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Abstract—Artificial Intelligence techniques based on convolution neu-
ral networks (CNNs) are now dominant in the field of object detection
and classification. The deployment of CNNs on embedded edge devices
targeting real-time inference sets a challenge due to the limited computing
resources and power budgets. Several optimization techniques such as
pruning, quantization and use of light neural networks enable the real-
time inference but at the cost of precision degradation. However, using
efficient approaches to apply the optimization techniques at training and
inference stages enable high inference speed with limited degradation of
detection performance. In this paper, we revisit the problem of detecting
and classifying maritime objects. We investigate different versions of the
You Only Look Once (YOLO), a state-of-the-art deep neural network, for
real-time object detection and compare their performance for the specific
application of detecting maritime objects. The trained YOLO networks
are efficiently optimized targeting three recent edge devices: Nvidia Jetson
Xavier AGX, AMD-Xilinx Kria KV260 Vision AI Kit, and Movidius
Myriad X VPU. The proposed deployments demonstrate promising results
with an inference speed of 90 FPS and a limited degradation of 2.4% in
mean average precision.

Index Terms—Marine, Deep learning, Embedded edge devices, YOLO,
Ship detection, Ship dataset, Optimization

I. INTRODUCTION

Marine object detection and classification are two essential
tasks for many applications such as vessel identification and
positioning, collision avoidance system, safe autonomous navi-
gation, search and rescue mission, etc. Marine objects can span
from stationary floating objects such as buoys to small boats and
kayaks and other large vessels such as ferries, passenger ships
and cargo ships. Surveillance adopting shared information from
Electronic Chart Display and Information System (ECDIS) and
Global Navigation Satellite System (GNSS) can provide locations
of marine vessels [1]. However, this depends on the reliability
of data, which may degrade due to spoofing, jamming or even
dis-activating automatic identification system (AIS). Radar-based
methods can be effective to detect the presence of large vessels.
Small boats and floating objects on water surface are difficult to
be identified [1].

Visual detection of marine objects using electro-optical sensors
provides a solution for detecting and classifying marine objects
[2]. Classification and detection of objects using captured images
have been widely used in several application domains [3][4].
However, the characteristics of the scenes captured in marine
environment arise additional challenges to the task of detecting
objects in images or videos compared to other environments.
Factors such as dynamic nature of the background, unavailability
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of static cues, presence of small objects at distant backgrounds
and illumination effects impact the performance of commonly
used image processing and computer vision approaches [5].
Tides and waves lead to a continuously dynamic background
in both spatial and temporal dimensions. Also, floating objects
are subjected to a lot of motion with unpredictable patterns. The
illumination of marine scenes varies due to weather conditions
(haze, fog, rain, bright sunlight, twilight, etc.). Speckles and glints
are mainly induced by the variation of the solar incident angle
on water. Furthermore, the disparity of color gamut depends on
illumination conditions. Color gamut varies respectively between
dark, yellow and red, blue and gray during night, sunset, daylight,
and hazy conditions. These factors affect the visibility of objects
in marine environments and hence the detection performance. An
effective technique for certain cases with specific illumination
type, weather condition and water dynamicity may not suit other
conditions.

Artificial intelligence (AI) techniques based on deep learning
provide robust solutions to detect and locate objects. The achieved
performance proves the relevance of convolution neural networks
(CNNs) in circumventing existing computer vision challenges.
Deep learning methods, known as deep neural networks, make
use of multiple hidden layers between the input and output layers
to learn a hierarchy of features that are invariant to geometric
transformations from raw input images.

In this work, we investigate the use of deep neural networks
to detect and classify marine objects. The state-of-the-art You
Only Look Once (YOLO) networks are adopted to ensure high
detection performance and high detection rate. Also, we make
use of emergent optimization techniques to deploy the trained
networks on embedded edge devices. The main contributions of
this paper are:

• create a diverse dataset of marine objects, which has the
widest number of classes and annotations compared to
available datasets,

• train and evaluate several YOLO neural networks with
different sizes and architecture specifications,

• apply structured pruning using sparsifying to reduce the
network size while maintaining the detection performance,

• optimize the trained networks towards implementation on
popular edge devices to achieve the best compromise be-
tween inference speed and detection performance.

