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Abstract—There is a growing interest on the study of con-
tinuum parallel robots (CPRs) due to their higher stiffness
and better dynamics capacities than serial continuum robots
(SCRs). Several works have focused on the computation of their
geometrico- and kinemato-static models, that can be sorted into
two main categories: (i) models based on the continuous Cosserat
equations: They are very accurate but assessing elastic stability
with them is tricky; (ii) discretized models: They allow easily
checking the stability but they require a large number of elastic
variables to be accurate.

In this paper, we extend an approach based on assumed strain
modes developed for the dynamics of SCRs to the statics of CPRs.
This method is able to predict the robot configuration with an
excellent accuracy with a very limited number of elastic variables,
contrary to other discretization methods. The method is also
more than 100 times faster than finite differences for a better
prediction accuracy. Finally, it is possible to assess the robot
stability by only checking the Hessian of the potential energy as
for any discretization method, thus making the analysis of this
property simpler than for the continuous Cosserat model. All
results are validated through simulations on two case studies.

Index Terms—Continuum parallel robots, Modelling, Statics,
Assumed modes, Stability

NOMENCLATURE OF THE MAIN SYMBOLS

In the present paper, in order to differentiate scalars from
matrices (vector instantiations being considered as single-
column matrices), scalars will be in italic, and matrices in
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bold. Bold lowercase (or eventually calligraphic letters) will
be used for vectors and group transformation, bold uppercase
for matrices with more than one column.

£V, K Space-twist field and its linear and rota-
tional parts, respectively.

7, vV, w (Time-)twist field and its linear and rota-
tional parts, respectively.

(o] Strain function matrix.

v Vector of constraints.

A Lagrange multipliers.

Ta Motor input efforts.

1oxp Identity matrix of dimension p.

AP, EW Robot kinematic Jacobian matrices re-
lated to the variables qa, qp, g and w.

Ad, ad Two operators from Lie group theory.

g=R,p) A group transformation of SE(3), repre-
sented by an homogeneous transformation
matrix composed with a rotation matrix R
and a translational vector p.

h Unit quaternion vector.

l Length of a rod.

Q Vector of strain generalized forces in the
static equations.

Ua, dp, Au; de  Motor, controlled, uncontrolled and elas-
tic variables.

Q) Qau, Apu Vectors [ql, ql, qf]", [af, qf]" and
[a}. ai]”.

w, f, m A wrench, a force, a moment.

w A distributed wrench.

Z A matrix spanning the null space of J, the

matrix of the kinematic constraints.

I. INTRODUCTION

Continuum robots [1] have been introduced in order to
enhance the limited interaction capacities of rigid-link robot
manipulators. Most of them are made with a serial architecture,
composed by a serial assembly of slender rods deformed by
wires [2]], [3]], electromagnets [4]], [S]], fluidic actuators [6]—[8],
shape memory alloy based actuators [9], [[10], electro-active
polymers [[11]], [12] or other types of actuation (e.g. concentric
tube robots [13[|-[[15] or also multi-backbone robots [16]—
(18]).



While being of interest for many applications requiring safe
human-robot interaction, like minimally invasive surgery [19],
serial continuum robots have also their own limitations. Typi-
cally, they have low stiffness and limited dynamics capacities.
In order to overcome these issues, the concept of continuum
parallel robots (CPR) have been recently explored. CPRs were
first proposed in [20], [21]. Similarly as for rigid-link parallel
robots [22], CPRs are composed of several kinematic chains
connected in parallel and attached to a moving platform.
However, each kinematic chain is made of elastic links subject
to large deformations.

There is a growing interest in CPRs and several architectures
have been recently proposed, among which we may distinguish
(the list is not exhaustive):

o CPRs with legs of varying lengths, like for instance
in [20], [21]], [23]], [24] where continuum Gough-Stewart-
like platforms were studied.

o CPRs with legs of constant lengths, mounted on a motor
moving on the ground. Several planar CPRs of this type
have been proposed in [25]-[31]] and some spatial robots
have been analyzed in [32[]-[34].

¢ CPRs actuated by tendons [35]-[37].

« Reconfigurable CPRs [37], [38] in which the position or
orientation of the motors can be modified.

o CPRs with legs constrained by intermediate links [39]]-
[42]].

The geometrico-static model of these robotsﬂ was the main
focus of several works. In [20], [21]], the model was established
by using the Cosserat’s rod theory: This theory allows ob-
taining a system of nonlinear Differential Algebraic Equations
(DAEs) characterizing the robot’s static equilibrium. In [26]-
[29] a quasi-analytical description of the robot equilibrium
configurations based on the Kirchhoff’s model with planar
assumptions, is proposed. However, this model is valid un-
der planar motion conditions only (spatial robots cannot be
modelled) and it allows to apply wrenches on the platform
only (gravity field on the legs cannot be taken into account
for instance). In [35]], [36], the Piecewise Constant Curvature
model [43] was applied while lumped modelling and finite
differences were used in [34] and in [44]], respectively. More
details on the modelling of Cosserat beams are provided in
Section [ZAl

These models can serve then in order to characterize some
geometry or kinematic properties of the robot, like for in-
stance: The robot workspace [20], [29], [31], [32], [35], [45]-
[47]; The end-effector positioning error [31], [32]; Kinetostatic
properties (compliance, force transmission, or manipulabil-
ity) [21]]; Singularities [33]]. One of the most crucial property
to be assessed is the robot elastic stability [33]], [48]. Using
technics of optimal control theory, it is shown in [48], that
a robot static configuration is not necessarily a minimizer of
the potential energy, and that its stability must be verified by
analyzing second-order conditions based on the analysis of
the non-discretized DAEs characterizing the robot deforma-

TA geometrico-static (kinemato-static, resp.) model is a model which can
be obtained by using not only the geometry (kinematics, resp.) equations of
the robot, but also its statics equations.

tion given by the calculus of variations. However, although
mathematically exact, the method for checking the stability
in [48]] is based on tools from optimal control theory that are
unfamiliar to the mechanical engineering culture. In further
details, this analysis is based on a rather intricate stability test
based on the detection of the so-called “conjugate points™:
If conjugate points can be detected, the robot is unstable;
Otherwise it is stable. In [33]], the DAEs were discretized and
the stability was studied by checking the positive-definiteness
of the Hessian matrix of the potential energy. However, in
order to get a good pose estimation with any discretized
model, the number of elements must be large (typically >
1000 with finite differences), leading to big size matrices and
little computational efficiency.

A. Methods for modelling Cosserat rods

At the crossroads of rigid body mechanics and continuum
mechanics, the Cosserat rod model is an ideal tool for the study
of slender bodies undergoing large deformations. Initially pre-
sented as an abstract object [49], it has been applied over time
to many problems in engineering sciences such as structural
mechanics, where it gave birth to the geometrically exact
finite element method (GE-FEM) [50], in ocean engineering
for the simulation of submarine cables [51]], or in computer
graphics, for the needs of interactive simulation [52]. In
robotics, whether for the study of hyper-redundant bioinspired
locomotion [53]], the simulation and control of non-invasive
continuous medical robots [54], [[19], or for the design of new
concepts of soft arms [55]], it is gradually becoming a standard,
comparable to the multi-body models of rigid robotics. In these
various contexts, the exploitation of the Cosserat model can be
divided into two main categories depending on whether one
considers the model as fully continuous [53]], [56], or whether
one seeks to reduce it on a functional basis of finite dimension
[55], [57]]. In the first case, direct and inverse dynamic models
have been proposed and applied to several issues related to
simulation and control, while in the second case, beyond
the PCC (Piecewise Constant Curvature) and PCS (Piecewise
Constant Strain) methods [[43]], [55]], the reduction of the strain
fields on an arbitrary functional basis [S57], has opened new
promising perspectives for robotics.

B. Originality of the work and organization of the paper

The contributions of the article are of two kinds depending
on whether one considers the Cosserat modeling viewpoint
of [S7] or the stability analysis of CPRs from [21]] and [33]]. In
the first case, the paper extends the modeling by strain modes
to the statics of CPRs, i.e., to closed kinematic loop systems
consisting of rigid bodies and Cosserat rods connected by
active or passive localized joints. Moreover, while in [57], the
static simulations were performed with an explicit integration
of an over-damped system, the approach used here to treat
the statics is based on the classical Lagrangian framework
of nonlinear structural mechanics [58|], which has a much
wider generality spectrum and can be naturally extended to the
dynamics. Without anticipating too much on the results of the
article, we will show that this is possible to accurately predict



the robot configuration with a very reduced number of strain
modes in comparison to other standard discretization methods.
Typically, 10 elastic variables per leg lead to a prediction
accuracy of 50 microns for 1-meter-length rods. Moreover,
for a same accuracy, the computational time required by
the approach is similar to that based on the full continuous
Cosserat model of [21]], while it is 100 times faster than the
approach based on finite-differences of [33]. In the second
context, we show that the proposed formalism is compatible
with the stability analysis framework shown in [33]], but
making it more efficient. Indeed, once the static model of a
CPR is reduced on a basis of strain modes, it takes the usual
form of Lagrangian mechanics and its elastic stability can
be studied by simply analyzing the spectrum of the reduced
Hessian of the potential energy [33] as this is done for any
finite-dimensional model. However, in our case, the size of
the Hessian matrices to be computed is much smaller than
with the finite-difference approach used in the simulations
of [33[], making the analysis of the spectrum much more
computational efficient. Beyond its conceptual simplicity, it
is worth noting that the calculation of the reduced Hessian
of the CPR only requires the computation of matrices already
derived for the calculation of the robot kinemato-static model]
Thus, our formalism offers an efficient alternative approach
to the optimal-control-based analysis of the full continuous
model of [21]], which is used in our simulations as a reference.
Based on all these remarks, the main motivation of the article
is to show how the static stability analysis of CPRs can
be performed with the usual methods of finite dimensional
mechanics.

