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Abstract
Mesenchymal stromal cells (MSCs) are considered promising candidates for regenerative medicine applications. Their clinical
performance post-implantation, however, has been disappointing. This lack of therapeutic efficacy is most likely due to
suboptimal formulations of MSC-containing material constructs. Tissue engineers, therefore, have developed strategies
addressing/incorporating optimized cell-, microenvironmental-, biochemical, - and biophysical- cues/stimuli to enhance MSC-
containing construct performance. Such approaches have had limited success because they overlooked that maintenance of
MSC viability after implantation for a sufficient time is necessary for MSCs to develop their regenerative functionalities fully.
Following a brief overview of glucose metabolism and regulation in MSCs, the present literature review includes recent
pertinent findings that challenge old paradigms and notions. We hereby report that glucose is the primary energy substrate
for MSCs, provides precursors for biomass generation, and regulates MSC functions, including proliferation and
immunosuppressive properties. More importantly, glucose metabolism is central in controlling in vitro MSC expansion, in vivo
MSC viability, and MSC-mediated angiogenesis post-implantation when addressing MSC-based therapies. Meanwhile, in silico
models are highlighted for predicting glucose needs of MSCs in specific regenerative medicine settings, which will eventually
enable tissue engineers to design viable and potent tissue constructs. This new knowledge should be incorporated into
developing novel effective MSC-based therapies.

Impact statement
The clinical use of mesenchymal stromal cells (MSCs) has been unsatisfactory due to the inability of MSCs to survive and be
functional after implantation for sufficient periods to mediate directly or indirectly a successful regenerative tissue response.
The present review summarizes the endeavors in the past but, most importantly, reports the latest findings that elucidate
underlying mechanisms and identify glucose metabolism as the crucial parameter in MSC survival and subsequent functions
pertinent to new tissue formation of importance in tissue regeneration applications. These latest findings justify further basic
research and the impetus for developing new strategies to improve the modalities and efficacy of MSC-based therapies.
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1. Introduction
Mesenchymal stromal cells (MSCs) are promising candidates

for regenerative medicine applications because they can proliferate
and differentiate into other cell types (including osteoblasts,
chondrocytes, and adipocytes) and induce a regenerative
microenvironment by secreting bioactive chemical compounds1–3.
The functionality of MSC-containing constructs is a joint action of
MSCs and their microenvironment in which they are implanted4,5.
Tissue engineers have recognized the crucial role of cellular
characteristic aspects (such as cell source, passage number, and
cell differentiation state)6–8 on the ultimate efficacy of engineered
tissues. These research endeavors have also demonstrated that
biochemical stimuli (e.g., cytokines9,10 and extracellular matrix
proteins10,11) and biophysical cues (such as stiffness and
topography of the substrate material scaffold12, mechanical stresses
and strains exerted on cells13,14) are critical aspects that regulate
MSC functions pertinent to tissue regeneration.

Cellular metabolism, i.e., the sum of all chemical reactions
catalyzed by enzymes within cells, is gradually emerging as the
central regulator of all cellular functions15. It provides energy that
powers cellular activities and the building blocks for cell growth
and regulates cell fate decisions16. MSCs transplanted within
damaged tissues lacking vascularization require catabolism (to fuel
their high energy demand for survival) and anabolism, to provide
adequate intracellular biomass (such as proteins, lipids, and DNA)
postimplantation3. Thus, transplanted MSC metabolism regulates
cell survival, proliferation, differentiation and paracrine functions
during tissue regeneration.

Historically, due to the low oxygen tension in damaged
tissues17, researchers have focused on the role of oxygen in cellular
metabolism and investigated oxygen-delivery materials for
improving MSC survival and functions during tissue
regeneration18,19. However, oxygen deprivation is not the only
feature affecting MSC metabolism; the availability of nutrients
(such as glucose and amino acids) as metabolic substrates is
another critical component affecting MSC metabolism and
ultimately dictating cell fate outcomes.

Although there has been less focus on nutrients, the roles of
glucose have progressively emerged in MSC-mediated
regenerative response3,20,21. In fact, glucose is the primary energy
source to fuel most mammalian cells. Additionally, glucose
provides carbon to generate biomass precursors, including
phospholipids, amino acids, and nucleotides, to support cell
division and other functions22,23. In addition, glucose metabolism
through anaerobic glycolysis, oxidative phosphorylation
(OXPHOS), and interlinked side pathways provides precursors for
protein modifications and epigenetic signatures (Figure 1)24,25;
such outcomes exert regulatory effects on stem cell
functionalities26–28.

