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Abstract
Nowadays, it becomes of paramount societal importance to support many frail-prone groups in our society (elderly, patients 
with neurodegenerative diseases, etc.) to remain socially and physically active, maintain their quality of life, and avoid their 
loss of autonomy. Once older people enter the prefrail stage, they are already likely to experience falls whose consequences 
may accelerate the deterioration of their quality of life (injuries, fear of falling, reduction of physical activity). In that con-
text, detecting frailty and high risk of fall at an early stage is the first line of defense against the detrimental consequences 
of fall. The second line of defense would be to develop original protocols to detect future fallers before any fall occur. This 
paper briefly summarizes the current advancements and perspectives that may arise from the combination of affordable 
and easy-to-use non-wearable systems (force platforms, 3D tracking motion systems), wearable systems (accelerometers, 
gyroscopes, inertial measurement units-IMUs) with appropriate machine learning analytics, as well as the efforts to address 
these challenges.
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Scientific context

One of the major causes of injury in the elderly (and also in 
pathological cases such as Parkinson’s disease [1], Dementia 
[2], and many others) is falling, resulting in further mobil-
ity restriction, diminution of functional ability, an increase 
of caregiver burden, autonomy problems in daily activities 

(bathing, cooking, etc.) or even death. Falls are not only the 
second leading cause of accidental death; they are also a 
significant source of stress for the elderly [3, 4]. Almost 30% 
of the population > 65 years old [5] and 60% of the patients 
who have Parkinson’s disease [1] face at least one fall per 
year. According to these numbers, the accurate evaluation of 
the risk of falling (the sooner, the better) through predictive 
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methodologies is crucial. Moreover, fear of falling again, 
even after falls that did not require medical treatment, is 
associated with a vicious circle of further avoidance of activ-
ities of daily living, less physical activity, multiple fallings, 
depression, and lower quality of life [6].

The causes of falls are multifactorial (medication use, 
complex activities, stress, environmental complexities, and 
sleep quality) [7–9]. In addition, individuals that enter in 
a pre-frail or frail condition experience deterioration and 
de-harmonization in neuromuscular, sensory, and cognitive 
functions. Finally, considering the fact that static postural 
control [10], locomotion, and navigation are tasks that have 
high cognitive demands, especially in terms of attention [11] 
as well as executive functioning [12, 13], deterioration at the 
sensorimotor and cognitive levels leads to gait and balance 
disorders increasing the risk of fall [1, 2, 8, 10–15].

In this context, it is not surprising that over the past 
15 years, numerous studies have been devoted to the pre-
vention of falls. However, given the abundance of literature 
on the subject, the next section will only cite the reviews 
devoted to this subject.

Prediction of fall: current knowledge

We should make several preliminary points: first, fall predic-
tion mainly focuses on people who have not fallen yet. We 
know that every elder adult who falls once will probably 
fall again [16]. Also, it should be remembered that walk-
ing speed is a predictor of survival in the elderly [17] (See 
Mobilise-D initiative outcomes1) and conversely a good 
indicator of future falls. Finally, fighting sedentary lifestyle, 
sports practice, and exercise programs designed to prevent 
falls in older adults prevent injuries caused by falls, includ-
ing the most severe ones, and reduce the rate of falls lead-
ing to medical care [18]. With these preliminary remarks, 
a first point is a consensus for at least a decade about the 
inadequacy of clinical tests to assess future fall risk alone. 
As early as 2012, Roza da Costa et al. [19] concluded that 
they could not identify any tool with an optimal balance of 
sensitivity and specificity or that was better than a simple 
clinical judgment of fall risk. The tools tested consisted of 
the STRATIFY tool, the PJC-FRAT, the DOWNTON Fall 
Risk Index, and “clinical judgment” [20]. Recently, Omana 
et al. [21] sought to systematically review the existing lit-
erature on the properties of the fall-related diagnostic tests, 
namely the Functional Reach Test (FRT), the Single Leg 
Stance Test (SLST), and Tinetti’s Performance-Oriented 
Mobility Assessment (POMA), in older adults, in different 
settings and patient populations. They conclude that neither 
the FRT, SLST, nor POMA alone show consistent evidence 

of correctly identifying people who fall, regardless of the 
type of fall, setting, or elderly subpopulation. Lusardi et al. 
[22] attempted to evaluate the predictive ability of history 
questions, self-report measures, and performance-based 
measures to assess fall risk in community-dwelling older 
adults by calculating and comparing post-test probability 
values (PoTPs) for individual tests/measures. No test/meas-
ure demonstrated high PoTP values. However, they note 
that five history questions, two self-report measures, and 
five performance-based measures may have clinical utility 
in assessing fall risk based on cumulative PoTP. The Berg 
Balance Scale score (≤ 50 points), timed rise and fall times 
(≥ 12 s), and fivefold change from sitting to standing (≥ 12) 
may help determine individual risk of fall. Barry et al. [23] 
concluded that the Timed Up and Go test has a limited abil-
ity to predict falls in community-dwelling older adults and 
should not be used in isolation to identify individuals at high 
risk for falls in this setting. They also pointed out the prom-
ising added value of dual tasks involving turns and other 
transfers, as in the Timed Up and Go test, for predicting falls, 
which will be useful when accelerometers become available 
a few years later. In summary, these reviews highlight the 
interest in clinical examinations and underline their inability 
to predict efficiently future falls in a person who has never 
fallen.

