TN , j))+1{j>0}) = ℓ+(TN , i) ≤ ⌊N1/6⌋. Furthermore, for
all j ∈ {i+1, ..., χ(N)−1}, since (B−

1 )
c occurs and ℓ+(TN , j) > ⌊N1/6⌋, we have ηj,−(ℓ+(TN , j))+1/2 = ζj . We deduce

⌊Nθ⌋+
∑χ(N)−1

j=i+1 (ζj+(1{j>0}−1{j≤0})/2) ≤ ⌊N1/6⌋, thus
∑χ(N)−1

j=i+1 ζj+⌊Nθ⌋+
∑χ(N)−1

j=i+1 (1{j>0}−1{j≤0})/2 ≤ ⌊N1/6⌋.
Moreover, since i ∈ {⌈−(|x|+2θ)N+N δ+1/2⌉, ..., χ(N)−1} we have

∑χ(N)−1
j=i+1 (1{j>0}−1{j≤0})/2 = 1

2(χ(N)−1+ i) ≥
1
2(Nx−2−(|x|+2θ)N+N δ+1/2) = −θN+ 1

2N
δ+1/2−1. This yields

∑χ(N)−1
j=i+1 ζj+⌊Nθ⌋−θN+ 1

2N
δ+1/2−1 ≤ ⌊N1/6⌋,

hence
∑χ(N)−1

j=i+1 ζj ≤ −1
2N

δ+1/2 + ⌊N1/6⌋ + 2 ≤ −N (1+δ)/2 since N is large enough. Consequently, when N is large

enough, P(Ĩ− + (|x| + 2θ)N ≥ N δ+1/2, (B−
1 )

c) ≤ P(∃ i ∈ {⌈−(|x| + 2θ)N + N δ+1/2⌉, ..., χ(N) − 1},
∑χ(N)−1

j=i+1 ζj ≤
−N (1+δ)/2). Since the ζi, i ∈ Z are i.i.d., when N is large enough this yields P(Ĩ− + (|x|+ 2θ)N ≥ N δ+1/2, (B−

1 )
c) ≤

P(max0≤i1≤i2≤⌈N1+δ/2⌉ |
∑i2

i=i1
ζi| ≥ N (1+δ)/2), which tends to 0 when N tends to +∞ by Lemma 10 (applied with

α = 1+ δ/2 and ε = δ/4). This shows that P(I−+(|x|+2θ)N ≥ N δ+1/2) converges to 0 when N tends to +∞, which
ends the proof of Lemma 13. □

3.2. Control of low local times. We have to show that even when ℓ±(TN , i) is small, the local times are not too
far from the random variables of the coupling. In order to do that, we first prove that the window where ℓ±(TN , i) is
small but not zero, that is between Ĩ+ and I+ and between I− and Ĩ−, is small. Afterwards, we will give bounds on
what happens inside. We begin by showing the following easy result.

Lemma 14. P(Ĩ− ≥ 0) tends to 0 when N → +∞.
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Proof. Let N be large enough. If Ĩ− ≥ 0, there exists i ∈ {0, ..., ⌊Nx⌋} so that ℓ+(TN , i) ≤ ⌊N1/6⌋. Since N is
large enough, this implies ℓ+(TN , i) ≤ Nθ/2, therefore supy∈R | 1N ℓ+(TN , ⌊Ny⌋)− ( |x|−|y|

2 + θ)+| ≥ θ/2. Moreover, by
Theorem 1 of [17], supy∈R | 1N ℓ+(TN , ⌊Ny⌋)− ( |x|−|y|

2 + θ)+| converges in probability to 0 when N tends to +∞, hence
we deduce that P(supy∈R | 1N ℓ+(TN , ⌊Ny⌋) − ( |x|−|y|

2 + θ)+| ≥ θ/2) tends to 0 when N → +∞. Therefore P(Ĩ− ≥ 0)
tends to 0 when N → +∞. □

In order to control I+, I−, Ĩ+ and Ĩ−, we will use the fact the local times behave as the Markov chain L from [17],
defined as follows. We consider i.i.d. copies of the Markov chain η starting at 0, called (ηm)m∈N. For any m ∈ N, we
then set L(m+ 1) = L(m) + ηm(L(m)). We denote τ = inf{m ∈ N |L(m) ≤ 0}. The following was proven in [17].

Lemma 15 (Lemma 2 of [17]). There exists a constant K < +∞ so that for any k ∈ N we have E(τ |L(0) = k) ≤
3k +K.

Since the local times will behave as L, Lemma 15 implies that if the local time starts small, then the time at which
it reaches 0 has small expectation hence is not too large. This will help us to prove the following control on the window
where ℓ±(TN , i) is small but not zero.

Lemma 16. P(I+ − Ĩ+ ≥ N1/4) and P(Ĩ− − I− ≥ N1/4) tend to 0 when N → +∞.

Proof. Let N be large enough. We deal only with P(Ĩ− − I− ≥ N1/4), since P(I+ − Ĩ+ ≥ N1/4) can be dealt
with in the same way and with simpler arguments. Thanks to Lemma 14, it is enough to prove that P(Ĩ− − I− ≥
N1/4, Ĩ− < 0) tends to 0 when N → +∞. Moreover, if Ĩ− < 0, thanks to (1), for any i < Ĩ− we get ℓ+(TN , i) =

ℓ+(TN , Ĩ−) +
∑Ĩ−

j=i+1 ηj,−(ℓ
+(TN , j)), which allows to prove that (ℓ+(TN , Ĩ− − i))i∈N is a Markov chain with the

transition probabilities of L. Therefore we have (recalling the notations just before Lemma 15)

P
(
Ĩ− − I− ≥ N1/4, Ĩ− < 0

)
=

⌊N1/6⌋∑
k=0

P
(
Ĩ− − I− ≥ N1/4, Ĩ− < 0

∣∣∣ℓ+(TN , Ĩ−) = k
)
P
(
ℓ+(TN , Ĩ−) = k

)

=

⌊N1/6⌋∑
k=0

P
(
τ ≥ N1/4

∣∣∣L(0) = k
)
P
(
ℓ+(TN , Ĩ−) = k

)
≤

⌊N1/6⌋∑
k=0

1

N1/4
E(τ |L(0) = k)P(ℓ+(TN , Ĩ−) = k).

By Lemma 15 we deduce

P
(
Ĩ− − I− ≥ N1/4, Ĩ− < 0

)
≤ 1

N1/4

⌊N1/6⌋∑
k=0

(3k +K)P(ℓ+(TN , Ĩ−) = k) ≤ 3N1/6 +K

N1/4
≤ 4N−1/12

since N is large enough, hence P(Ĩ− − I− ≥ N1/4, Ĩ− < 0) tends to 0 when N → +∞, which ends the proof. □

We are now going to prove that even when ℓ±(TN , i) is small, the local times are not too far from the random
variables of the coupling. More precisely, for any n ∈ N, we define the following events.

B−
4 =

∃ i ∈ {I−, ..., χ(N)− 1},

∣∣∣∣∣∣
χ(N)−1∑
j=i+1

(ηj,−(ℓ
+(TN , j)) + 1/2)−

χ(N)−1∑
j=i+1

ζj

∣∣∣∣∣∣ ≥ N1/3

 ,
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B+
4 =

∃ i ∈ {χ(N), ..., I+},

∣∣∣∣∣∣
i−1∑

j=χ(N)

(ηj,+(ℓ
−(TN , j)) + 1/2)−

i−1∑
j=χ(N)

ζj

∣∣∣∣∣∣ ≥ N1/3

 .

Lemma 17. P(B−
4 ) and P(B+

4 ) tend to 0 when N tend to +∞.

Proof. The idea of the argument is that when ℓ±(TN , i) is large, ηi,∓(ℓ±(TN , i)) + 1/2 = ζi thanks to Lemma 8, that
the window where ℓ±(TN , i) is small is bounded by Lemma 16, and that inside this window the ηi,∓(ℓ

±(TN , i)) + 1/2,
ζi are also bounded by Lemma 9. We only spell out the proof for P(B−

4 ), since the proof for P(B+
4 ) is the same. By

Lemma 13, we have that P(I− ≤ −2(|x| + θ)N) tends to 0 when N tends to +∞. Furthermore, Lemma 16 implies
that P(Ĩ− − I− ≥ N1/4) tends to 0 when N tends to +∞. In addition, by Lemmas 8 and 9 we have that P(B−

1 ) and
P(B2) tend to 0 when N tends to +∞. Consequently, it is enough to prove that for N large enough, if (B−

1 )
c, (B2)

c

occur, if Ĩ− − I− < N1/4 and if I− > −2(|x| + θ)N , then (B−
4 )

c occurs. We assume (B−
1 )

c, (B2)
c, Ĩ− − I− < N1/4

and I− > −2(|x|+ θ)N . Since (B−
1 )

c occurs and Ĩ− ≥ I− > −2(|x|+ θ)N , we get ζi = ηj,−(ℓ
+(TN , j)) + 1/2 for any

i ∈ {Ĩ−+1, ..., χ(N)−1}. Therefore, if i ∈ {Ĩ−, ..., χ(N)−1} we get
∑χ(N)−1

j=i+1 (ηj,−(ℓ
+(TN , j))+1/2)−

∑χ(N)−1
j=i+1 ζj = 0,

and for i ∈ {I−, ..., Ĩ− − 1} we have∣∣∣∣∣∣
χ(N)−1∑
j=i+1

(ηj,−(ℓ
+(TN , j)) + 1/2)−

χ(N)−1∑
j=i+1

ζj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

Ĩ−∑
j=i+1

(ηj,−(ℓ
+(TN , j)) + 1/2)−

Ĩ−∑
j=i+1

ζj

∣∣∣∣∣∣
≤

Ĩ−∑
j=i+1

(
|ηj,−(ℓ+(TN , j)) + 1/2|+ |ζj |

)
≤ 2(Ĩ− − I−)N1/16

since (B−
2 )

c occurs, i+1 ≥ I− > −2(|x|+ θ)N and by definition Ĩ− ≤ χ(N)− 1 ≤ 2(|x|+ θ)N . Moreover, we assumed
Ĩ−−I− < N1/4, which implies |

∑χ(N)−1
j=i+1 (ηj,−(ℓ

+(TN , j))+1/2)−
∑χ(N)−1

j=i+1 ζj | ≤ 2N1/4N1/16 = 2N5/16 < N1/3 when N

is large enough. Consequently, for any i ∈ {I−, ..., χ(N)−1} we have |
∑χ(N)−1

j=i+1 (ηj,−(ℓ
+(TN , j))+1/2)−

∑χ(N)−1
j=i+1 ζj | <

N1/3, therefore (B−
4 )

c occurs, which ends the proof. □

4. Skorohod M1 distance

The goal of this section is to prove that when N is large, Y ±
N is close in the Skorohod M1 distance to the function

YN defined as follows. For any N large enough, for y ∈ R, we set YN (y) = 1√
N

∑χ(N)−1
i=⌊Ny⌋+1 ζi if y ∈ [−|x| − 2θ, χ(N)

N ),

YN (y) = 1√
N

∑⌊Ny⌋−1
i=χ(N) ζi if y ∈ [χ(N)

N , |x|+2θ), and YN (y) = 0 otherwise. We want to prove the following proposition.

Proposition 18. P(dM1(Y
±
N , YN ) > 3N−1/12) tends to 0 when N tends to +∞.

If we denote

B = B−
1 ∪ B+

1 ∪ B2 ∪ B−
3 ∪ B+

3 ∪ B−
4 ∪ B+

4 ∪ {|I− + (|x|+ 2θ)N | ≥ N3/4} ∪ {|I+ − (|x|+ 2θ)N | ≥ N3/4},
it will be enough to prove the following proposition.