Several comprehensive reviews have highlighted how glucose
metabolism affects the biology of various stem cells, including
embryonic, pluripotent, and hematopoietic stem cells29–31. The
present review focuses on the pivotal role of glucose in the
regenerative functionalities of MSCs. Although MSCs can be
isolated from various tissues, we focus on bone marrow-derived
MSCs, which have generated a great deal of interest in many
clinical settings, including tissue engineering, immunomodulation,
and regenerative medicine. Unless otherwise stated, the term
"MSCs" in this review refers to bone marrow-derived MSCs.

Following a brief overview of glucose metabolism in MSCs, the
current fundamental knowledge about the role of glucose in MSC
proliferation and MSC-mediated immunosuppressive properties, as
well as the applications of glucose in optimizing in vitro MSC
expansion and improving post-implantation MSC viability and
therapeutic angiogenesis from regenerative medicine perspectives,
are reviewed. Meanwhile, the relevance of in silico models are
highlighted for predicting glucose needs of MSCs in specific
regenerative medicine settings, which will eventually enable tissue
engineers to design viable and potent tissue constructs.

2. Fundamental aspects
An overview of glucose metabolism in MSCs

Glucose uptake from the extracellular milieu. Glucose is a
small hydrophilic molecule that circulates dissolved in blood
plasma but cannot cross the cell-plasma membrane. Instead, it is
uptaken through either endolysosomal pathways32,33 or facilitative
diffusion by adenosine 5'-triphosphate (ATP)- independent, cell-
surface, nutrient transporters referred to as Glucose Transporters
(GLUT1 to 14)34. GLUT1, GLUT3, and GLUT4 were identified
for the glucose uptake in human placental amnion-derived
MSCs(h-PA-MSCs)35. Their high affinity for glucose permits its
uptake at a high rate under physiological conditions. However, h-
PA-MSCs cannot efficiently downregulate glucose transporters,
and thus glucose intake, in the presence of excess glucose35.
GLUT1, which expresses ubiquitously, is considered responsible
for basal glucose uptake36. Oxygen tension, nutrient deprivation,
and the PI3K/AKT pathway regulate GLUT1 expression37–39. In
mouse MSCs (mMSCs), GLUT1 is needed for osteoblast
differentiation and new bone formation by regulating both master
osteogenic transcription factor RUNX2 and nutrient sensor 5'
adenosine monophosphate (AMP)-activated protein kinase
(AMPK)40,41. Increased GLUT1 expression was reported in MSC-
mediated immunomodulation42,43. GLUT4 is insulin-sensitive and
is sequestrated intracellularly in GLUT4 storage vesicles, which
undergo exocytosis to cell plasma membrane upon insulin binding
to its receptor and activation of the PI3K/AKT signaling cascade44.
This GLUT4 translocation results in a 10-to-20-fold increase in
glucose uptake36. To the author’s knowledge, the precise role of
GLUT3 and GLUT4 in MSC biology remains unknown. Last but
not least, glucose uptake in mammalian cells surrounded by
nutrientrich body fluids is predominantly placed under the control
of growth factors acting as cellextrinsic regulators of nutrient
acquisition and usage. Glucose uptake can be secondarily regulated
by intrinsic nutrient sensors such as AMPK45–47. This tight
regulation of glucose uptake prevents excessive nutrient
consumption and abnormal cell proliferation. Despite the
importance of growth factors as cell-extrinsic regulators of glucose
uptake and use, it lacks studies seeking to identify the specific
growth factors responsible for modulating glucose uptake in MSCs.

MSCs’ metabolic flexibility. MSCs respond and adapt to
conditional changes in metabolic demand (Figure 2). For example,
when cultured in vitro at 21% oxygen, hMSCs progressively
switch from a highly glycolytic to an OXPHOS phenotype48.
Along similar lines, hMSCs cultured under chondrogenic
conditions prefer glycolysis49, whereas hMSCs cultured under
osteogenic conditions prefer OXPHOS50. Hypoxia-inducible factor
1-alpha (HIF-1α), known for its ability to sense oxygen tension51,
is central to the metabolic reprogramming of stem cells52–56. HIF-1
is a heterodimeric transcription factor, including an O2-regulated
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HIF-1α subunit and a constitutively expressed aryl hydrocarbon
nuclear translocator HIF-1β subunit. Under sufficient oxygen
conditions, HIF-1α protein is primed for ubiquitination and
degradation in proteasomes. HIF-1α, however, is more stable under
hypoxia, translocates to the cell nucleus, and dimerizes with HIF-
1β. The heterodimer HIF-1α/HIF-1β binds to the hypoxia response
element site on DNA and thus regulate the expression of genes
involved in glucose metabolism and angiogenesis57–60, thereby
facilitating cell adaptation to hypoxia. HIF-1α stability is also
affected by metabolites, including lactate and α-ketoglutarate61–63.
In hMSCs, HIF-1 promotes glycolysis by directly upregulating the
expression of several glycolytic enzymes, including hexokinase
(HK), phosphofructokinase (PFK), and pyruvate kinase; the result
is an increased production of ATP in the cytosol from the
breakdown of glucose to pyruvate64,65. Moreover, in response to
both oxygen and nutrient availability and level, HIF1 positively
regulates lactate production and NAD+ regeneration and
negatively regulates the rate of pyruvate entry into the
mitochondria63,66. Last but not least, HIF-1 regulates GLUT1
expression39.