Therefore, it is understandable that in this context, sev-
eral tools to measure postural control and locomotion have 
been developed to prognosticate future falls. Along that line 
of view, laboratory tests that record the center of pressure 
(COP) trajectory have been extensively employed. However, 
despite their widespread use, the choice of COP trajectory 
features for use as a biomarker of fall risk lacks consensus. 
A systematic review and meta-analysis of Quijoux et al. [24, 
25] aimed to identify the best COP characteristics to predict 
the risk of falling in older adults. Several COP parameters 
emerged as good indices to discriminate fallers from non-
fallers. From sensitivity analysis, Sway area per unit time, 
antero-posterior mean velocity, and radial mean velocity 
were the best standard features. This study demonstrated 
the identification of older people with a high fall risk using 
quiet-standing recordings. Such screening would be helpful 
for routine follow-up of balance changes in older fallers in 
clinical practice.

Then, two trends can be recognized. Firstly, systems that 
detect a risk of fall (if possible) or a fall occurrence and acti-
vate an alarm. Cortes et al. [26] reviewed the use of hospital 
sensors as an adjuvant in the medical/nursing care plans to 
alert health care providers about the risk of fall according to 
their programmed sensitivity and specificity. They included 
call bells and alarms in the rooms of hospitalized patients 
to alert caregivers about patients’ needs of movement that 
demand help, movement, and pressure sensors installed 
on furniture such as beds or chairs. However, the sensors 1  https://​www.​mobil​ise-d.​eu/​resul​ts-​and-​publi​catio​ns

https://www.mobilise-d.eu/results-and-publications
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identified in this meta-analysis failed to predict falls in real-
time. Secondly, wearable sensors were used to predict and 
prevent falls. In that context, the revolution of the last five 
years is the availability of sensors that allow for a reasonable 
price to measure the mobility of people in consultation. In 
particular, the inertial measurement unit (IMU) is an elec-
tronic component that measures the sensor’s acceleration, 
angular velocity, and orientation using a combination of 
accelerometers, gyroscopes, and magnetometers. Small size, 
very reasonable price (about two to 300 € per sensor), sev-
eral IMUs can easily be strapped to the upper limbs, lower, 
head and trunk. They communicate via a wireless link to 
a computer that, equipped with appropriate programs, can 
instantly provide clinicians with a very accurate measure-
ment of their patients’ mobility. Also, personal devices, such 
as smartphones, are beginning to be used for implementing 
fall systems because they are carried by the users most of 
the day. Ferreira et al. [27] review showed that IMUs were 
generally placed in the upper body and that machine learning 
models were preferably adopted to classify the subject’s risk 
of fall. However, they noted that the number of participants 
enrolled in the studies they reviewed was often reduced and 
sometimes did not include elderly participants.

Nevertheless, this review suggested that some fall risk 
assessment systems obtained an acceptable performance. 
The authors underlined that an open-access gold standard 
should be established to allow the benchmarking of differ-
ent fall risk assessment systems. The latter would pave the 
way for a reliable performance comparison between the 
different systems developed in the literature. Interestingly, 
Hemmatpour et al. [28] reviewed various fall prediction and 
prevention systems that used machine learning algorithms, 
particularly those that relied on the sensors embedded in a 
smartphone, i.e., accelerometer and gyroscope. An experi-
mental analysis compared the evaluated approaches by eval-
uating their accuracy and ability to predict and prevent a fall. 
Results show that tilt features combined with a decision tree 
algorithm present the best performance.

Similarly, Montesinos et al. [29] conducted a systematic 
review to identify optimal combinations of sensor locations, 
tasks, and feature categories. The results from their walking 
test demonstrated that the most compelling feature to assess 
the risk of fall was the velocity with the sensor placed on the 
shins. Conversely, linear acceleration measured at the lower 
back was the most effective combination of feature place-
ment during quiet standing. Similarly, during the sit-to-stand 
and the stand-to-sit tests, linear acceleration measured at the 
lower back seems to be the most effective feature-placement 
combination. In addition, the meta-analysis demonstrated 
that four features resulted significantly higher in fallers: the 
root-mean-square acceleration in the medio-lateral direction 
during quiet standing with eyes closed; the number of steps 
and total time to complete the Timed Up and Go test; and 

the step time during walking. Finally, Sun and Sosnoff’s [30] 
review gave a sober view of sensors to predict the fall. Four 
major sensing technologies (inertial sensors, video/depth 
camera, pressure sensing platform, and laser sensing) were 
reported as capable of providing accurate fall risk diagnostic 
in older adults. Overall, these technologies have the potential 
to provide a precise, affordable, and easy-to-implement eval-
uation of risk-of-fall. However, the variation in assessment 
tools, measured parameters, sensor sites, movement tasks, 
and modeling techniques precludes a firm conclusion on 
their capacity to predict future falls. Future work is needed 
to determine a clinically meaningful and easy to interpret 
fall risk diagnosis utilizing sensing technology. In addition, 
the gap between functional evaluation and user experience 
with technology should be addressed.

The future prognostic tools should ideally have: (1) the 
ability to inform the expert about the systems which are 
involved in the loss of balance (vestibular, visual, proprio-
ceptive), (2) the ability to provide objective and quantified 
scores, as well as (3) the capacity to provide better informa-
tion about the future risk of falling, than the history of previ-
ous falls [19, 31, 32]. Several tools have been proposed to 
measure and quantify the risk of fall in community-dwelling 
older adults. For example, cheap force platforms are now 
available to monitor static postural control [33–35]. In addi-
tion, wearable systems such as accelerometers, gyroscopes 
or inertial measurement units (IMUs), 3D motion tracking 
systems, and gaze tracking systems can now be used in clin-
ics for gait analysis and mobility monitoring [36–41].