The paper is organized as follows. The next section deals
with the computation of geometrico-static model of a single
rod. We reintroduce the discretization framework proposed
in [57] that was used in order to obtain the dynamics model
of continuum robots with serial architecture. However, we
modified the approach so that we can have a computation of
the Jacobian matrices relating the motion of the leg tip to
the model input variables. In Section we first compute
the geometry and kinematic constraint equations necessary
in order to close the kinematic chains, and we then show
how to obtain the CPR geometrico-static model based on the
equations for a single rod. Then, in Section the kinemato-
static model is developed, and the way to verify the robot
stability is detailed. Section presents some case studies,
and finally, in Section [VII} conclusions are drawn.

II. MODEL OF A COSSERAT BEAM

In this section, we apply the geometrically-exact assumed
strain modes parametrization of [57] to a single rod, and
propose a different numerical implementation of its kineto-
static equations. This model will be next used to derive the
multi-rod model of a CPR.

2Following [59], we prefer to replace the word kinetostatic by the word
kinemato-static: Indeed, the former is an assembly of the words kinetics and
statics, and is not related with our present interest in kinematics, i.e. with the
study of the motion.

Fig. 1. Parameterization of the continuum slender rod

A. Geometry and kinematics of the beam

In what follow, for the sake of concision, we use a bit of Lie
group notations [[60]. We detail them in the Appendix [Al Let
us consider an hyperelastic beam for which we assume that
displacements are finite and strains are small. In what follows,
we consider that this beam will be one of the legs of a CPR.
Therefore, we will attach a subscript ¢ to all of its variables.

The Cosserat model consider that this deformable body
can be modeled by a set of continuously rigid cross-sections
stacked along a material line, parameterized by a curvilin-
ear abscissa s € [0,l;]. The location of the cross-section
at the abscissa s is parameterized by a frame F;(s) =
(Si, di1, diz2, di3)(s), where S;(s) and d;1(s) coincide with
the center of the cross section and its unit normal vector,
respectively. As a result, the configuration of the s-cross-
section is parameterized by the action of an element g, €
SE(3) on the reference frame Fy = (O, do1, do2, do3):
g:(s) = (Ry, pi)(s), where R;(s) € SO(3) is the rotation
matrix of J;(s) with respect to (wrt) Fy and p; € R? is
the position of S;(s) in Fy. Hence, the configuration space
of each beam, considered as floating, i.e. disconnected from
other bodies, is naturally defined as:

Cl =1{g;:5€[0,l;] = g,;(s) € SE(3)} (1)

Note that g,(s) is usually represented by an homogeneous
transformation matrix.
The s-twist field, or “space-twist” field in the local frame

ﬁi = [Kil Ki2 Ki3 Vi1 Vi2 ’yig]T from [0, lz] to 86(3) ~ RO is
given by (see Appendix [A] for the notations):
& = (g '9)" )

where (.) = 9(.)/0s throughout the paper. Note that &, is a
screw, whose resultant and moment are &; and -y;, respectively.
Rearranging provides the s-ODE g} = giéi, which once
supplemented with initial conditions g,(0) = g,,, allows the
field g,, to be reconstructed. Therefore, one can parameterize
the Cosserat beam configuration by (g;o,&;), where &, is a
field of (6 x 1) vectors in se(3) = RS. This leads to the
second definition of configuration space of a Cosserat floating
beam:

C2=SE(3) xS; (3)



where
Si = {& :s€0,li] = &(s) eR®} (4)

In &, k; = [ki1 ki2ki3)T corresponds to the s-rate of
change of orientation, 7y, = [vi1 Vi2 "}/,L'g]T corresponds to
the rate of change of position. Replacing s by t in the
above definitions allows introducing, the (time-) twist field
n;, = [wﬂ Wi2 Wi3 V1 Vi2 1}1‘3}T from [O, ll] to 86(3) = Rﬁi

n; = (g; ;)" (5)

where () = 0(.)/0t. w; = [wi wizwis)T corresponds to the
rotational velocity, v; = [v;1 vi2 v;3]7 to the linear velocity in
the local frame. It should be mentioned that throughout the
paper, all the tensors and vectors related to a beam cross-
section are expressed in its mobile cross-sectional frame,
except for the quantities attached to the robot platform which
will be expressed in the fixed (inertial) frame. A key relation,
proven in Appendix [B] relates the twist field n; to the strain
field time-derivative £, by:

n(s) = Ad;il(s) <Adgmmo +/ Adg, (& dif) (6)
0

where we note 7,, = n,;(0), while Adg, is a (6 x 6)
matrix allowing a twist to be transported from a frame to
another one, both frames being related by the transformation
g (see Appendix [A). Note that this expression, which will be
exploited later in the paper, stands for the Jacobian between
the definitions C} and C? of the beams configuration space.

B. Geometrically-exact strain modes reduction

The beams considered in this paper are long and thin, thus
we will neglect the shear and extensibility, and use the sub-
model of inextensible Kirchhoff beams. This can be done, by
imposing:

51‘ = Bﬁm + B&;C (7

with §,, = K, the sub-vector of the allowed components of &,
(here the 2 curvatures and the twist), and &;, = v, = [100]7
the sub-vector of its constrained components (related to the
stretch and shear internal states). In these conditions, we have:

13x3| 5 _ |O3x3
B = y B = 8
|:03><3 1343 ®
Defining &;, = (g;,'g’,)", the space-twist of a stress-less

reference configuration of pause field g,,, in the small strains
assumption, the field e = BT (¢, — €,,) = &,, — &€,,,, defines
a strain field along the rod. For the purpose of numerical
resolution, we reduce the field k; = §,, by using the following
assumed strain modes decomposition:

€= @i(s)qei = 51’(1 = Siao + Qi(s)qei &)
where q; is a set of generalized coordinates, £,,, = BT¢,,
and
®7t 0 0
®, =0 @3> 0 (10)
0 0 &

. mg . .
with ®;7 a shape function row-matrix of m; modes. For

instance, as suggested in [57], CE':;L’ can take the form

/7 = [1ss* ... s™ ] if the jth component of &;, is
parameterized with m; shape functions. However, even if this
polynomial basis is possible, it can lead to ill-conditioned
stiffness matrices. Different bases should be alternatively used,
as othogonal Legendre or Chebyshev monomials, splines, etc.
In the following of the paper, we decided to use Legendre
polynomials. At the end, the vector qe; is made of m; =
m1 + ms + ms components. With this further reduction,
the configuration space of our n Cosserat beams becomes
1=1,2..n:

(1)

which stands for the set of all possible (g;g, Qei)s. As a first
illustration of this reduction, note that introducing this reduced
kinematics into (6) provides the reduced kinematic relation on
the strain basis:

C} =SE(3) x R™

n;(s) = Jir(8)n;0 + Ji2(5)q,s; (12)

with J;1(s) = Adgil(s)Adgio is an (6 x 6) matrix and
Jio(s) = Ad_ ' Jia(s), Jis(s) = [o Adg, () B®idz, Jia,
and J;3 being (6 x m) matrices. It should be mentioned that
in the general three-dimensional case, the expression of the
matrix J;3(s) (and thus J;2(s)) cannot be explicitly obtained,
but can be still computed using standard numerical integration

algorithms.

C. Reduced model of the restoring forces

In the small strains assumption, the strain € = §;,—§;,, can
be related to the stress-couple o;, by the linear constitutive
relation:

Oiq = Ha(Em - éiao) (13)

where H, = diag(G Jy, E Jo, E J3) in which E and G are
the Young’s and shear moduli of the material, respectively,
and J{, Jo and J3 are the second moments of area (around
the axes of the local frame) of the cross-sections, respectively.
Introducing (7) to (I0) into the definition of the virtual power
of internal forces (stress), and simplifying, we get its (reduced)
expression in C3:

l;
% )
1*m‘1 = / U'ZL £ ds= q;T Kei Qe (14)
0

where the symbol “*” indicates a virtual velocity or power,
. L . X

while K, = fo @,L-T H, ®,;ds is a constant matrix of gener-

alized stiffness.

