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FLUCTUATIONS OF THE LOCAL TIMES OF THE SELF-REPELLING RANDOM WALK
WITH DIRECTED EDGES

LAURE MARECHE

ABSTRACT. In 2008, To6th and Vets defined the self-repelling random walk with directed edges as a non-Markovian
random walk on Z: in this model, the probability that the walk moves from a point of Z to a given neighbor depends on
the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge.
They found this model had a very peculiar behavior. Indeed, for the non-Markovian random walks most closely related
to it, which are defined with undirected edges replacing directed edges, Toth proved in his works of 1994, 1995 and 1996
that the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably
renormalized, converges to a random process. The behavior of the self-repelling random walk with directed edges is very
different and unusual, as Téth and Vetd proved in 2008 that the limit process is deterministic. In this work, we study
the fluctuations of the local times process around this deterministic limit, about which nothing was previously known.
We prove that these fluctuations converge in the Skorohod M; topology, as well as in the uniform topology away from
the discontinuities of the limit, but not in the most classical Skorohod topology. We also prove the convergence of the
fluctuations of the aforementioned stopping times.

MSC2020: Primary 60F17; Secondary 60G50, 60K35, 82C41.
Keywords: Self-interacting random walks, self-repelling random walk with directed edges, local times, functional
limit theorems, fluctuations.

1. INTRODUCTION AND RESULTS

1.1. Self-interacting random walks. The study of self-interacting random walks began in 1983 in an article of
Amit et al [I]. Before [I], the expression “self-avoiding random walk” referred to paths on graphs that do not intersect
themselves. However, these are not easy to construct step by step, hence one would consider the set of all possible
paths of a given length. Since one does not follow a single path as it grows with time, it is not really a random walk
model. In order to work with an actual random walk model with a self-avoiding behavior, the authors of [I] introduced
the “true” self-avoiding random walk. Tt is a random walk on Z? for which, at each step, the position of the process
at the next step is chosen randomly among the neighbors of the current position depending on the number of the
previous visits to said neighbors, wtih lower probabilities for those that have been visited the most. This process is a
random walk in the sense that it is constructed step by step, but contrary to most random walks in the literature, it
is non-Markovian: at each step, the law of the next step depends on the whole past of the process.

It turns out that the “true” self-avoiding random walk is hard to study. This led to the introduction by Téth
[5 16 [7] of non-Markovian random walks with bond repulsion, for which the probability to go from one site to another,
instead of depending of the number of previous visits to the target, depends on the number of previous crossings of
the undirected edge between the two sites, which is called the local time of the edge. These walks are much easier
to study, at least on Z, because one can apply them the Ray-Knight approach: though the random walk itself is not
Markovian, if we stop it when the local time at a given edge has reached a certain threshold, then the local times on
the edges will form a Markov chain, which allows their analysis. Thanks to this Ray-Knight approach, T6th was able
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2 LAURE MARECHE

to prove scaling limits for the local times process for many different random walks with bond repulsion in his works
[5, 6, [7]. The law of the limit depends on the random walk model, but it is always a random process.

1.2. The self-repelling random walk with directed edges. In 2008, T6th and Vetd [8] introduced a process
seemingly very similar to the aforementioned random walks with bond repulsion, in which the probability to go from
one site to another depends on the number of crossings of the directed edge between them instead of the crossings of the
undirected edge. This process, called self-repelling random walk with directed edges, is a nearest-neighbor random walk
on Z defined as follows. For any set A, we denote by |A| the cardinal of A. Let w : Z + (0, +00) be a non-decreasing
and non-constant function. We will denote the walk by (X,,)nen. We set Xg = 0, and for any n € IN, i € Z, we denote
t(n,i) = {0 <m <n— 1| (Xm, Xms1) = (i,i = 1)}| the number of crossings of the directed edge (i,i + 1) before
time n, that is the local time of the directed edge at time n. Then
W (1, Xn) — £ (1, X))

(t+(n, Xp,) — 0~ (n, X)) + w(l—(n, Xp,) — £+(n, X))

Using the local time of directed edges instead of that of undirected edges may seem like a very small change in
the definition of the process, but the behavior of the self-repelling random walk with directed edges is actually very
different from that of classical random walks with bond repulsion. Indeed, Toth and Vet [8] were able to prove that
the local times process has a deterministic scaling limit, which is in sharp contrast with the random limit processes
obtained for the random walks with bond repulsion on undirected edges [5l [6l [7] and even for the simple random
walk [2].

The result of [§] is as follows. For any a € R, we denote a4y = max(a,0). If for any n € N, i € Z, we denote by
Tniﬂ- the stopping time defined by Tri- = min{m € IN| ¢ (m, i) = n}, then Tn%i is almost-surely finite by Proposition 1

P(Xp1 = Xp£1) =

of [8] and we have the following.

Theorem (Theorem 1 of [§]). For any 0 >0, z € R, then sup,cg |%€+(T§V9J,LNIJ’ |Ny|) — (w +0)+| converges
i probability to 0 when N tends to +o00.

Thus the local times process of the self-repelling random walk with directed edges admits the deterministic scaling
limit : y — (% + 0)+, which has the shape of a triangle. This also implies the following convergence result to a

deterministic limit for the TLiNe LNzl

Proposition (Corollary 1 of [8]). For any 8 > 0, © € R, then ﬁTi\/eJ Nz COnverges in probability to (|z| + 26)?
when N tends to 4o0.

The deterministic character of these limits makes the behavior of the self-repelling random walk with directed edges
very unusual, hence worthy of study. In particular, it is natural to consider the possible fluctuations of the local times
process and of the Tﬁve 1[N around their deterministic limits. However, prior to this paper, nothing was known about
these fluctuations. In this work, we prove convergence in distribution of the fluctuations of the local times process
and of the T fJE\m I[Nz It happens that the limit of the fluctuations of the local times process is discontinuous, hence
before stating the results, we have to be careful of the topology in which it may converge.

1.3. Topologies for the convergence of the local times process. For any interval I C R, let DI be the space of
cadlag functions on I, that is the set of functions : I — R that are right-continuous and have left limits everywhere in
I. For any function Z : I — R, we denote by [|Z||cc = sup,e;|Z(y)| the uniform norm of Z on I. The uniform norm
on [ gives a topology on DI, but it is often too strong to deal with discontinuous functions.
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For discontinuous cadlag functions, the most widely used topology is the Skorohod Ji topology, introduced by
Skorohod in [4] (see chapter VI of [3] for a course), which is often called “the” Skorohod topology. Intuitively, two
functions are close in this topology if they are close for the uniform norm after allowing some small perturbation of
time. Rigorously, for a < b in R the Skorohod J; topology on Dia,b] is defined as follows. We call A, the set
of functions A : [a,b] — [a,b] that are bijective, strictly increasing and continuous (they correspond to the possible
perturbations of time), and we denote by Id,p : [a,b] — [a,b] the identity map, defined by Id,(y) = y for all
y € [a,b]. The Skorohod J; topology on Dla,b] is defined through the following metric: for any Z;, Zy € Dla,b], we
set dj, ap(Z1,Z2) = infyep max(||Z1 0 A — Za]|oc, |[A — Idgp]|oc). It can be proven rather easily that this is indeed a
metric. We can then define the Skorohod J; topology in D(—o00, c0) with the following metric: if for any sets A1 C Aq
and A3 and any function Z : Ay — As, we denote Z|4, the restriction of Z to Aj, then for Z1, Zs € D(—00,0), we
set dj, (Z1,22) = 0+°O e~ (dyy,~a,a(Z1l|=a,a)s Z2|[~a,a) A 1)da. The Skorohod J; topology is widely used to study the
convergence of cadlag functions. However, when the limit function has a jump, which will be the case here, convergence
in the Skorohod J; topology requires the converging functions to have a single big jump approximating the jump of
the limit process. To account for other cases, like having the jump of the limit functions approximated by several
smaller jumps in quick succession or by a very steep continuous slope, one has to use a less restrictive topology, like
the Skorohod My topology.

The Skorohod M topology was also introduced by Skorohod in [4] (see Section 3.3 of [9] for an overview). For
any a < b in R, the Skorohod M; distance on Dja,b] is defined as follows: the distance between two functions will
be roughly “the distance between the completed graphs of the functions”. More rigorously, if Z € Dla, b], we denote
Z(a~) = Z(a) and for any y € (a,b], we denote Z(y~) = limy_y <y Z(y'). Then the completed graph of Z is
I'z ={(y,2) |y € [a,b],3e € [0,1] so that z = eZ(y~) + (1 —e)Z(y)}. To express the “distance between two such
completed graphs”, we need to define the parametric representations of T'z (by abuse of notation, we will often write
“the parametric representations of Z”). We define an order on I'y as follows: for (y1,21),(y2,22) € 'z, we have
(y1,21) < (y2,22) when y; < yo or when y; = yp and |Z(y; ) — 21| < |Z(yy ) — 22|. A parametric representation of
I'z is a continuous, surjective function (u,r) : [0,1] — I'z that is non-decreasing with respect to this order, thus
intuitively, when ¢ goes from 0 to 1, (u(t),r(t)) “travels through the completed graph of Z from its beginning to its
end”. A parametric representation of Z always exists (see Remark 12.3.3 in [9]). For Z;, Z5 € Dla,b], the Skorohod
M, distance between Z; and Z3, denoted by dar, o.5(Z1, Z2), is inf{max(||u1 — u2|/sc, ||[71 — 72|loc)} Where the infimum
is on the parametric representations (ui,r1) of Z; and (ug,r2) of Zs. It can be proven that this indeed gives a
metric (see Theorem 12.3.1 of [9]), and this metric defines the Skorohod M; topology on D[a,b]. For any a > 0,
we will denote dar, —q.qo by dar, o for short. We can now define the Skorohod M; topology in D(—o00,00) through
the following metric: for Z;,Zs € D(—o00,00), we set dp, (Z1,22) = 0+°° e (duy,a(Z1][—a,a)> Z2l[—a,q) A 1)da. Tt
can be seen that the Skorohod M; topology is weaker than the Skorohod J; topology (see Theorem 12.3.2 of [9]),
thus less restrictive. Indeed, since the distance between two functions is roughly “the distance between the completed
graphs of the functions”, the Skorohod M; topology will allow a function with a jump to be the limit of functions with
steep slopes or with several smaller jumps. For this reason, the Skorohod Mj topology is often more adapted when
considering convergence to a discontinuous function.

1.4. Results. We are now ready to state our results on the convergence of the fluctuations of the local times process.
For any § > 0, z € R, ¢ € {4+, -}, for any N € IN*, we define functions Y/, Yﬁ as follows: for any y € R, we set
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Moreover, (By)yer will denote a two-sided Brownian motion with Bj = 0 and variance Var(p-), where p_ is the
distribution on Z defined later in . We proved the following convergence for the fluctuations of the local times
process of the self-repelling random walk with directed edges.

Theorem 1. For any0 > 0, x € R, « € {+, —}, the process Yﬁ converges in distribution to (By 1 yc|_|o|-20,|2|+26)} JyeR
in the Skorohod My topology on D(—o0,+00) when N tends to +00.

Therefore the fluctuations of the local times process have a diffusive limit behavior. However, it is necessary to use
the Skorohod Mj topology here, as the following result states the convergence does not occur in the stronger Skorohod
J1 topology.

Proposition 2. For any 0 >0, x € R, « € {+, —}, the process Yﬁ does not converge in distribution in the Skorohod
J1 topology on D(—o0, +00) when N tends to +00.

We stress the fact that the use of the Skorohod M; topology is only required to deal with the discontinuities of the
limit process in —|x| — 26 and |x| + 26. Indeed, if we consider the convergence of the process on an interval that does
not include —|x| — 26 or |z| 4 26, it converges in the much stronger topology given by the uniform norm, which is the
following result.

Proposition 3. For any 0 >0, z € R, v € {+,—}, for any closed interval I € R that does not contain —|x| — 20 or
|x| + 26, the process (Yﬁ(y))yg converges in distribution to (Byl{ye[|z|—20,)c|+20)})yel in the topology on DI given
by the uniform norm when N tends to +oo.

Finally, we also proved the convergence of the fluctuations of TL For any o2 > 0, we denote by N(0,0?)

N6|,| Nz
the Gaussian distribution with mean 0 and variance o2, and we recall that p_ will be defined in . We then have
the following.

Proposition 4. For any 0 > 0, x € R, « € {+,—}, we have that N3/2( Ting), N2 — N2(|z| + 260)2) converges in
distribution to N'(0, 2 Var(p_)((|z| + 0)® + %)) when N tends to +oo.

1.5. Proof ideas. We begin by explaining why the limit of the local times process Yﬁ is (ByLyye|—|e|—20,|z|+26)} JyeR
and the ideas behind the proofs of Theorem [If and Proposition [3] To show the convergence of the local times process,
we use a Ray-Knight argument, that is we notice that (¢~ (TfNOJ,LNxJ’i))i is a Markov chain. Moreover, as long as
- (TLLNHJ,LNxJ’i) is not too low, the £~ (T[NQHNIJ,Z' +1)—¢~ (TLLN9J,LNxJ’i) will roughly be i.i.d. random variables in
the sense that they can be coupled with i.i.d. random variables with a high probability to be equal to them. This
coupling was already used in [8] to prove the convergence of + ~0 (Tﬁve 1[Nz’ | Ny]) to its deterministic limit (for a
given y, the coupling makes this convergence a law of large numbers) However, when ¢~ ( LLNe 1[Nz | Ny|) is too low,
the coupling fails and the ¢~ (TfNej Nz |Ny| +1) — £~ (T} 'NOJ [Nz , | Ny]) are no longer i.i.d. We have to prove that
this occurs only around |z| + 26 and —|x| — 26, and most of our work is dealing with what happens there. To show
it occurs only around |z| 4+ 20 and —|z| — 26, we control the amplitude of the fluctuations to prove the local times
are close to their deterministic limit. This limit is large inside (—|z| — 26, |z| + 26), so we can use the coupling inside
this interval, thus the ¢~ (TLLNGJ,LNQ:J’ |INy| +1)—¢~ (TfNej,LNva | Ny|) are roughly i.i.d. there, hence the fluctuations
will converge to a Brownian motion by Donsker’s Invariance Principle. When we are close to |z| 4+ 20 (the same
reasoning works for —|z| — 26) the deterministic limit will be small hence the local times too, and tools of [§] allow
to prove that they reach 0 quickly. Once they reach 0, we notice that for y > |z| + 20, if £~ (TLLNQJ | Na)> |Ny|) =0,
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the walk X did not go from |Ny| to | Ny| + 1 before time Tnoj, N> S0 it did not go to | Ny| + 1 before time
TLLNOJ,LNzJ’ hence ¢~ (TLLNGJ,LNxJ’j) = 0 for any j > [Ny|. Therefore, once the local times process reaches 0, it stays
there. Consequently, we expect £~ (TLLNGJ,LNxJ’ | Ny|) to be 0 when y > |x|+ 26, and thus to have no fluctuations when
y > ||+ 260, and similarly when y < —[x|—26¢. This is why our limit is (By1{yec[—|x|—20,|z|+26)} )yeRr- Since Proposition
only describes convergence away from —|z| — 20 and |x| 4+ 26, the previous arguments are enough to prove it. To
prove the convergence in the Skorohod M; topology on D(—o0,+00) stated in Theorem |1, we need to handle what
happens around —|x| — 20 and |z| 4+ 20 with more precision. We first have to bound the difference between the local
times and the i.i.d. random variables of the coupling even where the coupling fails. Afterwards, we have to tackle
the the main challenge of the paper: writing explicit parametric representations of Yi and of the sum of the i.i.d.
random variables of the coupling, properly renormalized and set to 0 outside of [—|x| — 26, |x| + 26), and then proving
that they are close to each other. That allows to prove Y]\j,E is close in the Skorohod M; distance to a process that
will converge in distribution to (B;]l{ye[,|m|,297|z|+29)})y63 in the Skorohod Mj topology and to complete the proof
of Theorem [l

To prove Proposition that is that Yﬁ does not converge in the J; topology, we first notice that since the J; topology
is stronger than the M7 topology, if Y]\j,E did converge in the J; topology its limit would be (B;]l{ye[_|$|_297|x‘+29)})y€R.
However, it is not possible, as (B 1 ye[—|z|—26,x|+26)} )yeR has a jump at |z] + 26, while the jumps of Yi have size of
order ﬁ, so the jump in (B;]l {ye[_|x‘_297‘x|+29)}>yeﬂ is approximated in Yﬁ by either a sequence of small jumps or
a continuous slope, which prevents the convergence in the Skorohod J; topology.

Finally, to prove Proposition {4 on the fluctuations of TLLN9J7LN96J’ we use the fact that we have TfN@ LINg| =

Zz’eZ(FF(TfNeJ,LNmyi) + g_(TLLNej,LN:cJ’i))' By using the coupling for the g_(TLLNej,LNxJ’i +1) — E‘(TLLNQHNN,Z')
when ¢~ (T[LNGJ,LN:EJ ,1) is high enough and our estimates on the size of the window in which ¢~ (TLLNGJ,LN:EJ ,1) is neither
high enough nor 0, we can prove that T \_LNG I, Nz] is close to the integral of the sum of the i.i.d. random variables of
the coupling, which will yield the convergence.