Methodological approach and results

Prediction of falls, machine learning, and modeling

Ideally, the prediction of a fall should consider both physi-
ological and psychological factors. Nowadays, predictive 
modeling, especially those supposed to have additive value 
to the clinicians’ daily practice, mainly focuses on physi-
ological risk factors concerning gait, posture, and oculomo-
tor control. As a result of the multiplication of available 
sensors, there is an explosion in the number of parameters 
available for clinical research (various biomarkers, multiple 
modalities, or parameters) for a given cohort of patients. 
Although beneficial and prosperous, this fact challenges the 
data analysis via traditional approaches usually met in clini-
cal research (T-tests, standard univariate approaches, etc.). 
Giving just a simple example, in a classification problem 
with 20 parameters to be explored if they are associated 
with a specific phenomenon, 1 in 20 associations may be 
statistically significant but not clinically meaningful (alpha 
level α = 0.05) [42]. Since traditional statistics become very 
sensitive when only small multidimensional datasets are 
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available, it is unsafe to make safe generalizations of any 
finding (see Ref. [43] for the increasing risk of false conclu-
sions). Machine learning algorithms reduce the later limita-
tion, assessing their results using cross-validation schemes. 
Schematically, an algorithm trains a model in a representa-
tive part of the dataset (called training-set) and learns any 
“rules” that may exist. Then, it tests whether it can be effec-
tive in predicting the question of interest (e.g., if an indi-
vidual is a faller or a non-faller) in the rest of the dataset 
(test-set: the “unknown” and “unseen” by the algorithm). 
Repeating multiple times the above process, and keeping 
track of the performance every time, can give the clinician 
the ability to evaluate the risk of generalizing these results 
to a new unknown population (e.g., future patients). With 
the increasing available computed parameters, the available 
acquisition systems, and the general trend of fusing informa-
tion from different modalities, there is a legitimate interest 
in utilizing modern machine learning algorithms to assess 
the risk of fall. Recent research on wearable technologies 
(such as accelerometers and gyroscopes) and force platforms 
for fall prediction has primarily focused on fusing informa-
tion and computing parameters for fall risk assessment and 
applying predictive models to the available datasets [44–49].

In this context, we will present the main trends of 
machine learning considering the prediction of falls using 
gait and balance measurements, focusing on pre-frail adults. 
Although machine learning approaches can offer a qualita-
tive alternative to classical statistical strategies for extract-
ing information concerning falls, they are also more prone 
to non-interpretable results by the users. Therefore, such 
approaches should always be justified, and their output 
should be interpretable and carefully described. Further-
more, final models and algorithms should be assessed by 
clinical experts to ensure compatibility with clinical prac-
tice [50]. Therefore, our objective is to identify solutions 
that are promising in terms of fall prediction (especially for 
prospective prediction), and feasible to be applied in daily 
practice. The following sections are separated by the acqui-
sition modality and describe our effort to tackle these chal-
lenges. The proposed machine learning methodologies are 
distinguished by the broad categorizations of shallow learn-
ing and deep learning. Roughly, shallow machine-learning 
algorithms usually rely on expert-based variables and fea-
tures. In contrast, deep learning algorithms enable us to a) 
learn abstract numerical patterns or sequences of patterns 
from signals or time-series (probably without known clinical 
explanation) and b) extract useful representations of raw data 
(inherent feature engineering), to optimize the performance 
of the fall prediction.

Fall prediction via posturography

Daily practice of postural control evaluation in community-
dwelling elderly populations often uses balance assessment 
scales. These scales [51–53] do not require any specific 
training from the operator, and they fit well in the clinical 
practice. As previously mentioned, the extensive works of 
Quijoux et al. [24, 25] identified the best COP characteristics 
to predict the risk of falling in older adults using traditional 
univariate statistics. From sensitivity analysis, Sway area per 
unit time, antero-posterior mean velocity, and radial mean 
velocity were the best standard features. However, features’ 
effectiveness in predicting future falls in the elderly has been 
challenged, and researchers recommend cautious interpreta-
tion of their results [23, 54].

Additionally, monitoring the individual’s postural control 
progress using balance assessment scales is not trivial [55]. 
Recent studies from our lab [47–49, 56–59] and others [60] 
proposed that a linear and non-linear combination (using 
machine learning methodologies) of many global or local 
posturographic parameters derived from the Centre of Pres-
sure (CoP) trajectories can classify fallers and non-fallers. It 
is important to stress that these algorithms can evaluate the 
risk of fall in individuals who had not experienced any fall 
before the acquisition on the force platform (standing eyes 
open and eyes closed for 30 s each time). Our study showed 
that the shape of the separating rule (or decision surface) 
between fallers and non-fallers lies in a multivariate space 
which is only detectable when all features (computed param-
eters) are participating ensemble in the learning process (not 
one by one). Generalizing a retrospective classification of 
fallers and non-fallers leads us to pick the variables allowing 
the prospective prediction of future falling.

Practically speaking, there are numerous efforts toward 
using shallow learning algorithms, using features calculated 
from posturographic trajectories. The objective is usually 
dual. On the one hand, create a predictive model that can 
score the risk of fall and highlight those posturographic 
features that contribute more to this prediction. For exam-
ple, Nicolai et al. [56] introduced a shallow learning classi-
fier (called H-bagging) to evaluate the risk of falling in the 
elderly using machine learning and features calculated from 
CoP trajectories using the posturographic data of the Romb-
erg test. They reported strong performances in healthy popu-
lations while producing models that are easy to understand 
and interpret. Briefly, H-bagging trains multiple univariate 
classifiers (one per feature) and searches for the best com-
binations to aggregate their learning decision. They proved 
that such a strategy significantly increases the performance 
of the learning process.