D. Reduced model of the external forces

Here we consider a deformable rod subject to two external
wrenches exerted at each of its extremities (w;o = [m%, £5]7
at s =0 and w;; = [mg fg]T at s = l;, where f;o (f;;, resp.)
and m;q (m;;, resp.) are the force and moment of the wrench
w;o (W, resp.)), and to a density of pose-dependent external
wrench w distributed along it. In these loading conditions, the
virtual power of external forces is given by:

l;
ot = / W/ n; ds -+ winl + wing, (15)
0



where 7,, = m,(l;). Now, introducing the virtualization
of (12), into this expression, and simplifying, allows express-
ing the virtual power of external forces as:

x 1T li )
Pyt = [m*o} / I (s)w;ds + l:WzO:| + 37 (L) wa
’ Qe 0 0
(16)

with JZ(S) = [le(S) JZQ(S):I

E. Reduced static balance of a single rod

Finally, stating that the balance of virtual works P* , . =

ext,i

—Pi.t.; holds for any value of q7; and 7}, provides, with the

expressions (I4) and (TI6), the static balance of each beam in
its reduced configuration space C;:

Wil [ wio+ Wi+ J5(L)way
Qei|  |KeiQei + Qwi + J?;(li)wiz

where W, = [0" 3% (s)W; ds, Qui = Jo' I%(s)W; ds, while
W; € RS, Q,; € R™:.

=0 17)

F. Practical implementation of the equations

We now focus our interest on the numerical computation
of (I7). This computation needs to integrate the s-ODE
g, = gifi while preserving the orthogonality of R,;. This
could be achieved by quadrature, using Magnus expansion of
controlled order [61]]. Here we circumvent the difficulty by
parameterizing the beam rotation matrices R;(s) with unit
quaternions hl(S) = hzo(s) + hip (S)i + h12(8)j + th(S)k,
with h’h; = 1 and we have R;(s) = R;(h;(s)) and
h; = A(k;)h;/2 with A(k;) a standard operator reminded
in [57]]. As a result, the different vectors and matrices of
can be numerically computed for each leg, by applying a
standard ODE integrator to:

h; A(k;)h;/2

5 | Pi Ri(h;)v;

s Jis | = Angq,(S)]_?’T'I’ii (18)
W; AdgiOAdgi(s)Wi
Qi JLAd, (Wi

with, as inputs considered to be known: qe;, h;(0) and p;(0),
the initial values of the other variables being null. It should
be noted that, in [57]], two successive forward and backward
integrations of the Cosserat model with assumed modes are
used in order to compute the above generalized external
forces. Here, we have preferred a Jacobian formulation of
the problem, which leads to the same numerical results in
a single pass. Next section deals with the computation of the
geometrico-static model of parallel robots.

III. GEOMETRY AND KINEMATIC DESCRIPTION
OF THE CONTINUUM PARALLEL ROBOT

In this section, we first describe the general class of
continuum parallel robots that we are going to analyze, as
it is proposed in [21], [29]. Then, we provide the general
expressions for its geometry and kinematic constraints.

motor 7

Fig. 2. A general continuum parallel robot

A. Description of the continuum parallel robot

Let us describe the generic continuum parallel robot ar-
chitecture that we consider in this paper (Fig. 2): it is a
robot which is made of n slender flexible beams (called legs).
An extremity of each rod is connected to a motor at one
end (points A;, i = 1,...,n), the other extremity to a rigid
moving platform via a joint (at points B;, i = 1,...,n),
which is either a passive revolute joint, a passive spherical
joint or a fixed joint, as proposed in [21]], [29]]. The legs can
be either of constant length and connected at points A; to
an active revolute or prismatic joint as it was done in [29],
or of variable length, i.e. acting like a soft cylinder fixed
on the ground at point A; as proposed in [21]. Other types
of legs could be considered, by modifying the equations of
the constraints and the Jacobian matrices associated to the
motions of the motors. The robot moving platform, on which
is located the end-effector, is considered to be rigid and
endowed with the frame F, : (P, dp1, dpe, dps) attached
it, with P the platform center of mass. Its configuration
is parameterized by g, = (R, pp) € SE(3)where R,
is the rotation matrix of J, with respect to Fy, with also
n, = (95'9,)Y = [wl vI]" € se(3) = RS, the platform
twist (in the platform frame), w;, and v, being the platform
rotational and linear velocities, respectively. Thus, using the
previous parametrization of legs, the configuration of our
continuum parallel robot can first be parameterized by g,
and the set of all the (g;, g4;)s- Note that in this definition
of the configuration space, all the beams and the platform
are disconnected from each other. In the next section, such
a connection is performed. This concerns the connection of
each leg with the base and with the platform, the first being
ensured with a minimal set of coordinates, the second with a
set of constraints and Lagrange multipliers.

B. Geometry and kinematics constraints of the CPR

Each leg of the CPR can be seen as a continuum beam which
is subject to two types of geometry and kinematic constraints:
platform and motor constraints.

1) Motor constraints: For the robots studied in this paper,
motors are placed at one extremity of the beam (point A; at
s = 0). Other types of motors, with distributed actuation or
soft cylinders (i.e. legs with varying length), could be also
taken into account by using the formalism of [57]. However,
we restrict our approach to the case of rods of constant length



for reasons of brevity. The position of the motor ¢ is denoted as
Gai, and all motor variables are grouped in the vector q, € R".
When the motor ¢ is mounted at the proximal end of the beam
i (at s = 0), the pose g, = (R, p;)(0) of the proximal frame
Fi(0), whose position and/or orientation may vary depending
on the motor displacement, is a function of g, i.e.:

9io — Gi(¢ai) =0 19)
thus leading to the generic kinematic constraints:

Nio — Jaidai = 0, (20)
where J,; = [(1 — 0)al gal]T with a; the direction of the

motor axis, and o = 0 if the actuated joint is revolute, o = 1
if it is a prismatic one. Invoking duality between efforts and
velocities through virtual powers, we also have:

TaiGl; = Wiy and thus 7,; — JLw = 0, (21

where 7,; is the motor force or torque. Note that (I9), (20)
and (ZI) define a reduction of the configuration space of
the beams, which are now connected to the base. Formally,
using these relations for modelling our CPR means that its
configurations are now parameterized by g, and the set of all
the (q.;, g.;)s- Finally, in all the subsequent developments, we
use this later definition of the configuration space of a CPR. In
particular, the connection of the legs with the platform does not
require any further reduction, since it leads to using Lagrange
multipliers in the model.

2) Platform constraints: The platform constrains the ex-
tremity of each beam to be attached on it through a passive
joint located at point B;. Several types of joints, leading to
different constraints, can be considered, as spherical joints,
fixed joints or also revolute or cardan joints. For reasons of
concision, we focus only here on spherical and fixed joints.
The equations for other types of joints can be derived by using
the results of [21]], [33]]. Thus,

o For fixed joints: the frame JF;(l;) attached at the
end of the beam ¢, and parameterized by g, =
(R;, pi)(li) = (Ry, pat), is coincident with the frame
Fpp; ¢ (Bi, dp1, dp2, dp3) parameterized by g,p, =
(Rp, pp;) to within a constant transformation g, =
(Rei, 0), Re; = RgRil being a constant rotation matrix.
Note that pp, = pp, + Rpb;, vector b; being a constant
in F,,. In other words, we have the geometric constraints:

pp +Rpyb; —piy =0 (22)
(R,R.R], —RyRLR])Y =0 (23)

also written as ¥; = 0. Time-differentiating these ge-
ometric constraints, or alternatively using standard twist
kinematics, provides the kinematics constraints associated

to 22]23):

where RT 0
_ _ ci 3x3
T = Ad, = {RZ;Bi RCTJ (25)
Using in s =1;, and (20), can be rewritten as:
Tin, — JirdaiGai — Ji2Qei = 0 (26)

o For spherical joints: for such joints, there are only
constraints on the positions, not on the orientations. Then,
for the geometry, only constraint holds while for
kinematics, the constraint @]) should be rewritten as:

[03x3  13x3] (Tim, —my) =0 (27)

Again, using (12, and (20), this constraint can be detailed
as:

(0353 13x3] (Tin, — JiJaiGai — Jiodei) =0 (28)

In what follows, we will use generic notations for character-
izing the platform constraints:
« for the geometry:

¥ (qai» 9eir gp) =0 (29)
o for the kinematics:
. qai
W= [Jaga, Jae, In] |G| =0 (30)
Mp

where in = CiTi, ani = _CiJilJai, qui = —CiJiQ,
with C; = 1gxg in the case of a fixed joint,
C, = [03><3 13X3] in the case of a spherical
joint.