The rest of the paper is organized as follows. Section II
presents a brief background and reviews related work. Section
III describes the adopted methods for training and evaluation.
Section IV illustrates the used structured pruning method. Section979-8-3503-9851-9/22/$31.00 ©2022 IEEE



V describes the deployment of models on edge devices and shows
the obtained results. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Object detection methods

Previously, computer vision techniques based on feature extrac-
tion has been widely adopted to detect objects [6][7]. Recently,
AI methods with CNNs play dominant role in classifying and
locating multi objects in images and videos leading to accurate
detection. One-stage detection methods have been introduced
to provide real-time performance with acceptable precision and
accuracy. These methods exclude the stage of pre-selecting the
regions of classification and abstract post-processing techniques
(refining bounding boxes, eliminating duplicates and adjusting
detection scores) used in two-stage methods such as the well
known region-convolutional neural network (R-CNN) [8] and its
enhanced versions [9], [10] in order to reduce the complexity and
ensure real-time detection speed.

You Only Look Once (YOLO) has been recently proposed
in [11] as an efficient one-stage CNN-based model that is able
to detect multi objects in real-time. Published peer reviewed
comparisons [12][1] [13] illustrate that YOLO outperforms two-
stage detection methods and other available one-stage methods
such as single shot detector (SSD). Since introduced, many
versions of YOLO have been introduced such as YOLOv2[14],
YOLOv3 [15], YOLOv4 [16] and and YOLOv5. In YOLOv2
[14], the fully connected layers at the end have been eliminated
and Darknet-19 architecture has been adopted. YOLOv3 [15]
uses Darknet-53 architecture and inherits the concept of residual
networks. The detections are made at 3 different scales which
enables the detection of small objects. YOLOv4 and YOLOv4-
tiny proposed initially in 2020 [16] optimize and improve every
part of YOLOv3. The main optimization is to use CSPDarknet-
53 as its backbone network for extracting features. The difference
between YOLOv4-tiny and YOLOv4 is that the tiny version only
has two YOLO heads at the end (2 scale factor instead of 3).

The experiments targeting Microsoft Common object in context
(COCO) dataset [17] show that YOLOv4 is faster and more
accurate than real-time neural networks EfficientDet [18] and
RetinaNet [19] provided by Google and Facebook respectively.
Comparisons have been made between YOLOv3, YOLOv4 and
YOLOv5, in which some authors claim that YOLOv4 is more
accurate while others claim that YOLOv5 is more accurate.
The reason for different reported results can be attributed to
many factors, such as the different datasets used, the modified
hyperparameters, etc [20].

B. Maritime Detection Datasets

Object detection based on deep learning imposes the chal-
lenge of having sufficient dataset with object annotations for
training and validation processes. Training using large datasets
with diverse images results in robust networks and prevents the
occurrence of overfitting or underfitting. In maritime context,
only few datasets for maritime object detection are available
publicly for research purposes. This subsection presents briefly
these available published datasets.

VAIS dataset [21] provides visible and infrared maritime
images for ship classification [22][23]. It includes more than
1,000 paired RGB and infrared images among six ship categories

(merchant, sailing, passenger, medium, tug, and small). The large-
scale MARitime VEsseLs (MARVEL) dataset [24] has been
introduced for classification of maritime vessels [25]. Although
the dataset includes 2M images, the provided ground truth (GT)
annotations contain the url to download image and the class label
without bounding boxes. Also, the available scripts to retrieve the
images from ShipsSpotting website [26] is no longer functioning.
Both VAIS and MARVEL datasets are not applicable for deep
learning detection.

Singapore Maritime Dataset (SMD) has been published in [3].
It compromises 81 videos, which are recorded using cameras
either placed on-shore or fixed on-board of a moving vessel during
daytime and nighttime. Also, the dataset includes thermal videos
captured using a camera equipped by Near-IR bandpass filter.
SMD annotations include 10 classes of maritime objects (ferry,
buoy, vessel/ship, speed boat, boat, kayak, sail boat, swimming
person, flying bird/plane, and Other). The GT labels for every
frame of every video is provided comprising bounding-boxes and
object classes for the corresponding bounding-box. This dataset
has been evaluated in many research works such as [27] and [28].
Recently, an improvement of SMD called SMD-Plus is described
in [29].