The main glucose signaling networks. Several nutrient
sensors (such as AMPK and mechanistic target of rapamycin
kinase (mTOR)) are critical in coordinating changes between the
local metabolic milieu and MSC biology by inducing signals inside
cells in response to changes in the extracellular environment28.
These nutrient sensors do not belong to strictly linear signaling
pathways. In fact, they act interdependently both antagonists and
agonists of each other’s activity to collectively determine the
response of a given cell type to extracellular signals67 (Figure 3).
Briefly, AMPK is of utmost importance because it enables cells to
sense cellular energy levels and nutrient availability and respond to
changes in their milieu. The underlying mechanism involves
allosteric activation of AMPK by increased AMP67. Upon
activating its catalytic alpha subunit, AMPK phosphorylates
pertinent substrates to restore cellular bioenergetics homeostasis.
AMPK activation directly impacts glucose homeostasis by
increasing expression and activity of GLUTs28,68–70. AMPK
regulates MSC proliferation71,72, viability20,73, differentiation74–76,
and immunosuppressive properties77.

Another important signaling pathway is mTOR integrating
metabolic regulation of growth factors and nutrients. mTOR
includes two complexes (mTORC1 and mTORC2) with divergent
functions. mTORC1 responds to cellular energy status and cellular
oxygen, amino acids, and glucose levels. Specifically, even in the
presence of growth factors (e.g., insulin and insulin-like growth
factors (IGF)), mTORC1 is inhibited in cells that are either
energetically stressed or have depleted oxygen or amino acid
levels78. Under these conditions, mTORC1 suppression represses
anabolic pathways and induces autophagy and lysosomal
biogenesis78,79. Conversely, in the presence of ample nutrients and
growth factors, mTORC1 activation upregulates glycolysis, protein
and lipid synthesis, and mitochondrial metabolism80. Changes in
mTORC1 signaling affect hMSCs survival81, osteogenic
differentiation82,83, and immunosuppressive properties84. Unlike
mTORC1, mTORC2 is insensitive to the presence of nutrients but
primarily responds to critical growth factors (e.g., insulin and
IGF)85.

AMPK and mTOR are not only regulated by metabolite levels
but also by growth-factorrelated signaling pathways. For example,
AKT (an anti-apoptotic factor) activates mTORC1 but antagonizes

AMPK activation. Moreover, AKT activation does not inhibit cell
death but instead renders cells more sensitive to metabolic stress86–
89. AKT regulates glucose metabolism by increasing GLUT1
trafficking to the mammalian cell surface and activating HK and
PFK, thus promoting glycolysis86,88. Some other studies reported
that antiapoptosis capacity of AKT is coupled with glucose
metabolism86,87,90,91. Regarding the role of AKT on MSCs,
literature reports indicate that AKT is involved in regulating
mMSC survival in ischemic tissues92, rat MSC (rMSC) senescence
(induced by high glucose93), and hMSC osteogenesis94.

The role of glucose on MSC proliferation
Contribution of anaerobic glycolysis to MSC expansion. In

proliferating hMSCs, glycolysis contributes between 67%49 and
97%95 ATP production. To match their metabolic needs,
proliferating MSCs switch from glycolytic metabolism state (of
quiescent MSCs) to mixed metabolism of OXPHOS and glycolysis
(of proliferating MSCs). During MSC expansion, this metabolic
“switch” is evidenced by the decrease in the yield of lactate from
glucose (Ylac/glc) from 2 mol/mol (suggesting anaerobic
glycolysis) at the start of cell culture (days 0-3) to 1 mol/mol
(indicating a combination of aerobic glycolysis and OXPHOS) at
later time points (days 3-15)96.