1.6. Organization of the paper. In Section 2] we define the coupling between the increments of the local time and
i.i.d. random variables and prove some of its properties. In Section [3], we control where the local times hit 0, as well
as where the local times are too low for the coupling of Section [2| to be useful. In Section [4] we prove a bound on the
Skorohod M; distance between Yi and the renormalized sum of the i.i.d. random variables of the coupling set to 0
outside of [—|z| — 20, |z| + 20) by writing explicit parametric representations of the two functions. In Section [5, we
complete the proof of the convergence of Yi stated in Theorem |1{ and Proposition . In Section @ we prove that as
claimed in Proposition Yﬁ does not converge in the J; topology. Finally, in Section |7, we prove the convergence of
the fluctuations of Tﬁve 1[Nz stated in Proposition

In what follows, we set 8 > 0, t € {+,—} and x > 0 (the cases x < 0 and = = 0 can be dealt with in the same way).
To shorten the notation, we denote Ty = TLLNHJ,LN:::J' Moreover, for any a,b € R, we denote a V b = max(a,b) and
a A'b = min(a,b).

2. COUPLING OF THE LOCAL TIMES INCREMENTS WITH I.I.D. RANDOM VARIABLES

Our goal in this section will be to couple the ¢*(Ty,i + 1) — £*(Ty,i) with i.i.d. random variables and to prove
some properties of this coupling. This part of the work is not very different from what was done in [§], but we
still recall their concepts and definitions. If we fix ¢ € Z and observe the evolution of (/7 (n,i) — £*(n,%))nen,
and if we ignore the steps at which £~ (n,i) — £*(n,7) does not move (i.e. those at which the random walk is not
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at i), we obtain a Markov chain & whose distribution ¢ has the following transition probabilities: for all n € IN,

Pn+1)=¢&mn)£1) = %, and so that &(0) = 0. Now, we denote 7; +(0) = 0 and for any n € N,
we denote 7 +(n + 1) = inf{m > 7 +(n)|&(m) = &(m — 1) £ 1}, so that 7 _(n) is the time of the n-th upwards
step of & and 7; _(n) is the time of the n-th downwards step of &;. Then since the distribution of £ is symmetric, the
processes (1; 4+ (1n))new = (=&i(7i+(n)))nen and (7;,—(n))new = (&i(7i,—(n)))new have the same distribution, called 7,
and it can be checked that 7 is a Markov chain.

We are going to give an expression of ¢=(Ty,i + 1) — {*(Ty,i) depending on the 7; —, 1; 1. We assume N large
enough (so that | Nz —1 > 0). By definition of T we have X7, = [Nz |:1. If i <0 we thus have X7, > i, so the last
step of the walk at ¢ before Ty was going to the right, so the last step of £ was a downwards step, and by definition
of ¢T(Tn,i) we have that & made ¢ (Ty,4) downwards steps, hence ¢~ (Ty,i) — (T (Tn,i) = &(ri— (T (TN, 1)) =

_(¢*(Tw,4)), which yields ¢~ (Tn,i) — €Y (Tn,i) = ni,— (¢ (Tw,4)). In addition, ¢~ (Ty,i) = ¢ (Tn,i — 1), hence
€+(TN i—1) = 0" (Tnyi) +mi— (0T (Tn,i). 0 < i < |[Nz] (for v = =) or 0 < ¢ < [Nz (for v = +), the last
step of the walk at ¢ was also going to the right, so we also have ¢~ (Tn,i) — {T(Tn,4) = n;—(¢*(Ty,4)). However,
0~ (Tn,i) =0 (Tnyi—1) — 1, s0 07 (T, i — 1) = 41 (Ty, i) + i (¢ (Tw,4)) + 1. Finally, if ¢ > [ Nz| (for . = —) or

> | Nz] (for « = +), then the last step of the walk at ¢ was going to the left, so the last step of & was an upwards
step, and & made £~ (Ty,i) upwards steps, therefore ¢~ (Ty,i) — T (Ty,i) = fi(’TZH_(E_ (Tn,1))) = —ni+ (0 (TN, 1)),
which yields ¢~ (Tn,i) — £ (Ty,i) = —ni+ (¢~ (T,4)). Moreover, {T(Tn,i) = £~ (Ty,i+ 1), hence ¢~ (Tn,i+ 1) =
0= (T ) + 5.0 (€ (T ).

We are going to use these results to deduce an expression of the £* (T, 4) which will be very useful throughout this
work. Denoting x(N) = |Nz|ift = —et x(N) = [Nz|+1if ¢ = +, for i > x(N) we have 0~ (Tn,i) =0 (Tn,x(N))+
S oy M4 (6 (T, 9)), and for i < x(N) we have £4(Ty, i) = £+(Ti, (V)= 1)+ 30T (s, (€ (T, 1))+ 150
Now, we remember that the definition of T implies ¢*(Tn, [ Nx|) = | N@], so if « = — we have ¢~ (T, x(N)) = [ N6|
and (T (T, x(N) —1) = ¢~ (Tn,x(N)) = |[N6], and if : = + we have ¢ (T, x(N) — 1) = |[N6] and ¢~ (Tn, x(N)) =
(T (Tn,x(N)—1) — 1= | N6| — 1. Consequently, we have the following.

1—1
Ifi > x(N), ¢ (Tn,i)=[NO| =T+ > m (0 (Tn, ).
1 J=x(N)
( ) X(N)—l
If i < x(N), €H(Tw,i)=[NOJ+ > (- ((" (T, ) + Lij=0p)-
j=i+1

We will also need to remember the following.
(2) Ifi > x(N), £ (Tn,i)—LT(Ty,i) = —mit (0" (Tn,1)). Ifi<x(N), € (Tn,i)—(Tn,i) =ni_((T(Ty,i)).

To couple the ¢+ (T, i+ 1) — £+ (T, 4) with i.i.d. random variables, we need to understand the 7; 4 (¢~ (T, %)) and
the n; —(¢*(Tn,4)). [8] proved that the following measure p_ is the unique invariant probability distribution of the
Markov chain n:

1 L|2i1+_1[/2J w(—) Z L|211+_1[|/2J w(—)
(3) VielZ, p_(i)=— -  with R = ==,

R w() A B €)
We also denote py the measure on § + Z defined by po(-) = p—(- — 3).
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We are now in position to construct the coupling of the ¢*(Tw,i + 1) — ¢*(Ty,i) with i.i.d. random variables
(Gi)iez. The idea is that 1 can be expected to converge to its invariant distribution p_, hence when ¢* (T, 1) is large,
m,;(ﬁi(TN, i)) will be close to a random variable of law p_. More rigorously, we begin by defining an i.i.d. sequence
(ri)iez of random variables of distribution p_ so that for i > y(N) then P(r; # 7,4 (|N'/6])) is minimal, and for
i < x(N) then P(r; # n; (| N'/6])) is minimal. We can then define i.i.d. Markov chains (7,4 (1)) > N1/s) for @ > x(N)
and (7;,—(n)),,> | n1/6) for i < x(N) so that i+ ([ NY®|) = r;, 7l + is a Markov chain of distribution that of 7, and if
i+ ([NYO]) = n; £ (|NV6]) then 7; 4+ (n) = n; +(n) for any n > | N'/6]. Since p_ is invariant for 7, if n > [N/6], the
7i+(n) for i > x(N) and 7, —(n) for i < x(N) have distribution p_. We define the random variables ({;)icz as follows:
for i > x(N) we set §; = 7+ (¢ (T, i) V [NY6]) + 1, and for i < x(N) we set ¢ = 7;,—(¢F (T, i) vV [NV6]) + L.
For i > x(N), (1) implies that £~ (Ty,%) depends only on the n; , x(N) < j < i —1, hence is independent from 7; 4,
which implies ¢; has distribution py and is independent from the (j, x(N) < j < i — 1. This and a similar argument
for i < x(IV) implies the ((;)icz are i.i.d. with distribution py.

We will prove several properties of ({;);cz that we will use in the remainder of the proof. In order to do that, we
need the following lemma of [§].

Lemma 5 (Lemma 1 of [8]). There exist two constants ¢ = &(w) > 0 and C = C(w) < +oc so that for anyn € N,
P(n(n) = iln(0) = 0) < O and 3" [P((n) = iln(0) = 0) — p_(i)] < Ceon.
€L
Firstly, we want to prove that our coupling is actually useful: that the ¢; are close to the ¢ (T, i+ 1) — ¢*(Ty,1).

ore precisely, we will show that except on an event of probability tending to 1 'N,1) 1s large then (; =
M precisely, ill sh h P f probability ding 0, if Ei(T ,1) is large then ¢
ni+(0*(Tn,4)) + 1/2, which (I relates to ¢=(Ty,i+ 1) — £*(T,i). We denote

By = {3i € {=[2(|z] + 20)N1, .., Xx(N) = 1}, £F (T, i) = [NVO] and ¢ # mi— (€7 (T, 7)) + 1/2},

B ={3i € {x(N), ..., [2(|z] + 20) N1}, £ (T, i) > [NV/%] and G # miy (€ (T, 4)) + 1/2}.

Lemma [5] will allow us to prove the following.

Lemma 6. P(B;) and P(B;) tend to 0 when N — +oc.

Proof. By definition, for any i € {—[2(|z| + 20)NT, ..., x(N) — 1} we have ¢; = 7;— (¢ (T, i) V [NY/6]) + 3, which is
i~ (0 (T, i))+5 when £ (T, i) > [NY6|. Now, ;= n;  if i, - (|[NV/6]) = mi - ([N'/8]), thatis r; = n; - (|[NV/S]).
We deduce P(By) < P(3i € {—[2(|z| +20)N7, ..., x(N) — 1},7; # mi_(|[N'/6])). Now, for any i < x(N), we have
P(r; # ni—(|N'%])) minimal, thus smaller than Ce ¢V "°J by Lemma . Consequently, when NV is large enough,
P(By) < 3(|z| + 20)NC~’e_ELN1/6J, which tends to 0 when N — +o00. The proof for P(B;) is the same. O

(4)

Unfortunately, the previous lemma does not allow to control the local times when ¢* (T, 1) is small. In order to do
that, we show several additional properties. We have to control the probability of

By ={3i € {~[2(|z| + 20)N1, ..., [2(|z| + 20)NT}, |¢i| = N1}
U{3i € {-12(|z| +20)NT, ... x(N) = 1}, s, (€7 (T, 1)) + 1/2] = N0}
Ui € {X(N), o, [2(J2] + 20)NT}, |mis (€ (T, ) + 1/2| = NV}
Lemma 7. P(By) tends to 0 when N tends to +oc.



8 LAURE MARECHE

Proof. It is enough to find some constants ¢ > 0 and C' < +o00 so that for any i € {—[2(|z|+20)N1,...., [2(Jz|+20)N|}
we have P(|¢;| > N'/16) < Ce=*N""" for any i € {~[2(|z|+20)NT, ..., x(N) — 1} we have P(|n; _ (£* (T, 1)) +1/2| >
NY16) < CemeNY"® and for all i € {x(N),...., [2(jz| + 20)N]} we have P(|n; (¢~ (Tn,i)) + 1/2] > NY16) <
Ce=eN""°  For all i € 7., (; has distribution pp, which has exponential tails, hence there exists constants ¢ =
d(w) > 0 and C' = C'(w) < +oo so that for i € {—[2(|z| + 20)N7,...., [2(|z| + 20)N} we have P(|¢;| > N1/16) <
C'e=“N""" " We now consider i € {—[2(|z| + 20)N], ..., x(N) — 1} and P(|n,; _ (€+(TN, i) 4+ 1/2| > N/16) (the
P(|n;+ (¢~ (T, i) + 1/2| > NY16) can be dealt with in the same way). Equation (T)) implies £* (T, ) depends only
on the n; — for j > 4, hence is independent of 7; . This implies P(|n; — (¢ (T, i))+1/2| > N'/16) = > wenw P(|mi,— (k) +
1/2| > NYIO)P(¢+(Ty,i) = k). Therefore the first part of Lemma |5 implies P(|n; _ (¢ (T, ) + 1/2| > NV/16) <

S en 2Cee/2 e NP (g (T, i) = k) = 20@6/2 e~ which is enough. O

l—e—¢ —e—¢

We will also need the following, which is a rather standard result of large deviations.

Lemma 8. For any a >0, € > 0, P(maxg<;, <j,<[ne] | Z?:“ G| > N/2%€) tends to 0 when N — +oo0.

Proof. Let 0 < iy <ig < [N®], let us study P(| 3222 25 Gil > No/2%€) We know the ¢, i € Z are i.i.d. with distribution
po, and it can be checked that pg is symmetric with respect to 0, so from that and the Markov inequality we get

P ( > G| = Na/2+f> < 2P (Z G > NW“) = 2P (exp < o7 Z<Z> > exp(N‘f))

6 (o (ke 306) ) <2 T8 (o ()

1=11 1=11
¢’) with |¢’| < [¢|. Since po

(5)

Now, if ¢ has distribution pg, we can write exp(Na/2 ()=1+ Na/Qq + 5 (Na/Q ¢)? exp(~=
is symmetric with respect to 0, we have E(¢) = 0, therefore

E L am (LD 2 LoV <14 Lgle |
eXp NO‘/2< + ]\[oz/2C exp ]\foz/2C - +2Noz (" exp Na/2 C’

Moreover, pg has exponential tails, hence there exists constants C < +oo and ¢ > 0 so that E(C2ec‘<|) < C. When
N is large enough, ﬁ < ¢, therefore IEC(eXp(ﬁ()) <1 +C21€ (35=). Together with (5), this yields

P2 i Gil = N/2te) < 9= N plia=iitl)anm < 9= N e(INYIH) 35 < 2ece N® when N is large enough. We deduce
that when N is large enough, P(maxo<;, <j,<[ne] | ZZ i Gil > Ne/2te)y < ([N]+1)22¢CeN°, which tends to 0 when

Na/2

N tends to +o0. O
We also prove an immediate application of Lemma [§] which we will use several times. If we define
33:{ max Z( >N19/48}
L(2[+20) N = N3/4<iy <ig<—[(|z|+20) N |+ N3/* | 7=
= 19/48
B = {L(x|+29)NJ—N3/4<?352(<L(|w|+29)NJ+N3/4 l:Z“Q 2 N }7

we have the following lemma.
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Lemma 9. P(B;) and P(B7) tend to 0 when N tends to +oo.

Proof. Since the ((;)iez are iid., P(Bf) = P(By) = P(maxg<;, <j,<o[n3/4] \212:“ G| > N'9/48) which is smaller
than P(maxg<;, <, < ns7/487 | Z?:zl ¢i| > N19/48) when N is large enough. Moreover, Lemma used with a = 37/48
and € = 1/96, yields that the latter probability tends to 0 when N tends to +oo.

3. WHERE THE LOCAL TIMES APPROACH 0

The aim of this section is twofold. Firstly, we need to control the place where ¢~ (T, ) hits 0 when ¢ is at the
right of 0, as well as the place where £* (T}, %) hits 0 when i is at the left of 0. Secondly, we have to show that even
when ¢ (T, 1) is close to 0, the local times do not stray too far away from the coupling. For any N € IN, we denote
I =inf{i > x(N) £~ (Tn,i) = 0} and I~ = sup{i < x(N)|¢"(Ty,i) = 0}. We notice that {T(Ty,I~) = 0, and
from the definition of Ty we have ¢*(Ty,i) > 0 for any 0 < i < x(N) — 1, hence I~ < 0. We will also need the
auxiliary random variables [T = inf{i > y(N) [£~(Ty,i) < [NY/6]} and I~ = sup{i < x(N) | £+ (Tn,i) < |[N'/6]}.

3.1. Place where we hit 0. We have the following result of control on I and I~.

Lemma 10. For any 6 > 0, P(|I~ 4 (|z| + 20)N| > Not1/2) and P(|IT — (|z| + 20)N| > NO+1/2) tend to 0 when N
tends to +oo0.