Proposition 19. When N is large enough, for all a > 0 with |(|x| + 2θ) − a| > N−1/8, we have that Bc ⊂
{dM1,a(Y

±
N |[−a,a], YN |[−a,a]) ≤ 2N−1/12}.
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Proof of Proposition 18 given Proposition 19. We assume Proposition 19 holds. Then, when N is large enough, if
Bc occurs, for all a > 0 with |(|x| + 2θ) − a| > N−1/8 we have dM1,a(Y

±
N |[−a,a], YN |[−a,a]) ≤ 2N−1/12, which yields

dM1(Y
±
N , YN ) =

∫ +∞
0 e−a(dM1,a(Y

±
N |[−a,a], YN |[−a,a]) ∧ 1)da ≤

∫ +∞
0 e−a2N−1/12da + 2N−1/8 = 2N−1/12 + 2N−1/8 ≤

3N−1/12. This implies P(dM1(Y
±
N , YN ) > 3N−1/12) ≤ P(B) when N is large enough. In addition,

P(B) ≤P(B−
1 ) + P(B

+
1 ) + P(B2) + P(B−

3 ) + P(B
+
3 ) + P(B

−
4 ) + P(B

+
4 )

+ P(|I− + (|x|+ 2θ)N | ≥ N3/4) + P(|I+ − (|x|+ 2θ)N | ≥ N3/4).

Applying Lemmas 8, 9, 11, 13 and 17 implies P(B) tends to 0 when N tends to +∞, hence P(dM1(Y
±
N , YN ) > 3N−1/12)

tends to 0 when N tends to +∞, which is Proposition 18.
□

The remainder of this section is devoted to the proof of Proposition 19. The first thing we do is showing that
between (−(|x|+2θ)N)∨I−

N and ((|x|+2θ)N)∧I+
N , the functions Y ±

N and YN are close in uniform distance, which is the
following lemma.

Lemma 20. When N is large enough, if (B2)
c, (B−

4 )
c and (B+

4 )
c occur, then if I+ < (|x| + 2θ)N then for any

y ∈ [ (−(|x|+2θ)N)∨I−
N , ((|x|+2θ)N)∧I+

N ] we have |Y ±
N (y)− YN (y)| ≤ N−1/12, while if I+ ≥ (|x|+ 2θ)N we have |Y ±

N (y)−
YN (y)| ≤ N−1/12 for y ∈ [ (−(|x|+2θ)N)∨I−

N , ((|x|+2θ)N)∧I+
N ).

Proof of Lemma 20. Writing down the proof is only a technical matter, as the meaning of (B±
4 )

c is that the local times
are close to the process formed from the random variables of the coupling. (B2)

c is there to ensure that the difference
terms that appear will be small. We only spell out the proof for Y −, as the proof for Y + is similar. We assume (B2)

c,
(B−

4 )
c and (B+

4 )
c. Then if y ∈ [χ(N)

N , ((|x|+2θ)N)∧I+
N ] (if I+ ≥ (|x| + 2θ)N we exclude the case y = ((|x|+2θ)N)∧I+

N ) we
have y ∈ [χ(N)

N , |x| + 2θ), so |Y −
N (y) − YN (y)| = 1√

N
|ℓ−(TN , ⌊Ny⌋) − N( |x|−|y|

2 + θ)+ −
∑⌊Ny⌋−1

i=χ(N) ζi|, thus by (1) we
obtain the following:

|Y −
N (y)− YN (y)| = 1√

N

∣∣∣∣∣∣⌊Nθ⌋ − 1{ι=+} +

⌊Ny⌋−1∑
i=χ(N)

ηi,+(ℓ
−(TN , i))−N

(
|x| − |y|

2
+ θ

)
+

−
⌊Ny⌋−1∑
i=χ(N)

ζi

∣∣∣∣∣∣
≤ 1√

N

∣∣∣∣∣∣
⌊Ny⌋−1∑
i=χ(N)

ηi,+(ℓ
−(TN , i)) +

⌊Ny⌋ − χ(N)

2
−

⌊Ny⌋−1∑
i=χ(N)

ζi

∣∣∣∣∣∣+ 3√
N

=
1√
N

∣∣∣∣∣∣
⌊Ny⌋−1∑
i=χ(N)

(ηi,+(ℓ
−(TN , i)) + 1/2)−

⌊Ny⌋−1∑
i=χ(N)

ζi

∣∣∣∣∣∣+ 3√
N

.

Now, y ∈ [χ(N)
N , ((|x|+2θ)N)∧I+

N ] implies ⌊Ny⌋ ∈ {χ(N), ..., I+}, thus (B+
4 )

c yields |Y −
N (y)− YN (y)| ≤ 1√

N
N1/3 + 3√

N
≤

N−1/12 when N is large enough. We now consider the case y ∈ [ (−(|x|+2θ)N)∨I−
N , χ(N)

N ). Then y ∈ [−|x| − 2θ, χ(N)
N ),

hence |Y −
N (y) − YN (y)| = 1√

N
|ℓ−(TN , ⌊Ny⌋) − N( |x|−|y|

2 + θ)+ −
∑χ(N)−1

i=⌊Ny⌋+1 ζi|. Now, (2) yields |ℓ−(TN , ⌊Ny⌋) −
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ℓ+(TN , ⌊Ny⌋)| = |η⌊Ny⌋,−(ℓ
+(TN , ⌊Ny⌋))|, which is smaller than N1/16 + 1/2 thanks to (B2)

c. We deduce that

|Y −
N (y)− YN (y)| ≤ 1√

N
|ℓ+(TN , ⌊Ny⌋)−N( |x|−|y|

2 + θ)+ −
∑χ(N)−1

i=⌊Ny⌋+1 ζi|+
N1/16+1/2√

N
, thus (1) implies

|Y −
N (y)−YN (y)| ≤ 1√

N

∣∣∣∣∣∣⌊Nθ⌋+
χ(N)−1∑

i=⌊Ny⌋+1

(ηi,−(ℓ
+(TN , i)) + 1{i>0})−N

(
|x| − |y|

2
+ θ

)
+

−
χ(N)−1∑

i=⌊Ny⌋+1

ζi

∣∣∣∣∣∣+N1/16 + 1/2√
N

≤ 1√
N

∣∣∣∣∣∣
χ(N)−1∑

i=⌊Ny⌋+1

(ηi,−(ℓ
+(TN , i)) + 1{i>0}) +

⌊Ny⌋+ 1− χ(N)

2
−

χ(N)−1∑
i=⌊Ny⌋+1

ζi

∣∣∣∣∣∣+ N1/16 + 3√
N

≤ 1√
N

∣∣∣∣∣∣
χ(N)−1∑

i=⌊Ny⌋+1

(ηi,−(ℓ
+(TN , i)) + 1/2)−

χ(N)−1∑
i=⌊Ny⌋+1

ζi

∣∣∣∣∣∣+ N1/16 + 3√
N

.

Furthermore, y ∈ [ (−(|x|+2θ)N)∨I−
N , χ(N)

N ) implies ⌊Ny⌋ ∈ {I−, ..., χ(N) − 1}, hence (B−
4 )

c yields |Y −
N (y) − YN (y)| ≤

1√
N
N1/3 + N1/16+3√

N
≤ N−1/12 when N is large enough. Consequently, for any y ∈ [ (−(|x|+2θ)N)∨I−

N , ((|x|+2θ)N)∧I+
N ] we

have |Y −
N (y)− YN (y)| ≤ N−1/12, which ends the proof of Lemma 20. □

We now prove Proposition 19. Let a > 0 so that |(|x| + 2θ) − a| > N−1/8, we will prove that when N is large
enough, Bc ⊂ {dM1,a(Y

±
N |[−a,a], YN |[−a,a]) ≤ 2N−1/12}, and the threshold for N given by the proof will not depend on

the value of a. There will be two cases depending on if a is smaller than |x|+ 2θ or not.

4.1. Case a ∈ (0, |x|+ 2θ −N−1/8). This is the easier case. Indeed, the interval [−a, a] will then be contained in
[ (−(|x|+2θ)N)∨I−

N , ((|x|+2θ)N)∧I+
N ), inside which Y ±

N and YN are close for the uniform norm by Lemma 20. We may then
define parametric representations (u±N , r±N ) and (uN , rN ) of Y −

N |[−a,a] and YN |[−a,a] “following the graphs of Y ±
N |[−a,a]

and YN |[−a,a] together” so that u±N (t) = uN (t) for all t ∈ [0, 1], and ∥r±N − rN∥∞ ≤ supy∈[−a,a] |Y ±
N (y) − YN (y)| (an

explicit construction of these representations can be found in the first arXiv version of this paper [5]). We deduce
dM1,a(Y

±
N |[−a,a], YN |[−a,a]) ≤ supy∈[−a,a] |Y ±

N (y) − YN (y)|. Moreover, if Bc occurs, since a ∈ (0, |x| + 2θ −N−1/8), for
any y ∈ [−a, a] we have y ∈ (−|x|−2θ+N−1/8, |x|+2θ−N−1/8) thus −(|x|+2θ)N+N3/4 ≤ Ny ≤ (|x|+2θ)N−N3/4,
hence I− < Ny < I+, hence y ∈ ( (−(|x|+2θ)N)∨I−

N , ((|x|+2θ)N)∧I+
N ), so by Lemma 20 we have |Y ±

N (y)−YN (y)| ≤ N−1/12.
Consequently, if Bc occurs, dM1,a(Y

±
N |[−a,a], YN |[−a,a]) ≤ N−1/12.

4.2. Case a > |x|+ 2θ +N−1/8. This is the harder case, as we have to deal with what happens around |x| + 2θ
and −|x| − 2θ. We only write down the proof for Y −

N , since the proof for Y +
N is similar (one may remember that

(2) allows to bound the ℓ−(TN , i) − ℓ+(TN , i) when (B2)
c occurs, hence when Bc occurs). Once again, we will define

parametric representations (u−N , r−N ) and (uN , rN ) of Y −
N |[−a,a] and YN |[−a,a]. The definition will depend on whether

I+ ≤ ⌊(|x| + 2θ)N⌋ or not, and also on whether I− ≥ −⌊(|x| + 2θ)N⌋ or not. We explain it for abscissas in [0, a]
depending on whether I+ ≤ ⌊(|x| + 2θ)N⌋ or not; the construction for abscissas in [−a, 0] are similar depending
on whether I− ≥ −⌊(|x| + 2θ)N⌋ or not. We first assume I+ ≤ ⌊(|x| + 2θ)N⌋. Between 0 and I+

N , the parametric
representations will be, as in the case a ∈ (0, |x|+2θ−N−1/8), following the completed graphs of Y −

N and YN in parallel
(see Figure 1(a)). The next step, once (u−N , r−N ) reached ( I

+

N , Y −
N ( I

+

N )), is to freeze it there while (uN , rN ) follows the
graph of YN from ( I

+

N , YN ( I
+

N )) to (|x|+2θ, YN ((|x|+2θ))−) (see Figure 1(b)). For y ≥ I+

N we have ℓ−(TN , ⌊Ny⌋) = 0
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0 |
I+

N |
|x|+ 2θ

|a

Y −
N

YN

(a)

0 |
I+

N |
|x|+ 2θ

|a

Y −
N

YN

(b)

0 |
I+

N |
|x|+ 2θ

|a

Y −
N

YN

(c)

0 |
I+

N |
|x|+ 2θ

|a

Y −
N

YN

(d)

Figure 1. The successive steps of the parametric representations of Y −
N |[−a,a] and YN |[−a,a] if I+ ≤

⌊(|x|+ 2θ)N⌋. At each step, the parts of the graphs the parametric representations travel through are
thickened.