Computational modeling of metabolism during MSC
expansion. In recent years, genome-scale metabolic network
models (GEMs) have been extensively used to model human cell
metabolism97–99. A quick overview of these models is further
presented in Section 4. Such models are valuable computational
tools because they integrate all known biochemical genes, enzymes,
metabolites, and reactions for specific cell types and simulate
metabolic phenotypes in silico. MSC-specific GEMs have been
successfully used to study a variety of MSC metabolic phenotypes,
e.g., during cell proliferation100–102. For example, a GEM of hMSC
called iMSC1255 can acceptably predict the growth rate of hMSCs
in the growth medium and simulate quantitatively the consumption
profiles of various nutrients in expanding MSCs, including amino
acids and glucose100. This hMSC model is further validated by
comparing the experimentally measured metabolic fluxes with the
in silico ones under either normoxia or hypoxia conditions101.
More specifically, the GEM-based simulations demonstrate that, in
a low glucose medium, hypoxia notably decreases the pyruvate
transport to the mitochondrion, despite the increased glucose
uptake101. Flux balance analysis (FBA) of iMSC1255 shows that
glucose availability directly influences the biomass production rate,
while oxygen availability hardly affects biomass production. This
observation implies that glucose availability directly affects cell
proliferation and oxygen availability plays a minor effect in cell
proliferation103. Altogether, MSC-specific GEMs predict that
sufficient glucose concentrations should be available in the cell
microenvironment to support MSC expansion.

The role of glucose on MSC immunosuppressive properties

MSCs possess broad immunosuppressive properties that
affect innate and adaptive immunity. For example, MSCs favor
macrophage polarization to anti-inflammatory phenotype, reduce
lymphocyte B cell proliferation, and inhibit conventional
lymphocyte T cell proliferation, but induce regulatory lymphocyte
T cell expansion104,105. These immunosuppressive properties are
not constitutively expressed but depend on proinflammatory
stimuli in a process known as ‘licensing’104. Licensed MSCs then
acquire immunosuppressive properties by releasing several soluble
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chemical compounds including indoleamine 2,3-dioxygenase
(IDO), prostaglandin E2, and programmed death ligand-1 (PD-
L1)104,106–108.

Like MSCs requiring metabolic reprogramming for
proliferation, MSCs undergo a metabolic shift to express
immunosuppressive properties upon licensing42,109–111. An increase
in glycolysis is evidenced by increased surface expression of
GLUT1, increased mRNA expression of several glycolytic genes
(including enolase1 and HK2), higher glucose consumption, and
higher ECAR42,110. The fact that extracellular glucose
concentration directly affects the ability of MSCs to inhibit T cell
proliferation112 and IDO42 expression illustrates the
interrelationship between MSC metabolism and
immunosuppressive properties.

One possible pathway for integrating MSC metabolism and
immunosuppressive properties is protein glycosylation, which
diverts 2-5% of all glucose metabolism113. In this process, sugar
residues are covalently attached to the amide nitrogens of
asparagine (Nlinked glycosylation) or the hydroxyl groups of
serine or threonine (O-linked glycosylation), usually as branched
chains. Protein glycosylation occurs within the endoplasmic
reticulum and is critical for molecular trafficking and clearance,
receptor activation, and signal transduction. Protein glycosylation
regulates the immunosuppressive properties of MSCs in at least
two instances. First, N-glycosylation controls PD-L1 transport to
hMSC surface and its subsequent release in response to MSC
licensing111. Second, O-GlcNAcylation of signal transducer and
activator of transcription 1 controlled the IDO mRNA and protein
expression in licensed hMSCs110. Overall, manipulating MSC
metabolism represents a strategy for enhancing MSC-mediated
immunosuppressive properties.

3. Glucose and MSC-based tissue engineering
There have been comparatively few research endeavors

focusing on the role of glucose in MSC-mediated regenerative
responses and directly using glucose for tissue engineering
applications. Nonetheless, the critical roles of glucose in MSCs, its
ready availability, and low cost make glucose supply a promising
approach for investigating several applications pertinent to MSCs-
mediated tissue engineering.

In vitro MSC expansion

Independent of the adult human tissue source from which
MSCs are isolated, MSCs are rare (less than one MSC per 1,000
aspirated nucleated cells114) and, large-scale expansion of MSCs is
necessary. Glucose metabolism is a critical parameter that must be
closely monitored and controlled during MSC expansion. Thus,
MSC glucose consumption depends on the biochemical and
biophysical milieu parameters which MSCs are expanded
including choice of basal culture media115, oxygen tension116,117,
and a three-dimensional environment96. An additional essential
aspect of in vitro MSC expansion is that high glucose
concentration negatively impacts MSC proliferation118,119.