Investigating the importance of the non-linear asso-
ciation between fall and posturographic features from the 
Romberg test, Audiffren et al. [47] classified relatively 
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accurately fallers and non-fallers by implementing Rank-
ing Forest. The ranking forest is a shallow-learning clas-
sifier that aggregates the decision rule of multiple ranking 
trees to create a general decision rule (see Ref. [61] for 
details). This work proved that, on the one hand, the com-
munity was right till then, reporting that the Romberg test 
does not contain fall-related elements. None of the utilized 
features alone could classify effectively elderly fallers/
non-fallers (i.e., weak classifiers) alone. On the other hand, 
they proved that an optimal combination of those weak 
classifiers through non-linear multidimensional classifica-
tion gave significantly better results in an elderly popula-
tion, showing the beneficial effect that machine learning 
can have on such questions. This study also revealed the 
features with the higher predictive power in terms of risk 
of fall.

The studies of Speiser et al. [50], Eichler et al. [62], 
Bargiotas et al. [48, 57, 59], Su et al. [60], Liu et al. [63] also 
used shallow learning classifiers and most of them the Ran-
dom forest (RF) [64] that, similar to the work of Audiffren 
et al. [47], aggregates the decision rules of several decision 
trees, to evaluate the risk of falling. Su et al. [60] proposed 
a more direct predictive modeling with encouraging results, 
reporting the importance of every feature in evaluating risk. 
Bargiotas et al. [48, 59], proposed an effective alternative 
to two-sample hypothesis testing (T-tests etc.) for multidi-
mensional datasets to reveal the posturographic features with 
the higher predictive power in terms of risk of fall. Random 
forest was also used in a study [57] where a prospective 
prediction of fall is proposed using the differences between 
features derived by the trajectories of the two protocols of 
the Romberg test (eyes closed–eyes open). The learning pro-
cess was completed in the dataset of the first acquisition and 
tested in the follow-up acquisition six months later.

Most of the aforementioned machine-learning approaches 
evaluated the risk of fall using features calculated from the 
whole posturographic trajectory (homogeneity assumption). 
Despite their significant usefulness, these approaches could 
not provide information about each trajectory’s interesting 
parts (time-blocks with interesting oscillations). Similarly 
to previous works (from signal processing point of view 
[65]), It was hypothesized that signal blocks (time-blocks) 
with significantly different properties might co-exist in every 
individual [49](they separated them into quiet and unquiet 
blocks—QBs and UBs). Fallers will have significantly dif-
ferent QB/UB combinations than non-fallers. They trajec-
tories’ time-blocks were grouped with a shallow soft unsu-
pervised classification in two clusters (UBs/QBs) based on 
the Expectation–Maximization algorithm (EM) for Gauss-
ian Mixture Models (GMM). After the reunification of the 
blocks, the trajectories could provide the individual’s risk of 
fall and interesting trajectory visualization [58].

With the recent advancement in neural networks, deep 
learning started to play a dynamic role in assessing the 
risk of fall. In 2021, Savadkoohi et al. [66] proposed a one-
dimensional convolutional Neural network (CNN) trained 
in posturographic trajectories to predict the outcomes from 
a questionnaire about the fear of falling (the Falls Efficacy 
Scale (FES) score). FES was separated into three groups 
(low, moderate, and high fear of falling). Furthermore, they 
avoided extracting features from the CP trajectories and clas-
sified the force-plate balance time series directly to predict 
human balance impairment.

Nicolai et  al. [67] introduced a new Langevin-based 
model, called local recall, that integrates the information 
from both the center of pressure (CoP) and the center of 
mass (CoM) trajectories to predict the CoP trajectories of 
an individual. This work further extended the understand-
ing of postural control’s underlying local and global mech-
anisms during quiet stance. Except for the damping force 
and a Brownian noise, this new model introduces a recall 
force that pulls the CoP position toward the CoM position 
instead of the center of the base of support. It was shown (in 
multiple datasets) that such choice significantly improves 
CoP trajectory predictions compared to a commonly used 
Langevin model. In addition, the model also calculates the 
relative importance of each force, which may improve the 
understanding of several aspects of postural control and the 
differences between examined populations or acquisition 
protocols.

The above advancements showed the beneficial effect 
of machine learning on posturography analysis, especially 
on fall prediction. Recently, our lab published an extensive 
review [25] concerning the calculation methods of the fea-
tures derived by the posturographic trajectories of CoP. On 
the one hand, this review highlighted the lack of homogene-
ity and standardization between research works and, on the 
other hand, presented a comprehensive compendium of exact 
calculation methods for every proposed feature. This review 
also offers a corresponding python library to facilitate future 
researchers in their hypothesis, the standardization, the com-
parison between studies, and the progress of posturography 
and its analytical approaches.