Proof. The idea is to control the fluctuations of the local times around their deterministic limit: as long as £ (T, 9)
is large, the ¢ (T, i+ 1) — £*(Ty,4) will be close to the i.i.d. random variables of the coupling, so the fluctuations
of £+ (T, i) around its deterministic limit are bounded and ¢* (T, i) can be small only when the deterministic limit
is small, that is around —(|z| 4+ 20)N and (|x| + 26) N. We only spell out the proof for I~, as the argument for I is
similar. The fact that P(I~ + (|z| + 20)N < —N%+1/2) tends to 0 when N tends to 4+0co comes from inequalities (51)
and (53) of [8], so we only have to prove that (I~ + (|z| +20)N > NO+1/2) tends to 0 when N tends to +oo. Since
I~ < I, it is enough to prove that P(I~ + (|z| +20)N > N9*t1/2) tends to 0 when N tends to +oo. Since by Lemma@
we have that IP(B7) tends to 0 when N tends to +oo, it is enough to prove P(I~ + (|z| +20)N > N*+1/2 (B[)¢) tends
to 0 when N tends to +oo. We now assume N is large enough, I~ + (|z| + 20)N > N°*t'/2 and (B7)¢. Then there
exists i € {[—(|z| 4+ 20)N + NO+t1/2] . (N )— 1} so that £ (Ty,4) < |[NY®| and ¢+ (T, j) > [N'/6] for all j € {i+
1,...,x(IN)—1}. Thus, by (1) we get LN@J—!—Z; 12\21 1(?737 (U (T, 5))+js0y) = £F (T, i) < | N'/6|. Furthermore, for
all j € {i+1,...,x(N)—1}, since (B} )¢ occurs and ¢ (T, j) > LNI/GJ we have 7;, _(€+(TN, 7))+1/2 = (. We deduce
e +Z;§ijj+)fl(Cj+(]1{j>o}—ﬂ{jgo})/Q) < |[NV6], thus E] Z+1 G LNOJ +Z] 1+1 (]1{3>0}—]1{g<o})/2 < |NVE]

Moreover, since i € {[—(|z|+20)N + N°+1/2] . y(N)—1} we have ZJ z+1 (]1{]>0} Lij<0y)/2= T(X(N)—1+1i) >

$(No—2—(|Jz|+20) N+ N°T/2) = —GN + I N°T1/2 —1. This yields Y}~ LG+ N0 —ON + INSH/2 1 < |NV/6),

hence EX(JZVH G < lN‘S“/2 INV6| 42 < —NU+9/2 gince N is large enough. Consequently, when N is large
enough, P(I~ + (|2 + 20)N > NOH/2 (B7)) < P(3i € {[—(|z] + 20)N + N*F1/2], . x(N) — 1}, 3¢ MG <

—NU+9)/2) " Since the ¢, i € Z are i.i.d., when N is large enough this yields P(I~ + (|z| + 20)N > N°*+1/2 (B )¢) <

P(maxg<;, <;,<[n1+5/2] | S i) Gil > N1+9/2) " wwhich tends to 0 when N tends to +oo by Lemma (applied with

o =1+6/2and e = §/4). This shows that P(I~ + (Jz| +20)N > N°+/2) converges to 0 when N tends to 400, which
ends the proof of Lemma O
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3.2. Control of low local times. We have to show that even when ¢*(Ty,1) is small, the local times are not too
far from the random variables of the coupling. In order to do that, we first prove that the window where Ei(TN, i) is
small but not zero, that is between I and It and between I~ and I, is small. Afterwards, we will give bounds on
what happens inside. We begin by showing the following easy result.

Lemma 11. P(I~ > 0) tends to 0 when N — +o0.

Proof. Let N be large enough. If I~ > 0, there exists i € {0,...,|Nz|} so that £+(Tw,i) < |[N'Y6|. Since N is
large enough, this implies (¥ (T, i) < N6/2, therefore sup,cg |+ (T, [Ny]) — (% +60)4| > 0/2. Moreover, by
Theorem 1 of [8], sup,cg |%£+ (Tn, [ Ny|) — (w + 0) 4| converges in probability to 0 when N tends to 400, hence

we deduce that P(sup,cg |%£+(TN, [Ny|) — (w +60)4| > 6/2) tends to 0 when N — 400. Therefore P(I~ > 0)
tends to 0 when N — +o0. 0

In order to control It, I=, I and I, we will use the fact the local times behave as the Markov chain L from 18],
defined as follows. We consider i.i.d. copies of the Markov chain 7 starting at 0, called (7,)men. For any m € IN, we
then set L(m + 1) = L(m) + nm(L(m)). We denote 7 = inf{m € IN| L(m) < 0}. The following was proven in [§].

Lemma 12 (Lemma 2 of [§]). There ezists a constant K < 400 so that for any k € IN we have E(7|L(0) = k) < 3k+K.

Since the local times will behave as L, Lemma[I2]implies that if the local time starts small, then the time at which
it reaches 0 has small expectation hence is not too large. This will help us to prove the following control on the window
where ¢+ (T, i) is small but not zero.

Lemma 13. P(I1 — It > NY4) and P(I~ — I~ > NY*) tend to 0 when N — +oc.

Proof. Let N be large enough. We deal only with P(I~ — I~ > N'Y4), since P(IT — It > N'/%) can be dealt
with in the same way and with simpler arguments. Thanks to Lemma it is enough to prove that P(Im—1I >
NV - < 0) tepds to 0 when N — +o00. Moreover, if I~ < 0, thanks to , for any i < I~ we get (T (Tn,i) =
(H (T, I7) + Z;;H_l nj— (L (T, 7)), which allows to prove that (£+(Tw, I~ — i))iew is a Markov chain with the
transition probabilities of L. Therefore

N
P (fﬁ -1 > N1/47f7 < 0) = Z P (j* —I > N1/47j7 < 0‘£+(TN’f7) _ k) P (ng(TN’ff) — ]{3)
k=0
LNl/GJ LNl/GJ .
= kzo P (T > N1/4’ L(0) = k:) P (ﬁ(TN,I*) = k:) < kzo W]E(TM(O) = BPT (T, I7) = k).

By Lemma [12] we deduce

[N1/S]

P - z_ 1 - 3NV6 4 K
]P(I " >NVAT <0>§W S @+ K)P(CH(Ty, ) = k) < 22T
k=0

< i < 4N"1/12

since N is large enough, hence P(I~ — I~ > NYAT- < 0) tends to 0 when N — 400, which ends the proof. O
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We are now going to prove that even when Ei(TN,i) is small, the local times are not too far from the random
variables of the coupling. More precisely, for any n € IN, we define the following events.

x(N)—1
By = 3ie{I™,.,x(N) =1}, > (- ((7(Tw, ) +1/2) — Z G| = N3
j=i+1 J=it+l
i—1
Bf =¢3ie {x(N), . "} | > (njr (0" (Tw, ) +1/2) — Z ¢l = N3
J=x(N) J=x(N)

Lemma 14. P(B;) and P(B]) tend to 0 when N tend to +oc.

Proof. The idea of the argument is that when (= (T, 1) is large, n; +(¢*(T,)) + 1/2 = (; thanks to Lemma @ that
the window where ¢+ (T, ) is small is bounded by Lemma , and that inside this window the n; +(¢*(Tw,1)) +1/2,
¢; are also bounded by Lemma E We only spell out the proof for P(B; ), since the proof for P(B}) is the same. By
Lemma we have that P(I~ < —2(|z| + 0)N) tends to 0 when N tends to +oco. Furthermore, Lemma [13] implies
that P(I~ — I~ > N%) tends to 0 when N tends to 4+oco. In addition, by Lemmas |§| and |7| we have that P(B;) and
IP(B;) tend to 0 when N tends to +o0o. Consequently, it is enough to prove that for N large enough, if (By )", (B2)*
occur, if = — 1~ < NY* and if I~ > —2(|z| + )N, then (B ) occurs. We assume (By )¢, (B2), I-—1- < N4
and I~ > —2(|z| + 0)N. Since (By )¢ occurs and I~ > I > —2(Jz| + 9)N We get ¢ =nj—(¢T(Tn,7)) +1/2 for any

i€ {I~+1,..,x(N)—1}. Therefore, ifi € {I~,...,x(N)—1} we get Z] H—l (77]7 (€+(TN,j))+1/2)—Z?gX3_11Cj =0,
and for i € {I~,...,]— — 1} we have
x(N)—1 x(N)—1 i~
Do (TN +1/2) = > Gl = D (- (T, 5) +1/2) — Z G
j=i+1 J=i+1 Jj=i+1 Jj=i+1

< Z (Imj- (T, 5)) + 1/2 + |G) < 2(I =T )N
j=i+1

since (B )¢ occurs, i+1> 17 > 2(|x! +0)N and by definition I~ < X(N) —1 < 2(|x|+6)N. Moreover, we assumed
I~—I~ < NY* which implies | Z] . +1 Y (0H (T, §))+1/2)— quzv o §]| < 2NV/AN1/16 = 9N5/16 < N1/3 when N
is large enough. Consequently, for any i € {1, ..., x(N)—1} we have | Z] l+1 (773‘, (0T (Tn,j4))+1/2)— 3‘ 11\21 ! Gl <
N3 therefore (B} )¢ occurs, which ends the proof. O

4. SKOROHOD M7 DISTANCE

The goal of this section is to prove that when N is large, Y]\? is close in the Skorohod M distance to the function
Yy defined as follows. For any N large enough, for y € R, we set Yn(y) = \/» Z LNyJ+1 G ify € [—|z| — 26, %),

Yn(y) = ﬁ ZZLN;/(JNl Gifye [ |x] +26), and Yy (y) = 0 otherwise. We want to prove the following proposition.

Proposition 15. P(dyy, (Y, Yy) > 3N~Y/12) tends to 0 when N tends to +oo.
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If we denote
B=By UBf UB,UB;y UBFUBy UBF U{|I™ + (2| +20)N| > N34} U {|It — (Jz| + 20)N| > N3/},
it will be enough to prove the following proposition.

Proposition 16. When N is large enough, for all a > 0 with |(|z| + 20) — a] > N~Y%, we have that B¢ C
{dMl,a(Yih—a,a]v YN’[—a,a]) < 2N_1/12}'

Proof of Proposition [15 given Proposition[16. We assume Proposition [I6] holds. Then, when N is large enough, if
B¢ occurs, for all @ > 0 with |(|z] + 20) — a| > N~'/8 we have dy,. a(Yi| —aa) YN|[—aq)) < IN~Y12 which yields
iy (V5 Y) = I ¢ oVl Yol ) A Dt < 7 02~ Vikda N1 = aN-1/12 4 N1 <
3N~ 1/12 This implies P(das, (Y, Yv) > 3N~1/12) < P(B) when N is large enough. In addition,

P(B) <P(By)+P(Bf) + P(B2) + P(B;) + P(By) + P(By ) + P(B))
+P(I + (2] + 20)N| > N¥4) 4 P(I* — (2| + 20)N| > N/4).

Furthermore, Lemma |§| implies P(B;) and P(B;) tend to 0 when N tends to +oo, Lemma [7| implies P(B2) tends to
0 when N tends to 400, Lemma |§| implies P(B;) and P(By) tend to 0 when N tends to 400, Lemma (14| implies
P(B;) and P(B]) tend to 0 when N tends to 400, and Lemma [10| implies P(|I~ + (Jz| + 20)N| > N*/*) and
P(|I* — (|Jz| + 20)N| > N3/%) tend to 0 when N tends to +oo. Therefore P(B) tends to 0 when N tends to +oo0,

hence P(dyy, (Yﬁ, Yn) > 3N~"1/12) tends to 0 when N tends to +oo, which is Proposition 15|
O

The remainder of this section is devoted to the proof of Proposition The first thing we do is showing that

CUab20NVI g (el 29)N)AT*

between , the functions Yﬁ and Yy are close in uniform distance, which is the

following lemma.

Lemma 17. When N is large enough, if (Ba)¢, (By)¢ and (Bf)¢ occur, then if It < (|x| + 20)N then for any
NS [(_(|m|+3\9,)N)V]7, ((|ml+2?\;N)M+] we have [Yi (y) — Yn(y)| < N=V12 while if IT > (|z| + 20)N we have |V (y) —
V)| < NV fory ¢ [CLeAs2OWNT lszgonrt

Proof of Lemma[17. Writing down the proof is only a technical matter, as the meaning of (Bff)c is that the local times
are close to the process formed from the random variables of the coupling. (B3)¢ is there to ensure that the difference
terms that appear will be small. We only spell out the proof for Y, as the proof for YT is similar. We assume

(Bs)¢, (B; )¢ and (Bf)¢. Then ify € [X%V), ((|x|+2?\),N)M+] (if I'™ > (|z| 4+ 20)N we exclude the case y = W)
we have y € [X§7, |2] + 20), so [V (y) — Yiv(y)| = 0" (T, [Ny)) = N(EG 4 0), — SSRVTH G, thus by

i=x(N)
[) we obtain the following: [Vy (y) = Y ()| = Jl[NO] = Limpy + SN0 mis (0 (T, 1)) = N(ER 4 0), —
Nyl|— N [N N _ .
S Gl < Sl TV i (60 (T, ) + LR IS G e = L S i (6 (T, ) +1/2)
_ T + _
Sy Gl . Now, y e [XGR, WA implies [Ny | € {X(N), ..., I*}, thus (B} )¢ yields |Yy (y) — Yi(y)| <

\;—NNU?’ + \/iﬁ < N7Y12 when N is large enough. We now consider the case y € [(7(|m|+2]3)N)V1_ , XS{,V)). Then

y € [la] ~26,XG), hence [Yy (v) = Y (y)| = Jgl¢~ (T, [Ny]) = N(E5 16)) = SSX0 L Gl Now, @) vields

[0~ (Tw, [Ny]) — £5(Tn, [INy))| = |nny),— (€T (T, [Ny]))|, which is smaller than N1 1 1/2 thanks to (B2)°. We
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deduce that |Yy (y) — Ya(y)| < L|e+(TN, [Ny)) = NS 4 9) ) — XL Gl + % thus (T) implies
_ z|— N)— 1/16
Yy () = Y ) < JlINO]+ X0 L 00 (0 (T, 0)) + Tginoy) = N 4 0), >—2§<L]&yj+lci|+%;”s

N / .
L=x }Vyjﬂm (+(Tv, 1))+ 1 isgy) + LU 5ot G+ 22008 < L 5ot (- (6F (T, 1)) +

1/2) — Zf( LNyJ+1 Gl + Nl\//l%r?’. Furthermore, y € [( OxH%\?)NWI ,X(]ffv)) implies |Ny| € {I7,...,x(N) — 1}, hence
(By )¢ yields |Yy (y) — Yn(y)| < ﬁNlB + % < N~/ when N is large enough. Consequently, for any
Y€ [(—(|x\+%\9[)N)vI*, ((|$|+2?\),N)M+] we have Yy (y) — Y (y)| < N7Y/'2] which ends the proof of Lemma . O

We now prove Proposition Let a > 0 so that |(|z| + 20) — a| > N~'/8, we will prove that when N is large
enough, B¢ C {tha(Yih—a,(z]aYN‘[—a,a]) < 2N~Y12} "and the threshold for N given by the proof will not depend
on the value of a. In order to bound the Skorohod M; distance between Yj\j,:][,(w} and Yn|[_q,q), we will write down
parametric representations of these two functions and prove that they are close. There will be two cases depending
on if a is smaller than |z| + 26 or not.

4.1. Case a € (0, x| + 26 — N~1/8). This is the easier case. Indeed, the interval [—a,a] will then be contained into

[(—(\x|+21<07)N)v1*’ ((‘x|+2§\;N)M+), inside which Yﬁ and Yy are close for the uniform norm by Lemma We only

write down the proof for Yy, since the proof for Y, is similar. Let us define (uy,ry) and (uy,7n), which will be
parametric representations of Yy \[,a,a] and YN][,CW}. The idea is to follow the completed graphs of the two functions

in parallel. We set ¢ : [0,1] — [—a — LN‘;\J,H,CL + UX,GJ] the affine function mapping 0 to —a — % and 1 tg
a+ LNG“J (if Na is an integer, we replace —a — % with ;aZ— FX,“J ). Yy and Yy have discontinuities at the
27 20+

where i is an integer, and only there; for ¢ so that ¢(t) € | |, the parametric representations will follow the

graphs of the functions between ﬁ and %, and when ¢ satgﬁesNd)(t) € [22‘;}1, 21‘];["2
the part of the completed graphs corresponding to the discontinuity at % More rigorously, for any ¢ € [0, 1], if
¢(t) belongs to some [%,%) for i € {—|Na],...,|Na] — 1}, we set (uy(t),ry(t) = (o(t) — Z Yy (o(t) — ﬁ)),
while if ¢(t) belongs to some [% 2“'2] for i € {—|Na| — o |Na| — 1} ({—|Na], .. LNaJ - 1} if Na is an
integer), we set (uy(t),ry(t)) = (1}1 (=No(t) +2i+2)Y, ((”1) ) (No(t) —2i—1)Yy (”1)). Moreover, if ¢(t) €
ma— Waps1 2R et (g 0y (0) = (600) + 5L Vi (000) + U2 and i ofe) € (23, + 1321,
we set (uy(t),ry(t)) = (o(t) — L]X;LJ Y (o(t) — vaaj ). (un, ’I“N) is defined in the same way. Since the discontinuities
of Yy and Yy in [—a,a] can only be at the +;, i € Z, this indeed defines parametric representations of Y} |[,a’a] and

|, the representations will follow

YN‘ —a,al*

V&fe n]ow use (upy,7y) and (un,ry) to bound dasy (Y l[—aa]s YNI[=a,a]). By definition of the Skorohod M; dis-
tance, we have dus, o(Yy |[—a,a)s YN|[=a,a) < max(|luy — un||oos [Ty — TNloc). With the parametric representations
chosen, we have [luy — unlls = 0 and [[ry — 'yl < SUPye(_q,a YN (¥) — YN ()|, so we only have to prove
B¢ C {supyeci_aq Yy (v) — YN (y)| < N~1/12} We now assume B¢ occurs. Since a € (0, |z| + 20 — N~1/8), for any
y € [~a,a] we have y € (—|z| — 20 + N~V8 |z| +20 — N~V/®) thus —(|z| + 20)N + N3/* < Ny < (Jz| +20)N — N3/4,
hence I~ < Ny < I, hence y € ((7(@”3\9,)]\[)\/1_, ((‘xHQ?\;NMﬁ), so by Lemmamwe have |Yy (y) — Y (y)] < N~1/12,
We thus have B¢ C {supyc[_q.q Yy (¥) — YN (y)| < N~1/12} which ends the proof.
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FIGURE 1. The successive steps of the parametric representations of Yy |[_a,q and Yn|[_qq if It <
|(|x| +20)N|. At each step, the parts of the graphs the parametric representations travel through are
thickened.