MSC viability post-implantation

The observed massive MSC death post-implantation prevents
achieving the full potential of MSC-based therapy120–124. Excellent
review articles3,125–127 were published describing various aspects,
such as nutrient deprivation and hypoxia, increased cytokine
production, and oxidative stress, involved in MSC death post-

implantation. Several approaches, including genetic manipulation
(e.g., Akt-modified rMSCs128) and recombinant growth factor
delivery (e.g., epidermal growth factor129, platelet-derived growth
factor130), protect rMSCs and mMSCs against cell death in
infarcted hearts. rMSCs modified with constitutively active Akt
gene, however, may increase the risk of tumorigenesis128.
Additionally, recombinant growth factors are challenging to
deliver in a controlled spatiotemporal manner. More importantly,
neither one of these approaches attempts to address the
bioenergetics collapse of MSCs post-implantation. Thus, it is
crucial to develop novel approaches focusing on aspects related to
the metabolic needs of MSCs postimplantation.

Post-implantation, MSCs encounter an ischemic environment
characterized by hypoxia and either low concentration or lack of
nutrients120. Historically, hypoxia has been considered the main
culprit in MSC death131–133. Recent research, however, provided
evidence supporting a shift of paradigm and demonstrated that
lacking glucose is responsible for the observed massive MSC death
post-implantation20,21,134–136. Moreover, supplying glucose to
hMSCs improved their survival post-implantation20,21.

In vitro studies delineating the pivotal role of glucose
metabolism on hMSC20 and sheep MSC survival135 were carried
out under near-anoxia (pO2 ≤ 0.1%), which simulates the milieu
faced by hMSCs post-implantation21. In this model, glucose
deprivation induced massive sheep MSCs death; in contrast, sheep
MSC retained their viability for up to day 12 of culture with
glucose135. These results were confirmed with hMSCs for up to 21
days in vitro20,21. The addition of either glutamine or serine
resulted in massive hMSC death in near anoxia as early as day 3 in
vitro, underscoring the glucose needs for hMSC survival21. The
crucial role of glucose was further confirmed by (i) gene
expression profiles of metabolic enzymes21, which revealed that
glycolysis is the only energy-related pathway involved in hMSC
survival under near-anoxia21, and (ii) the addition of glycolysis
inhibitors (either 2-deoxy-D-glcusoe or sodium oxamate) which
induced a rapid and drastic decrease in cell viability21.

In vivo studies revealed a four-to-five-fold increase of viable
hMSCs in glucose-enriched constructs (either hyaluronic acid or
fibri gel loaded with 56 mM glucose), compared to glucose-free
constructs, 14 days after implantation in an ectopic mouse
model20,21 (Figure 4). Moreover, hMSCs have minimal glycolytic
reserves. HMSCs loaded into fibrin hydrogels and implanted
subcutaneously in nude mice exhibited a rapid decrease
(approximately 66%) of their glycolytic resources during the first
24 hours post‐implantation21 paralleled by a rapid reduction in the
ATP content of hMSCs: specifically, 40% and 63% of the ATP
stock was lost after 24 hours and 3 days, respectively21. These
results are consistent with the observations that either hypoxia- or
serum-deprivation preconditioning of hMSCs and mMSCs induced
metabolic adaptation by either decreased glucose consumption or
increased glucose stock81,92,137, possibly resulting in improving cell
retention in vivo due to glucose being available for more extended
periods.

The results above provide compelling evidence that hMSCs
can withstand exposure to severe, continuous near-anoxia
conditions, providing that glucose is available to fuel ATP
production via glycolysis to satisfy the high energy demands of
hMSCs (Figure 4). Taken together, these data establish that the
presence of glucose in MSC-containing constructs is an essential
but for a long time missing) condition for MSC survival post-
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implantation. This compelling evidence justifies and prompts the
development of novel, glucose-enriched scaffolds that enable
MSCs to cross the bioenergetic "valley of death" they encounter
between the time of implantation and when much-needed nutrients
will be available through the newly formed blood vessels.

MSC-mediated angiogenesis

Angiogenesis and formation of an interconnected network of
functional blood vessels are critical for successful MSC-mediated
tissue repair. The new vascular growth provides circulating blood
and, thus, supply of oxygen and nutrients as well as simultaneous
removal of metabolic waste. It is well-established that secretion of
biologically active molecules collectively referred to as the
“secretome” is responsible for MSC-mediated angiogenesis.
Supernatant conditioned media (CM) collected from MSCs
improved the healing of ischemic tissue via bioactive, pro-
angiogenic growth factors, including vascular endothelial growth
factor (VEGF)138–140, basic fibroblast growth factor138,140,141, and
the monocyte chemoattractant protein 1 (MCP-1)141.