(see Lemma 12) thus YN (y) = −N( |x|−|y|
2 + θ)+, hence Y −

N : [ I
+

N , |x| + 2θ] 7→ R is affine. Therefore, the following
step is to move at the same time (u−N , r−N ) from ( I

+

N , Y −
N ( I

+

N )) to (|x|+ 2θ, Y −
N (|x|+ 2θ)) = (|x|+ 2θ, 0) and (uN , rN )

from (|x|+ 2θ, YN ((|x|+ 2θ)−)) to (|x|+ 2θ, 0) (see Figure 1(c)), and the two parametric representations will remain
close. After this step, both parametric representations are at (|x| + 2θ, 0), and they will go together to (a, 0) (see
Figure 1(d)). We now assume I+ > ⌊(|x| + 2θ)N⌋. We also assume I+

N ≤ a (if I+

N > a, we may choose anything for
(u−N , r−N ), (uN , rN ); it will not happen if Bc occurs). Between 0 and |x|+2θ, the parametric representations will follow
the completed graphs of Y −

N and YN in parallel (see Figure 2(a)). Once abscissa |x| + 2θ is reached, the next step
is to move (u−N , r−N ) from (|x| + 2θ, Y −

N (|x| + 2θ)) to ( I
+

N , Y −
N ( I

+

N )), which is ( I
+

N , 0), and to move at the same time
(uN , rN ) from (|x|+2θ, YN (|x|+2θ)) to (|x|+2θ, 0) (see Figure 2(b)). We will prove the two representations are close
by controlling the local times. At the next step we freeze (u−N , r−N ) at ( I

+

N , 0) while (uN , rN ) goes from (|x| + 2θ, 0)

to ( I
+

N , 0) (see Figure 2(c)). After this step, both parametric representations are at ( I
+

N , 0), and they will go together
from ( I

+

N , 0) to (a, 0) (see Figure 2(d)). Again, a more rigorous definition of the parametric representations is available
in the first arXiv version of this paper [5].

We can now bound the Skorohod M1 distance between Y −
N |[−a,a] and YN |[−a,a]. From its definition, we have

dM1,a(Y
−
N |[−a,a], YN |[−a,a]) ≤ max(∥u−N − uN∥∞, ∥r−N − rN∥∞), hence we only have to prove Bc ⊂ {max(∥u−N −

uN∥∞, ∥r−N − rN∥∞) ≤ 2N−1/12} when N is large enough. We are going to break down {max(∥u−N − uN∥∞, ∥r−N −
rN∥∞) ≤ 2N−1/12} into several events. We may write

{max(∥u−N − uN∥∞, ∥r−N − rN∥∞) ≤ 2N−1/12}
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0
|

|x|+ 2θ
|
I+

N

|
a

Y −
N

YN

(a)

0
|

|x|+ 2θ
|
I+

N

|
a

Y −
N

YN

(b)

0
|

|x|+ 2θ
|
I+

N

|
a

Y −
N

YN

(c)

0
|

|x|+ 2θ
|
I+

N

|
a

Y −
N

YN

(d)

Figure 2. The successive steps of the parametric representations of Y −
N |[−a,a] and YN |[−a,a] if I+ >

⌊(|x|+ 2θ)N⌋. At each step, the parts of the graphs the parametric representations travel through are
thickened.

=

{
between

(−(|x|+ 2θ)N) ∨ I−

N
and

((|x|+ 2θ)N) ∧ I+

N
, ∥u−N − uN∥∞, ∥r−N − rN∥∞ ≤ 2N−1/12

}
∩
{

between
((|x|+ 2θ)N) ∧ I+

N
and a, ∥u−N − uN∥∞, ∥r−N − rN∥∞ ≤ 2N−1/12

}
∩
{

between − a and
(−(|x|+ 2θ)N) ∨ I−

N
, ∥u−N − uN∥∞, ∥r−N − rN∥∞ ≤ 2N−1/12

}
.

Consequently, to prove that Bc ⊂ {max(∥u−N −uN∥∞, ∥r−N − rN∥∞) ≤ 2N−1/12} when N is large enough and thus end
the proof of Proposition 19, we only have to prove the following claims.

Claim 21. Bc ⊂ {between (−(|x|+2θ)N)∨I−
N and ((|x|+2θ)N)∧I+

N , ∥u−N − uN∥∞, ∥r−N − rN∥∞ ≤ 2N−1/12} when N is large
enough.

Claim 22. Bc ∩ {I+ ≤ ⌊(|x|+ 2θ)N⌋} ⊂ {between ((|x|+2θ)N)∧I+
N and a, ∥u−N − uN∥∞, ∥r−N − rN∥∞ ≤ 2N−1/12} and

Bc ∩ {I− ≥ −⌊(|x|+ 2θ)N⌋} ⊂ {between −a and (−(|x|+2θ)N)∨I−
N , ∥u−N − uN∥∞, ∥r−N − rN∥∞ ≤ 2N−1/12}) when N is

large enough.

Claim 23. Bc ∩ {I+ > ⌊(|x|+ 2θ)N⌋} ⊂ {between ((|x|+2θ)N)∧I+
N and a, ∥u−N − uN∥∞, ∥r−N − rN∥∞ ≤ 2N−1/12} and

Bc ∩ {I− < −⌊(|x|+ 2θ)N⌋} ⊂ {between −a and (−(|x|+2θ)N)∨I−
N , ∥u−N − uN∥∞, ∥r−N − rN∥∞ ≤ 2N−1/12}) when N is

large enough.

We now prove Claims 21, 22 and 23.

Proof of Claim 21. We assume Bc occurs. In the part of the parametric representations between (−(|x|+2θ)N)∨I−
N and

((|x|+2θ)N)∧I+
N , corresponding to Figures 1(a) and 2(a), we follow the completed graphs of Y −

N and YN in parallel.
Therefore we have u−N (t) = uN (t) and |r−N (t) − rN (t)| ≤ sup{|Y −

N (y) − YN (y)| : y ∈ [ (−(|x|+2θ)N)∨I−
N , ((|x|+2θ)N)∧I+

N ]}.
If (|x|+2θ)N is not an integer or I+ < (|x|+2θ)N , this is smaller than N−12 when N is large enough by Lemma 20,
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and we are done. If (|x|+2θ)N is an integer and I+ ≥ (|x|+2θ)N , there is a small complication, since the parametric
representations follow the graph of YN until YN ((|x| + 2θ)−), but should follow the graph of Y −

N until Y −
N (|x| + 2θ).

The solution is to freeze the representation of YN at YN ((|x| + 2θ)−) while that of Y −
N goes from Y −

N ((|x| + 2θ)−)

to Y −
N (|x| + 2θ). Then, between (−(|x|+2θ)N)∨I−

N and (|x| + 2θ)− we have |r−N (t) − rN (t)| ≤ sup{|Y −
N (y) − YN (y)| :

y ∈ [ (−(|x|+2θ)N)∨I−
N , (|x| + 2θ)N)} ≤ N−1/12 by Lemma 20 when N is large enough. Furthermore, when going from

Y −
N ((|x|+2θ)−) to Y −

N (|x|+2θ), we have |r−N (t)−rN (t)| ≤ |Y −
N ((|x|+2θ)−)−YN ((|x|+2θ)−)|+|Y −

N ((|x|+2θ)−)−Y −
N (|x|+

2θ)| ≤ N−1/12+|Y −
N ((|x|+2θ)−)−Y −

N (|x|+2θ)| when N is large enough. In addition, when N is large enough (1) yields
|Y −

N (|x|+2θ)−Y −
N ((|x|+2θ)−)| = 1√

N
|ℓ−(TN , (|x|+2θ)N)−ℓ−(TN , (|x|+2θ)N−1)| = 1√

N
|η(|x|+2θ)N−1,+(ℓ

−(TN , (|x|+

2θ)N − 1))| ≤ N1/16+1/2√
N

since (B2)
c occurs. This yields |r−N (t) − rN (t)| ≤ N−1/12 + N1/16+1/2√

N
≤ 2N−1/12 when N is

large enough, which ends the proof. □

Proof of Claim 22. This claim deals with the “right part” of the parametric representations in the case I+ ≤ ⌊(|x| +
2θ)N⌋, and with the “left part” in the case I− ≥ −⌊(|x| + 2θ)N⌋, corresponding to Figure 1(b), (c) and (d). The
idea of the argument is that in the step of Figure 1(b), the representation of YN does not move much horizontally
as I+

N is close to |x| + 2θ by Lemma 13, so it does not have time to move too much vertically. In the step of Figure
1(c), the representations of Y −

N and YN will thus start from points that are close and go to the same point, hence stay
close to each other. We now give the rigorous argument. We only spell out the proof for Bc ∩ {I+ ≤ ⌊(|x|+ 2θ)N⌋},
as the other case is similar. Let us assume Bc occurs and I+ ≤ ⌊(|x| + 2θ)N⌋. Firstly, we notice that in the part
of the parametric representations corresponding to Figure 1(d) we have (u−N (t), r−N (t)) = (uN (t), rN (t)), so we only
consider the parts corresponding to Figure 1(b) and Figure 1(c). We first consider the case in which (|x| + 2θ)N is
not an integer or I+ < ⌊(|x|+ 2θ)N⌋. We begin by dealing with |u−N (t)− uN (t)|. By the definition of our parametric
representations, |u−N (t)− uN (t)| ≤ ||x|+ 2θ − I+

N |. Furthermore, Bc occurs, thus we have |I+ − (|x|+ 2θ)N | < N3/4,
hence |u−N (t) − uN (t)| ≤ N−1/4. We now deal with |r−N (t) − rN (t)|. Remembering the definition of our parametric
representations, we notice that in the part corresponding to Figure 1(c), r−N and rN are affine functions, so the
maximum value of |r−N (t)− rN (t)| on this part is reached either at the beginning or at the end of the part. Moreover,
at the end of the part we have r−N (t) = rN (t) = 0, so the maximum is reached at the beginning. Therefore, if
|r−N (t) − rN (t)| ≤ 2N−1/12 in the part corresponding to Figure 1(b), then |r−N (t) − rN (t)| ≤ 2N−1/12 in the part
corresponding to Figure 1(c), and this ends the proof when (|x|+ 2θ)N is not an integer or I+ < ⌊(|x|+ 2θ)N⌋.

We thus have to study the part corresponding to Figure 1(b). By the definition of our parametric representations,
|r−N (t) − rN (t)| ≤ sup{|Y −

N ( I
+

N ) − YN (y)| : y ∈ [ I
+

N , |x| + 2θ)}, so it is enough to prove that when N is large enough,
sup{|Y −

N ( I
+

N )−YN (y)| : y ∈ [ I
+

N , |x|+2θ)} ≤ 2N−1/12. Moreover, for any y ∈ [ I
+

N , |x|+2θ), we have |Y −
N ( I

+

N )−YN (y)| ≤
|Y −

N ( I
+

N )−YN ( I
+

N )|+ |YN ( I
+

N )−YN (y)|. Since Bc occurs, we have that (B2)
c, (B−

4 )
c and (B+

4 )
c occur, hence Lemma 20

implies |Y −
N ( I

+

N )−YN ( I
+

N )| ≤ N−1/12 when N is large enough, thus |Y −
N ( I

+

N )−YN (y)| ≤ |YN ( I
+

N )−YN (y)|+N−1/12 ≤
1√
N
|
∑⌊Ny⌋−1

i=I+
ζi| + N−1/12. We deduce sup{|Y −

N ( I
+

N ) − YN (y)| : y ∈ [ I
+

N , |x| + 2θ)} ≤ sup{ 1√
N
|
∑⌊Ny⌋−1

i=I+
ζi| : y ∈

[ I
+

N , |x| + 2θ)} + N−1/12. Furthermore, Bc occurs hence |I+ − (|x| + 2θ)N | < N3/4, thus sup{|Y −
N ( I

+

N ) − YN (y)| :
y ∈ [ I

+

N , |x|+ 2θ)} ≤ 1√
N
max⌊(|x|+2θ)N⌋−N3/4≤i1≤i2≤⌊(|x|+2θ)N⌋

1√
N
|
∑i2

i=i1
ζi|+N−1/12. Since Bc occurs, (B+

3 )
c occurs,

hence sup{|Y −
N ( I

+

N )− YN (y)| : y ∈ [ I
+

N , |x|+ 2θ)} ≤ N19/48
√
N

+N−1/12 = N−5/48 +N−1/12 ≤ 2N−1/12, which is enough.
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We now consider the case in which (|x|+ 2θ)N is an integer and I+ = ⌊(|x|+ 2θ)N⌋. Then the step of Figure 1(b)
does not exist, we only have to deal with that of Figure 1(c), which comes mostly from Lemma 20 as this lemma ensures
Y −
N ((|x|+2θ)−) and YN ((|x|+2θ)−) are close (we will actually prove they are both close to 0). Since I+ = ⌊(|x|+2θ)N⌋,

we have u−N (t) = uN (t). Moreover, ℓ−(TN , ⌊N(|x| + 2θ)⌋) = ℓ−(TN , I+) = 0, so Y −
N (|x| + 2θ) = 0, hence r−N (t) = 0.