Gait analysis, sensors, analytics, and future 
challenges

Over the past years, our group has done extensive research 
on the quantification of locomotion, especially in the vali-
dation and the preparation of the datasets required to use 
machine learning algorithms and the prediction of falls. 
For gait analysis, reasons and details about the decision 
of one protocol or another are often missing. They some-
times may depend on pragmatic factors such as the price 
of sensors and the available setting (laboratory or clinical). 
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Although the current clinical practices such as time Up 
and Go (TUG) [68] or Short Physical Performance Battery 
(SPPB) are accessible and are used to identify gait altera-
tions, their ability to draw firm conclusions regarding the 
prediction of fall has been recently questioned [23, 69]. 
These tests have also been reported as less sensitive in 
detecting subtle gait dysfunctions in community-dwell-
ing populations or accurately and objectively follow-up 
progressive (drifting) deteriorations [70]. However, con-
sidering this fact, we and others recently highlighted the 
promising perspectives that the use of IMUs may have in 
neurological practice (in terms of cost, precision, valid-
ity, and information). It was shown that with appropri-
ate setting and analytics, IMUs measurements, composed 
of accelerometers, gyroscopes, and magnetometers, can 
detect the progression of gait alteration in the elderly and 
patients with neurological diseases such as Multiple scle-
rosis [71, 72]). In addition, gait parameters such as step 
length, step duration, or walking speed, easily calculated 
with IMUs, can facilitate the follow-up of a disease or 
aging-related deterioration [38].

However, we also noticed the need for better further 
homogenization of protocols to facilitate the validation of 
normative values per case and the comparison of the mani-
festations of different diseases [38]. Among the gait fea-
tures that have been found associated with gait dysfunctions, 
many of them are related to the notion of step (step duration, 
step length, variation of step length) [73]. Hence, one of the 
significant challenges of using IMUs, before evaluating the 
risk of fall is the accurate detection of steps that pose several 
problems. A significant challenge is the applicability of the 
algorithms in various populations with different styles of 
locomotion and the detection of steps when neurological 
diseases alter gait. Another challenge is the description of 
U-turns, turns, gait initiation, or gait termination, which are 
very frequent in daily activities and elements of paramount 
importance in fall prediction [74, 75]. Previous works [76] 
proposed the notion of “template” to detect the steps of a 
specific population. A template can be considered a typical 
step whose characteristics (amplitude, shape, and duration) 
can be the same in all steps. Therefore, almost by defini-
tion, a template for one population is not the most appropri-
ate approach to detect the steps in heterogeneous cohorts. 
Instead of trying to detect steps with one specific template 
[76, 77] or with traditional filtering/thresholding/peak detec-
tion methods, recent works [78, 79] proposed the use of a 
library of templates that represent typical step cycles from 
many different populations (young, elderly, pathological). 
Their results showed that using such a methodology (based 
on a greedy shallow machine learning algorithm and a 
library of annotated step templates) improved the robustness 
of the detection, even with a small number of templates. Per-
formance in an extensive database with mixed populations 

(healthy, pathological, young, elderly) with different walking 
characteristics was 98% recall and 98% precision.

Moreover, the algorithm detected starting and termination 
points of each step in U-turns (83.87% recall and 90.76% 
precision) which is a significant amelioration of state of 
the art, even on pathological subjects. One of the additive 
values of this approach is that it can be easily extended to 
process signals recorded in free-living conditions and use 
fewer IMUs sensors (e.g., only waist signals). Indeed, having 
libraries for no activity and U-turns facilitates the adaptation 
of the proposed method to unconstrained walking. For the 
interested reader, we have recently used the concept of the 
template to study locomotion in different populations [80].

Gait research counts numerous well-established spatio-
temporal gait parameters, which can provide interpretable 
information and help modern models to achieve higher 
performances. Recent works placed wearable sensors at the 
lower back [81], ankles, hip [82] or waist [83] and calculated 
various Spatio-temporal gait variables while 20 m-walking. 
They managed to discriminate between fallers and non-
fallers using shallow learning (SVM [82, 83], Partial least 
square discriminant analysis (PLS-DA) [81]) and improve 
our understanding of how falls-related gait impairments in 
neurological patients are manifested. Similarly, [84] used 
Spatio-temporal variables from shoes’ IMU sensors during 
20 m walking and shallow learning (extreme gradient boost-
ing (XGBoost), a decision tree-based ensemble machine 
learning technique). They found that stride length and walk-
ing speed are the most important variables regarding future 
risk of fall. XGBoost algorithm was also used for future 
fall prediction, using demographic and individuals’ medical 
profiles [85].

Other studies [46, 86] successfully applied deep learning 
using similar accelerometer positions. Specifically, the study 
in [46] uses convolutional and bidirectional long short-term 
memory layers, to learn from spatiotemporal features from 
2 wrist-worn IMUs. They manage to discriminate regular 
15 m-walking sessions from the “distorted” ones (walking 
with impairment glasses). As we mentioned previously, deep 
learning has the potential to produce models that can learn 
directly from the IMUs time-series, thus alleviating the need 
for feature extraction and selection. Other approaches [87] 
combined information from time-series and established spa-
tio-temporal variables creating a deep learning model for 
the problem of fall risk assessment. They utilize sequences 
of spatio-temporal gait parameters extracted by an inertial 
sensor-based gait analysis system as input features showing 
improved performance compared to the models that did not 
utilize combined information.
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Open and reproducible research

Surprisingly, compared to many published articles concern-
ing gait and IMUs, there are very few datasets that are, on 
the one hand, freely available and, on the other hand, docu-
mented enough to be used for further research. This lack of 
open and documented datasets does not allow the clinicians 
to test (in a reproducible manner) new clinical hypotheses 
such as the discriminative power of walking patterns in a 
faller/non-faller population [88]. Moreover, there are no 
opportunities for mathematicians and biomedical engineers 
to design new algorithms, compare various frameworks 
and reach consensus in terms of the appropriate analytic 
approaches. Some initiatives are promoting the above objec-
tives and including gait signals. Daphnet data set [89] offers 
more than eight hours of signals recorded with IMUs, from 
individuals with Parkinson’s disease. The authors also pro-
vide annotations about the start- and end-time of a specific 
type of event (“gait freeze”).