SeaShips [30] is another published dataset for detection. It
consists of 31,455 images including 40,077 annotations of six
categories of marine ships (ore ships, bulk carriers, general cargo
ships, container ships, fishing ships and passenger ships). The
images are extracted from 10,080 video segments recorded by
surveillance cameras placed in the coastline. Bovcon et al. have
introduced the MODS dataset in [31] for unmanned surface
vehicles (USV) obstacle detection. This dataset merges MODD1
[32], MODD2 [33] and SMD [3] datasets. Overall, the MODS
dataset contains 24,090 images and 145,334 annotated objects.
MaSTr1325 dataset [34] is published as a marine semantic seg-
mentation training dataset for the application of obstacle detection
in small-sized coastal USVs. MODS and MaSTr1325 datasets
are used in the context of obstacle detection; thus, the objects
are categorized into two classes only: small obstacle and large
obstacle.

In [35], Mcships dataset is introduced for ship detection and
fine-grained categorization. The dataset includes 14,709 annotated
images compromising 26,529 instances of ships which are cate-
gorized into 6 classes of warships and 7 classes of civilian ships.
ABOships [36] is a recent publish dataset which consists of 9880
on-shore and off-shore images of maritime objects. Images in
this dataset are categorized into boat, cargoship, cruiseship, ferry,
militaryship, miscboat, miscellaneous, motorboat, passengership,
sailboat, seamark.

III. TRAINING AND EVALUATION

A. Collected Dataset

A diverse dataset of marine objects is created. Initially, we
make use of the published datasets such as SMD [3], SeaShips
[30] and MODD [32] datasets. These datasets include images
with high level of similarity as the images are extracted from
recorded video sequences. This may impose over-fitting while
training the neural network. Therefore, the datasets are cleaned
by removing images that are too similar and bad images. Also,
the annotations are checked and adjusted by fixing the imprecise
bounding boxes and wrong labels. The merging of these datasets



TABLE I
SPECIFICATIONS OF THE TARGETED YOLOV4 MODELS

Model Number of activation Model Weights’
Layers function Volume (MB)

YOLOv4 162 MISH 256.2
YOLOv4 Tiny 38 LeakyRelu 23.5

leads to 10K images split into 15 classes: Ferry, Buoy/SeaMark,
sailing-vessel, tug, speed boat, kayak, bulk carrier, roro cargo,
small boat, swimming person, flying bird, container ship, fishing
vessel, passenger ship and jetski.

In addition to the images in the published datasets, we add new
images of available classes and create new classes as well. The
added images have different backgrounds, size, weather condition,
light luminosity and show object from different points of view.
The added images are taken from AIS providers 1. To annotate
new images, semi-automatic annotation is used. First, a neural
network is trained using the images of public datasets. The trained
network is then used to locate automatically the bounding boxes
of marine objects in the new images.

During this step, images which are too similar in the same class
are removed. Similar classes are merged to ovoid confusion while
detection. This process is done attentively. For each iteration, a
neural network is trained on the collected images considering
all classes. Validation is done using images not seen by the
trained model. A confusion matrix that represents the predictions
in terms of a ground truth is created. Accordingly, classes with
high confusion are merged.

As a result, our dataset includes 27,781 images compromising
35,140 annotations of 41 classes. Fig. 1 demonstrates the distribu-
tion of annotations per class of our dataset. The resulting dataset
is the hugest available dataset for marine object detection in terms
of number of classes and number of annotations. Note that the
resulting dataset will be released to research community under
request to facilitate progress in detection of marine objects using
deep learning methods.

The dataset point of view is challenging due to two main rea-
sons. First, in general, ships are very similar in shape (low inter-
class variation). Second, due to viewpoint, weather condition and
illumination variations, but also due to scale changes, occlusion,
cluttered background and so on, ships within the same class may
be significantly different (large intra-class variation) [35].

B. Target Models

In this work, YOLOv4 and YOLOv4 Tiny models are targeted.
Table I presents the specifications of the targeted models. The
depth of the layers at the input of YOLO layers in the networks
are adjusted to fit with the number of classes. To meet with the
supported architectures on Kria KV260 Vision AI kit, the activa-
tion function of YOLOv4 is modified from MISH to LeakyRelu.
Also, the maxpool sizes of the spatial pyramid pooling (SPP) are
changed to 3×3, 5×5 and 7×7 as the Deep Learning Processor
Unit (DPU) has a maximum kernel size of 8× 8.