Furthermore, |rN (t)| ≤ |YN ((|x| + 2θ)−)|. Therefore we only have to prove that |YN ((|x| + 2θ)−)| ≤ 2N−1/12 when
N is large enough. In addition, Bc occurs, thus by Lemma 20 we have |YN ((|x|+ 2θ)−)− Y −

N ((|x|+ 2θ)−)| ≤ N−1/12

when N is large enough. Moreover by the definition of Y −
N and by (1), we have Y −

N (|x| + 2θ) = Y −
N ((|x| + 2θ)−) +

1√
N
η(|x|+2θ)N−1,+(ℓ

−(TN , (|x|+ 2θ)N − 1)), and since B occurs, (B2)
c occurs, hence we get |Y −

N (|x|+ 2θ)− Y −
N ((|x|+

2θ)−)| ≤ 1√
N
(N1/16 + 1/2) ≤ N−1/4. Since Y −

N (|x| + 2θ) = 0, this yields |Y −
N ((|x| + 2θ)−)| ≤ N−1/4, which yields

|YN ((|x|+ 2θ)−)| ≤ N−1/12 +N−1/4 < 2N−1/12, which is enough and ends the proof of Claim 22. □

Proof of Claim 23. This claim deals with the “right part” of the parametric representations in the case I+ > ⌊(|x| +
2θ)N⌋, and with the “left part” in the case I− < −⌊(|x|+ 2θ)N⌋, corresponding to Figure 2(b), (c) and (d). We first
give an idea of the argument. The most important part of the proof is to deal with the step corresponding to Figure
2(b). In this step, the function Y −

N (y) = 1√
N
ℓ−(TN , ⌊Ny⌋) evolves as a sum of 1√

N
ηj,+(ℓ

−(TN , j)) by (1), which is
close to the sum of 1√

N
(ζj − 1

2) as (B+
4 )

c occurs. Since the ζj are i.i.d. with mean 0, the sum of 1√
N
ζj will be small,

and the evolution of Y −
N will be close to that of a deterministic sum of − 1

2
√
N

, thus it reaches 0 at constant speed,
which is also what our parametric representation of YN does. We now give the proof, beginning with the detail of
the argument to deal with Bc ∩ {I− < −⌊(|x| + 2θ)N⌋}. Let us assume Bc occurs and I− < −⌊(|x| + 2θ)N⌋. We
first see that I−

N ≥ −a, as since Bc occurs we have |I− + (|x| + 2θ)N | < N3/4, hence I−

N > −|x| − 2θ − N−1/4, and
by assumption a > |x| + 2θ + N−1/8, so −a < −|x| − 2θ − N−1/8 < I−

N , hence I−

N ≥ −a. Moreover, in the part
of the parametric representations corresponding to Figure 2(d), we have (u−N (t), r−N (t)) = (uN (t), rN (t)). We now
consider the equivalent of Figure 2(c). Then r−N (t) = rN (t) = 0, and |u−N (t) − uN (t)| ≤ | I−N + (|x| + 2θ)|, which
is strictly smaller than 2N−1/12 since |I− + (|x| + 2θ)N | < N3/4. It remains to consider the equivalent of Figure
2(b). Then |u−N (t) − uN (t)| ≤ | I−N + (|x| + 2θ)|, which is strictly smaller than 2N−1/12, so we only have to prove
|r−N (t)− rN (t)| ≤ 2N−1/12.

We are going to study sup
y∈[ I−

N
,−|x|−2θ]

|Y −
N (y)−Y −

N (−|x| − 2θ)+ ⌊(|x|+2θ)N⌋−⌊Ny⌋
2
√
N

|. Let y ∈ [ I
−

N ,−|x| − 2θ]. By the

definition of Y −
N we have Y −

N (y) − Y −
N (−|x| − 2θ) = 1√

N
(ℓ−(TN , ⌊Ny⌋) − ℓ−(TN , ⌊−(|x| + 2θ)N⌋)). By (2) and since

(B2)
c occurs (remembering ⌊Ny⌋ ≥ I− ≥ −(|x|+ 2θ)N −N3/4 ≥ −⌈2(|x|+ 2θ)N⌉), we deduce∣∣∣∣Y −

N (y)− Y −
N (−|x| − 2θ)− 1√

N
(ℓ+(TN , ⌊Ny⌋)− ℓ+(TN , ⌊−(|x|+ 2θ)N⌋))

∣∣∣∣
=

∣∣∣∣η⌊Ny⌋,−(ℓ
+(TN , ⌊Ny⌋))− η⌊−(|x|+2θ)N⌋,−(ℓ

+(TN , ⌊−(|x|+ 2θ)N⌋))
√
N

∣∣∣∣ ≤ 2N1/16

√
N

.

In addition, (1) yields the following:

ℓ+(TN , ⌊Ny⌋)−ℓ+(TN , ⌊−(|x|+2θ)N⌋) =
χ(N)−1∑

i=⌊Ny⌋+1

(ηi,−(ℓ
+(TN , i))+1{i>0})−

χ(N)−1∑
i=⌊−(|x|+2θ)N⌋+1

(ηi,−(ℓ
+(TN , i))+1{i>0})
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=

χ(N)−1∑
i=⌊Ny⌋+1

(ηi,−(ℓ
+(TN , i)) + 1/2)−

χ(N)−1∑
i=⌊−(|x|+2θ)N⌋+1

(ηi,−(ℓ
+(TN , i)) + 1/2)− ⌊−(|x|+ 2θ)N⌋ − ⌊Ny⌋

2
.

Since (B−
4 )

c occurs, this yields |ℓ+(TN , ⌊Ny⌋) − ℓ+(TN , ⌊−(|x| + 2θ)N⌋) + ⌊−(|x|+2θ)N⌋−⌊Ny⌋
2 | ≤ |

∑χ(N)−1
i=⌊Ny⌋+1 ζi −∑χ(N)−1

i=⌊−(|x|+2θ)N⌋+1 ζi|+2N1/3 = |
∑⌊−(|x|+2θ)N⌋

i=⌊Ny⌋+1 ζi|+2N1/3. As we also have |Y −
N (y)−Y −

N (−|x|−2θ)− 1√
N
(ℓ+(TN , ⌊Ny⌋)−

ℓ+(TN , ⌊−(|x| + 2θ)N⌋))| ≤ 2N1/16
√
N

, this implies sup
y∈[ I−

N
,−|x|−2θ]

|Y −
N (y) − Y −

N (−|x| − 2θ) + ⌊(|x|+2θ)N⌋−⌊Ny⌋
2
√
N

| ≤

maxI−+1≤i≤⌊−(|x|+2θ)N⌋
1√
N
|
∑⌊−(|x|+2θ)N⌋

j=i ζj | + 2N1/16
√
N

+ 2N1/3
√
N

. Moreover, Bc occurs, hence |I− + (|x| + 2θ)N | <

N3/4 and (B−
3 )

c occurs, therefore we obtain that sup
y∈[ I−

N
,−|x|−2θ]

|Y −
N (y) − Y −

N (−|x| − 2θ) + ⌊(|x|+2θ)N⌋−⌊Ny⌋
2
√
N

| ≤

max−⌊(|x|+2θ)N⌋−N3/4≤i≤⌊−(|x|+2θ)N⌋
1√
N
|
∑⌊−(|x|+2θ)N⌋

j=i ζj |+ 2N1/16
√
N

+ 2N1/3
√
N

≤ N19/48
√
N

+ 2N1/16
√
N

+ 2N1/3
√
N

≤ 2N−5/48 when

N is large enough. This yields sup
y∈[ I−

N
,−|x|−2θ]

|Y −
N (y) − Y −

N (−|x| − 2θ) + ⌊(|x|+2θ)N⌋−⌊Ny⌋
2
√
N

| ≤ 2N−5/48 when N is
large enough.

We also need an explicit expression of the parametric representations. Assume the part of [0, 1] devoted to the
equivalent of Figure 2(b) in the parametric representations is [aN , a′N ]. We set ϕ the affine function mapping aN to
−2I−

N and a′N to −(|x|+ 2θ)N . Then, if ϕ(t) belongs to some [ 2iN , 2i+1
N ) with i ∈ {I−, ...,−⌊(|x|+ 2θ)N⌋ − 1}, we set

(u−N (t), r−N (t)) = (ϕ(t)− i
N , Y −

N (ϕ(t)− i
N )), while if ϕ(t) belongs to some [2i+1

N , 2i+2
N ] for i ∈ {I−, ...,−⌊(|x|+ 2θ)N⌋ −

1}, we set (u−N (t), r−N (t)) = ( i+1
N , (−Nϕ(t) + 2i + 2)Y −

N (( i+1
N )−) + (Nϕ(t) − 2i − 1)Y −

N ( i+1
N )). In addition, we set

(uN (t), rN (t)) = (−|x|−2θ, ϕ̂(ϕ(t))), where ϕ̂ is the affine function mapping −|x|−2θ− ⌊(|x|+2θ)N⌋+1
N to YN (−|x|−2θ)

and 2I−

N to 0.
We recall that it is enough to prove |r−N (t) − rN (t)| < 2N−1/12. We are going to study |r−N (t) − Y −

N (−|x| − 2θ) +√
N
4 ϕ(t) − ⌊−(|x|+2θ)N⌋

2
√
N

|. We first suppose that ϕ(t) ∈ [ 2iN , 2i+1
N ) with i ∈ {I−, ...,−⌊(|x| + 2θ)N⌋ − 1}. In this case,

r−N (t) = Y −
N (ϕ(t)− i

N ) and |ϕ(t)2 − 1
N ⌊N(ϕ(t)− i

N )⌋| = |ϕ(t)2 − i
N | ≤ 1

2N , hence∣∣∣∣∣r−N (t)− Y −
N (−|x| − 2θ) +

√
N

4
ϕ(t)− ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣∣
=

∣∣∣∣∣Y −
N

(
ϕ(t)− i

N

)
− Y −

N (−|x| − 2θ) +
⌊N(ϕ(t)− i

N )⌋ − ⌊−(|x|+ 2θ)N⌋
2
√
N

+
N
2 ϕ(t)− ⌊N(ϕ(t)− i

N )⌋
2
√
N

∣∣∣∣∣
≤

∣∣∣∣∣Y −
N

(
ϕ(t)− i

N

)
− Y −

N (−|x| − 2θ) +
⌊N(ϕ(t)− i

N )⌋ − ⌊−(|x|+ 2θ)N⌋
2
√
N

∣∣∣∣∣+
√
N

2

∣∣∣∣ϕ(t)2 − 1

N

⌊
N

(
ϕ(t)− i

N

)⌋∣∣∣∣
is smaller than 2N−5/48 + 1

4
√
N

, thus |r−N (t) − Y −
N (−|x| − 2θ) +

√
N
4 ϕ(t) − ⌊−(|x|+2θ)N⌋

2
√
N

| ≤ 2N−5/48 + 1
4
√
N

. We now
consider the case ϕ(t) ∈ [2i+1

N , 2i+2
N ] with i ∈ {I−, ...,−⌊(|x|+2θ)N⌋− 1}. We temporarily denote Nϕ(t)− 2i− 1 by ε

for short, with ε ∈ [0, 1]. Then we have r−N (t) = (1− ε)Y −
N (( i+1

N )−)+ εY −
N ( i+1

N ), |ϕ(t)2 − i
N | ≤ 1

N and |ϕ(t)2 − i+1
N | ≤ 1

2N ,
therefore ∣∣∣∣∣r−N (t)− Y −

N (−|x| − 2θ) +

√
N

4
ϕ(t)− ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣∣
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=