3) Final form of the leg constraints: Finally, when stacking
all constraints for the n robot legs:

o The total geometric constraints are defined by all rela-
tions 29), fori =1,...,n:

v =[wl w7 (31)

In what follows, ng denotes the number of components
in ¥, and ¥ € R"?,

o The total kinematic constraints are defined by all the
relations (30), for i = 1,...,n:

U=Jv=0 (32)
where v = [¢] 7 ng]T, Qo = [¢a1---qan)’ € R,
qe = [al;...ql]" € R, with n, = Y7 my,
J = [Jqa Jge Ip), with J, = (JT,...,J0 )T, and

Jga and Jg two block-diagonal matrices defined by
Jga = diag(Jga,,--Jqa, )» Jge = diag(Jge,, -, Jge, )-
Thus, J € R™7X(+m) where m = n, + 6.
Note that (3I) and (32) defines a geometric and kinematic
model of the CPR on its configuration space.

IV. GEOMETRICO-STATIC MODEL OF THE
CONTINUUM PARALLEL ROBOT

In this section, we provide the expressions for the continuum
parallel robots geometrico-static model that will relate:
o the n variables in q,,
o the n values of the motor generalized forces 7, =
[Tal - - Tan) T,
o the n. variables in q,
« the six independent components of the group transforma-
tion g,
o the ny components of a set of Lagrange multipliers A,
to the robot external loading. Furthermore, we discuss the
algorithmic implementation of the equations.



A. Geometrico-static model

According to our definition of the configuration space of
a CPR, we need to set the static balance of the platform
in SE(3) (indeed, the space of wrenches se(3)*), and those
of legs connected to the base, in the space of their motor
and strain coordinates. These equations are related together
through a set of reaction wrenches whose components define
some Lagrange multipliers in charge of forcing the constraints
imposed by the connection of the legs with the platform. Let
us now consider the static balance of the platform: each leg
exerts on it a wrench w;; = [m} f1]7 through the joint at
point B;, which balances an external wrench w,, = [mg pr 17,
which is expressed in the platform frame (f}, is its force, my
its moment), and includes the gravity effects. As a result, the
force and moment static balances are, at point P, and in the
inertial basis:

Ryf, - > Rifyy =0 (33)
i=1

Rpmp - Z Rim; — Z pri xR;f; =0 (34)
i=1 i=1
or also, in terms of wrenches:

wp— Y T/ w;=0 (35)
i=1

where T; is defined as in (23). Assuming the joints to be

ideal, the components of w;; along their allowed degrees

of freedom are zero, while the others define the vector of

Lagrange multipliers A; according to the relation:

wi = CI'\ (36)

where C; is a selection matrix defined below (30). Introducing
into (35)) provides the expected platform static balance of

wrenches: "
Z Ty, _
Wp — JpzAl =0
i=1

where we used the notations below (30). To get the static
balance of legs, we introduce into (I7), that we project
onto the legs configuration space by pre-multiplying the first
of their rows by JZ.. This provides the expected static balances
of the legs:

|:Qai:| _ [ Tai —|—JZ;WL - Jga-Al

3 — 0
Qei] ~ |Keilei + Qui — JL A

where we used the notations introduced in @, while remark
that Q,; € R. Now, stacking and with all equa-
tions for ¢« = 1,...,n, provides the expression of the
geometrico-static model of a CPR:

E=H-IJ'X = 0
v = 0

where J is defined by (32), H = [H] HI HI]T € R Fnett
in which:

o« Ho=[HL ... HL T € R" with
Hai = Tai +J£Wz eR

(37

(38)

(39)

(40)

W; being defined in (T7)),
He = [HE ... HT]T € R with

Hei = KeiQei + Qi € R™ 1)
Qi being defined in (T7),
° Hp =W, € RG’
_ Jl?' T nw
e A =X\ ...\, ]" € R™ can be seen as a vector of

Lagrange multipliers, that gathers all the independent
components of the wrenches w;;.

The number of equations in (39) is thus equal to n+m-+ny
(remind that m = n. + 6), since we have:

e as many equations in £ as the number of variables in
laf af nl]", ie. there are n + n. + 6 equations in £.
e Ny equations in W.
The number of unknowns to be found is equal to 2n+m-+ny,

since we have:

e n variables in q, and n. variables in q.,

« 6 independent variables in g,,,

e 1 variables in 7, and ny variables in A.

Thus, there is a total of n+m+nyg equations for 2n+m-+ny
unknowns in (39). Finding solutions to is the goal of the
next section.

B. Forward and inverse geometrico-static problems

The geometrico-static model is a system of n +m +
ny equations and 2n + m + ng unknowns (q,T.,A) =
(da; dp; Qu; Ta, A), wWhere q, denotes a vector of n controlled
outputs generally chosen among the parameters of the platform
while q, is the vector of residual uncontrolled coordinates.
As a consequence, fixing n variables to some desired values,
provides a square system of equations, having generically
a finite number of solutions. The forward geometrico-static
problem consists in fixing the n motor positions q, to some
desired values and to compute the corresponding n controlled
coordinates, the n input torques T ,, the m uncontrolled coordi-
nates qp, and the ny Lagrange multipliers A so that (q, 7a, A)
is solution of the implicit geometrico-static model (39). It
should be mentioned that a variant of the forward geometrico-
static problem consists in fixing T,, instead of q,. However,
we will not further discuss about this alternative choice. The
inverse geometrico-static problem consists in fixing the n
controlled coordinates q,, to some desired values, and to
compute the corresponding n motor positions q,, the n input
torques T,, the m uncontrolled coordinates q,, and the ny
Lagrange multipliers A, so that (q, 7., A) is solution of the
implicit geometrico-static model (39).

In both cases, the computed configurations q,, q, and qy,
and input efforts 7,, are only local extrema that must be
additionally checked to be local minimizers of the potential
energy (see [33]]), i.e., to be actual stable configurations. The
computed multipliers A are useless in practice, but they actu-
ally have to be computed when solving Lagrange conditions
associated to an equality constrained optimization problem.
Moreover, they are necessary to assess the stability of the
associated solution. The stability conditions of the computed
local extrema, are detailed further in Section



C. Algorithmic implementation

For solving this system of equations, standard solvers can
be used (e.g. Newton-Raphson, Levenberg-Marquardt, Trust
Region algorithms [62]: those three methods are available in
the fsolve function in Matlab). In any case, the inputs/outputs
will be:

o for the forward geometric problem:

— inputs: imposed values for q,, and an initial guess
for qpu = [qp qu]?, Ta and A,
— outputs: values for qp,, T, and A.
« for the inverse geometric problem:

— inputs: imposed values for qj, and an initial guess
for Qau = [qa qu]T, T, and A,
— outputs: values for q,y, T, and A.
Whatever the type of problem, the geometrico-static
model will be solved by following the steps detailed
hereafter:

1) Provide initial values for q, 7, and A: the algorithm
will update the values of the unknowns only, and keep
constant the values that have been fixed (q, for the
forward prolem, q, for the inverse problem),

2) For i = 1,...,n, solve the system of ODEs (I8) =
Obtain the values of W;, Qwi, pir» Ry and J;2(l;); in
this work, we used a standard Runge-Kutta 45 solver
(function ode45 in Matlab), but another type of solver
could have been chosen (see for instance [63])

3) Compute H, ¥ and J, then compute the model equa-
tions (39,

4) Iterate with the nonlinear equation solver (i.e. change
the values of the unknowns in q, 7, and A) as long as
both £ and W are not equal to O.

It should be mentioned here that using one of the above
mentioned standard iterative solvers (e.g. Newton-Raphson,
Levenberg-Marquardt, Trust Region algorithms [62])), requires
to compute the Jacobian matrices of the model. By default, this
can be achieved numerically by resorting to finite differences
approximations. However, using their exact analytical expres-
sions allows to considerably speed up the computational time.
This second approach is here used and the corresponding ex-
pressions of the Jacobian matrices are detailed in Appendix

Next Section deals with the computation of the kinemato-
static model.

V. KINEMATO-STATIC MODEL OF THE
CONTINUUM PARALLEL ROBOT

In this Section, we give the expression of the kinemato-static
model, which relates

e The variations Aq,, Aqe, of the motor and elastic
coordinates

o The variation AX, = (g, 'Ag,)" € se(3) = RS of the
platform configuration (in the platform frame). Note that
if this variation were performed with respect to time, it
would merely coincide with the platform twist 7,,,

o To the variations AT,, Awy,, and AX of the input efforts,
platform wrenches and Lagrange multipliers,

where, in these variables, the symbol A(.) stands for a small
variation of the variable written on its right-hand side.
We also discuss the conditions for robot stability.