Several studies by our research team demonstrated that
glucose promotes MSC-mediated angiogenesis142,143, suggesting
that supplying glucose to MSCs is an alternative strategy for
achieving this outcome. Specifically, supernatant CM (collected
from hMSCs cultured with either 5.6 or 33 mM glucose under
0.1% pO2 conditions for 3 days) increased human umbilical vein
endothelial cell (HUVEC) migration for up to 36 hours when
compared to results obtained using supernatant CM collected from
hMSCs cultured without glucose142. The increased HUVEC
migration was corroborated by increased amounts of several pro-
angiogenic factors in CM142. Moreover, hMSC-containing
hydrogels loaded with glucose were implanted into nude mice.
They exhibited an increased volume of newly-formed blood
vessels compared to results obtained with respective controls of
hMSC-containing hydrogels without glucose at day 21 post-
implantation142. The volume of newly-formed blood vessels in
MSC-containing hydrogels without glucose and in MSC-free
hydrogels loaded with glucose were similar and minimal,
indicating that the observed angiogenesis was MSC-driven but
minimal in the absence of glucose142. In addition, glucose delivery
to hMSCs via hydrolysis of starch significantly (p < 0.05)
increased MSC-mediated angiogenesis, as evidenced by enhanced
HUVEC migration and tubular structure formation in vitro and by
higher volume of newly-formed blood vessels in vivo143.

To date, the underlying mechanism regarding how glucose
regulates MSC-mediated angiogenesis remains unclear. Glucose
regulates HIF-1α expression and/or stability in several cell types,
including endothelial cells144,145, primary cortical neurons146, and
cancer cells147–150. Glucose also increased HIF-1α expression and
bioactivity in hMSCs cultured under 0.1% pO220. Such regulation
of HIF-1α is a plausible molecular mechanism for explaining the
role of glucose on hMSC-mediated angiogenesis. Glucose transfer
via gap junction-mediated cell-cell interaction was reported as an
alternative mechanism in angiogenesis145,151. mMSCs uptake
glucose mainly from their extracellular milieu, while the uptaken
glucose in HUVEC is transferred to mMSCs via gap-junction-
mediated cell-cell interaction151. The uptaken glucose in bone
marrow mononuclear cells was transferred to HUVECs via gap-
junction-mediated cell-cell interaction with increased HIF-1α
activation and VEGF uptake, resulting in increased angiogenesis at
ischemic tissue locations145.

Collectively, these intriguing data justify further investigation
to determine whether the transferred glucose between HUVEC and
MSCs regulates MSC-mediated angiogenesis through HIF-1α
activation. In addition, several other pertinent questions (such as
whether glucose regulates MSC-mediated angiogenesis directly or
indirectly through improved MSC survival followed by increased
release of the pro-angiogenic secretome) require further research to
be answered definitively.

4. In silico models to predict the glucose needs
of MSCs for regenerative functionalities

The present review has described different facets of glucose
metabolism that modulate the regenerative functionalities of MSCs.
However, the effects of glucose are context-specific, making it
difficult to predict its role in a particular regenerative medicine
condition without resorting to costly wet-lab experimentation. To
overcome this issue, in silico studies using genome-scale metabolic
models appear to be time- and cost-efficient alternatives to wet-lab
studies. They will be soon able to assist tissue engineers in
designing viable and clinically potent tissue constructs.

A number of generic genome-scale metabolic reconstructions
for human cells have been previously published152,153, which
include comprehensive data on gene-proteinreaction relations in
human metabolism. Based on such a reconstruction, it is possible
to obtain a generic mathematical model of cell metabolism, or a
GEM (Figure 5A). An MSC-specific reconstruction can be
obtained by considering only the active reactions of MSC. The
MSC-specific GEM like iMSC1255 is, therefore, a more
constrained model compared to the generic GEM (Figure 5B). Let
v=*v_1,v_2,…,v_n + be the metabolic flux vector, where every
element v_i represents the cellular biochemical flux of reaction i of
the MSC metabolism. In GEM-based modeling, our goal is to
predict v, under a certain physiological condition (e.g., in α-MEM
under normoxia). Every cell is evolved to achieve a certain
biological objective at its optimal level. For single-celled
organisms, this objective is often to maximize biomass production
rate, while other cells may have more complex objectives. Given
the objective function of the cell, i.e., biomass production rate in
expanding MSCs, one can find the metabolic flux vector for which
the objective function is maximized (Figure 5C). Finding the
maximum value for the objective function is usually formulated as
a linear optimization problem, which is referred to as flux balance
analysis, or FBA154. Particularly, the solution to this problem is the
flux distribution for which the MSC grows maximally. Thus, the
application of FBA on the GEM of iMSC1255 can simulate the
metabolic phenotypes of MSCs, including growth rate and glucose
consumption rate. Other related methods, including dynamic FBA
(dFBA) and unsteady-state FBA (uFBA), further expand the
applicability of GEMs for simulating metabolic fluxes in changing
environments155,156, which is a more realistic assumption especially
in tissue engineering.