∣∣∣∣∣(1− ε)

(
Y −
N

((
i+ 1

N

)−
)

− Y −
N (−|x| − 2θ) +

√
N

4
ϕ(t)− ⌊−(|x|+ 2θ)N⌋

2
√
N

)

+ ε

(
Y −
N

(
i+ 1

N

)
− Y −

N (−|x| − 2θ) +

√
N

4
ϕ(t)− ⌊−(|x|+ 2θ)N⌋

2
√
N

)∣∣∣∣∣
≤(1− ε)

∣∣∣∣∣Y −
N

((
i+ 1

N

)−
)

− Y −
N (−|x| − 2θ) +

√
N

4
ϕ(t)− ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣∣
+ ε

∣∣∣∣∣Y −
N

(
i+ 1

N

)
− Y −

N (−|x| − 2θ) +

√
N

4
ϕ(t)− ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣∣
≤(1− ε)

∣∣∣∣∣Y −
N

((
i+ 1

N

)−
)

− Y −
N (−|x| − 2θ) +

i− ⌊−(|x|+ 2θ)N⌋
2
√
N

∣∣∣∣∣+ (1− ε)

∣∣∣∣∣
√
N

4
ϕ(t)− i

2
√
N

∣∣∣∣∣
+ ε

∣∣∣∣Y −
N

(
i+ 1

N

)
− Y −

N (−|x| − 2θ) +
i+ 1− ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣+ ε

∣∣∣∣∣
√
N

4
ϕ(t)− i+ 1

2
√
N

∣∣∣∣∣
≤(1− ε) sup

y∈[ I−
N

,−|x|−2θ]

∣∣∣∣Y −
N (y)− Y −

N (−|x| − 2θ) +
⌊Ny⌋ − ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣+ (1− ε)

√
N

2

∣∣∣∣ϕ(t)2 − i

N

∣∣∣∣
+ ε sup

y∈[ I−
N

,−|x|−2θ]

∣∣∣∣Y −
N (y)− Y −

N (−|x| − 2θ) +
⌊Ny⌋ − ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣+ ε

√
N

2

∣∣∣∣ϕ(t)2 − i+ 1

N

∣∣∣∣
≤ sup

y∈[ I−
N

,−|x|−2θ]

∣∣∣∣Y −
N (y)− Y −

N (−|x| − 2θ) +
⌊Ny⌋ − ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣+ 1

2
√
N

≤ 2N−5/48 +
1

2
√
N

thanks to our bound on the sup. Since this was also true for ϕ(t) ∈ [ 2iN , 2i+1
N ) with i ∈ {I−, ...,−⌊(|x| + 2θ)N⌋ − 1},

we have |r−N (t)− Y −
N (−|x| − 2θ) +

√
N
4 ϕ(t)− ⌊−(|x|+2θ)N⌋

2
√
N

| ≤ 2N−5/48 + 1
2
√
N

.

The latter expression yields |r−N (t) − rN (t)| ≤ |rN (t) − Y −
N (−|x| − 2θ) +

√
N
4 ϕ(t) − ⌊−(|x|+2θ)N⌋

2
√
N

| + 2N−5/48 +

1
2
√
N

= |ϕ̂(ϕ(t))− Y −
N (−|x| − 2θ) +

√
N
4 ϕ(t)− ⌊−(|x|+2θ)N⌋

2
√
N

|+ 2N−5/48 + 1
2
√
N

, where ϕ̂ is the affine function mapping

−|x| − 2θ − ⌊(|x|+2θ)N⌋+1
N to YN (−|x| − 2θ) and 2I−

N to 0. Therefore it is enough to prove |ϕ̂(ϕ(t))− Y −
N (−|x| − 2θ) +

√
N
4 ϕ(t)− ⌊−(|x|+2θ)N⌋

2
√
N

| ≤ N−1/12 + 1
2
√
N

to end the proof. Now, ϕ̂(ϕ(t))− Y −
N (−|x| − 2θ) +

√
N
4 ϕ(t)− ⌊−(|x|+2θ)N⌋

2
√
N

is

an affine function of ϕ(t), so it is enough to prove the bound for ϕ(t) = −|x| − 2θ − ⌊(|x|+2θ)N⌋+1
N and for ϕ(t) = 2I−

N .
We first consider ϕ(t) = 2I−

N . By Lemma 12, ℓ−(TN , I−) = 0. Moreover, I− < −⌊(|x| + 2θ)N⌋, hence Y −
N ( I

−

N ) = 0.
We deduce∣∣∣∣∣ϕ̂(ϕ(t))− Y −

N (−|x| − 2θ) +

√
N

4
ϕ(t)− ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣∣ =
∣∣∣∣∣−Y −

N (−|x| − 2θ) +

√
N

4

2I−

N
− ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣∣
=

∣∣∣∣Y −
N

(
I−

N

)
− Y −

N (−|x| − 2θ) +
I− − ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣
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≤ sup
y∈[ I−

N
,−|x|−2θ]

∣∣∣∣Y −
N (y)− Y −

N (−|x| − 2θ) +
⌊Ny⌋ − ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣ ≤ 2N−5/48,

which is enough. We now consider ϕ(t) = −|x| − 2θ − ⌊(|x|+2θ)N⌋+1
N . Then |ϕ̂(ϕ(t)) − Y −

N (−|x| − 2θ) +
√
N
4 ϕ(t) −

⌊−(|x|+2θ)N⌋
2
√
N

| is equal to∣∣∣∣∣YN (−|x| − 2θ)− Y −
N (−|x| − 2θ) +

√
N

4

(
−|x| − 2θ − ⌊(|x|+ 2θ)N⌋+ 1

N

)
− ⌊−(|x|+ 2θ)N⌋

2
√
N

∣∣∣∣∣
≤ |YN (−|x| − 2θ)− Y −

N (−|x| − 2θ)|+
∣∣∣∣ 1

4
√
N

(−(|x|+ 2θ)N − ⌊(|x|+ 2θ)N⌋ − 1− 2⌊−(|x|+ 2θ)N⌋
∣∣∣∣

≤ |YN (−|x| − 2θ)− Y −
N (−|x| − 2θ)|+ 1

2
√
N

≤ N−1/12 +
1

2
√
N

by Lemma 20, which ends the proof for Bc ∩ {I− < −⌊(|x|+ 2θ)N⌋}.
The argument to show Bc ∩ {I+ > ⌊(|x| + 2θ)N⌋} ⊂ {between ((|x|+2θ)N)∧I+

N and a, ∥u−N − uN∥∞, ∥r−N − rN∥∞ ≤
2N−1/12} is similar and simpler, except for the end of the argument, which we give here. In a similar way as in
the previous case, we must bound |YN ((|x| + 2θ)−) − Y −

N (|x| + 2θ) +
√
N
4 (|x| + 2θ + ⌊(|x|+2θ)N⌋

N ) − ⌊(|x|+2θ)N⌋
2
√
N

| ≤
|YN ((|x|+ 2θ)−)− Y −

N (|x|+ 2θ)|+ | (|x|+2θ)N−⌊(|x|+2θ)N⌋
4
√
N

| ≤ |YN ((|x|+ 2θ)−)− Y −
N ((|x|+ 2θ)−)|+ |Y −

N ((|x|+ 2θ)−)−

Y −
N (|x|+2θ)|+ 1

4
√
N

, hence Lemma 20 yields |YN ((|x|+2θ)−)−Y −
N (|x|+2θ)+

√
N
4 (|x|+2θ+ ⌊(|x|+2θ)N⌋

N )− ⌊(|x|+2θ)N⌋
2
√
N

| ≤
N−1/12+|Y −

N ((|x|+2θ)−)−Y −
N (|x|+2θ)|+ 1

4
√
N

. In addition, the definition of Y −
N and (1) yield that if (|x|+2θ)N is not

an integer, then Y −
N ((|x|+2θ)−) = Y −

N (|x|+2θ), while if (|x|+2θ)N is an integer then |Y −
N ((|x|+2θ)−)−Y −

N (|x|+2θ)| =
1√
N
|ℓ−(TN , (|x|+ 2θ)N − 1)− ℓ−(TN , (|x|+ 2θ)N)| = 1√

N
|η(|x|+2θ)N−1,+(ℓ

−(TN , (|x|+ 2θ)N − 1))| ≤ N1/16+1/2√
N

since

(B2)
c occurs. In all cases we obtain |Y −

N ((|x|+2θ)−)−Y −
N (|x|+2θ)| ≤ N1/16+1/2√

N
, therefore |YN ((|x|+2θ)−)−Y −

N (|x|+

2θ)+
√
N
4 (|x|+2θ+ ⌊(|x|+2θ)N⌋

N )− ⌊(|x|+2θ)N⌋
2
√
N

| ≤ N−1/12 + N1/16+1/2√
N

+ 1
4
√
N

, which is a bound small enough to end the
proof of the claim. □

5. Convergence of the local times process: proof of Theorem 1 and Proposition 3

5.1. Proof of Theorem 1. Our aim is to prove that Y ±
N converges in distribution to (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R
in the Skorohod M1 topology on D(−∞,+∞) when N tends to +∞. Proposition 18 yields that Y ±

N is close to
the function YN defined by YN (y) = 1√

N

∑χ(N)−1
i=⌊Ny⌋+1 ζi if y ∈ [−|x| − 2θ, χ(N)

N ), YN (y) = 1√
N

∑⌊Ny⌋−1
i=χ(N) ζi if y ∈

[χ(N)
N , |x| + 2θ), and YN (y) = 0 otherwise. One has the feeling that by Donsker’s Invariance Principle, YN should

converge to (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R and so we should be able to conclude quickly, but proving rigorously the

convergence in the Skorohod M1 topology on D(−∞,+∞) is harder than it looks. We are instead going to use a
similar argument with a new process Y ′′

N which will be “like YN , but continuous in [−|x| − 2θ, |x| + 2θ)”. We will
define it as follows. We first set a process Y ′

N thus: if Ny ∈ Z then Y ′
N (y) = 1√

N

∑χ(N)−1
i=Ny+1 ζi if y ∈ (−∞, χ(N)

N )

and Y ′
N (y) = 1√

N

∑Ny−1
i=χ(N) ζi if y ∈ [χ(N)

N ,+∞), and in-between Y ′
N is linearly interpoled. We then define Y ′′

N by
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Y ′′
N (y) = Y ′

N (y)1{y∈[−|x|−2θ,|x|+2θ)} for any y ∈ R. Then Y ′′
N will converge to (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R and be close
to YN , which is stated in the two following lemmas.

Lemma 24. Y ′′
N converges to (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R in distribution when N tends to +∞ for the Skorohod M1

topology in D(−∞,∞).

Lemma 25. P(dM1(Y
±
N , Y ′′

N ) > N−7/16) tends to 0 when N tends to +∞.

Given these two lemmas, the proof of Theorem 1 is rather standard. One may for example look at the end of the
proof of the Donsker invariance principle in [8] (here Y ′′

N converges to the desired distribution instead of having it
outright, but this convergence yields that the probability Y ′′

N is in a closed set has the right limit). Thus we only have
to prove Lemmas 24 and 25. In order to do this, we first need two easy lemmas which will also be used later in this
work. If we denote C[−|x|− 2θ, |x|+2θ] the space of continuous functions : [−|x|− 2θ, |x|+2θ] 7→ R, since the (ζi)i∈Z
are i.i.d. with law ρ0 which is symmetric so has zero mean, Donsker’s Invariance Principle yields the following.

Lemma 26. Y ′
N |[−|x|−2θ,|x|+2θ] converges in distribution to Bx|[−|x|−2θ,|x|+2θ] when N tends to +∞ for the topology

defined on C[−|x| − 2θ, |x|+ 2θ] by the uniform norm.

The following lemma is also easy to prove.

Lemma 27. If (B2)
c occurs, sup{|YN (y)− Y ′′

N (y)| : y ∈ [−|x| − 2θ, |x|+ 2θ)} ≤ N−7/16.