C. Training

The training processes are conducted using Darknet framework
[37] on Nvidia Quadro RTX 3090. Transfer learning is adopted
by initiating the training with the weight values of models

1MarineTraffic: https://www.marinetraffic.com/

previously trained on popular large-scale COCO dataset. Only
the weights of the detector layers are cleared. This act preserves
the generalization of the feature extraction layers in the output
model. During training the number of batches is set to 32. The
model is trained for 75 epochs. The training rate is adjusted to
0.001. A scaling factor of 0.1 is applied at iterations 65600 and
73800. The input images are down sampled into resolutions of
416× 416 or 608× 608. Several Data augmentation (DA) modes
are applied during the training process such as mosaic, cutmix,
rotation and changing exposure and saturation.

D. Evaluation of trained models

The trained models are validated while training using the val-
idation dataset. The mean average precision (mAP) is computed
for each 4 epochs based on the AP50 metric defined in the MS
COCO competition. Fig. 2 presents the training and validation
performances. The blue curve in the figure corresponds to the
training loss; whereas, the red curve corresponds to the computed
mAP values. Fig. 3 shows sample predictions using the trained
model.

In addition, the models are evaluated using several popular
metrics in the field of object detection. Table II presents the
obtained evaluation results for all trained models.

IV. STRUCTURED PRUNING USING SPARSIFYING

Pruning of the trained model at the level of channels and
layers results in high-speed inference along with high-precision
detection. Before starting the pruning, insignificant channels are
identified using training under channel-level sparsity-induced reg-
ularization [38]. L1 regularization of the loss during training is
adopted based on the work presented in [39]. The cost function
is modified by adding a penalty term on the scaling factor
(sparse weights). Also, a parameter λ is used to balance the
normal training loss and the penalty term defined on the weights.
Different values of λ are examined using the collected dataset to
determine the best value. In this case λ = 0.0015 is chosen. To
determine whether the sparseness is sufficient, we use the Guppy
multiple moving averages (Gmma) weight distribution map of
each batch normalization (BN) layer. During sparsity training, it
can be noticed that Gmma weights tend to close to zero indicating
more sparseness as shown in Fig. 4.

Accordingly, channel pruning is performed to eliminate the
channels with little contribution. The input-output connections
and the corresponding weights of these channels are deleted. In
this step, channels with near-zero scaling factors are pruned using
a global threshold across all layers. A specific percentile of all
the scaling factor values is used to define this threshold. To attain
the most relevant value of the global threshold, the strategy of
large intervals is adopted followed by subdividing gradually the
intervals to achieve the optimal pruning point. In this work, the
optimal pruning point is reached for 78% pruning.

Layer pruning is then performed in order to address the cross
layer connections (residual) in YOLOv4 network. These special
types of connections link the output of one layer to the input
of several subsequent layers. The previous CBL (Conv + Batch
Normalizaton + Leaky-Relu) of each shortcut layer in the network
is evaluated. Accordingly, the Gmma mean of each layer is saved
and the layer with the smallest value is selected for pruning. Many
experiments are performed in order to find the most adequate



1
8
6
0

1
8
0
4

1
0
4
0

4
1

2
3
6
1

2
5
9
3

8
6
7

1
1
4
0

5
2
5

1
5
8
5

4
2
0

1
2
3

1
8
9

2
3
6
1

6
7
9

3
5
7

4
3
0

5
3
7 4
5
0

2
6
3

3
2
9

1
5
6
3

1
6
8
5

9
1
6

2
4
6
5

1
1
2
8

1
1
0
8

4
6
3

3
2
8

8
2
2

2
5
7

3
7

5
2
5

1
7
5
3

4
0
4

2
3
3

8
5

9
3

3
0
1

8
4

9
3
6

0

500

1000

1500

2000

2500

Fig. 1. Distribution of images per class

TABLE II
EVALUATION RESULTS OF THE TRAINED YOLOV4 MODELS

Target Activation Image Data mAP mAP mAP Precisison Recall F1 Avg
Model Function resolution augmentation COCO VOC07 VOC12 score IOU