Similarly, HuGaDB database [90] contains ten hours of 
signals from IMUs and electromyography sensors. Here, 
18 individuals perform activities such as walking or going 
upstairs. Similarly, in Ref. [91], there is 3-h monitoring of 27 
individuals using the inertial sensor of a smartphone. How-
ever, the authors reported only the total number of footsteps 
per trial. Therefore, there are neither sufficient populations 
nor any information about the start/end of steps.

Therefore, we [92] included the start- and end- times-
tamps of all footsteps recorded by the IMUs (> 40,000 in 
total). Overall, this new open dataset contains around 8.5-h 
of gait signals from 230 subjects, collected by the foot IMUs 
(foot-worn). It is the largest freely available dataset (popu-
lation and footstep annotations). Other works have already 
used part of the dataset. This initiative will further enhance 
the research around step detection, step importance (clini-
cally), and step characteristics per disease. The dataset has 
already been used in numerous articles in computer science 
[77, 79] and clinical research [88, 93]. Such a dataset could 
significantly contribute to the flourishment of the systematic 
development of algorithms for risk of fall evaluation with 
more refined information. The shallow and deep learning 
predictive models mentioned above could benefit from such 
datasets.

Postural control and oculomotor behavior

Defective gaze behavior was found to be a significant con-
tributor [94] to impaired posture control in the elderly [95] 
but also in patients who have Parkinson’s disease [96]. 
Inversely, fixations on a target presented to the subjects 
improved locomotion in patients with Multiple sclerosis 
[39]. Recent studies also reported associations between 
saccades and posture in healthy populations. For example, 

saccadic eye movements significantly decreased the body 
sway magnitude in children [97] and older adults [98]. These 
results highlight the importance of the parieto-temporal cor-
tex, brainstem, superior colliculus, and cerebellum in motor 
control since they are involved in oculomotor and postural 
control [99, 100].

Attentional aspects of the eye-movement task’s execution 
also significantly affect postural performance. Especially in 
diseases with attentional deficits, both eye movements [101, 
102] and postural control [103] deficits were highly corre-
lated. The frontal cortex, which is connected to the parietal 
areas [104], may also play an essential role in the interaction 
between visual and postural systems [105]. However, there 
are not many studies investigating the predictive power of 
gaze behavior in fall prediction using machine learning. Eco-
logical tasks enable researchers to study the executive con-
trol of gaze and have been used in several contexts in recent 
years [99]. A recent study [101] investigated the interrelation 
of oculomotor and postural control during ecological tasks 
(in a “smart” flat). Bargiotas et al. [41], using machine learn-
ing, reported that parameters from eye-tracking trajectories, 
saccades, and fixations during an ecological task reflect 
important aspects of the postural impairment in Radiation-
induced leukoencephalopathy (RIL) patients.

Taghvaei et al. [106] utilized a shallow learning model 
proposing an algorithm for real-time prediction of falls 
based on the acquired visual data of a user with a walking 
assistive system from a depth sensor. They fitted an autore-
gressive-moving-average (ARMA) model on the time-series 
from walking data to forecast the upcoming states. Then, a 
hidden Markov model (HMM) based classifier is built on the 
top of the ARMA model to predict falling in the upcoming 
time blocks.

Motor style

Balance maintenance and locomotion involve complex sen-
sorimotor transformations that require several sensory inputs 
to be integrated and the coordination of multiple motor out-
puts [107]. The coordination of posture and movement relies 
on anticipatory and reactive postural control mechanisms, 
modulated by sensory input, which are influenced by learn-
ing and experience. The sensory versant of the perceptive 
motor style is based on the fact that various systems (visual, 
somatosensory, vestibular) coordinate to maintain postural 
control [108]. An efficient, flexible, context-dependent pos-
tural control requires a continuous adaptive weighting of 
this three-sensory information. It was previously shown 
that such a reweighting process differs considerably among 
individuals [109–112]. The motor versant of the perceptive 
motor style is linked to the musculoskeletal system’s high 
number of degrees of freedom. Thus, complex processes 



	 Journal of Neurology

1 3

such as postural control or locomotion exhibit significant 
inter-individual variability, leading to the concept of per-
sonalized perceptive motor behavior. A motor action can 
be performed in several ways by different actuators. Con-
cerning gait, it was recently shown that individuals could be 
distinguished based on the variability in gait patterns [113]. 
The sensory-motor transformations in humans also exhibit 
large intra- and inter- variability. That variability is a com-
plex product of internal and external noises with the neural 
mechanisms to keep movement fluctuations under control 
[114–118]. Therefore, the elements of human perceptual-
motor styles can be found in (1) inter-individual variations 
and (2) intra-individual consistency/variability of individu-
als’ sensory-motor control.

The first challenge is to define sufficiently the elements 
of such style. We recently performed a walking/running pro-
tocol in healthy individuals using 3D motion tracking sys-
tems (CODA) [40], highlighting that there are elements of 
style in these simple activities. Following that, any changes 
in perceptive motor style (or comfort zone) open the ques-
tion of at what point individual strategies were readjusted 
to maintain an optimal motor control (see [119] concerning 
walking and running economy) or if they reveal the onset of 
a pathological process. Such analysis can also help to follow 
individual’s recovery (see Ref. [120] on the thresholds to 
pathological variability during standing and walking).