A. Derivatives of the geometrico-static model

The kinemato-static model of the robot can be derived
by computing the variation of the equations (39) w.r.t. all
variables q,, qe, Pp and hy,, w.r.t. multipliers A as well, but
also w.r.t. T, and wy,. Thus, the kinemato-static model is given
by:

AE =PeAS, + [ #2] Ada

(42)
+ [22] Age + [5] Ax+ [82] Aw =0

where Aw = [A7] Aw[]" € RS*", and the kth component

Per of Pg is given by:

c Rlxﬁ

43)
with, from [48]], & the kth component of £. Additionally,

vT
— Oy T T O& _ Oy T
pek [app Ry (Rp OR, OR, R,

AV = J . Adg + JgeAge +Jp,AX, =0 (44)

As a result, the kinemato-static model of the CPR can be
written as:

WeAw = PgAEP + AcAq, + EcAqe + AsAX  (45)

0= JPAEP + anAqa + quAQe (46)

with:
. Ap = [25] e ROviminn,
. Be = [2£] e Rovmicn.,
o Ag=[2%%]=J7 e RIntm)xnw gpg
17L><n 0
We = — 0 0 c R(n+m)><(n+6).
0 16><6

The expressions of the Jacobian matrices A¢ and E¢ can
be obtained by using the approach [64]. They are provided in

Appendix [C|

B. Kinemato-static model of the CPR

For the kinemato-static analysis, there is little interest to
characterize the variations AX w.r.t. to the others. Therefore,
it is worthy to eliminate the multipliers variations AX from
the system of equations. Removing A\ can be done by using
the matrix Z spanning the nullspace of the matrix Ag, which
satisfies ZT Ag = 0 by definition. Under the assumption that
Ag is full rank, the matrix [Z A¢] is square and nonsingular.
Therefore, left-multiplying by the nonsingular square
matrix [Z Ag]T gives rise to the following block-triangularized
system equivalent to (@3):

0 =Z" (P:AZ, + A¢Aq, + EcAq. — WeAW) (47)

0 =AL (P¢AZ, + AgAqa + EgAqe + AcAX — WeAw).
(43)



Finally, we can gather Equations and (@6) to obtain the
final expression of the kinemato-static model of a CPR:

AAq,+PAY, +EAq. = WAwW, (49)
where
T T
A= |:Z AS:| c Rrxn7 P= |:Z P5:| c RTXG,
Jaa Jy
ZTE ZTW (50)
E— £ c R™XPe W = £ ERTX(nJrG)
Tee ’ 0

where r = n+m (recall that m = n.+6). Remaining Eq.
can be then used in order to compute the variation AM.

Note also that the same elimination process could be used
to remove the variables Aq, from @]), provided that E is a
full rank matrix.

C. Forward and inverse kinematico-static problems

Using the definition of Aw below (#2)), one can introduce
the two matrices W, and W, and detail the right hand side

of as:

WAwW = -W, AT, — W, Awy,. (51)

A square system of equations is obtained by fixing n + 6
components in the vectors Aqa, Aqe, AX, and Awyp, leading
to the forward and inverse kinemato-static problems:

o Forward kinemato-static problem: Given Aq, € R™ and
usually Aw, € R®, compute Aq,, AX, and AT, by
solving the linear system (49), which becomes a system
of r equations and r unknowns. Provided that matrix
[P E Wa] is nonsingular, the solution of the forward
kinemato-static problem is

izp -1 Aqa
Q@ | =—[PEW,] [AW.] | " (52)
AT, P

It should be mentioned that instead of putting the vector

Awy, as input of the forward kinemato-static problem,

6 other components of the vector [AES Aql ATaT]T
could have been chosen.

o Inverse kinemato-static problem: Given A, € RS and
usually A1, € R", compute Aq,, Aq. and Aw,, by
solving the linear system (49), which becomes again a
system of n+m equations and n+m unknowns. Provided
that matrix [A E Wp] is nonsingular, the solution of the

inverse kinemato-static problem is

Aqa
Ag. | =—[AEW,] ' [P W,] ﬁf?} . (53)
Aw, #

It should also be mentioned that instead of setting
the vector AT, as an input of the inverse kinemato-
static problem, n other components of the vector
[Aql Aq? AwD }T could have been used.

Finally, the unsolvability of the forward and inverse
kinemato-static problems due to the nonregularity of the
matrices to be inverted in and leads to the main
conditions of singularities. General conditions of singularities
of the kinemato-static model have been analyzed in [33]].

D. Stability analysis of the CPR

For analyzing the robot static stability, let us come back
to the definition of its potential energy. Here, external 3D
moments being non-conservative [65]], we consider that none
of them is applied on the robot. As a result, its total potential
energy U is provided by the expression:

n 1
i 1 _
U= Z/O <QC;TFRZ- - fZ-TpZ-) ds — 0fgpp ~7lq. (54)
i=1

where f; is a distributed external force on the leg 1, Ofp is a
force applied on the platform, constant in the world frame,
and the expressions of ¢; and k; are provided as a function
of qe in Section [lIl A solution of the geometrico-static model
is necessarily a configuration which minimizes the potential
energy U under the geometric constraints ¥ = 0, for a fixed
value of T,, i.e. it is a solution to the following optimization
problem:

(9ps da, de) = argmin(U) subject to ¥ =0 (55)

A solution to this optimization problem is also a solution to
the equation:

0L=0 (56)

where £ is a Lagrangian function given by £ = U+ %7 X and
oL is its first variation which is a function of the variations
0%, 0da, 0qe and §A, ie.

6L = phoX, +akiq, +ekdq. + 126X =0 (57)

Skipping the mathematical derivations, it can be proven that
[al el pL]T = &£ and that 1 = W, i.e. the variation
leads to the geometrico-static model. As a result, the right-
hand side of the equations and ({@6) defines the second
variation of £ as a function of the variations AX,, Aqa, Aqe
and AX. As shown in [62], the stability of the configuration
can thus be checked by analysing the positive-definiteness of
the matrix H, defined as:

H, =Z"HZ (58)

where

H=[As E¢ Pg (59)

all these matrices being given above. Let us now deal with
some case studies.

VI. CASE STUDIES

In this section, we will model two robots (a planar robot
with two degrees of controllability, and a spatial one, with two
degrees of controllability) and compare the model prediction
of our approach with the full continuous approach of [21].

A. The planar RF RF' R robot

In this Section, we study the continuum planar parallel robot
RFRFR robot made of two rods which has been presented
in [26] (Fig. ). It is composed of two actuated revolute (R)
joints, each being mounted on the ground and attached at
one extremity of a flexible rod (). Both flexible rods are
connected at their extremity through a passive revolute (R)



motor 2

motor 1

Fig. 3. Schematics of the RF'RF'R robot (to scale).

joint. The pose qy, is the coordinates of the point P denoted

by (z,y).
Parameters of the rods are as follows: They are straight
at rest, with length L = 1 m, and circular cross-sections

of radius 1 mm, their Young’s and shear moduli are £ =
210 GPa and G = 82 GPa, respectively, and their density is
p = 7800 kg/m>. The distance £ 4, 4, between the two motors
is £4, 4, = 0.4 m. No external wrench is applied. The joint at
the end-effector (point P) is considered to be massless.

The robot is modeled with the planar deformation assump-
tion used in [26]], [44] and Kirchhoff internal kinematics (i.e.
inextensibility and unshearability are assumed). Numerical
resolution is performed with our approach taking the same
number of bending modes m,; per leg (in what follows,
m; = 3, 4 or 5), and with the continuous approach and shoot-
ing algorithm of [21]] (also restricted to the planar Kirchhoff
kinematics) with Matlab. The reduced approach of the article
is then compared to [21]] in terms of accuracy of prediction for
the geometrico-static model, computational time, and stability
prediction.

It should be mentioned that, for all computations shown
thereafter (for both our model and the continuous Cosserat
model [21]]), the solver used is the Levenberg-Marquardt
algorithm encoded in the Matlab fsolve function, with an initial
damping of 0.1.

1) Model prediction accuracy: For checking the model
accuracy, let us first estimate the position of the end-effector
both with our model and the model [21] along a path followed
by the motors defined by:

t

N

Qa(t) (qaf - QaO) + Qa0 (60)

where Q.o (qaf, resp.) is the motor initial (final, resp.) con-
figuration, n. is the number of tested configuration along
the path and ¢ an integer between O and n.. Here, we took
Qao = [2-59 0.55]7 rad, qa.¢ = [5.76 3.67]7 rad. An example
of computed configurations along this path for n, = 10 is
shown in Fig.

The error of prediction between our model (denoted as
Mod. #1) and the model [21] (denoted as Mod. #2 for the

3Here, we consider that the numerical solution of the model [21] is the
ground truth. However, even ODE solvers are prone to solution errors.

y [m]

081 initial
0.6 ¢ confiy.
0.2+

0.4 ¢

0
-0.2+
-0.4+ . final
0.6 esz‘izmted/ config.
-0.8} re

12 -08 04 0.8

Fig. 4. Path estimated for the RFRF R robot modelled with 5 modes per
leg (to scale).