YoloV4 LeakyRelu 416× 416
- 0.625 0.613 0.626 0.55 0.70 0.61 42.50%

Tiny Cutmix+mosaic 0.781 0.760 0.783 0.75 0.82 0.82 62.56%

YOLOV4 MISH 416× 416
mosaic 0.838 0.813 0.840 0.81 0.86 0.84 71.56%

Cutmix+mosaic 0.822 0.795 0.8250 0.81 0.86 0.83 71.48%

YOLOV4 MISH 608× 608
mosaic 0.839 0.811 0.842 0.82 0.87 0.84 72.85%

Cutmix+mosaic 0.838 0.812 0.841 0.82 0.87 0.84 72.61%
YOLOV4 without SPP LeakyRelu 416× 416 mosaic 0.827 0.806 0.829 0.82 0.86 0.83 72.39%

YOLOV4 with SPP LeakyRelu 416× 416 mosaic 0.831 0.808 0.833 0.82 0.86 0.84 73.68%

mAP@0.5
training loss

iterations

Fig. 2. Sample training and validation performances

number of Resunits to be removed. According to the evaluation
of resultant accuracy based on the metrics of precision, recall,
mAP and F1-score of all experiments the best choice is to cut
20 Resunits which imposes the removing of 48 layers in total. At
last, fine tuning is then performed to assist the pruned model to
restore accuracy. The pruned compact model is trained again for
300 epochs.

Table. III illustrates the obtained results after each pruning step
of YOLOv4 network with leakyRelu activation function. The table

Fig. 3. Sample predictions using the trained model

shows that the mAP drops by 19.3 points after sparsity training.
However, this degradation, which is due to the modification of
the loss function, is compensated later by the conducted fine-
tuning on the pruned network. Also, the results illustrate that the
channel pruning greatly reduces the number of model parameters
(−97, 06%) and the FLOPS (−88.87%) that involve a speed-up
effect on embedded devices without suffering from accuracy loss.

Fine-tuning of the YOLOv4 network recovers the accuracy loss
due to sparsity training. The obtained results illustrate that the
fine-tuned network achieves a mAP of 77% while preserving a
significant decrease in the required memory (−97, 08% reduction
of parameters) and computations (−88, 88% reduction of FLOPS).
Fig. 5 shows the obtained performance metrics while fine-tuning
the compact model.

V. DEPLOYING TRAINED MODELS ON EDGE DEVICES

Deep learning-based object detection technology in embedded
systems needs to be optimized for low latency and high ac-
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TABLE III
PRUNING RESULTS OF YOLOV4 NETWORK

Step Precision Recall mAP F1-score Parameters BFLOPS
baseline 0.733 0.824 0.817 0.765 64153086 59.919

sparsity training 0.677 0.589 0.624 0.581 64153086 59.919
channel pruning 0.689 0.584 0.62 0.58 1880897 6.685
layer pruning 0.688 0.583 0.619 0.58 1871601 6.663

fine-tuning 0.703 0.796 0.77 0.734 1871601 6.663

curacy detection rates and low power consumption. In general
the deployment flow compromises two stages. In the first stage,
the weights and/or activations are quantized to the desired bit-
width and representation (FP16, INT8). This is done using a
heuristic method that benefits from selected pool of images from
the training dataset which is so called the golden reference pool.
In the second stage, the quantized model is compiled to generate
the instruction sequence. In this stage, the model is optimized
according to the targeted device.

Three different GPU-based, ASIC-based and FPGA platforms
are considered in this study. Their hardware specifications are
given in Table. IV, which presents the technical specifications of
the embedded edge devices targeted in this work.

In the following subsections, we present the deployment of the
trained YOLOv4 models on targeted embedded edge devices: (1)
Nvidia Jetson Xavier AGX, (2) Xilinx-AMD Kria VISION AI
KV260 and (3) Intel Movidius Myriad X Vision Processing Unit
(VPU) integrated in OAK-D camera kit.

A. Deployment targeting Nvidia Jetson Xavier AGX

The trained models are deployed with TensorRT in order to
achieve lower latency and higher throughput inference while run-
ning on Nvidia platforms. TensorRT is a software develeopment
kit (SDK) provided by Nvidia for high performance deep learning
inference. It is compatible with most deep-learning frameworks
and is used to achieve high performance and platform portability.
It compromises an inference optimizer that implements several

techniques such as kernal fusion, precision calibration, kernel
auto-tuning, dynamic tensor memory and multi-stream execution
to optimize the inference of the trained model.