4.2. Case a > |x| + 20 + N~1/8, This is the harder case, as we have to deal with what happens around |z| + 26 and
—|z| — 26. We only write down the proof for Yy, since the proof for Y is similar (one may remember that allows
to bound the ¢~ (Ty,i) — £1 (T, i) when (Bs)¢ occurs, hence when B¢ occurs). Once again, we will define parametric
representations (uy,r7y) and (un,7n) of Yy ||_q.q) and Yn|(_qq-

We first give an idea of the definition. It will depend on whether It < |(]z| + 20)N| or not, and also on whether
I= > —|(|z| +20)N| or not. We are going to explain the ideas of the parametric representations of the completed
graphs for abscissas in [0, a] depending on whether It < |(|z| + 20) N | or not; the ideas for abscissas in [—a, 0] are
similar depending on whether I~ > —[(|x| + 20)N| or not. We first assume I™ < [(|z| + 20)N|. Between 0 and
%, the parametric representations will be, as in the case a € (0, |z| + 20 — N -1/ 8), following the completed graphs
of Yy and Yy in parallel (see Figure (a)). The next step, once (uy,7y) reached (%, Yﬁ(%)), is to freeze it there
while (uy,rx) follows the graph of Yy from (%, YN(%)) to (|z|+ 260, Yn((|z] +260))7) (see Figure (b)) For y > %
we have ¢~ (Tn, |[Ny]) = 0 thus Yy (y) = —N(% +0) 4, hence Yy : [%, |z| + 26] — R is affine. Therefore, the
following step is to move at the same time (uy,ry) from (%,Y]\?()) to (|| +20,Yy (|z| +20)) = (|z| + 26,0) and
(un,rn) from (|z] 426, YN ((Jz|+260)7)) to (Jx|+26,0) (see Figure (c)), and the two parametric representations will
remain close. After this step, both parametric representations are at (|x| 4+ 26,0), and they will go together to (a,0)
(see Figure [1fd)). We now assume I > |(|z| + 20) N|. Between 0 and |z| + 26, the parametric representations will
follow the completed graphs of Y, and Yy in parallel (see Figure (a)). Once abscissa |z| + 20 is reached, the next

step is to move (uy, ry) from (|z| 4260, Yy (Jz| +26)) to (%, YJQ(%)), which is (%,O), and to move at the same time
(un,rn) from (|z]+26, Yn (2| +26)) to (Jz|+26,0) (see Figure[2b)). We will prove the two representations are close

by controlling the local times. At the next step we freeze (uy,7y) at (%, 0) while (un,rn) goes from (|z| + 26,0)

to (%, 9) (see Figure (c)) After this step, both parametric representations are at (%, 0), and they will go together
from (4,0) to (a,0) (see Figure (d))
We now give the rigorous definition of the parametric representations. We will set a%, ar > 0 depending on the

cases. If IT < [(Jz| + 20)N| we set a}, = a + |z| + 20 + W, except if (x| + 20)N is an integer, in
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FIGURE 2. The successive steps of the parametric representations of Yy |[_q,q and Yn|[_qq if It >

|(|x| +20)N|. At each step, the parts of the graphs the parametric representations travel through are
thickened.

which case we add —3; to a}; if IT # [(|z| + 20)N| and add 1 if I = [(|z| + 20)N]. If It > |(Jz| + 20)N] + 1,
we set af, = a + T — (Jz| +20). If I= > —|(|z] + 29) |, we set ayy = a+ (|z] + 20) + 2L(|z|+29)fvvj+2r+2,
to which we add —% if (|z| + 20)N is an integer and —% + 1 if furthermore 1= = —[(|z| + 20)N]. If I~ <
—[(Jz| +20)N ], we set ay = a + 2~ + |2| +20. Let ¢ : [ 1] — [—ay,a}] be the affine function mapping 0 to
—ay and 1 to aj. Let t € [0,1]. We begin with the “central part” of the interval [—ajy, aj], that is the one between
2(—L(|x|+%3)Nj)vI* and QW, corresponding to Figures a) and (a). If ¢(t) belongs to some [3¢, 241)
for i € {(=[(|z| +20)N|) v I~ .., [(|z| + 20)N| ATt — 1}, we set (uy(t),ry(t) = (6(t) — %, Yx (6(t) — %)) and
(un(t),rn(t)) = (¢(t) — %, Yn(¢(t) — %)), while if ¢(¢) belongs to some [25EL, 282] for § € {(—|(|z| + 20)N]) v
I o (] + 20)N | ATH =1}, we set (uy (£), 73 (1)) = (5L, (~No () +2i+2) ;((%) ) (N () — 2 — 1)y (51)
and (un(t),rn(t)) = (S, (=No(t) +2i + 2)Yn ((HE) ") + (No(t) — 20 — 1)Yn (1)) (with the exception of the case
(|z[+20)N integer, IT > (|z|+20)N, i = (|z|+20)N — 1, for which we set (un(t),7n(t)) = (5, Y () 7)., because
then Yy (42) = Yy (|z| + 20) = 0, and we want to handle the move from Yy ((|z| +26)7) to 0 later).

Assume It < [(|z] + 20)N|. We first define the step of the parametric representations corresponding to Figure
). T (1) € (25, 2] + 20 + L2V e et (uy (), ry(£) = (5 Yy (50)). Tf (t) Delongs to some [2, 251) for
ie{IT, ..., |(Jx|+20)N| -1}, weset (un(t),rn(t)) = (p(t)—

' L, Yn(¢(t)— %)), while if ¢(t) belongs to some [2%1,'%]
fori € {I7, ..., [(Jz[+20)N] =1}, we set (un(t), rn () = (&, (- No(t )+22+2)YN((H1) )+(No(t)—2i—1)Yn(FH),
and if ¢(t) € [2l(|$|-];29)NJ’|x| +920 + L(lw\-iﬁ@NJ) we set (un(t),7n (1) = (d(t) — L(m—;\?e)NJ,YN(QZ)(t) _ L(lﬂf\*ﬁé’)NJ))‘
If (Jz| + 20)N is an integer and It < [(|z] + 29) |, we keep only the part of the definition corresponding to
o(t) € [%, |z| + 26 + W), and read ¢ + & for ¢ in what follows. We now consider the next step of the
parametric representations, corresponding to Flgure(c). Let us study Yy (y) for y > % For such y, if we had
¢~ (Tn,|Ny]) # 0, since at time T the random walk is at [Nz ]¢1, it would have gone from |Ny| to | Nx|.1 before
time T, thus would have gone from I* to I™ — 1 before time Ty, which is impossible since by definition of I™ we have
0~ (Tn,IT) =0. We deduce that if y > % we have £~ (T, |[Ny|) = 0, which implies Yy (y) = —\/N(w +6);. In
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particular, this is continuous, so we may set the following. For ¢(t) € [|x|+260+ w, 2(|z|+20)+
weset (u (0.7 () = (9(0)—(-+20)— L2000 372 (60)— ] +20) — LN £0)) o (0, (0)
(|| + 26, (4(t))), where ¢ is the affine function mapping |z| 4 20 + W to Yn((Jz| +26)7) and 2(|x| + 20) +
W to 0. If I'™ = |(|Jz| + 20)N| and (|z| + 20)N is an integer, (in which case |z| + 26 + w =
2(|$\+29)+W = 2(|z|+20)), we instead say that for ¢(t) € [2(|x]+26), 2(|z]|+26)+1] we set (uy (t), 7y (1))
(lz| + 260, Yy (Jz| 4 26)) and (un(t),rn(t)) = (|| + 26, ¢(¢(t))), where ¢ is the affine function mapping 2(|z| + 26) to
Yn((Jz|4+260)7) and 2(|z| +260) + 1 to 0, and in what follows we must read ¢ — 1 for ¢. We now consider the rightmost
part of the interval [—a, a], corresponding to Figure (d) We already know that for y > |z| + 26, we have y > %, so
Yy (y) = —\/N(W + 6)4 = 0. Consequently, if ¢(t) € [2(|x] + 26) + —L(‘MH?\),NJ*IJF,@ + |z| + 20 + —L(lez%Nkﬁ],
we may define (ujy(t), ry(1)) = (un(t), ra(t)) = ($(t) — (2| + 260) — LEF2ANIZIT g

Assume It > |(Jz] + 20)N] + 1 and % < a (if % > a, we may choose anything for (uy,ry), (un,rn); it
will not happen if B¢ occurs). Then if ¢(t) belongs to some [12\?, 201 with i € {[(|z] + 20)N], ..., It — 1}, we set
(un(t), 1y () = (3(t) — %, Yy (#(t) — %)), while if ¢(t) belongs to some [251, 25£2] for ¢ € {[(|z|+20)N], ..., IT —1},
we set (u (1), iy (1)) = (5t (=N (D) +2i+2)Yy (517 + (Vo (1) =20~ 1)¥y; (55H)). Now, if o(1) € [LEFAN, ]+
20 + L(mt\,ﬂ), we set (un(t),rn(t)) = (o(t) — W,YN@U) - W)) This corresponds to a part of
Figure ( ) and more precisely to the parametric representations of the part of the completed graphs with abscissas

L(|x\+29 N|— I+]

in [LEE2ON] 12 4 20]. Furthermore, if ¢(t) € [|z] + 26 + WEEZONL 2100 e set (un (£), rn (1)) = (|z] + 26, d(6(1))),
where ¢ is the affine function mapping || + 20 + M to Yn((|z| +26)7) and 21+ to 0. This corresponds to
Figure 2] l(b We now consider the next step of the parametrlc representations, correspondlng to Figure [2] I . By the

same arguments as previously, if y > % we have {~ (T, |Ny|) = 0, so since y > M%W > |z| + 20 we get

Ya (y) = 0. For ¢(t) € [25, 3 — (Ja| +20)], we set (uy (1), ry (1) = (5, Yy (5) = (%7,0) and (un (1), rn (1)) =
(o(t) — 21 L |z| +26,0). Finally, let us define the last step of the parametric representations, corresponding to Figure
B i 6(0) € [ — (1] +20) -+ 287 — (o] 20)), we set. (1) 75(0)) = (un (). () = (1) — 25+ [« +20,0)
Assume I~ > —|(|z| + 20)N|. We first define the step of the parametric representations corresponding to the
equivalent to Figure [1{b). If ¢(t) € [—|z| — 26 M, 27 we set (uy(t),ry (1) = (&, Yy (50). If o(t)
belongs to some [, 2:21) for i € {—|(|z|+20)N ], .. —1}, we set (un(t),rn(t)) = (¢(t) — %, Yn(o(t) — %)), while
if ¢(t) belongs to some [25£L, 222 for j € {—|(|z| + 29)NJ —1,.., 17 — 1}, we set (un(t),rn(t)) = (5, (=No(t) +
2 + 2)Yn((5H)7) + (Ng(t) — 20 — 1)Yn(EEL)), and if ¢(t) € [—|a| — 20 — “'f'*‘i@NJ“,—2L<'f‘+f§>NJ+1) we set
(un(t),rn(t)) = (o(t) + W,YN(QZ)@) + W)) If (Jx| +20)N is an integer, we keep only the part

of the previous definition for ¢(t) € [2(|z| + 260), 2] and in the following one must read ¢ — + instead of ¢.

We now consider the second step of the parametric representations, corresponding to the equivalent of Figure (C)
Let us study Yy (y) for y < IW_ We recall that by the definition of I~ we have I~ < 0. Since ¢T(Ty,I7) = 0
and the random walk is at | Nz|t1 > 0 at time Ty, the random walk did not reach I~ before time Ty, thus did
not reach |Ny| before time Ty, which yields ¢~ (T, [Ny]) = 0. This yields that for y < L= we have Yy (y) =
—VN (% + 6)+, which is continuous. Consequently, we may choose the following definition. For ¢(t) € [-2(|z| +

29)+_L(|x‘+20])\,NJ_I__1,—\x!—29+—_L(|x‘+ﬁe)NJ_l],We set (upy(t),ry(t) = (o[t )+ +‘x’+29+7l(\$|+29)1\7j+1 Yy (o(t)+
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I |2| + 26 4 LzE200NIHLy) Morcover, if ¢(t) € [~2(|z| +26) + L RONI T 5 — 0g 4 =Ll 20Ny
we set (un(t),rn(t)) = (—|z| — 20, d(o(t))), where ¢ is the affine function mapping —|z| — 26 + —1(=2l+26)N]=1
(un(t),rn(t) = (—|z| (¢(t))) g N

Y (—|z| — 20) and —2(|a| + 20) + —HEE2ONIZITZL 40 0 1f (Ja| + 20) N is an integer and I~ = —|(Jz| + 20) N, the
second step of the parametric representations is instead defined thus: for ¢(t) € [—2(|x| +20) — 1, —2(|z| + 26)] we set

(uy(t),ry(t) = (—|z| —20,Yy (—|z| —260)) and (un(t),rn(t)) = (—|z| — 20, d(¢(t))), where ¢ is the affine function
mapping —2(|z|426) to Yy (—|z|—26) and —2(|z|+26) —1 to 0, and in what follows we must read ¢+1— 3; for ¢. We
now consider the leftmost part of the interval [—a, a], corresponding to the equivalent of Figure[1(d). Let y < —|z|—

then y < I, so YA?(_y) = _\/N(%_H)_F = 0. Consequently, for ¢(t) € [—a—(|x|+20)+ 7L(‘x|+29])vNJ L= (x| +
26) + ~HEFERRI, we may set (ujy (8), Ty () = (un (1), v (1)) = (9(0) + (Je] +26) + LT 1)
Assume I~ < —[(Jz| +20)N| — 1 and & > —a (if &+ < —a, we may choose anything for (uy,7ry), (un,7N);

this will not happen if B¢ occurs) If ¢(t) belongs to some []2\}, 281y with i € {I~,..,—[(|z| + 20)N| — 1}, we
set (uy(t),ry(1) = (o(t) — %, Yy (6(t) — %)), while if ¢(t) belongs to some [2:H, 2H2] for i € {I7,...,—|(|z] +

20)N| — 1}, we set (uy(t),r ( )) (% (— : o(t) + 21 + 2)Y9 v (D)) + (No(t) — 20 — l)YN(Zﬁg). Moreover, if
2| +20)N|+1 2| (jz[+20)N —(|z[+20)N

(|x|4+20)N is not an integer, if ¢(t) € [— 21 |+ I+ , L |X, ) J] we set (un(t),rn(t)) = (W, (—=No(t)—

2 (o] + 20)N )Yy (— LN (V) + 20 (ol + 26)N) + DY (~ LN it if (e € [-la] 20 -
L(\x|+2]\9[)Nj+l, —2L(|x‘+]2\]9)NJ+1), we set (un (t),rn(t)) = (¢<t>+7L(\xl+2]3)NJ+l7YN(¢(t)+7L(\xl+2]3)NJ+1)). This corresponds
to a part of the equivalent of Figure (a), more precisely to abscissas in [—|z| — 20, —W] In addition, if
o(t) € [, —|a|—20— LEE2ONIEL) o set (up(8), ra(t)) = (—|2|—20, d(4(t))), where ¢ is the affine function mapping
|z —QH_W to Y (—|z|—26) and 24~ to 0. This corresponds to an equivalent of Figure b). If (Jz|+20)N is
an integer, instead of the previous construction, if ¢(t) € [Z~, —2(|z|+260)] we set (uN(t), rn(t)) = (—|z|—20, d((t))),

where ¢ is the affine function mapping —2(|z| + 26) to Yn(—|z| — 26) and 2 to 0. We now consider the next
step of the parametric representations, corresponding to an equivalent of Flgure I . By the same arguments as

L2l 2ONIZL < || — 26 this implies Yy (y) = 0. For

prev1ously, ify < —_ we have ¢~ (Tn, | Ny]) =0, so since y <

o(t) € 3% +|Jf|+29, 2 weset (uy (1), 1y (1) = (5, Yy (5g)) = (5, 0) and (un (), 7w (1)) = (¢(t)— 2 —|x]=26,0).
Finally, we deﬁne the last step of the parametric representations, corresponding to an equivalent of Figure (d): if
¢(t) € [~a + 2 + |z + 20, 2 + || + 260, we set (uy (1), 7y (1) = (un(t),rn (1) = (8(t) — 25 — |2] — 26,0).