TABLE I
MEAN, MINIMAL AND MAXIMAL ESTIMATION ERRORS W.R.T. MOD. #2
FOR THE END-EFFECTOR POSITION AND FOR THE MOTOR ANGLE
POSITIONS AS A FUNCTION OF THE NUMBER OF MODES PER LEG IN
MobD. #1, COMPUTED ON 51 CONFIGURATIONS FOR THE RF RF R ROBOT.

Position error [mm)] Motor angle error [mdeg]
Nb. of modes | Min Max  Mean | Min Max Mean
3 0.11 9.22  1.50 13.75 18.50  16.13
4 4.5e-3 268 0.68 3.10 3.18 3.14
5 6.5e-5 0.13  0.029 | 1.40e-2 0.15 8.12e-2

end-effector position for n.+1 = 51 configurations computed
by feeding the forward geometrico-static models with the
equation is shown in Fig. and a summary of the
results is presented in Table[[} As expected, the prediction error
decreases with the number of modes. With five modes per leg
(i-e. g has 10 components in totality), the mean error is lower
than 30 microns, which is usually much enough for a robot
with legs of 1 m, when considering all disturbing unmodelled
phenomena that could arise in a real experimentation.

We then compared the same robot modelled with a finite
difference approach as in [44] (denoted as Mod. #3) with
Mod. #2. Results are shown in Fig. and a summary of
the results is presented in Table [lI} For having an error similar
the error obtained with our approach with 4 modes per leg
only, 1000 elements per leg (and thus, 2000 elastic variables)
are necessary, which leads to system of equations of large
dimension which are time consuming to solve.

We finally compared the validity of the inverse geometrico-
static model, i.e. the error of prediction of the motor angle
values with respect to Mod. #2, along a path followed by the
end-effector defined by:

t

Ne

dp(t) (dpf — dpo) + dpo (61)

where qpo (qpf, resp.) is the end-effector initial (final, resp.)
configuration. Here, we took qpo and qp¢ as the initial and
final configurations of corresponding to q,g and qus, respec-



-
=)
)

o

3 modes
\

=
o

\/

ES

[ —
(e (e
b ;

=
o

End-effector position error [m]

,8 | | | | | | | | |
10°6—5 10 15 20 25 30 35 40 45 50

Number of configurations

(a) Error in the estimation of the end-effector position for our
model as a function of the number of modes per leg

10!
&
g 102 50 elts
(5]
5 \100 It
R= elts
é 10° 500 elts._
g
8 1000 elts
% 10
)
g
€3]
10° " ! ‘ L L
0 5 10 15 20 25 30 35 40 45 50

Number of configurations

(b) Error in the estimation of the end-effector position for
the finite difference approach as a function of the number of
element per leg

Fig. 5. Error in the estimation of the end-effector position for our approach
and for the finite difference approach [44] w.r.t. the continuous Cosserat
model [21] for 51 configurations of the RFRF' R robot spread along the
path shown in Fig. [d

TABLE 11
MEAN, MINIMAL AND MAXIMAL ESTIMATION ERRORS W.R.T. MOD. #2
FOR THE END-EFFECTOR POSITION AS A FUNCTION OF THE NUMBER OF
FINITE ELEMENTS IN MOD. #3, COMPUTED ON 51 CONFIGURATIONS FOR
THE RF RF R ROBOT.

Position error [mm)]
Nb. of elts. | Min  Max Mean
50 1.50 5344 1294
100 0.72 2776 6.59
500 0.14 571 1.34
1000 0.07 2.86 0.67

tively. Results are provided in Tab. [, With five modes per legs,
the prediction error of our model is lower than 1.5e-4 degrees,
which is more than acceptable.

2) Computational time: We also want to analyze the com-
putational performance of our model. For this, we fed the
forward geometrico-model (our model (Mod #1) with 5 modes
per leg, the continuous Cosserat model [21]] (Mod #2) and the
finite difference approach (Mod #3) with 1000 elements per
leg) with the equation for varying number of configu-

TABLE 111
TOTAL COMPUTATIONAL TIMES FOR THE n. + 1 CONFIGURATIONS WITH
OUR MODEL (MOD #1, 5 MODES PER LEG), THE MODEL [21]] (MOD #2)
AND FINITE DIFFERENCES (MOD #3, 1000 ELEMENTS PER LEG) FOR THE

RFRF R ROBOT.
ne | Mod #1 [s]  Mod #2 [s] Mod #3
50 | 2.8 1.9 325
30 | 1.6 1.1 202
15 | 0.8 0.7 105
10 | 0.6 0.4 87
5 0.3 0.3 57

rations n. and we recorded their durations for providing the
results in terms of end-effector configuration. For making a
fair comparison, for all models tested in this section:

o The initial configuration is already known and is used as
the first initial guess of the solver.

o For the other configurations, the initial guess is a pre-
dictor based on the knowledge of (i) the configuration
computed at the step before, (ii) the model Jacobian
matrix whose nullspace can be used in order to predict a
variation of the model variables in the next configuration.

o All computations are run 10 times and the computational
time provided is the mean time.

o The analytical Jacobian matrices are implemented in both
approaches in order to speed up the computation.

o The setting parameters for the Matlab function ode45 are
the “by-default” ones are are identical for all approaches.
Moreover, for the fsolve function, the stopping parameters
are also set as identical for all models.

Results are shown in Tab. m Globally, our model with 5
modes per leg (i.e. with a mean accuracy of 30 microns) is
as computational efficient as the continuous Cosserat model.
For a lower accuracy of prediction, the computational time of
the finite differences approach is already more than 100 time
bigger.

3) Checking stability: In this section, we compare the
prediction of stability based on the analysis of the spectrum
of the matrix H, defined in Section [V-D| with the criterion
defined in the work [48]]. In this latter context, the stability of
the configuration is assessed by looking at the determinant of
a matrix denoted as b (u) which must be computed all along
an integration interval w € [0, 1. If this determinant is null for
u = uep € [0,1], a so-called conjugate point appears, which
is a condition of unstability. We do not provide any further
details on the computation of the matrix by (u) and refer the
reader to [48|] for any details of implementation.

In Figure [6] we show the robot end-effector configuration
space computed with the flooding algorithm proposed in [33]]
for the leg buckling modes shown in Fig. [3] In this picture, we
highlight in red the areas where the inverse condition number
of the matrix H, in @) is lower than 10~%, i.e. near which
stability issues may appear. Note that this value of 10~* has
been fixed in order to have a better display of the results in
Fig. [6} For checking the prediction of stability based on our
model, we define a path between points X; = (0, 0.8) m and
X5 = (0, —0.2) m along which the stability criterion defined
in the work [48] will be computed. Along this path, 50 points
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Fig. 6. Path tested in the workspace.

are defined. In Fig. [7| the minimal value of det(b,) for each
point is plotted, in parallel as the smallest eigenvalue o; of
the matrix H.,.. From Figs. [7]and [8] we observe the following
things:

e From point X; (o1 > 0, o9 > 0) to point X, (o7 = 0,
o9 > 0, excluded) on the singularity of H,. (see Fig. |§[),
there is no conguate point

e At point X5 (07 =0, o2 > 0), a conjugate point appears
on the integration interval at v = 0, meaning that we
reached a limit of stability.

¢ From point X5 (01 = 0, o5 > 0) to point X4 (o1 < 0,
o9 = 0, excluded), a single conjugate point exists on the
interval v € [0 1], meaning that the robot is instable along
this path.

e At point Xy (07 < 0, o2 = 0), a second conjugate
point appear, meaning that we cross a second zone of
singularity of H,..

e From point X, (o1 < 0, 02 = 0) to point X5 (07 <
0, oo < 0), two conjugate points exist on the interval
u € [0 1[, meaning that the robot has two degrees of
unstability.

To summarize, every time an eigenvalue of the Hessian matrix
crosses zero, a conjugate point appears.

B. The spatial 6 — RF'S robot

Here, we study a continuum spatial parallel 6 — RF'S robot
made of six rods (Fig.[0). Each rod is connected at the ground
via an actuated revolute joint (points A;). Its extremity is
linked to a rigid moving platform via a passive spherical joint
(S joint at points B;). Because the robot has six motors, it is

0.02
0.015 ¢t
0.01
0.005 t ;

0
-0.005¢
-0.01
-0.015¢
-0.02 +

0025540 15 20 25 30 35 s 5012
, Number of configurations A ‘
X, g XX, X

bN

—

min(|b,|)

Fig. 7. Comparison stability criterion from [43] and the two first smallest
eigenvalues o1 and o2 of the reduced Hessian matrix H,..

possible to control the position and orientation of the frame
Fp: (P,xp,yp,zP).