Since Darknet framework is not supported by TensorRT, the
target models are first converted using Open Neural Network
Exchange (ONNX) and then to TensorRT engine with FP32
representation. Next, the target models are quantized to FP16 and
INT8 representations. Table. V provides the obtained results in
terms of detection performance and inference speed. The table
shows a comparison between the original trained models and
the converted models using TensorRT when deployed on the
Jetson Xavier AGX. The comparison shows that using TensorRT
increases the inference rate with slight degradation of mAP for
all tested networks. In addition, the quantization leads to better
inference rate. For YOLOv4 Tiny network, the inference rate is
increased by ×1.55 and ×1.67 times but at the cost of degradation
in the detection performance by 2.2 and 2.4 points in mAP for
FP16 and INT8 quantization respectively. For YOLOv4 model,
the FP16 quantization leads to increase the FPS by ×2.93 and
×8.47 times with a slight degradation in the mAP of 2.9 and
4.1 points for 416 × 416 and 608 × 608 input image resolutions
respectively. Compared to the results of FP16 quantization, the
quantization process for INT8 representation leads to an increase
in inference rate by +6 and +4 FPS but at high cost accuracy
degradation of 32.4 and 18.5 point in mAP. It is noted that the
quantization of FP16 leads to same mAP value of FP32 but with
better inference speed. Note that the FPS are recorded for input
HD video with resolution of 1920× 1080.

B. Deployment targeting Xilinx-AMD Kria KV260 AI Vision Kit

Vitis AI open source tooset does not support Darknet frame-
work. Hence, the trained models are converted to a frozen
TensorFlow graphs. Note that MISH activation function is not
supported by the DPU in Xilinx FPGA. So, only models with
LeakyRelu activation functions are deployed on Kria KV260 AI
VIsion Kit. Using VITIS AI toolset, the converted models can be
quantized into INT8 representation and then compiled targeting
DPUCZDX8G architecture. Indeed, FP16 representation is not
supported for Kria KV260 Vision AI kit (Table I). Table. VI
shows the obtained results in terms of detection performance and
inference speed of the deployed models on Kria KV260 kit. The
quantized YOLOv4 Tiny model can achieve the highest inference
speed (50 FPS) with a 4.5 points degradation in mAP. The
quantized YOLOv4 model achieves the best mAP value (74.9%)
on Kria KV260 kit with an inference speed of 11 FPS. The
pruned YOLOv4 network can achieve 50 FPS but with significant
degradation in mAP (−23.9 points). As a result, YOLOv4 Tiny
would be the most convenient choice to run on Kria KV260 kit

TABLE IV
SPECIFICATIONS OF TARGET EDGE EMBEDDED DEVICES

Target Nvidia Jetson Kria KV260 Luxonis camera
Device Xavier AGX Vision AI Kit OAK-1-POE
Edge 512 Core Volta 1x DPU configurations Intel Movidius

accelerator with 64 Tensor Cores B4096 at 300 MHz Myriad X VPU
AI Performance 11 TFLOPS FP16 not ≪ 1 TFLOPs(estimated FP16) supported
AI Performance 32 TOPS 1.43 TOPS INT8 not
(estimated INT8) supported

Max Power 30 W 8 W 4 Wconsumption
Price 600$ 300$ 249$
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Fig. 5. Obtained performance metrics while fine-tuning the compact model

TABLE V
OBTAINED RESULTS ON JETSON XAVIER AGX

Network YOLOv4 Tiny YOLOv4
Activation Function LeakyRelu MISH

Input Resolution 416×416 416×416 608×608
Model original FP32 FP16 INT8 original FP32 FP16 INT8 original FP32 FP16 INT8

mAP VOC12 0.783 0.761 0,761 0,759 0,825 0.796 0,796 0,472 0,841 0.800 0.800 0,615
FPS (HD video of 58 82 90 97 15 19 44 50 9 9 26 30resolution 1920×1080)