We can now bound the Skorohod M; distance between Yy |_s 4 and Yn|_q,. From 1ts definition, we have
dnrya(Yy l—a,a)s YNl[—a,q) < max(|[uy — un|loo; [[ry — 7N|lx), hence we only have to prove B¢ C {max(||uy —
UN [loos Iy — 7N lloo) < 2N7Y12} when N is large enough. We are going to break down {max(||uy — un|lco, [y —
Nloo) < 2N~Y12} into several events. We may write

{max([luy — un|loo, |7y — 7 le) < 2N"V/12}
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~ {50 that o0 € [p LI ZDNDL HUIEIRIATE] o) — o) () = rvto] < o202}

{0 that o) € [2HEIIIIAT ] ) — (o) o) = )] < 2312

{50 that o(6) € |—a 2 ST s - a0 i) = il < 2w

Consequently, to prove that B C {max(||uy — un|lco, ||y — "N loo) < 2N 7112} when N is large enough and thus end
the proof of Proposition [I6], we only have to prove the following claims.

. c —L([x B T + — — -
Claim 18. B¢ C {Vt so that ¢(t) € [2FHEEONIVIT 1o [(2E2ONIATT) 1 (1) — ()], |ry (8) — ra(8)] < 2N 112}
when N is large enough.

Claim 19. B° N {I* < [(|z| + 20)N |} C {Vt so that (t) € [2LEE2ANINT 1) [y () = un (@)l [y (8) = rav(8)] <
ON-12} and BE N {I~ > —[(Jz| + 20)N |} C {Vt so that ¢(t) € [—ay, 2 FLUZEZONIVITY 1oy — (8], Jry (8) —
rn(t)] < 2N~Y12}) when N is large enough.

. - © + _ _
Claim 20. B° N {I* > [(Jz| +20)N |} C {Vt so that ¢(t) € [2HEEZONIAT i1 10 (1) — un (1)), |y () — rav(8)] <
_ c _ _ —|(lz 0 - _ _
OIN-12} and Be N {I~ < —[(Jz| + 20)N |} C {Vt so that ¢(t) € [—ay, 2 FLUEEZONIVITY 1oy — (8], Jry (1) —
rn(t)] < 2N~Y12}) when N is large enough.
We now prove Claims and

Proof of Claim[18 This claim deals with the “central part” of the parametric representations, between

and w, corresponding to Figures (a) and a). In this part of the parametric representations we follow

(=1 (z[+20)N VI~
N

the completed graphs of Y and Yy in parallel, and the two functions are close by Lemma hence the parametric
representations will be close too. We only have to be careful in the case (|x|+26)N is an integer and I > (|z]|+26)N,
for which we follow the graph of Yy until Yy (Jz| 4+ 260), but the graph of Yy until Yy ((Jz| 4+ 26)7) only. By the

definition of (uy,ry) and (un,rn), if ¢(t) € [2({(‘:”'%3)]\[”\/1_,QL(leZ?\;NMH] we have |uy(t) —un(t)| = 0, and
we also have |ry(t) — ry(t)| < sup{|Yy (y) — Yn(y)| : v € [(7L(‘x|+33)NJ)VF, L(|x|+2?\2NM[+]}, or max(sup{|Yy (y) —
Ya(y)| : y € [SLUE2ONDVIT LGalt20NIAT )y 1y (0] 4+ 26) — Yiv((Ja] + 26)7)]) if (2] + 26)N is an integer and
It > (Jz|+20)N. Therefore it is enough to prove that BN ({(Jz|+20)N ¢ N}U{I" < (Jz|+20)N}) C {sup{|Yy (y)—
Yiv(y)| : y € (LRI e2gRIAT ]y < oN=1/12) and B° N {(Jo] + 20)N € I} N {IF > (2] +20)N} C
{max(sup{|Yy (y) = Yiv(y)| : y € [CLUEQNME WEBRNIND )} 1y 0 (] 4 20) — Y (2] +20)7)]) < 2N1/12).

In addition, if BN ({(Jz| +20)N ¢ N} U {IT < (|z| + 20)N}) occurs, then (Bs)¢, (B} )¢ and (B )¢ occur, hence
(—L(|$|+%3)NJ)W_7 L(|$\+2?\;NJM+]

Lemma yields that when N is large enough, for any y € | we have |Yy (y) —
Vi (y)| < N=Y/12. Therefore we have B° N ({(Jz| + 20)N ¢ N} U {I* < (|z| +20)N}) C {sup{|Yy () — Yn(v)| :
y € [(ﬂ('xH%\e,)NJ)W_, L(‘xHQ?\;NMH]} < 2N~112} We now assume B, (|z| +20)N € IN and It > (|z| + 20)N.
Then Lemma [17] yvields |Yy (v) — Yn(y)| < N7V12 for y € [(_(lx“F%\?)N)\/I*’ ((|“"+2§\;NMI+), Furthermore, we have
Yy (| 4 20) = Yn(([z] +20)7)] < [V (2] +20) = Yy (([2] + 20)7) + [V (([«] +20)7) = Yn((|2] +26)7)] <
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Yy (|| +260) — _((]az\ +20)7) |+ N~1/12 by what we just proved. In addition, since (|z|+ 20)N is an integer, when
N is large enough (1)) yields |Yy (Jz| +260) — Yy ((|z] +20)7)| = ﬁ]ﬁ’(TN, (lx| +20)N) — £~ (TN, (Jx| +20)N —1)| =
/ _
\/LN\U(MHQQ)N_LJF(K*(TN: (lz] +20)N —1))| < % since (B2)¢ occurs. We thus have max(sup{|Yy (y) — Yn(v)| :
y € [(—L(|z|+i\9[)NJ)\/I_? Luﬂr‘“?\;NMﬁ)}, Yy (|| +20) — Yn((|z| +20)7)|) < 2N~/12] which ends the proof of Claim
1K) O

Proof of Claim[19 This claim deals with the “right part” of the parametric representations in the case I < [(|z| +
20)N |, and with the “left part” in the case I~ > —|(|z| + 20) N |, corresponding to Figure [1[b),(c) and (d). The idea
of the argument is that in the step of Figure (b)7 the representation of Yy does not move much horizontally as % is
close to |z| + 26 by Lemma[L0} so it does not have time to move too much vertically. In the step of Figure [Ifc), the
representations of Yy and Yy will thus start from points that are close and go to the same point, hence stay close to
each other. We now give the rigorous argument. We only spell out the proof for B¢ N {I*t < |(|z| + 20)N |}, as the
other case is similar. We first consider the case in which (|| + 20)N is not an integer. Let us assume B¢ occurs and

I < [(|z] +20)N]. Firstly, we notice that for ¢(t) € [2(|x| + 20) + W,a + |x| + 26 + W] we
have (uy(t),ry(t)) = (un(t),rn(t)), so it is enough to consider ¢(t) € [2%, 2(|z| +26) + W] =
[21+ 2(|z|+20) + W] since I'™ < [ (|| +20)N]. We deal with |uy () —un(t)] first. By the definition of our
parametric representations, |uy (t) —un(t)| < ||| —1—20—%\. Furthermore, B¢ occurs, thus we have | It —(|z|+20)N| <
N3/% hence |uy (1) —un(t)] < N~1/4. We now deal with |ry (t) —rn(t)|. Remembering the definition of our parametric
representations, we notice that for ¢(t) € [|z| + 260 + w,ﬂm +20) + W], ry and 7y are affine

functions of ¢(t), so the maximum value of |ry (t) —ry(t)| on this interval is reached either at ¢(t) = |z| +29+M]\?9)M

orat ¢(t) = 2(\:1U|—i—29)—i—M Moreover, for ¢(t) = 2(‘$|+29)+W we have 7y (t) = ry(t) = 0, so
the maximum is reached at ¢(t) = \:L‘H—Qﬁ—l—w. Therefore, if |ry(t) —rn(t)] < 2N~Y/12 for all;b(t) [21+ ||+
20 + W\]&], then |ry(t) — rn(t)] < 2N~1/12 for all ¢ with ¢(t) € [2[+ (] | +20) + M]. Consequently,

it is enough to prove that when N is large enough, |y (£) —7n(t)] < 2N~12 for all ¢(t) € [21+ |z| + 260 + M]

Now, let us assume ¢(t) € [%,m + 20 + W]
Iry(t) — ra(t)] < sup{]Yﬁ(%) - Yn(y)| :y € [%,m + 20)}, so it is enough to prove that when N is large
enough, Sup{|Y]\7(%) —Yn(y)| : y € [%,|x| + 26)} < 2N~Y12. Moreover, for any y € [%,|w| + 26), we have
\Yﬁ(%) —Yn(y)| < |Y]\7(%) - YN(%)\ + ]YN(%) — Yn(y)|. Since B¢ occurs, we have that (Bs)¢, (B; )¢ and (B;)®
occur, hence Lemma [17] implies |Y]\7(%) - YN(%)| < N~Y12 when N is large enough, thus |Y]\7(%) - Yn(y)| <
i (%) — Y (y)| + N—1/12 g LSS Gl 4 N2 We deduce supf| Yy () = Yv(w)] <y € [5 |2 + 20)) <

=1+

sup{\/»\ ZZLNIZ/JJF Y6l iy e [ |z +20)} + N=1/12. Furthermore, B¢ occurs hence |1t — (|z| + 20)N| < N%/%, thus
sup{|Yy (57) = Yv(w)l v € [ |2 +20)} < 5 maXL(\wme N#/a<iy <in<|(lalr20)N | | iy Gil + N7V12. Since
B¢ occurs, (B3 )¢ occurs, hence sup{|YN(W) —Yn(y)|:ye€ [ Jzl +20)) < N\lgﬁ/% + N~112 = N=5/48 1 N—1/12 <

2N ~1/12 wwhich is enough.
We now consider the case for which (Jz| + 20)N is an integer. Since I < [(|z| + 20)N |, we have either IT <
|(Jz]4+20)N | or It = |(|z|+20)N|. If I < |(Jz|+260) N |, we can prove that for all ¢ so that ¢(t) € [QW, ak]

By the definition of our parametric representations,
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we have |uy (t) — un(t)], |7y (t) — ra(t)] < 2N~1/12 by the same argument as before, which we do not repeat. Assume
now I = |(|z| + 20)N|. In this case, the step of Figure [Ib) does not exist, we only have to deal with that of
Figure (c)7 which comes mostly from Lemma (17| as this lemma ensures Yy ((|z| +26)~) and Yy ((|x| 4+ 260)~) are close
(we will actually prove they are both close to 0). More rigorously, the definition of the parametric representations
yields (uy(t),ry(t) = (un(t),rn(t)) if ¢(t) € [2(]x] + 20) + 1,a + |z| + 20 + 1]. Moreover, for ¢(t) € [2(|z] +
20),2(|z| + 20) + 1] we obtain uy(t) = un(t), ry(t) = Yy (|z] +20) and |ry(t)] < [Yn((Jz| +20)7)|. Therefore
we only have to prove that |Yy (|| + 20)| + [Ya((|z| + 20)7)| < 2N~'/12 when N is large enough. Furthermore,
since IT = |(|z| + 20)N |, we have (~(Ty, [N(Jz| +20)]) = £~ (Tn,IT) = 0, so Yy (Jz| + 20) = 0, thus we only
have to prove |Yy((|z| +26)7)| < 2N~12 when N is large enough. Moreover by the definition of Yy and by (1)),
we have Yy (ja] +20) = Yy (o] + 26)) + —Lompean 1.4 (¢ (T, (ial + 26)N - 1)), and since B occurs, (Bs)°
occurs, hence we get |Yy (|z| +26) — Yy ((Jz| +260)7)| < \/LN(NU16 +1/2) < N7Y4 Since Yy (|z| + 260) = 0, this
yields |Yy ((|z| +26)7)] < N~Y4 In addition, B¢ occurs hence (B2)¢, (By )¢ and (B; )¢ occur, thus by Lemma
we have |V ((|z| +20)7) — Yy ((lz] +26)7)] < N~Y12 when N is large enough, which yields [V ((|z| + 20)7)| <
N-Y12 4 N=Y4 <« oaN—1/12 which is enough and ends the proof of Claim . O

Proof of Claim[20 This claim deals with the “right part” of the parametric representations in the case I > [(|z| +
20) N, and with the “left part” in the case I~ < —|(|z|+26)N |, corresponding to Figure[2b),(c) and (d). We first give
an idea of the argument. The most important part of the proof is to deal with the step corresponding to Figure (b)
In this step, the function Yy (y) = ﬁﬁ_ (Tn, | Ny|) evolves as a sum of \/%773‘#(5_ (Tn, 7)) by (1)), which is close to the

sum of Tlﬁ(g‘j —1) as (B} )¢ occurs. Since the ; are i.i.d. with mean 0, the sum of %ﬁgj will be small, and the evolution
of Y, will be close to that of a deterministic sum of —ﬁ, thus it reaches 0 at constant speed, which is also what our
parametric representation of Yy does. We now give the proof, beginning with the detail of the argument to deal with
Ben{I~ < —|(Jz|4+20)N]}. Let us assume B¢ occurs and I~ < —|(|z|+20)N|. Then (_L(WH%\G,)NJ)VF =— L(|m|—‘;§9)Nj .
Furthermore, since B¢ occurs we have [I~ + (|z| + 20)N| < N3/% hence L~ > —|z| — 20 — N~1/4. Moreover, by
assumption a > |z|+20+N"1/8 so —a < —|z| -20—N"1/8 < %, hence we are in the case % > —a. By the definition
of the parametric representations, if ¢(t) € [—a— % +|z|+26, % + |2 +260] we have (uy(t),ry(t)) = (un(t),rn(1)).
If (Jz| + 26)N is not an integer, we now consider ¢ so that ¢(t) € [—|z| — 20 — L(|x|+2]\0,)NH1,72L(lx‘t\?e)m] (this
corresponds to the small part of the equivalent of Figure (a) that we had to include in this part of the parametric
representations). Then uy(t) = un(t), and |ry(t) — rn(t)] < sup IUELEDINY Yy (y) — Yn(y)|, which is

ye([—|z|-20,
smaller than N~'/12 by Lemma which we can use since we assumed B¢ so (B2)¢, (B; )¢ and (B;)¢ occur. We
deduce |ry(t) — rn(t)] < 2N"1/'2. Now, we consider ¢ such that ¢(t) € [3- + |z| + 20, 2~] (that is, in the
equivalent of Figure (c)) Then ry(t) = ry(t) = 0, and |uy(t) —un(t)| < \IW_ + (|z| + 20)|, which is strictly
smaller than 2N~1/12 since |1~ + (|z| + 20)N| < N3/%. We now consider ¢(t) € [Z-, —|z| — 20 — W],
that is in the equivalent of Figure (b) (if (|| + 20)N is an integer, it is [2k~, —2(]z| + 26)] but the argument is the
same). Then |uy (t) — un(t)| < |5 + (Jz| + 26)|, which is strictly smaller than 2N /12, so we only have to prove
Iry() — ()] < 2N-V12,
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We are going to study sup

el oy Y () = Yy (o] = 20) 4 KERERR=IR ) Tt y € 45, (2] - 26]. By the
definition of Yy, we have Y (y) — Yy (—|z| — 20) = \/LN(E_(TN7 |INy|) — ¢ (Tn, |—(Jz| + 20)N|)). By (2)) and since
(B2)¢ occurs (remembering | Ny| > I~ > —(|z| +20)N — N34 > —[2(|z| + 20)N1), we deduce |Yy (y) — Yy (—|z| —

(6T (Tw, (T |~ (|z|+20
29) _ ﬁ(g—’_(TNy LNZ/J) —£+(TN, L_(’$| +29)NJ))| — |77LNyJ, (L (Tn, [ Ny]))— MN—(l= \+29)NJ _ (" (Tn, | —(|z[+2 )NJ))| S 2]\\//%16'
In addition, (1)) yields the following: ¢ (T, |[Ny]) —¢T(Tn, [—(|z| +20)N|) = ZX(N]\),yJIH(nZ (U (T, 1) + 1 s0y) —

S oy (i (7 (T, D) 4 i) = SR - (0 (T, 1)) +1/2) = X g (i (67 (T, ) +

1/2) = (|=(Jz| + 20)N| — | Ny])/2. Since (B, )¢ occurs, this yields [(T(Tn, |Ny|) — €T (Tn, |—(|z| + 20)N]) +

—(lx — (N (N z|+20)N
— H%%NJ Nul| < |Z§ LJ\)/ylerl ZX : \alc|+29 N|+1 Gl +2N1/3 = |ZL EVLJJFJQA JCz| +2N'3. As we also have

Vi (0) =Y (—Jo]—26) = (¢ (T, [Ny ))— 0+ (T, | (o] +20) N )] < 222 this implies sup, i oo [V (v)—

Yy (—lz| —26) + L(\w|+202/NNJ LNyJ| < MAX[- 41 << | —(|2|+20) N \/~|ZL (k2] Gl + 2%16 + 2%3. Moreover, B¢

occurs, hence [T~ + (|z| + 20)N| < N3/* and (B3 )¢ occurs, therefore SUD, (1= |41 og) Yy (y) — Yy (—|z| — 26) +
N b
L(Jz|+20)N || Ny 1 —(|=[+20)N] ~ | | 2NV/16 | aN1/3 N19/48 | 9N1/16
| S DA (a0 N - NA<i<| (e 20)N) V| =i G+t STt T