Proof. By the definition of YN and Y ′′
N , we have sup{|YN (y) − Y ′′

N (y)| : y ∈ [−|x| − 2θ, |x| + 2θ)} ≤ 1√
N
sup{|ζi| :

−(|x|+ 2θ)N ≤ i ≤ (|x|+ 2θ)N}, which is smaller than N1/16
√
N

= N−7/16 if (B2)
c occurs. □

We also need the following technical lemma in order to deduce results on the Skorohod M1 topology from Lemmas
26 and 27.

Lemma 28. Let N > 0 and Z1, Z2 ∈ D(−∞,+∞) whose possible discontinuities belong to 1
NZ, then we have

dM1((Z1(y)1{y∈[−|x|−2θ,|x|+2θ)})y∈R, (Z2(y)1{y∈[−|x|−2θ,|x|+2θ)})y∈R) ≤ sup{|Z1(y)− Z2(y)| : y ∈ [−|x| − 2θ, |x|+ 2θ)}.

Proof. Lemma 28 can be shown by writing for each a ̸= |x| + 2θ parametric representations of the two processes on
[−a, a] “following their completed graphs together” (one can find an explicit construction of such representations in
the first arXiv version of this paper [5]). □

Lemma 28 will allow us to deduce Lemma 24 from Lemma 26, and Lemma 25 from Lemma 27 and Proposition 18,
which will end the proof of Theorem 1.

Proof of Lemma 24. Let f : D(−∞,+∞) 7→ R be bounded and continuous with respect to the Skorohod M1 topology
on D(−∞,+∞), we need to prove that E(f(Y ′′

N )) converges to E(f((Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R)) when N tends to +∞.

We define g : C[−|x|−2θ, |x|+2θ] 7→ R by g(Z) = f((Z(y)1{y∈[−|x|−2θ,|x|+2θ)})y∈R) for any Z ∈ C[−|x|−2θ, |x|+2θ].
We then have E(f(Y ′′

N )) = E(g(Y ′
N |[−|x|−2θ,|x|+2θ])) and E(f((Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R)) = E(g(B
x|[−|x|−2θ,|x|+2θ])),

hence it is enough to prove E(g(Y ′
N |[−|x|−2θ,|x|+2θ])) converges to E(g(Bx|[−|x|−2θ,|x|+2θ])) when N tends to +∞. Fur-

thermore, Lemma 26 yields that Y ′
N |[−|x|−2θ,|x|+2θ] converges in distribution to Bx|[−|x|−2θ,|x|+2θ] when N tends to +∞

for the topology defined on C[−|x| − 2θ, |x|+2θ] by the uniform norm. Consequently, we only have to prove that g is
continuous for this topology.

Let (Zk)k∈N be a sequence in C[−|x|−2θ, |x|+2θ] converging uniformly to Z ∈ C[−|x|−2θ, |x|+2θ] when k tends to
+∞. Then Lemma 28 states that for all k ∈ N, dM1((Zk(y)1{y∈[−|x|−2θ,|x|+2θ)})y∈R, (Z(y)1{y∈[−|x|−2θ,|x|+2θ)})y∈R) ≤
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sup{|Zk(y) − Z(y)| : y ∈ [−|x| − 2θ, |x| + 2θ)} ≤ ∥Zk − Z∥∞. Since the latter tends to 0 when k tends to +∞, we
deduce (Zk(y)1{y∈[−|x|−2θ,|x|+2θ)})y∈R converges to (Z(y)1{y∈[−|x|−2θ,|x|+2θ)})y∈R when k tends to +∞ with respect to
the Skorohod M1 topology on D(−∞,+∞). Since f is continuous with respect to this topology, (g(Zk))k∈N converges
to g(Z) when k tends to +∞. Consequently g is continuous for the topology defined on C[−|x| − 2θ, |x|+ 2θ] by the
uniform norm, which ends the proof. □

Proof of Lemma 25. P(dM1(Y
±
N , Y ′′

N ) > 4N−1/12) ≤ P(dM1(Y
±
N , YN ) > 3N−1/12)+P(dM1(YN , Y ′′

N ) > N−7/16) when N

is large enough. By Lemmas 27 and 28 P(dM1(YN , Y ′′
N ) > N−7/16) ≤ P(B2). Therefore P(dM1(Y

±
N , Y ′′

N ) > 4N−1/12) ≤
P(dM1(Y

±
N , YN ) > 3N−1/12) + P(B2), which tends to 0 when N tends to +∞ by Proposition 18 and Lemma 9. □

5.2. Proof of Proposition 3. Our goal is to prove that for any closed interval I ∈ R that does not contain −|x|−2θ
or |x| + 2θ, the process (Y ±

N (y))y∈I converges in distribution to (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈I in the topology on DI

given by the uniform norm when N tends to +∞. We first assume I = [a, b] or [a,+∞) with a > |x| + 2θ (the case
I = [a, b] or (−∞, b] with b < −|x| − 2θ can be dealt with in the same way). We are going to prove that outside an
event of small probability, (Y ±

N (y))y∈I = 0 = (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈I . For any y ≥ (|x| + 2θ) ∨ I+

N , by Lemma
12 we have ℓ±(TN , ⌊Ny⌋) = 0, thus Y ±

N (y) = 0. We deduce that as soon as I+

N ≤ a, we have (Y ±
N (y))y∈I = 0 =

(Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈I . In addition, when N is large enough we have a ≥ |x| + 2θ +N−1/4. Therefore, when N

is large enough, P((Y ±
N (y))y∈I ̸= (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈I) ≤ P(|I+ − (|x|+2θ)N | ≥ N3/4), which tends to 0 when
N tends to +∞ by Lemma 13. This yields that (Y ±

N (y))y∈I converges in distribution to (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈I in

the topology on DI given by the uniform norm.
We now deal with the case I = [a, b] with −|x| − 2θ < a < b < |x| + 2θ. The idea is that we will be far from the

problems at −|x| − 2θ and |x| + 2θ, thus Y ±
N will be close to Y ′

N in all I, and Y ′
N converges to the right limit, hence

Y ±
N too. We first prove the following lemma.

Lemma 29. For any −|x| − 2θ < a < b < |x|+2θ, we have that P(∥Y ±
N |[a,b]−Y ′

N |[a,b]∥∞ > 2N−1/12) tends to 0 when
N tends to +∞.

Proof. We assume (B2)
c, (B−

4 )
c, (B+

4 )
c occurs, as well as |I−+(|x|+2θ)N | < N3/4, |I+− (|x|+2θ)N | < N3/4. When

N is large enough, we have a ≥ −|x| − 2θ + N−1/4 > I−

N and b ≤ |x| + 2θ − N−1/4 < I+

N , hence [a, b] ⊂ ( I
−

N , I
+

N ).
Therefore, for any y ∈ [a, b], Lemma 20 yields |Y ±

N (y) − YN (y)| ≤ N−1/12, and Lemma 27 gives |YN (y) − Y ′
N (y)| ≤

N−7/16, hence we get |Y ±
N (y) − Y ′

N (y)| ≤ 2N−1/12, and we deduce ∥Y ±
N |[a,b] − Y ′

N |[a,b]∥∞ ≤ 2N−1/12. This implies
P(∥Y ±

N |[a,b]−Y ′
N |[a,b]∥∞ > 2N−1/12) ≤ P(B2 ∪B−

4 ∪B+
4 ∪{|I−+(|x|+2θ)N | ≥ N3/4}∪ {|I+− (|x|+2θ)N | ≥ N3/4}),

which tends to 0 when N tends to +∞ thanks to Lemmas 9, 13 and 17. □

Moreover, for any −|x| − 2θ < a < b < |x|+2θ, by Donsker’s Invariance Principle, Y ′
N |[a,b] converges in distribution

to Bx|[a,b] when N tends to +∞ for the topology defined on D[a, b] by the uniform norm. The proof of Proposition 3
from this is standard, as was the proof of Theorem 1 from Lemmas 24 and 25.

6. No convergence in the Skorohod J1 topology: proof of Proposition 2

In this section, our aim is to prove that Y ±
N does not converge in distribution in the Skorohod J1 topology

on D(−∞,+∞) when N tends to +∞. We will first prove that if Y ±
N converges in the Skorohod J1 topology,

the limit has to be the same as in the Skorohod M1 topology, that is (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R by Theorem
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1 (this will be Lemma 30). Afterwards, we will prove that Y ±
N does not converge in distribution in the Skoro-

hod J1 topology to (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R by finding some closed set Ξ so that lim supN→+∞P(Y

±
N ∈ Ξ) >

P((Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R ∈ Ξ), which is enough by the Portmanteau Theorem.

Lemma 30. If Y ±
N converges in distribution in the Skorohod J1 topology on D(−∞,+∞) when N tends to +∞, the

limit is (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R.

Proof. The idea is that the Skorohod J1 topology is stronger than the Skorohod M1 topology. We assume Y ±
N

converges in distribution to some Z in the Skorohod J1 topology on D(−∞,+∞) when N tends to +∞. It can be
proven that for any a > 0 we have dM1,a ≤ dJ1,−a,a. Indeed, this is Theorem 12.3.2 of [19], whose proof is in the
Internet supplement of that book (just replace the discontinuity points of x1 with their image by λ−1). This implies
dM1 ≤ dJ1 . Therefore a function g : D(−∞,+∞) 7→ R bounded and continuous for the Skorohod M1 topology is also
continuous for the Skorohod J1 topology. We deduce that E(g(Y ±

N )) converges to E(g(Z)) when N tends to +∞, thus
Y ±
N converges in distribution to Z in the Skorohod M1 topology when N tends to +∞. By Theorem 1, the limit has

to be (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R. □

We now define our closed set Ξ. The idea behind this definition is that with high probability, Bx
|x|+2θ is at some

distance from 0, hence at some point around |x| + 2θ, Y ±
N will be close to Bx

|x|+2θ, thus at some distance from 0.
Furthermore, at |x|+2θ the process (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R will jump directly from Bx
|x|+2θ to 0, while Y ±

N , which
can make only jumps of order 1√

N
, will have to cross the distance separating Bx

|x|+2θ from 0 without bigs jumps.
Therefore if δ1 > 0 is much smaller than Bx

|x|+2θ, then Y ±
N (y) will enter the interval [δ1, 2δ1] for y near |x| + 2θ,

while (Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R will not. We thus set Ξ to be roughly “the function enters [δ1, 2δ1] around |x|+ 2θ”.

More rigorously, by the definition of Bx, the random variable Bx
|x|+2θ has distribution N (0, 2θ), hence there exists

δ1 > 0 so that P(|Bx
|x|+2θ| ≤ 4δ1) ≤ 1/8. Moreover, Bx is continuous, hence there exists 0 < δ2 < θ so that

P(∃ y ∈ [|x|+ 2θ − δ2, |x|+ 2θ], |Bx
y | ≤ 3δ1) ≤ 1/4. We then define Ξ = {Z ∈ D(−∞,+∞) | ∃y ∈ [|x|+ 2θ − δ2, |x|+

2θ + δ2], |Z(y)| ∈ [δ1, 2δ1] or |Z(y−)| ∈ [δ1, 2δ1]} (the inclusion of Z(y−) was necessary for Ξ to be closed). Then
P((Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R ∈ Ξ) ≤ 1/4. We will prove the two following lemmas.

Lemma 31. When N is large enough, P(Y ±
N ∈ Ξ) ≥ 1/2.

Lemma 32. Ξ is closed in the Skorohod J1 topology on D(−∞,+∞).

With these two lemmas, the proof of Proposition 2 becomes easy.

Proof of Proposition 2. Lemma 31 yields lim supN→+∞P(Y
±
N ∈ Ξ) ≥ 1/2, and the definition of Ξ ensures that

P((Bx
y1{y∈[−|x|−2θ,|x|+2θ)})y∈R ∈ Ξ) ≤ 1/4, hence lim supN→+∞P(Y

±
N ∈ Ξ) > P((Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R ∈ Ξ).
Since Lemma 32 yields Ξ is closed in the Skorohod J1 topology on D(−∞,+∞), the Portmanteau Theorem implies
Y ±
N does not converge in distribution in the Skorohod J1 topology on D(−∞,+∞) to (Bx

y1{y∈[−|x|−2θ,|x|+2θ)})y∈R
when N tends to +∞. Hence Lemma 30 yields that Y ±

N does not converge in distribution in the Skorohod J1 topology
on D(−∞,+∞) when N tends to +∞, which is Proposition 2. □

Thus it remains only to prove Lemmas 31 and 32.