TABLE VI
OBTAINED RESULTS ON XILINX-AMD KRIA KV260 AI VISION KIT

Network YOLOv4 Tiny YOLOv4 Pruned YOLOv4
Input Resolution 416×416 416×416 416× 416

Model original FP32 INT8 original FP32 INT8 original FP32 INT8
mAP VOC12 0.783 0.744 0.738 0.829 0.796 0.749 0.77 0.634 0.531

FPS HD video - - 60 - - 11 - - 50of resolution 960×540
FPS (HD video of - - 15 - - 11 - - 15resolution 1920×1080)

TABLE VII
OBTAINED RESULTS ON MOVIDIUS MYRIAD X VPU

Network YOLOv4 Tiny YOLOv4
Input Resolution 416× 416 416× 416

Activation Function LeakyRelu MISH
Model original FP32 FP16 original FP32 FP16

mAP VOC12 0.783 0.7542 0.7541 0.825 0.7856 0.7854
FPS (video of - - 31 - - 3resolution 416× 416)

as it achieves the highest inference speed and highest mAP value.
The FPS values for FP32 representation are not listed in Table VI
as the DPU in Kria KV260 kit can run only values in INT8
representation. Note that the FPS values in the table corresponds
to processing HD video frames using 4 threads.

C. Deployment targeting Movidius Myriad X VPU

The YOLOv4 and YOLOv4 Tiny models are also deployed on
Movidius Myriad X VPU, which is programmable with the Intel
distribution of the OpenVINO [40]. The trained models using
Darknet framework are first converted to TensorFlow freezed
graphs. The converted model is optimized and quantized to FP16
representation using OpenVINO. Indeed, the INT8 representation
is not supported for Movidius Myriad X VPU (Table I). Table VII
presents the obtained results in terms of detection performance
and inference speed. The results show that the FP16 quantized
model of YOLOv4 Tiny achieves an inference speed of 31 FPS (2
threads running on 6 SHAVE cores) with a negligible degradation

of 0.01% in the mAP (75.41%) when compared to the unquantized
converted network (75.42%). The quantized YOLOv4 model
achieves a speed rate of 3 FPS (2 threads running on 6 SHAVE
cores) when processing a video of resolution 416 × 416. The
degradation of mAP for the quantized YOLOv4 model is 0.02%

D. Analysis

The Jetson Xavier AGX is the most powerful device among the
three platforms in terms of detection performance. It achieves the
highest inference speed while maintaining acceptable precision
values. However, it requires more power budget. It achieves 3.23
FPS/Watt for YOLOv4 Tiny and 1.46 FPS/Watt for YOLOv4.

The KRIA KV260 AI VISION KIT power consumption is
4 times less than the GPU on Jetson Xavier AGX. However,
the achieved inference speed is 1.6 times and 4 times less than
that achieved using the GPU for YOLOv4 Tiny and YOLOv4
respectively. It is necessary to realize a graph pruning to achieve
15 FPS with only one DPU B4096@300Mhz. While considering



performance per watt criterion only, the KRIA KV260 kit out-
performs the other targeted devices when running YOLOv4. It
achieves 1.875 FPS/Watt.

The MOVIDIUS MYRIAD X VPU suffers from a lack of
computing power, yet it is enough to infer a Yolov4 Tiny at 31
FPS with a power consumption less than 5 Watts with OAK-
D camera. The comparison in terms of performance per Watt
shows that for YOLOv4 Tiny, the VPU outperforms the other
two devices as it achieves 7.75 FPS/Watt.

VI. CONCLUSION

This paper tackles the topic of marine object detection using
deep learning techniques on embedded edge devices. A novel
dataset with the widest number of classes and annotations is
presented. Several YOLO models with different structure specifi-
cations are trained and evaluated considering different parameters
such as image resolution and data augmentation. The deployment
of the trained models on recent edge devices is considered.
Several optimization techniques are applied to enhance the infer-
ence speed while maintaining high detection performance. The
impact of these techniques in terms of FPS and precision is
analyzed while targeting Nvidia Jetson Xavier AGX, AMD-Xilinx
Kria KV260 Vision AI Kit, and Movidius Myriad X VPU. The
obtained results show promising results. For example, 90 FPS
inference speed is achieved on Jetson Xavier AGX with limited
degradation of 2.4% in mAP.
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