GEMs can currently computationally predict the metabolic
alterations required to optimize MSC proliferation101,103. Modeling
metabolism during cell differentiation and senescence is a more
challenging problem, as metabolic constraints are likely to change.
However, some computational approaches are available to
overcome this issue97. On the other hand, current in silico models
cannot accurately predict MSC metabolic parameters favoring their
survival post-implantation. This goal requires additional
knowledge about (i) the metabolic strategy implemented by MSCs
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to adapt to the stress of implantation and (ii) a better
characterization of the metabolic requirements (including glucose
fluxes) of MSCs post-implantation and the biochemical
characteristics of the implantation medium.

Intrinsic (e.g., cell-to-cell molecular heterogeneity) and
extrinsic (e.g., external metabolites and hormones) factors
potentially affect the status and fate of MSCs within implants.
Understanding these factors enables GEMs to simulate MSC
metabolism within implants with temporal and spatial resolution157.
Additionally, it allows one to simulate the effects of glucose (and
other metabolites) on cell survival, proliferation, differentiation,
and senescence. With the increasing availability of 'omic'-scale
single-cell data158,159, such a goal seems to be closer than ever
before. Hopefully, such models will enable us to determine the
metabolic requirements of MSCs precisely under ex vivo and in
vivo conditions and, ultimately, tailor tissue construct design and
implantation procedure to enhance MSC regenerative potential.

Conclusions and future directions
All studies mentioned above provide evidence that glucose is

central to the fulfillment of energetic and biosynthetic needs for the
maintenance of MSCs. The crucial aspect that needs to be
determined to achieve optimal MSC transplantation is whether
MSCs can get glucose at a level that meets their requirements at
the transplantation site prior to revascularization. In this regard, all
modalities (including MSC numbers, delivery route, single versus
multiple injections, and site vascularity) that affect local glucose
availability need to be examined by tissue engineers to optimize
MSC delivery. However, we cannot definitively exclude the
possibility, based on the studies mentioned above, that the inability
of hMSCs to achieve intracellular glucose amounts that match their
needs does not originate, at least partially, from a deficiency in
glucose transporters.

Relying exclusively on the capacity of the tissues surrounding
the lesion to supply glucose at a level that meets the MSC needs
may not be sufficient when large numbers of cells is administered
at one time. For this reason, the development of nutritive delivery
vehicles capable of supplying physiological glucose concentrations
to MSCs would be a most critical breakthrough in tissue
engineering. Such a nutritive delivery vehicle will meet MSC
metabolic needs independent of the local glucose availability. The
metabolic autonomy of MSCs provided by such nutritive scaffolds
should last until lesion revascularization is completed to ensure
that MSCs successfully cross the bioenergetics “valley of death”
between the time of implantation and availability of a functional,
blood supplying network. Alternatively, the enhancement of
glucose transports via the overexpression of GLUTs or gap
junctions145,151 may represent complementary strategies that prove
beneficial. Interestingly, because more MSCs survive when
glucose is supplied, this may decrease the numbers of MSCs
required for clinical applications, leading to shorter in vitro
expansion times and younger MSCs utilization, ultimately
resulting in improved MSC functions. Meanwhile, the need for a
limited number of cells will reduce the risk of cell senescence and
decrease the cost of the in vitro cell expansion.

Although taking into account the MSC metabolic needs are
expected to prevent the hMSC bioenergetic collapse20 and allow
long-term hMSC viability, further research is needed to elucidate
all the parameters which are pertinent, necessary, and sufficient to
achieve also long-term hMSC functions pertinent to tissue repair

and, ultimately, hMSC engraftment post-implantation. Moreover,
the demonstration that glucose, but not oxygen, is critical for
neural cells160, adipose-derived MSCs143,161, myoblasts143,161 and
osteocytes162 survival in near low oxygen environments suggest
that the concept of nutritive scaffolds for delivering glucose at
level that matches transplanted cell needs may extend to a vast
myriad of other cell types being considered for cell transplantation.