_ . . . _ _ x|+20)N | —| N
< 2N~%/8 when N is large enough. This yields SUD, 1= 2| —g) Yy (y) = Yy (—|z| —20) + (=] 23/NJ [Ny] | <

2N1/3
VN
2N~5/48 when N is large enough.
We recall that it is enough t 2° |y — 20 — [2H20N]+1 N
gh to prove that for all ¢ so that ¢(t) € [=5~, —|z| — 260 ~ ], we have |ry(t) —

ri(t)] < 2N~1/12. For such t, we are going to study the quantity |ry (£) — Yy (—|z| —20) + ‘/Tﬁqﬁ(t) M! We

first suppose that ¢(t) € [3, 25:1) with i € {I~, ..., —[(|z[+20)N] —1}. In this case, ry(t) :YN(gb(t)—]é\)/;ndW(;)—
MACOR )J\—!M—*I_zmhencelw(t) Yy (—le[—20)+ 5 (1) - WF\YM@—%)—W—M\—
20) + V@O~ N);\FL (lal+20)N] | Fo(t)- L;&( S| < Vi (0(8) — &) — Yig(—|a| — 26) + LN(¢(t)—ﬁ)2J\—ﬁL—(\x|+2e)NJ|+
20— L IN(6(8)— %)) < 2N5484 e thus |y (8) =Yy (— || —20)+ YT (1) - SEEZIN | < o n—5/484 L We
now consider the case ¢(t) € [251, 282] with i € {I~, ..., —[(|z[+20)N]—1}. We temporarily denote N¢(t)—2i—1 bye
for short, with € € [0, 1]. Then we have ry (t) = (1—5)YN (H)7) +eYy (5, ]@—iﬂ < + and |¢t - H‘1| < 7
therefore |y (t) — Yy (|2 — 20) + Y¥o(t) — HEERN| — 10— o)(vg () - < o] — 20) + YXo(t) —
2L EON) + eV (1) — Yy (—=| — 26) + %qu() BRI < (1 - )Yy (B)7) - Yy (—lal —%))

LN (1) — BN 4 ey () - v, v (el —26) + VR g(t) — HEEEL < (1 - o) [y (B)7) — Y (—lal -
20) + SN | 4 (1— o) [ R (t) — 5| + el Viy () — Yy (— o] —26) + SN 4 o R g (1) — 24| <

2V N 2\F 2V N
N z|+20) N i
(L= b, s ooy [Vir () =Yy (lal —20) 4 =GN (o) N 90 — S e, oo (Vi (0) -
- [Ny|—[=(|=z[+20) N VN 9(t) i+l () — Vo (— [Ny|—[—(|z[+20)N|
Yy (= o] - 26) + LU=LoGR 20 | 4 SO0 - S| Ssup, oo o (Vi (4) = Vi (= o = 26) 4 Y=LoGe a0
1

Fow S 2N 5/48 4 ﬁ thanks to our bound on the sup. Since this was also true for ¢(t) € [%, 25H) with i €

=
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{I=,....—|(Jz| + 20)N] — 1}, we get that for all ¢ such that ¢(t) € [2—, —|z| — 20 — w] we have |ry(t) —
— —(|z|+20) N —

Yy (—[2] - 20) + Y p(t) — IEUEZANL < on-5/18 4 1.
The latter expression yields that for any ¢ such that ¢(t) € [217_, —|z|—26 M] we have |1y (t) —rn(t)] <

v (t) = Yy (~|a] —26) + ¥ () — SO 42N =2/ 4 o = [6(6(0) Yy ([ - 26) + 4 o(t) - 5227 4

2N_5/48+ﬁ, where ¢ is the affine function mapping —|z| —29—% to Yn(—|z|—20) and % to 0. Therefore
it is enough to prove |(4(t)) — Yy (—|z| — 26) + ‘/Tﬁqﬁ(t) - %\}%G)NH < N“V2 4 ﬁ to end the proof. Now,

b(o(t)) — Y];(—|x\ —20) + ﬂ¢( t) — %\/%Q)NJ is an affine function of (b(t) so it is enough to prove the bound for

o(t) = —|z| — M and for ¢(t) = Z—. We first consider ¢(t) = 2k—. We already saw in the construction

of the parametric representatlons that Yy (&) = 0. We deduce |¢(¢(t)) — Yy (—\:C| —20) + @qb(t) - %] =
VN2I~ _ [=(=+20)N] | _ \v— (12 - I~ —|—(|z|+260)N]| _

|~ Vi (ol —26) 4 E 2 — LGN _ |y (2~ vig (o] —260) 4 TSN < qup V() -

Yy (—|z|—20)+ LNyJ_L;%HG)NJ | < 2N—5/%8 which is enough. We now consider ¢(t) = —|x|—29—w. Then

[G(6(8) ~ Yy (—lar| 26) + ¥ (t) — EETE| = ¥y (—Ja] —20) — Vg (| —26) + ¥ (—[a] — 20 — L)

%ﬁm\ < ¥ (e =20) Yy (~al - 2e>r+r# —(je|+20) N = |(|2|+20) N | —1—2| —(jz[ +20) N || < [Yiv(~|z|-

20) — Yy (—|z| — 20)| + \F < N-V12 4 Z«F by Lemma |17, which ends the proof for B¢ N {I~ < —|(|z| + 20)N|}.

The argument to show BN{IT > [(|z|+20)N]|} C {Vt so that ¢(t) € [QM, ax)s lun () —un ()], |ry(t)—
rn(t)] < 2N~112} is similar and simpler, except for the end of the argument, which we give here. In a similar way
as in the previous case, we must bound |Yy((Jz| +20)7) — Yy (|z| +260) + @ﬂz] + 20 + L(l»’UHﬁQNJ) — L=p20)N] | <

2VN
Vv (o] +20)7) = Yy (|2 + 20)| + [LEEZONEIONT | < vy (o] +26)7) = Yig (2] +260)7)| + [V (2] +26)7) —
Yy (|2]+20)|+ 11, hence Lemmaylelds |YN((|:L‘|+20)_)— Vv (2]+20) + Y (ja| 4204 LML) _ Ll 2ON] |
N=YV2 11y ((Jz]+20)7) = Yy (|| +26)H— . In addition, the definition of Yy and (1)) yield that if (|z|+26)N is not
an integer, then Yy ((|z[+26)7) = (]a:|+29) while if (|z|+260) N is an integer then |V ((|z|+260)7) =Yy (|z|+26)| =
e (T ] 4 200N — 1) — (T, (2] + 20N = s (O (D, (] + 200N 1) < 22512 G

(B2)¢ occurs. In all cases we obtain |Yy ((|z]4+26)7) =Yy (|z]+26)| < %, therefore |Yn ((|z]4+26)7) =Yy (|| +

which is a bound small enough to end the

20) + Y (|| + 20 4 L0el+200N] ) L(@f/@ < N- 1/12+N1/\1/6%1/2+4\}N7
proof of the claim. O

5. CONVERGENCE OF THE LOCAL TIMES PROCESS: PROOF OF THEOREM [I] AND PROPOSITION [3]

5.1. Proof of Theorem I. Our aim is to prove that Yﬁ converges in distribution to (B Liyel—|a)— 29 ‘x|+29)})y€]}‘{
in the Skorohod M; topology on D(—o00,4+00) when N tends to +oo. Proposition |15| yields that YN is close to

the function Yy defined by Yn(y) = ZX(N]\)/leﬂ G ity e[|z — 29,#), Yn(y) = fZZNi(JNl Gify e

[%, |z| + 20), and Yn(y) = O otherwise. One has the feeling that by Donsker’s Invariance Principle, Yy should
converge to (B?f]l{ye[_|:C|_29,|gg|_~_29)})yelpL and so we should be able to conclude quickly, but proving rigorously the
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convergence in the Skorohod M; topology on D(—o0,+00) is harder than it looks. We are instead going to use a
similar argument with a new process Y}, which will be “like Y, but continuous in [—|z| — 26, || + 26)". We will

define it as follows. We first define a process Yy, thus: if Ny € Z then Y (y) = ﬁ Zf:(]]\\[f)l/;ll G if y € (—o0, W)

and Y (y) = \;—N Zi\;?i(_(}v) Gify e [w, +00), and in-between Y}, is linearly interpoled. We then define Y} by
Y]G (y) = Y]<[(y)]l{ye[flw\f20,\x|+29)} for any y € R. Then Y]G will converge to (Bgf]l{ye[f\x|729,|z|+29)})ye]R and be close

to Yy, which is stated in the two following lemmas.

Lemma 21. Y] converges to (Bgn{ye[f|z|729,|x|+20)})yER in distribution when N tends to 400 for the Skorohod M,
topology in D(—00,00).

Lemma 22. P(dy, (Yy,YH) > N77/16) tends to 0 when N tends to +oc.

Armed with these two lemmas, we are now able to prove Theorem

Proof of Theorem[1 The Portmanteau Theorem states that a sequence (Zg)rew of random variables converges in
distribution to a random variable Z if and only if for any closed set = we have limsup,_,, . P(Z; € E) < P(Z € E).
We are going to prove it for the sequence of the Y]\j,E and the variable (Bgf]l{ye[,|z|,297|x‘+29)})y€R in the Skoro-
hod M; topology in D(—00,00). Let E be a closed set of D(—o0,+00) for the Skorohod M; topology, we study
P(YE € 2). For any m € N*, we denote =, = {Z € D(—00,+00) | inf; - dar, (Z, Z) < 1/m}. For any N large
enough, we then have P(Yy € Z) < P(Y¥ € En) + P(dar, (Y5, Y4) > 1/m). In addition, Z,, is closed in the
Skorohod M; topology on D(—00,+00), and Lemma [21] implies that Yy converges to (BT yec|—|z|—20,/z|+20)})yeR
in distribution when N tends to +oo for the Skorohod M; topology in D(—o00,00), hence limsupy_, o P(Y} €
Em) < P((BEL{ye[-|2|-20,z/+20)})yeR € Em). Furthermore, P(dar, (Y, YY) > 1/m) < P(dar, (Y, Yn) > 1/(2m)) +
P(dar, (YN, Y3) > 1/(2m)) < P(da, (Y, Yn) > 3N"V12) 4 P(dpy, (Yo, Yi) > N~7/16) when N is large enough,
and the latter probability tends to 0 when N tends to +oo by Proposition and Lemma [22] We deduce that
we have limsupy_, . P(Y¥ € Z) < P((Byliye/—|e|-20,lz|+26)} )JyeR € Em). Moreover, we notice that we have
My 400 P((By Liye[—|z|-20,|z|+20)} yer € Em) = P((Byliye[—|z|-26,jz|+20)})yck € Nmen+=Em) which is equal to
P((By1iye/—|a|-20,lz|+260)} Jyer € =) since = is closed. Therefore, having m tend to +oo yields imsupy_, o P(Ye €
2) < P((Byliye[—|x|—26,)c|+20)} Jyer € =). Consequently V¥ converges in distribution to (ByLiye[—|z|—26,]z|+20)} )yeR
for the Skorohod M; topology on D(—o00, 4+00), which is Theorem

It now remains to prove Lemmas [21| and that is the convergence of Yy to (By 1 ye[—|z|—26,/z|+26)})yeRr and the
fact Yy is close to Yy in the Skorohod M; topology in D(—o0,00). We will first prove that it is true for the uniform
norm on [—|z| — 26, |z| + 20), then transfer the results to the Skorohod M; topology. The first part is rather easy.
Indeed, if we denote C[—|x| — 20, |z| + 260] the space of continuous functions : [—|z| — 26, |z| + 20] — R, since the
(Ci)iez are i.i.d. with law py which is symmetric so has zero mean, Donsker’s Invariance Principle yields the following.

Lemma 23. Y]([][_|x|_297|x|+29] converges in distribution to B“\[_|x‘_297|$‘+29] when N tends to +o0o for the topology
defined on C|—|z| — 20, |x| + 20| by the uniform norm.

The following lemma is also easy to prove.
Lemma 24. If (B2)¢ occurs, sup{|Yn(y) — Y{(y)| : y € [~|z| — 26, |z| 4+ 26)} < N~7/16.

Proof. By the definition of Yy and Yy, we have sup{|[Yn(y) — Y{(y)| : y € [~|z] — 20, |z + 20)} < ﬁSUP{|Ci| :

—(|z| +20)N < i < (|z| + 20) N}, which is smaller than N\;%G = N~7/16 if (By)¢ occurs. O
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To transfer the results of Lemmas 23] and [24] to the Skorohod M; topology and thus prove Lemmas [2I] and 23] we
will need the following technical lemma.
Lemma 25. Let N > 0 and Zy,Zs € D(—o0,+00) whose possible discontinuities belong to %Z, then we have
dary, (Z1 (W)L gye (= (w26, 1c+20)} JyeRs (Z2(V) Ly |2|—26,]z|+20)} Jyer) < sup{|Z1(y) — Z2(y)| : y € [—|z[ — 20, |z[ + 20)}.
Proof. In order to prove this, it is enough to prove that for any a > 0 with a # |z| + 20, we have the following:

Aty o (Z1 (W) L ye[—|o|-26,1]+20)} ye-aa]s (Z2(Y) L {ye[—|e|-26,]21+20)} ) yel—aa]) < SUPL|Z1(y)—Z2(y)| : y € [~|=|-20, |z]|+
20)}.

We first set a € (0, |x|+26), and write parametric representations of our functions (Z1(y)1{ye[—|x|-26,|z|+26)})ye[-a,a]
and (Z2(y) 1 {ye[—|x|—20,]z|+20)} Jye[—a,a)> the idea being to “follow their completed graphs together”. We set ¢ : [0, 1] —

[—a — %,a + LN—]\;”] the affine function mapping 0 to —a — LN‘ITHI and 1 to a + LN—]\;” (if Na is an integer,
we replace —a — % with —a — %) For £ = 1 or 2, we define the parametric representation (ug, ) of
(Ze(W) 1 {ye[—|2|—20,|2|+20)} )ye[—a,q) @S follows. For any ¢ € [0,1], if (t) belongs to an [3¢, 25H) for i € {—|Na], ..., |[Na]—

1}, we set (ug(t),re(t)) = (¢(t) — %, Zeo(¢(t) — %)), while if ¢(t) belongs to some [25L, 2L£2] for § € {—|Na| —
1,...[Na|—1} ({—=|Na],...,[Na] — 1} if Na is an integer), we set (ug(t),r¢(t)) = (S, (=N (t)+2i+2) Zo((H2) ") +
(No() —2i = 1) Ze( %) Moreover, if ¢(t) € [~a— LG, — 2D we set (ue(t), re(t)) = ($(1) + 5T, Zo(o(t) +
NalE1y) and if ¢(t) € 2N o + D] we set (u(t), ro(t) = (o(t) — N8k Zy(p(t) — 5al)). We then have
that [[u1 — u2llec = 0 and that [|r1 — r2|lec < sup{|Zi(y) — Z2(y)| : y € [—|z| — 20, |z| + 26)}, hence we ob-
tain dar,a((Z1(Y) L {ye—|e|-20,1c|+20)} )yel-aa)s (Z2(W) L {ye—|e|-20,jc|+20)} Jyel-aa) < Max(|[ur — uzllo, |11 — r2llec) <
sup{|Z1(y) — Z2(y)| : y € [~|x[ — 20, [z 4 26)}.

We now set a > |z|+26. We also define parametric representations of our functions “following their completed graphs

together”. We set s to be w if (x| +260)N is not an integer, and M]\?Q)M

w if (|z| +260)N is not an integer, and w otherwise. We define ¢ : [0,1] = [—a—dy —1,a+d} +1]
as the affine function mapping 0 to —a —dy — 1 and 1 to a + d} + 1. For £ = 1 or 2, we define the parametric
representation (ug, 7¢) of (Ze(y)Liye(—|u|-20,12|+20)} )ye—a,a) 8 follows. For ¢(t) € [—|z| — 20 — dy, |z| + 260 + dJ),
we define (ug(t),r¢(t)) as it would have been defined in the case a < |z| + 20, with |z| 4+ 26 replacing a. For
o) € [|x] + 20 + df, |z + 20 + dfy + 1] we set (ug(t), 71(t)) = (|| + 26, d¢ 4 (4(t))) where ¢y is the affine function
mapping |z| 4+ 20 + df, to Z((|z| +260)7) and |z| + 20 + df; + 1 to 0. For ¢(t) € [|z| + 20 +df + 1,a + d}, + 1], we
set (ug(t),me(t)) = (¢(t) — dfy — 1,0). Similarly, for ¢(t) € [—|z| — 20 — dy — 1, —|z| — 20 — d] we set (ug(t),r¢(t)) =
(—|x] —26, s (¢(t))) where ¢y, is the affine function mapping —|z| —20—dy to Zy(—|x|—20) and —|z|-20—dy—1 to
0, and for ¢(t) € [—a—dy—1, —|z|—20—dy —1], we set (ue(t), r¢(t)) = (¢(t)+dy+1,0). We then have ||u; —uz|loc = 0.
Moreover, for ¢(t) € [|z|+20+d}+1,a+d} +1]U[—a—dy — 1, —|z| —20 —dy, — 1] we have r1(t) = ra(t). Furthermore,
for ¢(t) € [|z| + 20 + dy, || + 20 + d}; + 1) we have |ri(t) — ra(t)| < sup{|Z1(y) — Z2(y)| : y € [—|z| — 26, |z| + 20)}
by the definition of the parametric representations. We now consider ¢(t) € [|lz| + 20 + di,|z| + 20 + df; + 1]
(the argument for ¢(t) € [—|x| — 20 —dy — 1, —|z| — 20 — d] is the same). Since ¢1 4 and ¢y 1 are affine functions,
1 (6)=ra()] < max(l61+ (|2]-+20-+85)— a1 (J2]+20--d5)|, [ 1,1 (12]+26+d5+1) — oy (2420 a5 +1)]) = | Z2((Jol +
20)7) = Za((|«]+20)7)| < sup{|Z1(y) = Za(y)| : y € [—|2[ =20, [x]+20)}. We deduce [lr1 —rafloe < sup{|Z1(y)—Za(y)| :
y € [—|z| =20, |x[+20)}. Consequently, dar,,o((Z1(Y)1ye[-|z|-26,21+20)} )ye[-a.a]> (Z2(¥)L{yel~|2|-26,21+20)} )yl -a.a]) <
max(||ur — ualleo, |71 — T2]|00) < sup{|Z1(y) — Z2(y)| : y € [—|x| — 20, |x| + 20)}, which ends the proof.