In the base fLaLne Fo : (O,x,y,z), positions of points A;
are given by: OA; = rp, [cosy; siny; 0]7 (i = 1,2,3) with
rp, = 0.25 mand v; = 0, v2 = 27/3, and v3 = —27/3. In
the platform frame Fp, positions of points B; are given by:
PB; =rp[cosa; sina; 0] (i = 1,2,3) with r, = 0.1 m and
ap = 7/3, ag = m, and a3 = —7/3. Parameters of the rods
are: rods at rest are straight, their length L isequal to L = 1 m,
that have circular cross-sections of radius 1 mm, Young’s and
shear moduli £ = 210 GPa and G = 82 GPa, respectively, and
density p = 7800 kg/m>. No external wrenches are applied.

We used Matlab for encoding the robot both with our model
taking the same number of modes m; for the bending per leg
(in what follows, m; = 3, 4 or 5) and with the continuous
Cosserat model [21] (assuming spatial Kirchhoff hypotheses
with no extensibility). It should be mentioned that, due to the
presence of passive spherical joints, no torsion is transmitted
inside the legs. Therefore, no torsion deformation modes have
been included into the model.

We will again compare our model to the approach [21]
in terms of accuracy of prediction for the geometrico- and
kinemato-static models. We will then again compare our model
to the approach [21]] in terms of accuracy of prediction for
the geometrico-static model, computational time and stability
prediction.

It should be mentioned that, as previously, for all computa-
tions shown thereafter (for both our model and the model [21]),
the solver used is the Levenberg-Marquardt algorithm encoded
in the Matlab fsolve function.

1) Model prediction accuracy: For checking the model
accuracy, we used the same approach as in Section [VI-A]
We first estimate the position of the end-effector both with
our model and the model in [21]] along a path followed
by the motors defined by the Eq. (60). Here, we took
Qa0 = [5.86 5.56 5.86 5.46 5.86 5.26]7 rad, q.r =
[7.95 7.65 4.29 3.89 3.77 3.17]7 rad. An example of computed
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Fig. 9. Schematics of the 6 — RF'S robot (to scale).

configurations along this path for n, = 10 is shown in Fig.

The error of prediction between our model (denoted as
Mod. #1) and the model [21] (denoted as Mod. #2) for
the end-effector position for n. + 1 = 51 configurations
computed by feeding the forward geometrico-static models
with the equation is shown in Fig. [[I(a)] and a sum-
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Fig. 10. Path estimated for the 6 — RE'S robot modelled with 5 modes per
leg (to scale).

mary of the results (for both position and orientation errors)
is presented in Table It should be mentioned that the
orientation error is calculated as the norm of the vector
(R{/IoleModg — R{/IodzRModl)v, where Ryoq1 is the plat-
form orientation matrix computed with our approach, and
Raioqz the platform orientation matrix computed with .
Note that we did not compare our approach with finite
differences in the spatial case. Indeed, as shown in , for
finite differences, 500 elements per leg in the spatial case
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Fig. 11. Error in the estimation of the end-effector position orientation for
our approach w.r.t. the continuous Cosserat model [21] for 51 configurations
of the 6 — RF'S robot spread along the path shown in Fig. [T0}

TABLE IV
MEAN, MINIMAL AND MAXIMAL ESTIMATION ERRORS FOR THE
END-EFFECTOR POSITION AS A FUNCTION OF THE NUMBER OF MODES
COMPUTED ON 51 CONFIGURATIONS OF THE 6 — RF'S ROBOT.

Position err. [mm)] Angular err. [deg]
Modes | Min Max  Mean Min Max  Mean
3 0.09 449 1.14 0.10 1.24 037
4 0.02 1.04 0.28 6.8e-3 030 0.08
5 3.0e-4 0.14 3.6e-2 | 1.8e-3 0.04 0.01

(leading to 2000 variables per leg for modeling the elasticity)
lead to an error of end-effector position estimation of 1 mm.
However, due to the large size of the equation system (more
than 12,000 equations), the computational time for a single
configuration is bigger than 10 minutes. Therefore, in our
opinion, further comparisons with our model and finite element
approach were not relevant.

Again, as expected, the prediction error decreases with the
number of modes per leg. With five modes per bending per leg,
i.e. a total of 10 modes per leg (60 components in the vector
ge in totality), the mean position estimation error is lower than
40 microns, while the mean angular estimation error is lower
than 0.01 deg., which is usually much enough for a robot with

TABLE V
MEAN, MINIMAL AND MAXIMAL ESTIMATION ERRORS FOR THE MOTOR
ANGLE POSITION AND ORIENTATION AS A FUNCTION OF THE NUMBER OF
MODES COMPUTED ON 51 CONFIGURATIONS OF THE 6 — RF'S ROBOT,
WITH 5 MODES.

Angular error [mdeg]
Mot#1  Mot#2 Mot#3  Mot#4  Mot#5  Mot#6
Min 1.5e-2  0.33 89e-4  3.7e-4 92e-4  4.1e-3
Max 52.22 36.59 31.59 13.80 3.68 176.84
Mean | 10.58 4.17 2.47 1.62 0.77 19.06
TABLE VI

TOTAL COMPUTATIONAL TIMES FOR THE 1. + 1 CONFIGURATIONS WITH
OUR MODEL (MOD #1, 5 MODES), THE MODEL [21]] (MOD #2) FOR THE
6 — RF'S ROBOT.

ne | Mod #1 [s]  Mod #2 [s]
50 | 130 191
30 | 80 124
15 | 46 62
10 | 27 41
5 13 26
legs of 1 m.

Finally, again, we checked the validity of the inverse
geometrico-static model, i.e. the accuracy of prediction for
the motor position with respect to Mod. #2, knowing the end-
effector pose. Here, we took the 51 end-effector configurations
computed with Mod. #2 as inputs of the inverse geometrico-
static model of Mod. #1 with five modes, and we computed
the motor angles. Results are shown in Tab. [V| Results show
that the mean value of the errors of prediction is below
0.02 degrees, which is more than acceptable. A peak value
of 0.17 degrees is obtained for the 6th motor of the robot,
which is due to the presence of a singularity near the computed
pose. Far from singularities, the accuracy of prediction is
considerably better.

2) Computational time: We want to analyze the computa-
tional performance of our model, adopting the same strategy as
in as in Section [VI-A] Again, we fed the forward geometrico-
model (our model with 5 modes per bending per length and
the model [21]]) with the equation for varying number
of configurations n. and we recorded their durations for
providing the results in terms of end-effector configuration. For
making a fair comparison between both models tested in this
section, we used the same assumptions as in Section [VI-AZ]

Results are shown in Tab. [VI|and we may conclude that our
model is computational efficient.

3) Checking stability: As in Section we compare
the prediction of stability based on the analysis of the spectrum
of the matrix H, defined in Section with the criterion
defined in the work [48]].

In Figure [12} we show a slice in zy (for z = 0.635 m,
¢ =m/8 rad, § = w/3 rad, and ) = 0 rad, these three angles
being defined according to a ZY Z sequence of Euler-angles)
of the robot end-effector configuration space computed with
the flooding algorithm proposed in [33] for the leg buckling
modes shown in Fig.[9] In this picture, we highlight in red the
areas where the inverse condition number of the matrix H,
in (]3_§|) is lower than 5 - 1074, i.e. close to the limit beyond
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which, stability issues may occur. For checking the prediction
of stability based on our model, we define a path between
points X; = (—0.4, 0) m and X3 = (—0.4, 0.2) m (for
z =0.635 m, = 7/8 rad, # = 7/3 rad, and ¢ = 0 rad)
along which the stability criterion defined in the work [48]
(presence of conjugate points) is computed. Along this path,
50 points are defined. In Fig. [13] the minimal value of det(b))
for each point is plotted, in parallel as the smallest eigenvalue
o1 of the matrix H,.. From Figs. [13] and [T4] we observe the
following facts:

e From point X; (o7 > 0) to point X5 (o7 = 0, excluded)
on the singularity of H, (see Fig. [[2), there is no
conjugate point.

¢ At point X, (01 = 0), a conjugate point appears on the
integration interval at © = 0, meaning that we reached a
limit of stability.

e From point X3 (07 = 0) to point X3 (o7 < 0), a
conjugate point exists on the interval v € [0 1], meaning
that the robot is unstable along this path.

All these results showed the interest of our modelling
approach.

VII. CONCLUSIONS

Several works have focused on the computation of
geometrico- and kinemato-static models of CPRs. Those works
can be sorted into two main categories: (i) models based on
the continuous Cosserat equations and (ii) discretized models.
The first types of models are very accurate but assessing elastic
stability with them is a complicated task. The second types of
models allow easily checking the stability but they require a
large number of elastic variables to be accurate.