In conclusion, it is hoped that just as understanding the role of
metabolism in regulating immune cell responses has paved the way
for new therapies for infections, cancer, autoimmunity, and obesity,
understanding the metabolism of MSCs (specifically, pertinent
glucose metabolism) will contribute in developing transplantation
conditions and nutritive delivery vehicles for MSCs that will solve
some critical issues associated with MSC transplantation: the
massive cell death, the low engraftment efficiency, and the lack of
control over the MSC fate post-implantation.
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Figure 1. Overview of the glucose metabolic pathways in mesenchymal stromal cells (MSCs) discussed in the present
review22–25.
Glucose is metabolized through glycolysis to generate various metabolites that serve as substrates for multiple metabolic pathways. Pyruvate, generated from
glycolysis, can be either converted to lactate and excreted from the MSCs or transported into the mitochondria and oxidated to acetyl-CoA to feed the
Tricarboxylic acid (TCA) cycle and drive oxidative phosphorylation (OXPHOS) in the presence of sufficient oxygen. The pentose phosphate pathway and
the serine synthesis pathway branch from glycolysis and contribute to nucleotide, amino acid, and lipid biosynthesis. Serine is incorporated into the one-
carbon metabolism , which comprises a network of interlinking metabolic pathways including the folate cycle and methionine cycle. The hexosamine
biosynthesis pathway is another pathway branched on glycolysis that contributes to production of UDP-GlcNAc, a key intermediate for post-translation
modification of serine and theronine residues. Cellular metabolism and epigenetic modification are tightly linked and reciprocally regulate each other. Many
intermediate metabolites serve as substrates or cofactors for regulating epigenetic signatures and various enzymes (E) are involved in epigenetic
modifications. These metabolites used for epigenetic modifications in the cell nucleus, include acetyl-CoA for histone acetylation, Sadenosylmethionine
(SAM) for histone and chromatin methylation, and UDP-GlcNAc for histone glycosylation. Alpha-ketoglutarate (α-KG) serves as a co-substrate required for
the activity of certain demethylases that remove methyl groups from histones and chromatins. (Created in biorender.com)
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Figure 2. Metabolic flexibility of mesenchyml stromal cells (MSCs) under various conditions49–52.
The thickness of the arrows in these schematic illustrations of cells indicates the activity level of the respetive metabolic pathways. PPP: Pentose phosphate
pathway; Glc: Glucose; TCA cycle: Tricarboxylic acid cycle (Created in biorender.com).
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Figure 3. Schematic illustration of the mTOR/AMPK nutrinet sensor and growth factor signaling pathways80–82,87–91.
(A) Under nutrient sufficient conditions, mTORC1 is activated. Activation of mTORC1 is also regulated by the growth factor signaling pathway via AKT.
The activated mTORC1 phosphorylates many downstream targets to increase anabolic processes and thus increases m-TORC1-driven cell growth. In
contrast to mTORC1, mTORC2 is primarily activated by growth factor signaling, and thus controls cell proliferation and survival. (B) Under nutrient
deficient conditions (which induce energy stress), AMPK directly senses increases of AMP, leading to its activation. Once activated, AMPK participates in
many pathways and cellular processes, including increase of catabolic processes and inhibition of anabolic processes. In addition, this schematic illustrates
the interplay between the mTOR and AMPK pathways; mTORC1 activation inhibits AMPK while AMPK activation switches off the mTORC1 complex.
(Created in biorender.com).
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Figure 4. Schematic illustration of the positive effects of glucose on mesenchymal stromal cell (MSC) survival post
implantation20,21.
MSCs seeded into glucose-free scaffolds encouter switched-off glycolysis and tricarboxylic acid (TCA) cycle, a condition that leads to massive and rapid
cell death. In contrast, the presence of glucose in cell-containing scaffolds enhances MSC survival relying on glycolysis. Glc: Glucose, TCA cycle:
Tricarboxylic acid cycle. (Created in biorender.com).
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Figure 5. Analyzing mesenchymal stromal cell (MSC) metabolism using cell-specific metabolic network models.
(A) The genome-scale metabolic network reconstruction for human cells includes all (known) biochemical information about the human metabolism (e.g.,
Recon1152). Such a reconstruction can be converted to a mathematical model (i.e., a GEM). Typically, a GEM includes a set of flux constraints, including
flux balance constraint (S ∙ � = 0) and non-negativity constraint (�� ≥ 0) for every irreversible reaction, which limit the space of feasible biochemical
fluxes (�). (B) Within the context of modeling MSC metabolism, the available data on the unexpressed genes are translated to constraints on metabolic
fluxes. Each linear constraint (e.g., the plane shown in orange) can cut the flux space and make it smaller (like the polytope in green). By applying further
constraints, one can narrow down the feasible flux space, which is equivalent to selecting a context-specific metabolic subnetwork, i.e., iMSC1255. (C)
'Omic'-level data are usually converted to simple flux inactivity constraints for reactions with unexpressed genes (�� = 0), while nutrient uptake rates can
be used as constraints as well ( ��� ≥ �� ≥ ��� ). Given the objective of the cell (i.e., biomass production rate in proliferating MSCs), by using the
MSCspecific GEM, one can predict the metabolic flux vector which maximizes the cellular objective (shown as the blue arrow), subject to certain
physiological constraints (represented as the green polytope). This procedure is basically a linear optimization problem, which is referred to as flux balance
analysis (FBA)154. The solution to this problem is a certain flux contribution (shown here as the blue dot) for which the objective function is maximized.
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