We are now able to deduce Lemmas [21] and 22] from Lemmas [23] and 4] which will end the proof of Theorem

otherwise, and we set dj(] to be

O
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Proof of Lemma[2]l Let f: D(—o00,+o0) — R be bounded and continuous with respect to the Skorohod M; topology
on D(—00, +00), we need to prove that E(f(YY)) converges to IE( f ((By 1 ye[—|z|—26,/x|+26)} JyeRr)) When N tends to +oo.
We define g : C[—|z| — 260, |x| +260] — R by g(Z) = f((Z(y)]1{ye[,|I‘,297|x‘+29)})y6R) for any Z € C|—|x| — 20, |z|+ 20].
We then have E(f(Yy)) = E(9(Yx|[—|z|-26,/c|+26)) and E(f((ByL{ye(—|z|-20,1c|+20)} JyeR)) = E(G(B*| (= |21-20, )| +26]))5
hence it is enough to prove E(g(Y3 |[—|z|—20,lz|+-20])) converges to E(g(B*||_|z|—20,lz|+26])) When N tends to +oo. Fur-
thermore, Lemmayields that Y](,\[,|x‘,297‘x|+29] converges in distribution to Bz\[,m,%"xHQ@] when N tends to o0
for the topology defined on C[—|x| — 20, |z| + 20] by the uniform norm. Consequently, we only have to prove that g is
continuous for this topology.

Let (Z)ken be a sequence in C[—|z|—26, |x|426] converging uniformly to Z € C[—|z|—26, |z|+26] when k tends to
400. Then Lemma states that for all k € IN, dMl((Zk(y)ﬂ{ye[—\x|—29,\x|+29)})y6R7 (Z(y)]l{ye[—m—26,|z\+29)})y6R) <
sup{|Zi(y) — Z(y)| : y € [—|z| — 20, |z| +20)} < ||Zk — Z]|co- Since the latter tends to 0 when k tends to +o0, we
deduce (Zk(y)1L{ye|—|z|—26,]z|+26)} )yeRr converges to (Z(y)1{ye[—|z|—26,x|+26)} )yer When k tends to oo with respect to
the Skorohod M topology on D(—o00,+00). Since f is continuous with respect to this topology, (¢(Z))ren converges
to g(Z) when k tends to +oo. Consequently ¢ is continuous for the topology defined on C[—|x| — 260, |x| 4 260] by the
uniform norm, which ends the proof. O

Proof of Lemma[23 Lemma [24] yields that if (B2)¢ occurs, then sup{|Yn(y) — Y (v)| : v € [—|z| — 20, |z +20)} <
N~/ From Lemma [25 we deduce that if (B2)¢ occurs then dyy, (Y, Vi) < N~7/16. Therefore P(dys, (Yn, Y3) >
N~7/16) < P(By), which tends to 0 when N tends to +o0o by Lemma O

5.2. Proof of Proposition 3. Our goal is to prove that for any closed interval I € R that does not contain —|z| — 26
or |z| 4+ 26, the process (Yi(y))yg converges in distribution to (Bl ye[—|z|—26,z|+26)})yel in the topology on DI
given by the uniform norm when N tends to +oo. We first assume I = [a,b] or [a,+00) with a > |z| 4+ 260 (the
case I = [a,b] or (—o0,b] with b < —|z| — 20 can be dealt with in the same way). We are going to prove that
outside an event of small probability, (Yﬁ(y))yef = 0 = (Byliye|—|«|-26,|z|+20)} Jyel- Indeed, we notice that the
random walk never reached It before time Ty, as since it is below x(N) at time Ty we would otherwise have
¢~ (Tn,I") > 0, which is not the case. Therefore, for any y > (|z| + 20) v %, the random walk did not reach
| Ny| before time Ty, hence (*(Ty,|Ny|) = 0, thus Yi(y) = 0. We deduce that as soon as % < a, we have
(Yﬁ(y))yel = 0 = (ByL{yec|—|a|—26,}x|+26)} Jyel- In addition, when N is large enough we have a > |z| + 20 + N4,
Therefore, when N is large enough, P((Yi(y))yer # (By T ye(—|a|—20,s+20)} Jyer) < P(IT = (Jz] + 20)N| > N3/4y,
which tends to 0 when N tends to +o0o by Lemma . This yields that (Yj\f(y))ye 7 converges in distribution to
(By Liye|—|z|—26,]z|+26)} )yer) in the topology on DI given by the uniform norm.

We now deal with the case I = [a,b] with —|z| — 20 < a < b < |z| + 26. The idea is that we will be far from the
problems at —|z| — 26 and |z| + 26, thus Y5 will be close to Y} in all I, and Y}, converges to the right limit, hence
Yz? too. We first prove the following lemma.

loo > 2N*1/12) tends to 0 when

Lemma 26. For any —|z| —20 < a < b < |x|+ 260, we have that IP(HY]ﬂ[a,b} -Yy
N tends to +o0.

Proof. We assume (Bs)®, (B})¢, (B})¢ occurs, as well as |1~ + (|z| +20)N| < N34 [Tt — (Jz| + 20)N| < N3/%. When
N is large enough, we have a > —|z| — 20 + N~Y4 > Lo and b < [z| + 20 — N~V4 < , hence [a,b] C (4, %)
Therefore, for any y € [a,b], Lemma [17] yields |Yi¥(y) — Y (y)| < N~/'2) and Lemma [24] gives |Yn(y) — Y3 (y)] <
N=7/16 hence we get |YViE(y) — Y4 (y)| < 2N~Y12 and we deduce ”Y]ﬁ[a,b] — Yyliaplloo < 2N~1Y12 This implies

[a,]
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P(1Yx lfa.) = Yl g lloc > 2N7V12) < P(BoUBy UBF U{II™ + (|2 +20)N| > N¥*JU{|I* —(|z[+26)N| > N¥/*}). In
addition, the latter tends to 0 when N tends to +o00 because Lemma implies IP(B2) tends to 0 when N tends to 400,
Lemmayields P(B;) and P(B]) tend to 0 when N tends to 400, and Lemmaimplies P(|I~+(|z|+20)N| > N3/4)
and P(|IF — (|z| 4+ 20)N| > N*/*) tend to 0 when N tends to +oo. This yields P([|Y i — Vil sl > 2N~1/12)
tends to 0 when N tends to +oo. O

We now set —|z| —260 < a < b < |z|+26 and end the proof of Proposition We begin by showing Y} |4, converges
in distribution to B“”|[a7b] when N tends to +oo for the topology defined on Dla,b] by the uniform norm. For any
function f : Dla,b] — R bounded and continuous for this topology, we may define g : C|—|z| — 260, |z| + 20] — R
by 9(Z) = f(Z|[ay) for any Z € C[—|z| — 20, |z| + 20], and g is continuous for the topology of the uniform norm on
C[—|x|—20,|z|+ 26]. Moreover, Lemma states that Y |[_|z|—20,c|+20] converges in distribution to B*|[_|z|—29,z|+20]
when N tends to +oo for the latter topology, hence E(g(Yy|[—|z—26,lz+-20])) converges to E(g(B|_|z—26,z|+26]))
when N tends to +oo. This means E(f(Yy|jq,s)) converges to IE(f(B*[jq3)) when N tends to +oo. Therefore Y|4 4
converges in distribution to B*|j,; when N tends to +oco for the topology defined on D[a,b] by the uniform norm.
Redoing the argument with the Portmanteau Theorem used in the proof of Theorem [I] while replacing the Skorohod
M, topology on D(—o0,00) by the topology of the uniform norm on Dla, b, replacing Y]\? by Y]ﬂ[a’b}, replacing Y}
by Yy (5, and replacing Proposition |15 and Lemma [22| by Lemma [26] yields that Y]\jﬂ[ayb] converges to B*[(,y in
distribution for this topology when N tends to +oo, which is what we needed to prove.

6. NO CONVERGENCE IN THE SKOROHOD J; TOPOLOGY: PROOF OF PROPOSITION @

In this section, our aim is to prove that Yj\j,E does not converge in distribution in the Skorohod J; topology
on D(—o0,+00) when N tends to +o0o. We will first prove that if Y]\j,E converges in the Skorohod J; topology,
the limit has to be the same as in the Skorohod M; topology, that is (B;j]l{ye[_|x|_297|$|+29)})y63 by Theorem
(this will be Lemma . Afterwards, we will prove that Yﬁ does not converge in distribution in the Skoro-
hod J; topology to (B;]l{ye[_|m|_29’|z‘+29)})y€]1{ by finding some closed set = so that lim SupNH+ooIP(Y§ € =) >
P((By1iye—||-20,z1+26)} Jyer € =), which is enough by the Portmanteau Theorem.

Lemma 27. If Yﬁ converges in distribution in the Skorohod Jy topology on D(—o00,+00) when N tends to +oo, the
limit is (By 1 {ye(—|2|-20,2+20)} )yeR-

Proof. The idea is that the Skorohod J; topology is stronger than the Skorohod M; topology, hence if Yi converges
in distribution in the Skorohod J; topology it will converge in distribution in the Skorohod M; topology to the
same limit, and we already know by Theorem [1| that it converges in distribution to (Bf]l{ye[—lx\—29,|w\+29)})y6R in
the Skorohod M; topology. More rigorously, it can be proven that for any a > 0 we have dys, o < dj, —a,q. Indeed,
this is Theorem 12.3.2 of [9], whose proof is in the Internet supplement of that book (just replace the discontinuity
points of x; with their image by A~!). This implies dy;, < dj,. Therefore a converging sequence in the Skorohod
J1 topology on D(—o00,+00) also converges in the Skorohod M; topology on D(—oc, +00). Consequently, a function
g : D(—00,+00) — R that is continuous for the Skorohod M; topology is also continuous for the Skorohod J; topology.
We deduce that if Yﬁ converges in distribution to some Z in the Skorohod J; topology when N tends to 400, then
for any bounded function g : D(—o00, +00) — R continuous for the Skorohod M topology, g is also continuous for the
Skorohod J; topology, hence E(g(Y5)) converges to IE(g(Z)) when N tends to +oo, thus Y converges in distribution
to Z in the Skorohod M; topology when NN tends to +o0o. Furthermore, Theorem |1|states Yﬁ converges in distribution
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to (Bg]l{ye[,|x|720,|x\+29)})yER in the Skorohod M; topology when N tends to 4+o0o. Therefore, if Yﬁ converges in
distribution in the Skorohod J; topology when N tends to +oo, its limit is (B,Z]l{ye[f|x|7207|a:‘+29)})yER~ O

We now define our closed set =. The idea behind this definition is that with high probability, Bl‘"; 1426 is at some

x
|x|4-267

Furthermore, at |z[ + 20 the process (B 1 e[ |z|—26,z|+26)} )yer Will jump directly from lex‘
ﬁ’ |[+260
Therefore if 61 > 0 is much smaller than B ,,, then Yii(y) will enter the interval [d1,201] for y near |z| + 26,
while (B 1y e[—|2|—26,x|+26)} )yer Will not. We thus set = to be roughly “the function enters [d1,2d1] around |z| + 20”.
More rigorously, by the definition of B*, the random variable B‘”; 126 has distribution A (0,26), hence there exists
01 > 0 so that IP(]B“";|+29| < 44;) < 1/8. Moreover, B” is continuous, hence there exists 0 < dy < 6 so that
P(3y € [[o] + 20 — ba, || + 20], | By | < 301) < 1/4. We then define = = {Z € D(—00,+00) |Fy € [|x| + 20 — do, |x| +
20 + 69],1Z(y)| € [01,261] or |Z(y™)| € [61,201]} (the inclusion of Z(y~) was necessary for Z to be closed). Then
P((By1iye|—|a|-20,z1+26)} Jyer € E) < 1/4. We will prove the two following lemmas.

thus at some distance from O.
4o 10 0, while Yﬁ, which

from 0 without bigs jumps.

distance from 0, hence at some point around |z| + 26, Yj\j,E will be close to B

xT

can make only jumps of order will have to cross the distance separating B

Lemma 28. When N is large enough, P(Yi € E) > 1/2.
Lemma 29. = is closed in the Skorohod Jy topology on D(—o0,+00).
With these two lemmas, the proof of Proposition [2] becomes easy.

Proof of Proposition[4 Lemma yields limsupy_, JrooIP(Y]\j]E € E) > 1/2, and the definition of = ensures that

P((BEL {ye|—(a| 20,2l +20)} JyeR € Z) < 1/4, hence limsupy_, oo P(Yy € E) > P((BE1ye(-(s|-20,c]+20)}wer € E)-
Since Lemma 29| yields Z is closed in the Skorohod J; topology on D(—o00, 4+00), the Portmanteau Theorem implies
Y]\? does not converge in distribution in the Skorohod Ji topology on D(—o00,+00) to (Byliyc|—||-20,|z|+26)} JyeR
when N tends to +o00. Hence Lemmayields that Y]\j,E does not converge in distribution in the Skorohod J; topology
on D(—o0,+00) when N tends to +o00, which is Proposition O

Thus it remains only to prove Lemmas 28] and 29

Proof of Lemma[28 The idea is that with good probability, when y is a bit smaller than |z| + 26, we have Yﬁ (y)
of the same order as BIJ:xH?G’ thus away from 0, while when y is a bit larger than |z| 4+ 26, we have Yﬁ(y) =0, so
since Yy can only make jumps of order ﬁ, it will enter [d1,201]. We now give the rigorous argument. We begin by
assuming that |V (|z| 4 20 — d2)| > 301 (that is Yy (y) is indeed away from 0 when y is a bit smaller than |z| 4 26),
(B2)¢ occurs and |[I* — (|z| + 20)N| < N34, and proving that when N is large enough, Yi € Z. We first show
Ve (2] 4 26 + 65) = 0. When N is large enough, % < |z| +20 + N~Y* < 2| 4+ 20 + 5. Moreover, for any y > %, if
we had (= (T, | Ny|) # 0, since at time Ty the random walk is at | Nx .1, it would have gone from | Ny| to [Nz ]l
before time Ty, thus would have gone from It to I™ — 1 before time T, which is impossible by the definition of
I't. We deduce ¢*(Ty, | Ny|) = 0 for any y > %, hence for y = || + 260 + d2. This yields Y (|z| + 20 + &) = 0.
Moreover, we assumed |Yi (|z| 4+ 20 — d2)| > 36;. Furthermore, equations and yield that the jumps of Vi
in [|z] + 20 — 09, |z| + 20 + 2] are either ﬁni&(@*(TN,i)) (if we deal with Y}) or ﬁni+17+(£7 (Tnyi+ 1)) (if we
deal with Yy7) with i € {[(|z] + 20 — 62)N|, ..., |(|=] + 20 + 69)N| — 1}. Since (B2)® occurs, the jumps of Y in

[lz| + 260 — 92, |z| + 26 + J2] have size at most ﬁ(Nl/16 + 1/2), which tends to 0 when N tends to +o0o. Therefore,
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when N is large enough, there exists y € [|z| + 20 — da, |x| + 20 + ] so that |Y:E(y)| € [01,201], hence Vi € Z.
Consequently, when N is large enough, if [V (2] 420 — 2)| > 331, (B2)¢ and [T — (|z|+20)N| < N3/* then Y,£ € =.
This implies P(Ya ¢ Z) < P(|Yar (|| +20 — 52)| < 361) +P(Ba) + P(|I* — (|| +20)N| > N3/4). In addition, Lemma
and Lemma |10| yield respectively that P(By) and P(|IT — (|z| + 20)N| > N3/*) tend to 0 when N tends to +oo.
Therefore it is enough to prove that P(|Yx (x| + 20 — d2)| < 361) < 3/8 when N is large enough to deduce that
IF‘(Y]\j,E ¢ Z) < 1/2 when N is large enough and end the proof of Lemma