Proof of Lemma 31. The idea is that with good probability, when y is a bit smaller than |x| + 2θ, we have Y ±
N (y)

of the same order as Bx
|x|+2θ, thus away from 0, while when y is a bit larger than |x| + 2θ, we have Y ±

N (y) = 0, so
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since YN can only make jumps of order 1√
N

, it will enter [δ1, 2δ1]. We now give the rigorous argument. We begin
by assuming that |Y ±

N (|x| + 2θ − δ2)| > 3δ1 (that is YN (y) is indeed away from 0 when y is a bit smaller than
|x| + 2θ), (B2)

c occurs and |I+ − (|x| + 2θ)N | < N3/4, and proving that when N is large enough, Y ±
N ∈ Ξ. We

first show Y ±
N (|x| + 2θ + δ2) = 0. When N is large enough, I+

N ≤ |x| + 2θ + N−1/4 ≤ |x| + 2θ + δ2. Moreover,
Lemma 12 implies ℓ±(TN , ⌊Ny⌋) = 0 for any y ≥ I+

N , hence for y = |x|+ 2θ + δ2. This yields Y ±
N (|x|+ 2θ + δ2) = 0.

Moreover, we assumed |Y ±
N (|x| + 2θ − δ2)| > 3δ1. Furthermore, equations (1) and (2) yield that the jumps of Y ±

N

in [|x| + 2θ − δ2, |x| + 2θ + δ2] are either 1√
N
ηi,+(ℓ

−(TN , i)) (if we deal with Y −
N ) or 1√

N
ηi+1,+(ℓ

−(TN , i + 1)) (if we
deal with Y +

N ) with i ∈ {⌊(|x| + 2θ − δ2)N⌋, ..., ⌊(|x| + 2θ + δ2)N⌋ − 1}. Since (B2)
c occurs, the jumps of Y ±

N in
[|x| + 2θ − δ2, |x| + 2θ + δ2] have size at most 1√

N
(N1/16 + 1/2), which tends to 0 when N tends to +∞. Therefore,

when N is large enough, there exists y ∈ [|x| + 2θ − δ2, |x| + 2θ + δ2] so that |Y ±
N (y)| ∈ [δ1, 2δ1], hence Y ±

N ∈ Ξ.
Consequently, when N is large enough, if |Y ±

N (|x|+2θ− δ2)| > 3δ1, (B2)
c and |I+− (|x|+2θ)N | < N3/4 then Y ±

N ∈ Ξ.
This implies P(Y ±

N ̸∈ Ξ) ≤ P(|Y ±
N (|x|+2θ− δ2)| ≤ 3δ1)+P(B2)+P(|I+− (|x|+2θ)N | ≥ N3/4). In addition, Lemma

9 and Lemma 13 yield respectively that P(B2) and P(|I+ − (|x| + 2θ)N | ≥ N3/4) tend to 0 when N tends to +∞.
Therefore it is enough to prove that P(|Y ±

N (|x| + 2θ − δ2)| ≤ 3δ1) ≤ 3/8 when N is large enough to deduce that
P(Y ±

N ̸∈ Ξ) ≤ 1/2 when N is large enough and end the proof of Lemma 31.
We now prove P(|Y ±

N (|x| + 2θ − δ2)| ≤ 3δ1) ≤ 3/8 when N is large enough, by noticing Y ±
N (|x| + 2θ − δ2) is close

to Y ′
N (|x| + 2θ − δ2), which will converge in distribution to Bx

|x|+2θ−δ2
when N tends to +∞. Lemma 29 implies

P(∥Y ±
N |[0,|x|+2θ−δ2] − Y ′

N |[0,|x|+2θ−δ2]∥∞ > 2N−1/12) tends to 0 when N tends to +∞, hence P(|Y ±
N (|x| + 2θ − δ2) −

Y ′
N (|x|+ 2θ − δ2)| > 2N−1/12) tends to 0 when N tends to +∞, which implies Y ±

N (|x|+ 2θ − δ2)− Y ′
N (|x|+ 2θ − δ2)

converges in probability to 0 when N tends to +∞. In addition, Lemma 26 states Y ′
N |[−|x|−2θ,|x|+2θ] converges

in distribution to Bx|[−|x|−2θ,|x|+2θ] when N tends to +∞ for the topology defined on C[−|x| − 2θ, |x| + 2θ] by the
uniform norm, hence Y ′

N (|x|+2θ−δ2) converges in distribution to Bx
|x|+2θ−δ2

when N tends to +∞. Therefore Slutsky’s
Theorem yields that Y ±

N (|x| + 2θ − δ2) converges in distribution to Bx
|x|+2θ−δ2

when N tends to +∞. Moreover, we
defined Ξ so that P(∃ y ∈ [|x|+ 2θ − δ2, |x|+ 2θ], |Bx

y | ≤ 3δ1) ≤ 1/4, hence P(|Bx
|x|+2θ−δ2

| ≤ 3δ1) ≤ 1/4. This implies
that when N is large enough, P(|Y ±

N (|x|+ 2θ − δ2)| ≤ 3δ1) ≤ 3/8. □

Proof of Lemma 32. Let (ZN )N∈N be a sequence of elements of Ξ converging to Z in the Skorohod J1 topology on
D(−∞,+∞), we will prove Z ∈ Ξ. By taking a subsequence, we may assume dJ1(Z,ZN ) < e−|x|−2θ−δ2−1/N for any
N ∈ N∗. Then for any N ∈ N∗, some aN > |x| + 2θ + δ2 + 1 so that dJ1,−aN ,aN (Z|[−aN ,aN ], ZN |[−aN ,aN ]) ≤ 1/N will
exist. Indeed, if it was not the case, for some N we would have dJ1(Z,ZN ) =

∫ +∞
0 e−a(dJ1,−a,a(Z|[−a,a], ZN |[−a,a]) ∧

1)da ≥
∫ +∞
|x|+2θ+δ2+1 e

−a 1
N da = e−|x|−2θ−δ2−1/N , which does not happen. For all N ∈ N∗, the fact that we have

dJ1,−aN ,aN (Z|[−aN ,aN ], ZN |[−aN ,aN ]) ≤ 1/N implies there exists λN ∈ Λ−aN ,aN with ∥Z|[−aN ,aN ]◦λN−ZN |[−aN ,aN ]∥∞ ≤
2/N and ∥λN −Id−aN ,aN ∥∞ ≤ 2/N . Moreover, ZN ∈ Ξ, hence there exists yN ∈ [|x|+2θ−δ2, |x|+2θ+δ2], |ZN (yN )| ∈
[δ1, 2δ1] or |ZN (y−N )| ∈ [δ1, 2δ1]. We now define y′N as follows: if |ZN (yN )| ∈ [δ1, 2δ1] we set y′N = yN . Otherwise,
since |ZN (y−N )| ∈ [δ1, 2δ1] we can take some y′N in [yN − 1

N , yN ] so that |ZN (y′N )| ∈ [δ1 − 1/N, 2δ1 + 1/N ]. In
both cases, we have y′N ∈ [|x| + 2θ − δ2 − 1/N, |x| + 2θ + δ2] and |ZN (y′N )| ∈ [δ1 − 1/N, 2δ1 + 1/N ]. Furthermore,
∥λN − Id−aN ,aN ∥∞ ≤ 2/N , hence |λN (y′N )− y′N | ≤ 2/N , thus λN (y′N ) ∈ [|x|+ 2θ− δ2 − 3/N, |x|+ 2θ+ δ2 + 2/N ]. In
addition, ∥Z(λN (y′N ))−ZN (y′N )∥∞ ≤ 2/N , hence |Z(λN (y′N ))| ∈ [δ1 − 3/N, 2δ1 +3/N ]. By taking a subsequence, we
may assume that λN (y′N ) converges to some y∞ ∈ [|x|+2θ−δ2, |x|+2θ+δ2]. In addition, Z is càdlàg, hence there is a
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subsequence of (Z(λN (y′N ))N∈N∗ that converges to either Z(y∞) or Z(y−∞). Since |Z(λN (y′N ))| ∈ [δ1−3/N, 2δ1+3/N ],
we have |Z(y∞)| or |Z(y−∞)| in [δ1, 2δ1]. Therefore Z ∈ Ξ, which ends the proof. □

7. Convergence of the stopping time: proof of Proposition 4

We want to prove Proposition 4, that is the convergence in distribution of 1
N3/2 (TN − N2(|x| + 2θ)2) to the law

N (0, 323 Var(ρ−)((|x|+θ)3+θ3)) when N tends to +∞. In order to do that, we will prove that 1
N3/2 (TN−N2(|x|+2θ)2)

is close to 2
∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy (where Y ′

N was defined at the beginning of Section 5.1), then show that 2
∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy

converges to the desired distribution.

Proposition 33. P(| 1
N3/2 (TN −N2(|x|+ 2θ)2)− 2

∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy| > 5(|x|+ 2θ)N−1/12) tends to 0 when N tends

to +∞.

Proof. The result will come from the fact that TN can be written as the sum of the local times, which is itself related
to the integrals of Y −

N and Y +
N , which are close to YN by Lemma 20 hence to Y ′

N by Lemma 27. It is enough to
prove that if (B2)

c, (B−
4 )

c and (B+
4 )

c occur and if |I− + (|x| + 2θ)N | < N5/8, |I+ − (|x| + 2θ)N | < N5/8, then
| 1
N3/2 (TN −N2(|x|+ 2θ)2)− 2

∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy| ≤ 5(|x|+ 2θ)N−1/12, since Lemma 9 implies P(B2) tends to 0 when

N tends to +∞, Lemma 17 implies P(B−
4 ) and P(B+

4 ) tend to 0 when N tends to +∞, and Lemma 13 implies
P(|I− + (|x|+ 2θ)N | ≥ N5/8) and P(|I+ − (|x|+ 2θ)N | ≥ N5/8) tend to 0 when N tends to +∞. We assume (B2)

c,
(B−

4 )
c and (B+

4 )
c occur and |I− + (|x|+ 2θ)N | < N5/8, |I+ − (|x|+ 2θ)N | < N5/8, let us study TN .

In order to do that, we first need to prove an auxiliary result, more precisely that the following holds when N is
large enough:

(6) if |i− I+| ≤ N5/8 + 1 or |i− I−| ≤ N5/8 + 1 then ℓ+(TN , i) ≤ 4N11/16 and ℓ−(TN , i) ≤ 4N11/16.