Conclusion and future challenges

Prevention and precision medicine, detection of frailty, and 
prediction of falls rely on quantifying normal and pathologi-
cal human behavior, the perceptual-motor style of a given 
person, and its longitudinal follow-up. This style implies 
describing the action of 570 muscles acting on 200 joints in 
ecological conditions, i.e., at home, in the workplace, in a 
hospital. Disentangling the interconnection of these actions 
is not simple. This article described the efforts and achieve-
ments that have been made recently in frailty detection, 
especially in older adults who are more likely to experience 
recurrent falls. We describe recent trends, limitations, and 
challenges (analytics, sensors, and acquisition protocols) for 
frail detection and fall prediction systems. Finally, our arti-
cle showed the beneficial and refreshing effect that machine 
learning and modern sensors (wearables and non-wearables) 
have on this topic.

It is essential to mention that the utility of posture or 
gait (or both) examination for fall prediction is depended on 
the context and the set objectives. Posture and gait are not 
examined on the same scale. Posturographic works usually 
search for signal fluctuation in a cm or even mm scale when 
gait analysis and spatiotemporal variables are usually in a 

cm or even m scale. Different phenomena are examined on 
different scales and sensors.

Comparisons and analytic choices

As a result of the multiplication of available sensors, there 
is an explosion in the number of parameters available for 
clinical research (various biomarkers, multiple modalities, 
or parameters) for a given cohort. Although beneficial and 
rich, this fact challenges the data analysis via traditional 
approaches usually met in clinical research (such as T-statis-
tics and linear regressions). Researchers can always perform 
more traditional statistics (multiple univariate regressions 
or hypothesis tests). They offer multiple advantages such as 
(a) the simplicity of the analysis, (b) the power of the result 
when clear evidence is present, and (c) the explainability/
interpretability of the result. However, their results do not 
offer “predictability” rather than a statistical state of the cur-
rent dataset (assuming that the dataset represents absolutely 
the group of investigation).

Moreover, when modest evidence is found in relatively 
small populations, the false-positive probability is signifi-
cantly high. The level of that risk could be controlled when 
some criteria are met (see Ref. [42]) considering the qual-
ity of the study, the quality of the dataset, and the clinical 
strength of pre-set hypotheses). In more exploratory studies, 
though, some of the p values around 0.05, whichever side 
they may lie on, would be considered “interesting hints”, 
whereas concluding without thoughtful consideration from 
such findings should be generally avoided [43].

The multivariate and cross-validated approaches can 
decrease the uncertainty mentioned above to evaluate the 
risk of fall. Furthermore, the machine learning methodolo-
gies, and especially the well-established shallow learning 
methodologies such as decision trees, ensemble methods 
(random forest, boosting algorithms, etc.), logistic regres-
sion, Naive Bayes or support vector machines, offer a num-
ber of advantages such as:

•	 High-dimensionality: They can process highly dimen-
sional and multimodal datasets.

•	 Non-linearity: They can easily handle possible non-linear 
associations (when asked) between symptoms and risk of 
fall evaluations

•	 Variables Interactions: they consider possible interac-
tions between predictor variables to evaluate the actual 
contribution of every aspect to the risk of fall assessment.

•	 Missing values: They can handle missing values (usual 
in high dimensional datasets)

•	 Accurate indication of prospective predictability: They 
can provide (after cross-validation) an accurate indica-
tion of how the created model (and the relevant informa-
tion) would perform in a new unseen dataset.
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•	 Interpretability: They can usually provide interpretable 
results through the predictor importance of well-estab-
lished variables.

Since they come from the same “family”, deep learning 
offers almost all the above advantages. Additionally, they 
usually come with an inherent feature engineering process, 
extracting and learning automatically better representations 
of raw data. Ideally, they need relatively large cohorts to 
“shine” (which is not usually the case in the biomedical 
field), and they usually show better performance than shal-
low learning methods. However, for higher predictability, 
they sacrifice explainability/interpretability. Unfortunately, 
it is not trivial to track what a deep neural network learned 
from the raw data before deciding about an individual’s risk 
of fall. This fact is usually seen as a disadvantage in most 
clinical practices. In some cases, though, deep learning can 
use raw data from extensive monitoring (from IMUs, smart-
watches, smartphones, etc.) and work as a primary risk of 

fall screening. Such systems would alert experts to pay atten-
tion to specific individuals or even call them back to secured 
environments for further examinations.

To sum up, shallow learning methods, an especially 
Random Forest, offer a good compromise between perfor-
mance, predictability, and explainability/interpretability. It 
seems that the current fall prediction literature (especially 
with non-wearables) is based on these methods. However, 
the advancements in monitoring systems and wearables 
facilitate further the creation of vast databases and cohorts. 
Moreover, the explainability of deep learning methodologies 
is getting more and more attention from machine learning 
researchers [121–123], which will hopefully provide more 
comprehensible solutions for non-experts. Therefore, these 
trends progressively create a friendlier set-up for more 
extended use of deep learning for the assessment of risk 
of fall (in the laboratory and “in the field”) in the future. 
A summary of the advantages and disadvantages of every 
analytic category is provided in Table 1. Table 1 presents 

Table 1   Summarizes the general advantages and disadvantages of the three analytic categories

s

Analytic approaches Advantages Disadvantages

Conventional statistics approaches - Extremely fast
- Easy to use
- Interpretable (especially for linear phenomena)
- Ideal for low dimensional datasets
- Powerful in small cohorts

- Not accurate indication of prospective 
predictability (unless very large datasets are 
involved)

- Interactions between predictors are usually not 
taken into account

- Not ideal for modest evidence combined with 
high dimensions (weak predictors)

- Increase of false-positive probability without p 
value adjustment

- Increase of false-negative probability with p 
value adjustment

Shallow learning approaches - Fast and effective
- Ideal for low and high dimensional dataset
- Ideal when there are missing values
- Accurate indication of prospective predictability 