In this paper, we extended an approach based on assumed
strain modes that was developed for the dynamics of serial
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Fig. 13. Comparison stability criterion from [48|| and the smallest eigenvalue
o1 of the reduced Hessian matrix H,-.

continuum robots to the statics of CPRs. We showed that
it was possible to predict the robot configuration with a
very good accuracy, and this, with a very limited number
of elastic variables, contrary to other standard discretization
methods: Typically, 10 elastic variables per leg lead to a
prediction accuracy of 50 microns for 1-meter-length rods.
The method was not only accurate but also computationally
efficient: For a better prediction accuracy than discretization
based on finite-differences, it was more than 100 times faster.
Furthermore, the computational time was similar to that for
the continuous Cosserat model. Finally, it allows the elastic
stability to be assessed, by only checking the reduced Hessian
of the potential energy as for any discrete Lagrangian model.
This reduced Hessian can be computed by using matrices
already obtained for the calculation of the robot kinemato-
static model, thus making the analysis of this robot property
simpler than for the continuous Cosserat model. All the results
have been validated on two case studies: a planar RFRFR
robot and a spatial 6 — RF'S robot.

Our future works will deal with the extension of the method
to the dynamics of CPRs.

APPENDIX
A. Recalls of Lie group notations

Some notational conventions of Lie group theory, that can
be found in [57]], are recalled here for reasons of convenience.
A hat “A” covering a vector Y defines a matrix Y whose
expression depends on the dimension of Y. If Y € R3, then
Y = Y denotes the (3 x 3) skew symmetric matrix defined
such that: Tx = Y x x for any x € R3. If ¥ = [a” bT]T e
RS, with a, b € R3, then Y is the (4 x 4) matrix defined by:

B a b
T =
|:01><3 0}

Reciprocally, the superscript “V” is such that ’fv = 7Y for any
Y € R3 or RS. The two operators Ad and ad are respectively

(62)



5 [b,| x10° 3 [b,| x10 2|bA| x10
4.5 0
2.5

4 2
3.5 2 -4

3 % conjugate
2.5 1.5 point

2 conjugate -8

1.5 1 point -10

1 05 -12
0.5 -14

0 -

001020.304050.60.7080.9 1 0 0.10.20.304050.60.70.80.9 1 16 0.10.20.30.40.50.60.70.80.9 1

Integration interval

(a) |ba] at X1 (o1 > 0)
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defined for g = (R, p) € SE(3) and Y =
two (6 x 6) matrices

R O a o0
ady= o pf ade=|p Y

[a” bT]T by the

(63)

Note that Adg is the twist transformation matrix allowing to
pass from one frame to another one, their relative pose being
parameterized by the transformation g = (R, p). Note also
that, if ¥ = (g~'g’)V, then we have:
Ad] = Adgady < ady = Ad,'Ad] (64)
Finally, let us define two vectors X'; and Y5 in RS, Then,
(Yl.fg - ‘i-g‘i.l)v = adTng = —ad’rng (65)

This result can be easily verified by assigning symbolic values
to the components of Y1 and Y, and developing all sides of

the equation (63).

B. Relation between 1 and 5
Let us define, from (@),

dg , 5 dg . A
9s — 9 =9& and o5 =g =gn (66)
Because o’ 52 y
g g g
_— = = — 7
ot 9sdt  Os ©7)
then we have
ag/ . & P s ~/ ag
g _ = = — 68
<3t ) g€ +9§=9gn+gn s (68)
Multiplying both sides of (68) by g, we get
(97'9E+&= (g7 ")+ (69)
Now introducing (2) in (69), we obtain:
€ +&=E&n+ 1 (70)
Then, by rearranging (70) and by using (63):
i =0~ &n+&=—(aden)" +§& (71)
or also .
n' = —aden+§ (72)

Integration interval

(b) |bx| at X2 (61 =0)

Integration interval

(©) |ba] at X3 (o1 < 0)

From (64)), we have adg = Ad;lAd;. Then, replacing ad¢mn
by this expression, multiplying both sides of (72) by Adg and
rearranging, we get:

Adgn' + Ad;n = (Adgn)' = Adgé (73)
Integrating (73) in the interval [0, s] leads to
[Adgn], — [Adgn], = /O ) Adgy )€ da (74)
or also
n(s) = Ad,/, (Adg(o)no + /0 ) Adg(w)édx> (75)

C. Expressions of the Jacobian matrices

1) Expression of q in E4: In the terms of the vector H
in (39), H,, and J,, do not depend on .. Therefore:

o [T
T %H + Z T(k) (76)
O | % Ty
/\k 2 J
Noticing that H, = [H] an] and Ho = [HL, ... HL)T,

and that H,; and H.; depend on qe; only, not on qe; (j # ).
Thus,

OHai OV OHa o,
=-J. , = 0 for ) amn
aqei aqei aqej J 7é
and
OHei 0Qwi OHe; .
=Ko — —, = 0 for 7 (78)
aqei 8Qei aer J 7&

The derivatives OW;/0qe; and 0Qgi/0qe; can be obtained
by differentiating the system of ODEs (I8) wrt qo; =

[Geit - - - qeimi]T. This is of course possible because qe; is not
dependent of s. Then, we have:
OA(k; ]
h, (sl h; + A(ki)20s) /2
8 15)
9 9 | 7 R h)7z+R(h)aq’Zf
Os aQei] V{}j 8q31 B‘IIZ
. Aij
(79)



with all initial conditions at 0, where
T

= Ad! o Ad; T 08y () g g7
= 2%g,(0) i) Dgey; g,(s) "t
(80)
AdT o Ad T OV
T A0 2%, ) 5.,
and
8J23 T —-T awl
bij 8qe” Adg (6)W7 + Ji3Adgi (s) aqeij
dr 8D
T g:(s) -T =
I Ady () 5 A (Wi
oAdT
in which A can be computed thanks to the knowledge

0qei
of Oh;/0qe;; and 0P/ 0¢eij.
If Ww; is constant in the local frame, then OW;/0¢e;; =
0. If w; is constant in the global frame, then OW;/0qc;; =
OR,;(8)/0qei; Wi, W, being the value of “W; in F and

5 R; 03x3
R = [ngs R; ]
The system of ODEs (79) must be solved in the same loop
as the system (I8) in order to optimize the computational
time. Once these e uations are solved, we can compute the
derivatives JT(k s e JT(k) and %Jg ") in ({76).
Noticing that the matrices of anLand Jqa are block-
diagonal, and that Jg,; and J.e; depend on qm only, not on

(82)

qej (§ # ), then the derivatives 88 Jqai and 3 qul can be
btained
obtained as: P L 70-8‘11_1'] | .
e ™ T 0qe
0 0J;
F Jaei = —Ci 3q’? (84)
Then, the expression of the ¢th block in aiqe.] g(k) is given by:
0 oT;
=y =C; (85)
aqci aqcz
with
aqez aRll /3qelR b 8R /8%1

where 8f{5 /0qe; can be computed by using the same ap-
proach as previously for the matrix R,.

All the terms in these equations can be computed by using
the solutions of the systems of ODEs (18) and (79).

2) Expression of in Ay In the terms of the vector H
in (39), H,, and J, do not depend on q,. Therefore:

b [+ T T
I = |t X2 an® (87)
" e T
in which
OH.i T OW,  OH,i ..
=-J.. , = 0 for ) 88
3Qai o 8Qai aQaj J # (88)
and
aHei 8Qx7vz 8Hez
= , = 0 for 7 (89)
aQai 8(1&1' 3(]ag j 7&

The derivatives OW;/9qq; and 0Qx;/0qq; can be obtained
by differentiating the system of ODEs Wrt gq;. We have:

h; Ak 2
OR,; (h%
9 9 f ' 8Ad8 i 90
— | — ; = Gi(s) )
05 | Oqai V*\Z,B 920, D¥i ©0)
! Cij
QWZ eij

with all initial conditions g;", (0) and 8"7 -(0) being known
constant vectors, the other initial condmons being null, and
where

OAd}
o T -T g,(s) R
Cij = Adgz(O)Adgj(s)iaqai Adgi(s)wz o1
ow;
T T i
+Adg 0 Adg (55—
and
ey = OTis g g- Wi+ J5AdT Ow:
Oqai 91 () 0gai
a7 (92)
T g:(s) -T =
+‘]i3Adg ) 9qai Adgi(S)WZ
: . OAdg ()
in which —-2-* can be computed thanks to the knowledge of

Oh;/0qq; and 8pl /0qqi. If w; is constant in the local frame,
then Ow;/0qq; = 0. If w; is constant in the global frame,
then 8v’vl/8qm = 8RZ(S)/8quv’vl

The system of ODEs (90) must be solved in the same
loop as the systems (I8) and in order to optimize the
computational time. Once these equations are solved we can
compute the derivatives WJT(k) nd 8 JT(k) {79).

The other terms in Eq. can be easﬂy computed using
the procedure described in the previous section.
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