We prove (6) for the case |i−I−| ≤ N5/8+1, since the other is similar. Let i ∈ Z so that |i−I−| < N5/8+1. We notice
that since |I−+(|x|+2θ)N | < N5/8 we have I−, i < 0 when N is large enough, so (1) yields |ℓ+(TN , i)−ℓ+(TN , I−)| ≤∑

|j−I−|<N5/8+1 |ηj,−(ℓ+(TN , j))|, thus since ℓ+(TN , I−) = 0 we have ℓ+(TN , i) ≤
∑

|j−I−|<N5/8+1 |ηj,−(ℓ+(TN , j))|. In
addition, we assumed (B2)

c, hence ℓ+(TN , i) ≤
∑

|j−I−|<N5/8+1(N
1/16 + 1/2) ≤ 3N5/8N1/16 = 3N11/16 when N is

large enough. Furthermore, (2) implies |ℓ−(TN , i)−ℓ+(TN , i)| = |ηi,−(ℓ+(TN , i))| ≤ N1/16+1/2 thanks to (B2)
c, hence

ℓ−(TN , i) ≤ 3N11/16 +N1/16 + 1/2 ≤ 4N11/16 when N is large enough, which ends the proof of (6).
We now write TN as the sum of the local times and relate 1

N3/2 (TN − N2(|x| + 2θ)2) to the integral of Y + and
Y −. We have TN =

∑
i∈Z(ℓ

+(TN , i) + ℓ−(TN , i)). Moreover, Lemma 12 implies that for all i ≥ I+ and i ≤ I−

we have ℓ+(TN , i) = ℓ−(TN , i) = 0. Consequently, TN =
∑I+∨⌊(|x|+2θ)N⌋

i=I−∧(−⌊(|x|+2θ)N⌋)(ℓ
+(TN , i) + ℓ−(TN , i)). We thus have

| 1
N3/2 (TN −N2(|x|+2θ)2)−

∫ (I+∨(|x|+2θ)N)/N
(I−∧(−(|x|+2θ)N))/N

(Y +
N (y)+Y −

N (y))dy| ≤ 1
N3/2 (ℓ

+(TN , I+∨⌊(|x|+2θ)N⌋)+ ℓ−(TN , I+∨
⌊(|x|+2θ)N⌋)+ℓ+(TN ,−⌊(|x|+2θ)N⌋−1)+ℓ−(TN ,−⌊(|x|+2θ)N⌋−1)). Since we assumed |I−+(|x|+2θ)N | < N5/8

and |I+ − (|x|+ 2θ)N | < N5/8, equation (6) yields

(7)

∣∣∣∣∣ 1

N3/2
(TN −N2(|x|+ 2θ)2)−

∫ (I+∨(|x|+2θ)N)/N

(I−∧(−(|x|+2θ)N))/N
(Y +

N (y) + Y −
N (y))dy

∣∣∣∣∣ ≤ 1

N3/2
16N11/16 = 16N−13/16.
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We now prove that
∫ (I+∨(|x|+2θ)N)/N
(I−∧(−(|x|+2θ)N))/N

(Y +
N (y)+Y −

N (y))dy is close to 2
∫ |x|+2θ
−(|x|+2θ) YN (y)dy. We begin by considering∫ (I+∨(|x|+2θ)N)/N

χ(N)/N (Y +
N (y) + Y −

N (y))dy. We first assume I+ ≥ (|x| + 2θ)N . Since we assumed (B2)
c, (B−

4 )
c and (B+

4 )
c

occur, Lemma 20 yields |
∫ (I+∨(|x|+2θ)N)/N
χ(N)/N (Y +

N (y) + Y −
N (y))dy − 2

∫ |x|+2θ
χ(N)/N YN (y)dy| ≤ 2(|x| + 2θ − χ(N)

N )N−1/12 +∫ I+/N
|x|+2θ |Y

+
N (y) + Y −

N (y))|dy. In addition, we know I+ − (|x|+ 2θ)N ≤ N5/8 and (6), hence∫ I+/N

|x|+2θ
|Y +

N (y) + Y −
N (y))|dy ≤ N−3/8 1√

N

(
max

⌊(|x|+2θ)N⌋≤i≤I+
ℓ+(TN , i) + max

⌊(|x|+2θ)N⌋≤i≤I+
ℓ−(TN , i)

)
≤ N−3/8N−1/28N11/16 = 8N−3/16.

We deduce∣∣∣∣∣
∫ (I+∨(|x|+2θ)N)/N

χ(N)/N
(Y +

N (y) + Y −
N (y))dy − 2

∫ |x|+2θ

χ(N)/N
YN (y)dy

∣∣∣∣∣ ≤ 2

(
|x|+ 2θ − χ(N)

N

)
N−1/12 + 8N−3/16.

We now assume I+ < (|x|+ 2θ)N . In this case, we have∣∣∣∣∣
∫ (I+∨(|x|+2θ)N)/N

χ(N)/N
(Y +

N (y) + Y −
N (y))dy − 2

∫ |x|+2θ

χ(N)/N
YN (y)dy

∣∣∣∣∣
≤
∫ I+/N

χ(N)/N
|Y +

N (y) + Y −
N (y)− 2YN (y)|dy +

∫ |x|+2θ

I+/N
|Y +

N (y) + Y −
N (y)|dy +

∫ |x|+2θ

I+/N
|2YN (y)|dy.

Moreover, Lemma 20 yields
∫ I+/N
χ(N)/N |Y +

N (y)+Y −
N (y)−2YN (y)|dy ≤ 2(|x|+2θ− χ(N)

N )N−1/12. Furthermore, for y ≥ I+

N

we have ℓ±(TN , ⌊Ny⌋) = 0. Since |I+ − (|x| + 2θ)N | < N5/8 this yields |Y ±
N (y)| ≤ 1

2N
1/8. Thus

∫ |x|+2θ
I+/N

|Y +
N (y) +

Y −
N (y)|dy ≤

∫ |x|+2θ
I+/N

N1/8dy ≤ N−3/8N1/8 = N−1/4. We deduce∣∣∣∣∣
∫ (I+∨(|x|+2θ)N)/N

χ(N)/N
(Y +

N (y) + Y −
N (y))dy − 2

∫ |x|+2θ

χ(N)/N
YN (y)dy

∣∣∣∣∣
≤ 2

(
|x|+ 2θ − χ(N)

N

)
N−1/12 +N−1/4 +

∫ |x|+2θ

I+/N
|2YN (y)|dy.

In addition, for any y ∈ [ I
+

N , |x| + 2θ], we have |YN (y)| ≤ |YN (y) − YN ( I
+

N )| + |YN ( I
+

N ) − Y −
N ( I

+

N )| + |Y −
N ( I

+

N )|.
Lemma 20 yields that |YN ( I

+

N ) − Y −
N ( I

+

N )| ≤ N−1/12, and since |I+ − (|x| + 2θ)N | < N5/8 we have |Y −
N ( I

+

N )| =

| 1√
N
(ℓ±(TN , I+)−N( |x|−|I+/N |

2 + θ)+)| ≤ 1
2N

1/8, hence

|YN (y)| ≤
∣∣∣∣YN (y)− YN

(
I+

N

)∣∣∣∣+N−1/12 +
1

2
N1/8 =

1√
N

∣∣∣∣∣∣
⌊Ny⌋−1∑
i=I+

ζi

∣∣∣∣∣∣+N−1/12 +
1

2
N1/8

≤ 1√
N

⌊(|x|+2θ)N⌋−1∑
i=I+

|ζi|+N−1/12 +
1

2
N1/8 ≤ 1√

N
N5/8N1/16 +N−1/12 +

1

2
N1/8 ≤ 2N3/16
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since (B2)
c occurs. This implies

∫ |x|+2θ
I+/N

|2YN (y)|dy ≤
∫ |x|+2θ
I+/N

4N3/16dy = N−3/84N3/16 = 4N−3/16. We deduce

|
∫ (I+∨(|x|+2θ)N)/N
χ(N)/N (Y +

N (y) + Y −
N (y))dy − 2

∫ |x|+2θ
χ(N)/N YN (y)dy| ≤ 2(|x|+ 2θ − χ(N)

N )N−1/12 + 5N−3/16. Consequently, in

all cases we have |
∫ (I+∨(|x|+2θ)N)/N
χ(N)/N (Y +

N (y)+Y −
N (y))dy−2

∫ |x|+2θ
χ(N)/N YN (y)dy| ≤ 2(|x|+2θ− χ(N)

N )N−1/12+8N−3/16. One

can prove similarly that |
∫ χ(N)/N
(I−∧(−(|x|+2θ)N))/N

(Y +
N (y)+Y −

N (y))dy− 2
∫ χ(N)/N
−(|x|+2θ) YN (y)dy| ≤ 2(|x|+2θ+ χ(N)

N )N−1/12 +

8N−3/16. We conclude that |
∫ (I+∨(|x|+2θ)N)/N
(I−∧(−(|x|+2θ)N))/N

(Y +
N (y) + Y −

N (y))dy − 2
∫ |x|+2θ
−(|x|+2θ) YN (y)dy| ≤ 4(|x| + 2θ)N−1/12 +

16N−3/16.
We are now in position to conclude. Indeed, the previous result and (7) imply that when N is large enough,

| 1
N3/2 (TN −N2(|x|+2θ)2)−2

∫ |x|+2θ
−(|x|+2θ) YN (y)dy| ≤ 16N−13/16+4(|x|+2θ)N−1/12+16N−3/16. Moreover, (B2)

c occurs,

hence Lemma 27 yields sup{|YN (y) − Y ′
N (y)| : y ∈ [−|x| − 2θ, |x| + 2θ)} ≤ N−7/16, therefore |

∫ |x|+2θ
−(|x|+2θ) YN (y)dy −∫ |x|+2θ

−(|x|+2θ) Y
′
N (y)dy| ≤ 2(|x| + 2θ)N−7/16. We deduce that when N is large enough, | 1

N3/2 (TN − N2(|x| + 2θ)2) −

2
∫ |x|+2θ
−(|x|+2θ) Y

′
N (y)dy| ≤ 16N−13/16 + 4(|x| + 2θ)N−1/12 + 16N−3/16 + 4(|x| + 2θ)N−7/16 ≤ 5(|x| + 2θ)N−1/12, which

ends the proof. □

Now that we know 1
N3/2 (TN − N2(|x| + 2θ)2) is close to 2

∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy, we need to prove 2

∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy

converges to the desired distribution. In order to do that, we will use the convergence of Y ′
N to a Brownian motion

stated in Lemma 26, so 2
∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy will converge to the integral of a Brownian motion, the law of the latter

being characterized by the following lemma, where we denote by (Bt)t∈R+ a standard Brownian motion with B0 = 0.
This lemma is quite standard (the interested reader can find a proof in the first arXiv version of this paper [5]).

Lemma 34. For any y > 0, the integral
∫ y
0 Bzdz has distribution N (0, y

3

3 ).

We are now able to prove Proposition 4.

Proof of Proposition 4. Proposition 33 implies 1
N3/2 (TN −N2(|x| + 2θ)2) − 2

∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy converges in probabil-

ity to 0 when N tends to +∞. Hence by Slutsky’s Theorem, it is enough to prove 2
∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy converges

in distribution to N (0,Var(ρ−)
32
3 ((|x| + θ)3 + θ3)) when N tends to +∞ to prove Proposition 4. In addition, by

Lemma 26, Y ′
N |[−|x|−2θ,|x|+2θ] converges in distribution to Bx|[−|x|−2θ,|x|+2θ] when N tends to +∞ for the topology

defined on C[−|x| − 2θ, |x| + 2θ] by the uniform norm. Moreover, the integral between −|x| − 2θ and |x| + 2θ is
continuous for this topology, hence

∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy converges in distribution to

∫ |x|+2θ
−|x|−2θ B

x
ydy when N tends to

+∞. Furthermore, Bx is a two-sided Brownian motion with Bx
x = 0 and variance Var(ρ−), hence we can write∫ |x|+2θ

−|x|−2θ B
x
ydy =

∫ x
−|x|−2θ B

x
ydy +

∫ |x|+2θ
x Bx

ydy where
∫ x
−|x|−2θ B

x
ydy and

∫ |x|+2θ
x Bx

ydy are independent. In addition,∫ |x|+2θ
x Bx

ydy has the distribution of
√
Var(ρ−)

∫ 2θ
0 Bydy, which is N (0,Var(ρ−)

(2θ)3

3 ) by Lemma 34, and
∫ x
−|x|−2θ B

x
ydy

has the distribution of
√
Var(ρ−)

∫ 2|x|+2θ
0 Bydy, which is N (0,Var(ρ−)

(2|x|+2θ)3

3 ) by Lemma 34. We obtain that∫ |x|+2θ
−|x|−2θ B

x
ydy has the distribution N (0,Var(ρ−)

(2|x|+2θ)3

3 + Var(ρ−)
(2θ)3

3 ) = N (0,Var(ρ−)
8
3((|x| + θ)3 + θ3)). Conse-

quently,
∫ |x|+2θ
−|x|−2θ Y

′
N (y)dy converges in distribution to N (0,Var(ρ−)

8
3((|x| + θ)3 + θ3)) when N tends to +∞, which

ends the proof of Proposition 4. □
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