(with cross-validation schemes)
- Ideal for non-linear associations
- Take into account possible interactions between 

predictor variables
- Ideal for medium and large cohorts
- Interpretable (in many cases)

- Need some expertise
- Sometimes computationally expensive to train
- Not always fully interpretable

Deep learning approaches - Not fast to be trained but very effective
- Ideal for large datasets and time-series (e.g. raw 

signals from wearables)
- Ideal for real time risk estimation (if the model is 

already trained),
- Accurate indication of prospective predictability 

(with cross-validation schemes)
- Handles non-linear associations with falls
- Takes into account possible interactions between 

predictor variables
- Ideal for large cohorts
- Inherent feature engineering

- Need high expertise
- Computationally expensive to train
- Not easily interpretable
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the general aspects of the analytic categories that should be 
seen as general guidelines and by no means absolutely rep-
resentative of every approach that is part of these categories. 
Every particular algorithm (in these categories) or statistical 
analysis has its own strengths and weaknesses.

Perspectives

The methodological advancements above create an impor-
tant dynamic in a clinical setting as well as in an “ecologi-
cal” setting. The future question is which of these two pos-
sibilities (or better combination) provides the best prediction 
of future falls. Clinical settings and laboratory-based acqui-
sitions can gain performance when combined with ecologi-
cal tasks. Recent meta-analytic efforts confirm the above 
arguments. Job et al. [124] examined evidence from selected 
works, which were subcategorized into (i) correlations 
between ecological and clinical measures and comparative 
statistics of (ii) prospective fall prediction and (iii) fall risk 
identification. There were many correlations between single 
ecological gait assessments and multiple clinical fall risk 
evaluations. The review, therefore, suggested that sensor-
based assessments of gait in an ecological setting could 
significantly increase the prediction performance of clinical 
tests related to risk-of-fall evaluation.

Nevertheless, the authors stated that future studies are 
needed to understand what ecological features of gait should 
be considered, and standardize further the models’ defini-
tions. Nouredanesh et al. [125] examined various studies 
in which inertial sensors were the only wearable system 
employed for fall risk assessment methods (FRAs) “in the 
field”. Gait, sitting, standing, lying, transitions, and gait 
events, such as turns and missteps, was explored. Many 
free-living fall predictors (FLFPs), e.g., the number of daily 
steps, were extracted from activity bouts and events. How-
ever, when FLFPs were further categorized into discrete 
domains defined by conceptual or data-driven models, the 
heterogeneity within the reviewed studies led to different 
results for similar FLFPs, limiting the ability to interpret and 
compare the evidence.

We are convinced that in the future, the majority of the 
systems developed for predicting falls in elderly or ambula-
tory persons should be tested in the natural environment. In 
particular, fall prevention applications that rely on gait may 
vary from surface to surface (standard floor uneven ground, 
stairs, sand, etc.). Users will be wearing the sensor-based 
solution for extended intervals, which makes the design of 
a user-friendly system a real challenge. A hybrid approach 
of wearable and ambient devices under reasonable cost 
would be beneficial to deal with obtrusive factors. Energy 
Efficiency will be a prerequisite: therefore, energy efficiency 
algorithms are required. Optimal sensor placement should 

be the rule because fixing sensors on various body parts can 
obtain various data types and extract various gait features. 
For example, sensors attached to thighs can monitor the 
process of sit-to-stand. The datasets are mainly small and 
consist of healthy subjects. Therefore, it will be essential to 
generate larger datasets, especially from the elderly. In that 
regard, the final acceptance of any system by the actual user 
is strongly associated with the level of integration of future 
users’ remarks at the initial stage of development. Also, the 
existing systems are not often in line with the patient con-
fidentiality standards and regulations. The community has 
already started to set the foundations and the principles of 
such transition. We refer the interested reader to the excellent 
recent reviews [126–129]. In summary, the fusion of wear-
able and ambient sensors and a hybrid approach of proper 
education, IoT techniques, and clinical support is expected 
to affect the fall prediction and detection systems positively.

Fortunately, three revolutions in methodology have 
recently taken place in parallel with the development of the 
5G: Cheap genotyping (genomics), Cheap biology (metabo-
lomics), Behavioral quantification through cheap non-inva-
sive sensors (i.e. humanomics, internet of things, internet 
of behavior). Such integrations would make it possible to 
compile exhaustive databases on Human behavior relative 
to falls. But, technically speaking, to collect databases on 
human behavior, it is necessary:

•	 To collect in the field and store quantitative data that con-
tinuously define human behavior in real-time (Ethomics). 
These databases must also be enriched with other data 
types such as clinical, psychological, and sociological 
data. It is a work of assembler with a requirement: raw, 
clean, and annotated databases. It is a job for an engineer.

•	 Using these databases, we can carry out the longitudi-
nal follow-up of “high maintenance cohorts” (patients 
as well as military personnel, high-level athletes, etc.). 
The challenge here is not to “be buried” under petabytes 
of data. It is a job for a computer scientist

•	 To predict functional anomalies or pathologies thanks to 
these databases. Unfortunately, it is not obvious how to 
merge behavioral data and extract predictions. It is a job 
for mathematicians, physicians, and psychologists.

We tried to fulfill these objectives during the past few 
years. We learned in that process the necessity to associ-
ate all disciplines from the beginning of the project. We 
learned that in terms of targeted interventions, averaging 
populations is valuable but relatively limited compared to 
personalized follow-up. Above all, we learned to be patient 
because recording raw, clean, and indexed data in the field 
is more complex than in the lab.
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