We now prove P(|YE (|| 4 20 — 62)| < 361) < 3/8 when N is large enough, by noticing Y& (|| + 20 — 62) is close
to Yy (|z| + 20 — d2), which will converge in distribution to B} |129—5, When N tends to +oo. Lemma 26 implies
P(||Y |0,/ +26-52] — —ss)lloe > 2N71/12) tends to 0 when N tends to +oo, hence P(|Y,r (|| + 20 — 62) —
Y (|| + 20 — d2)| > 2N_1/12) tends to 0 when N tends to +oo, which implies Y5 (|z| + 20 — d2) — YX (|| + 26 — d2)
converges in probability to 0 when N tends to +oco. In addition, Lemma states Y |[—|z|—20,|z|+20] converges
in distribution to B*|[_|;|—29,/z|+20) When N tends to +oo for the topology defined on C[—|z| — 260, |z| + 20] by the
uniform norm, hence Y} (|z|+260—d2) converges in distribution to B 5, When N tends to +-o0. Therefore Slutsky’s

|z|+26—
Theorem yields that Yi(\x\ + 260 — 02) converges in distribution to By, 199_5, When N tends to +oo. Moreover, we

defined = so that P(3y € [|z] + 26 — 02, |z| + 20], | B| < 361) < 1/4, hence IP(’B|$|+29 5,| < 361) < 1/4. This implies
that when N is large enough, P(|Y;E(|z] 4 20 — d2)| < 361) < 3/8. O

Proof of Lemma[29 Let (Zn)nen be a sequence of elements of Z converging to Z in the Skorohod J; topology on
D(—00,400), we will prove Z € Z. By taking an extraction, we may assume dy, (Z, Zy) < e~ 1#1=20=02=1/N for any
N € IN*. Then for any N € IN*, some ay > |z + 20 + 02 + 1 so that dj, —ay.an(Z]—an,an] ZNl[—an,an]) < 1/N will
exist. Indeed, if it was not the case, for some N we would have dj, (Z, Zy) = 0+°O e~ dy,~aa(Zl[—a,a)> ZN[=a,a)) A

1)da > |;—|o+<>29+52+1 e +da = e~1#1=20=0=1 /N " which does not happen. For all N € IN*, the fact that we have

dle_aN7aN(Z’[*aN7aN}7 ZN‘[*QN,GN]) < l/N implies there exists Ay € A—aN7aN with ”Z‘[faN,aN]OAN—ZN‘[faN,aN]HOO <
2/N and [[An —Id_qy anllee < 2/N. Moreover, Zy € =, hence there exists yn € [|z|4260 — 2, |x|+20+ 2], | Zn(yn)| €
[01,201] or |Zn(yy)| € [01,261). We now define y)y as follows: if |Zn(yn)| € [01,201] we set ¥y = yn. Otherwise,
since |Zn(yy)| € [61,201] we can take some y)y in [yn — +,yN] so that |Zn(yy)| € [61 — 1/N,261 + 1/N]. In
both cases, we have yi € [|z| 4+ 20 — 02 — 1/N, |x| + 20 + d2] and |Zn(yy)| € [61 — 1/N,261 + 1/N]. Furthermore,
AN —Id—ay anlloe < 2/N, hence |An(yy) — Y| < 2/N, thus Ax(yy) € [|z] +20 — 62 — 3/N, || + 20 + 62 + 2/N]. In
addition, ||[Z(An(Yy)) — Zn(Yn)llee < 2/N, hence |Z(An(yy))| € [01 —3/N, 261 + 3/N]. By taking an extraction, we
may assume that Ay (y)y) converges to some Yoo € [|2|+260 — 02, || 4260 +d2]. In addition, Z is cadlag, hence there is an
extraction of (Z(An(yy))New+ that converges to either Z(ys) or Z(ys,). Since |Z(An(yy))| € [61 —3/N, 261 + 3/N],
we have |Z(yoo)| or |Z(y5)| in [01,281]. Therefore Z € Z, which ends the proof. O

7. CONVERGENCE OF THE STOPPING TIME: PROOF OF PROPOSITION [4]

We want to prove Proposition {4} that is the convergence in distribution of N3/2 (Tn — Nz(la:\ +26)?) to the law
N(0, 2 Var(p_)((|z|+6)3+6%)) when N tends to +oo. In order to do that, we will prove that N3/2 (T — N%(|2| +26)?)

is close to 2 fmTQge % (y)dy, then show that 2 fmfge Y (y)dy converges to the desired distribution.

Tn — N2%(|z| +20)%) — 2f|m|+20 Y, (y)dy| > 5(|2| + 20)N~/12) tends to 0 when N tends

Proposition 30. P(| |z|—26

to +o0.

N5/2(



FLUCTUATIONS OF THE LOCAL TIMES OF THE SELF-REPELLING RANDOM WALK WITH DIRECTED EDGES 29

Proof. The result will come from the fact that T can be written as the sum of the local times, which is itself related
to the integrals of Yy and Y;,r , which are close to Yy by Lemma hence to Y}, by Lemma It is enough to

prove that if (Ba)¢, ([)’4_)C and (B)¢ occur and if |1~ + (|z| + 20)N| < N8 |1t — (|z| + 20)N| < N°/%, then
‘N%/Q (Tn — N%(|z| + 20)?) — 2f‘”v|l:|rzge Vi (y)dy| < 5(|x| + 20) N~1/12 ] since Lemmaimplies P(B2) tends to 0 when

N tends to 400, Lemma (14| implies P(B;) and P(B]) tend to 0 when N tends to +oo, and Lemma [10] implies
P(|I~ + (|z| + 20)N| > N°/®) and P(|I* — (Jz| + 20)N| > N°/8) tend to 0 when N tends to 4+o00. We assume (Bs)¢,
(B;)¢ and (Bf)¢ occur and |I~ + (|z| +20)N| < N°/8 |IT — (|z| + 20)N| < N°/8  let us study T.

In order to do that, we first need to prove an auxiliary result, more precisely that the following holds when N is
large enough:

(6) if i — I < N°8 41 or|i— 17| < N”® 41 then £+(Ty,i) < 4N/ and ¢~ (Ty, i) < AN'/10,

We prove ([6) for the case |[i—I~| < N®/8 41, since the other is similar. Let i € Z so that |i—I~| < N°/341. We notice
that since |1~ + (|z|+20)N| < N°/% we have I~,i < 0 when N is large enough, so (I)) yields |¢+(T, i) — E*(TN,I_)] <
D1 <ns/s 11 M= (CH (T, )|, thus since £F(T, I7) = 0 we have £ (T, i) < 375 - cnsrsi |75, (€T (T, 5))]- In
addition, we assumed (B2)¢, hence £*(T,i) < E\j—]*|<N5/8+1(N1/16 1/2) < 3N®/8N1/16 — 3N1/16 when N is
large enough. Furthermore, (2)) implies [¢~ (T, i) — €T (Tn,4)| = |n;— (07 (T, )| < N6 4+1/2 thanks to (Bs)®, hence
0~ (T, i) < 3NW/16 4 N1/16 4 1/92 < ANY/16 when N is large enough, which ends the proof of ().

We now write Ty as the sum of the local times and relate ﬁ(TN — N2(|z| + 26)?) to the integral of Y+ and Y.
We have Ty = Y,c, (07 (T, i) + € (T, i)). Moreover, if the random walk (X,)new had visited any ¢ > I before
time Ty, since it is at | Nz .1 at time Ty, it would have gone from It to I™ — 1 before time T, which is impossible
since the definition of I yields ¢~ (T, I") = 0. This implies (X, )nen did not visit any ¢ > I'", hence for all 4 > I'*
we have (1 (Ty,i) = £~ (T,4) = 0. Similarly, for any i < I~ we have £*(T,i) = ¢~ (Tn,i) = 0. Consequently, T =
zfﬁg;lﬁ@fgg) (65 (T, i) + €7 (Tiv, 7). We thus have |5 (T — N(jz| +20)%) — [(C Y0 (v () +
Yy )dyl < 57 (CH(In, IV ([l +20)N )+ (Tov, TV [ (J2[+20)N )+ (T, = [ (J2|+20)N | = 1)+~ (T, — [ (|| +

20)N| —1)). Since |[I~ + (Jz| + 20)N| < N%/8 and |[IT — (|z] + 20)N| < N°/8, equation (6) yields

1 2 2 V(e 20)N)/N - — 11/16 _ 13/16
M) | @ = N¥(el + 207 - [ (V3 () + Yx ()dy| < g 16N/ = 16N~
N (I~ A(~(lal +20)N)/N
+ xT
We now prove that f a \/(\ (|‘1|T;9))/])\§/N(Y+( ) + Yy (y))dy is close to 2f‘ (||;L‘2_f29) ~(y)dy. We begin by consid-
ering f I+V(‘x|+20) )/N(YJr( )+ Yy (y))dy. We first assume It > (Jz| + 20)N. Since we assumed (Bz)¢, (B} )¢ and
(B} )¢ occur, Lemmaylelds\f I+v/]|\3;‘+26) )/N(Y]\*,'(y) Yy (y))dy— 2&92\4;)2/6]?\[ ~N(y)dy| < 2(]z|+260— Xy )) -2

S VR () + Yy, (1) [dy. In addition, we know I —(|z|+26)N < N5 and §), hence [/ /2% [V (1) + Yy, (1) ldy <

N—3/8 \/N(maxl(‘$|+29)NJ<Z<I+ A (TN, ) + MaX| (|z|+20)N |<i<I+ gf(TN, Z)) < N—3/8N—1/28N11/16 — gN—3/16 We de-

duce|f I+V(‘$|+20)N)/N(Y+( )+Yy (y)dy— 2f‘w|+ Yy (y)dy| < 2(|x\+29—M) —1/12 L §N—3/16 We now assume
ItVv(|x 29N N x|+26 IT/N
< (|z|+260)N. In this case, we have|f(NV/J'V‘+ oy (Va (1) + Yy ()dy—2 [ Yo (v)dy] <f(N/)/N|Y+( )+

YN( ) —2Yn(y \dy—i—flf‘;\?e\Yﬁ( )+ Yy (y |dy+f‘fl/t\39]2YN( )|dy. Moreover, Lemmaylelds f ]Y+( )+
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Yy (y) — 2Yn(y)|dy < 2(|z| + 26 — W)N’l/lz. Furthermore, for y > % we have ¢*(Tw, | Ny|) = 0. Since [IT —

(7] + 20)N| < N°/8 this yields |V (y)| < %NVS. Thus f}i'/*N?‘HW( )+ Yy (y)|dy < fl'i‘fNQ@Nl/f?d < N-3/8N1/8 =
N=1/4 We deduce | f(]+v |m|+29)N)/N(Y+( )+ Yy (y)dy —2 f‘ml_ﬂe Yn(y)dy| < 2(|z|+ 260 — %)N‘l/12 + N4

fllfr';\?e |2Yn (y)|dy. In addition, for any y € [ , || +26], we have |Yn (y)| < |Yn(y) fYN(%)| + |YN(%) —Yﬁ(%ﬂ +

Yy (5 2)|. Lemma [17] yields that |YN(W) - Yy (W” < N~Y2 and since |IT — (|| + 20)N| < N°® we have
Yy (9l = |75 (5T, 1) = N <*'$"“*/N'+e> )| < 3NV, hence [Yiv(y)| < [Yiv(y) = V()| + N7V 4+ g5 =

Ny|—1 o|+20)N | -1 _
ﬁ|zt yl— Gl+N- 1/12 7N1/8< ZH I+ 1= G|+ N~ 1/12 4 Nl/ggﬁngNl/lﬁ—i—N 1/12+%N1/8§

=1+ i=I+

2N3/16 gince (Bg)® occurs. This implies flil/JrN 12Yn (y)|dy < f‘xHQe AN3/16qy = N=3/84N3/16 — 4N—3/16 We deduce

\f I+v(|x\+20 )/N(Y+( )+Yy (y)dy — 2f‘x|+29 Yy (y)dy| < 2(|1:]+297W)N_l/12+5]\7_3/16. Consequently, in all
cases we have | [/ I;,V(]‘\f'”e) )/N(Y+( )+ Yy (y)dy — 2f|x|+29 Y (y)dy| < 2(|z|+ 260 — M) “1/12 L gN=3/16 One
can prove similarly that \f(l ]\/f\)(/]\(f\x|+20) ))/N(Y (y)+ Yy (y)dy —2 [ ‘]Lf;@ N (y)dy| < 2(]z] + 20 + XV )) —1/12 4

SN—3/16_ We conclude that \f( (v (Jal+20)N )/N/N(Y (y) + Yy (v)dy — 2f|x|+29 Yy (y)dy| < 4(|z| + 20)N~V/12 4

I=A(=(|z[+26)N)) (|| +26)
16N —3/16,

We are now in position to conclude. Indeed, the previous result and imply that when NV is large enough,
‘N3/2 (Tn — N%(|z|+26)?) flxl‘l_ff% (y)dy| < 16N—13/16 L 4(|2|+20)N 1/12—1—16N_3/16 Moreover, (B2)¢ occurs,
hence Lemma [24] yields sup{|Yn(y) — Y (v)| : v € [—|z| — 20,|z| + 20)} < N~ 7/16  therefore \f‘?'l +26) Yy (y)dy —
f|96(|;|2f29) ( )dy| < 2(|z| + 20)N~ 7/16  We deduce that when N is large enough, |N3/2 (Ty — NQ(M + 29) ) —
2" ‘w'ljff% (y)dy| < 16N—13/16 L 4(|z| + 20)N—1/12 4 16N —3/16 ¢ 4(|x| + 20)N~7/16 < 5(|z| + 20) N~'/12 which
ends the proof 0

Now that we know W(TN — N2%(|z| + 26)?) is close to 2f|:TLT229 Y (y)dy, we need to prove f'gﬂlgmée Y (y)dy

converges to the desired distribution. In order to do that, we will use the convergence of Y} to a Brownian motion

stated in Lemma so 2 [F lﬁl—;&ge Y (y)dy will converge to the integral of a Brownian motion, the law of the latter

being characterized by the following lemma, where we denote by (By);cgr+ a standard Brownian motion with By = 0.

Lemma 31. For anyy > 0, the integral [ B.dz has distribution N (0, %)

We are now able to prove Proposition [4]

Proof of Proposition [ Proposition 30 implies ﬁ(TN N2(|z| +20)%) — 2 f"T‘LTQZH Y (y)dy converges in probabil-

ity to 0 when N tends to 4+oco. Hence by Slutsky’s Theorem, it is enough to prove 2 [ |QTLT2§6 Y} (y)dy converges

in distribution to A(0, Var(p_)22((|z| + 6)3 4 6%)) when N tends to +oo to prove Proposition 4, In addition, by
Lemma Yy li—|z|—20,z|+20) converges in distribution to B|[_|;_29,z|+20) When N tends to +oo for the topology
defined on C[—|z| — 20, |z| + 260] by the uniform norm. Moreover, the integral between —|z| — 26 and |z| + 26 is

[+20 - z|+26
| 00 YN 2] —26 Bjdy when N tends to

+oo. Furthermore, B* is a two-sided Brownian motion with Bf = 0 and variance Var(p_), hence we can write

continuous for this topology, hence f e (y)dy converges in distribution to [" |
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flgTLTQge Bydy = ff|:p\—29 Bydy + f{leze Bjdy where ff|z|—29 Bjdy and f;xl—me Bjdy are independent. In addition,

f|x|+20 By dy has the distribution of /Var(p-) 1029 Bydy, which is N(0, Var(p,)@) by Lemma 31} and ffmi% Bydy
3

has the distribution of y/Var(p f2|z‘+29 B,dy, which is N (0, Var(p )M) by Lemma . We obtain that

flgTLTQge ./dy has the distribution A/(0, Var(p ,)M + Var(p )(29) ) = N(0, Var(p—) 3 ((|z| 4+ 6)® + 63)). Conse-

quently, f'ﬁ'fge % (y)dy converges in distribution to N'(0, Var(p—)5((|z| + 6)® + 63)) when N tends to +oco, which
ends the proof of Proposition [4 O

Therefore we only have to prove Lemma [31] to end the proof of Proposition [

Proof of Lemma[31l Let y > 0. When k tends to +oo, the random variable T Ztkyj By}, converges almost-surely to
Iy B.dz. Moreover, k ZL vl g =1 Zkle(kaJ +1—0)(By/k, — B(¢—1)/) has distribution N (0, k12 L;kylj(tkyj +1—

0)?3) =N(0, 75 ZkaJ %) = N(O = kaJ(kaJ+1)(2kaJ+1)) Denoting by ¢, the characteristic function of + Ze By,
(=

u? 1 kaJ(kaHl)(?kaHl))
253 6

Therefore the characteristic function of + ngyj By converges pointwise to the characteristic function of N(0, £),

for all u € R we have ¢ (u) = exp , which converges to exp(—;;) when k tends to +oc.

which implies ¢ ZL ] Byj, converges in dlstrlbutlon to N (0, ) As 4 7 ZUW By, converges almost-surely to fo B.dz,
this implies [ B.dz has distribution A/(0, ) O
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