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Abstract-There is a growing interest on the study of continuum parallel robots (CPRs) due to their higher stiffness and better dynamics capacities than serial continuum robots (SCRs). Several works have focused on the computation of their geometrico-and kinemato-static models, that can be sorted into two main categories: (i) models based on the continuous Cosserat equations: They are very accurate but assessing elastic stability with them is tricky; (ii) discretized models: They allow easily checking the elastic stability but they require a large number of elastic variables to be accurate.

In this paper, we extend an approach based on assumed strain modes developed for the dynamics of SCRs to the statics of CPRs. This method is able to predict the robot configuration with an excellent accuracy with a very limited number of elastic variables, contrary to other discretization methods. The method is also more than 100 times faster than finite differences for a better prediction accuracy. Finally, it is possible to assess the robot elastic stability by only checking the Hessian of the potential energy as for any discretization method, thus making the analysis of this property simpler than for the continuous Cosserat model. All results are validated through simulations on two case studies.

Index Terms-Continuum parallel robots, Modelling, Statics, Assumed modes, Stability

NOMENCLATURE OF THE MAIN SYMBOLS

In the present paper, in order to differentiate scalars from matrices (vector instantiations being considered as singlecolumn matrices), scalars will be in italic, and matrices in bold. Bold lowercase (or eventually calligraphic letters) will be used for vectors and group transformation, bold uppercase for matrices with more than one column.

ξ, γ, κ Space-twist field and its linear and rotational parts, respectively. η, v, ω (Time-)twist field and its linear and rotational parts, respectively. Φ Strain function matrix. Ψ Vector of constraints. λ Lagrange multipliers.

frederic.boyer@imt-atlantique.fr τ a Motor input efforts.

1 p×p
Identity matrix of dimension p. A, P, E, W Robot kinematic Jacobian matrices related to the variables q a , q p , q e and w.

Ad, ad

Two operators from Lie group theory. g = (R, p)

A group transformation of SE(3), represented by an homogeneous transformation matrix composed with a rotation matrix R and a translational vector p. h Unit quaternion vector. l

Length of a rod.

Q

Vector of strain generalized forces in the static equations. q a , q p , q u , q e Motor, controlled, uncontrolled and elastic variables. q, q au , q pu

Vectors [q T a , q T p , q T u ] T , [q T a , q T u ] T and [q T p , q T u ] T . w, f , m A wrench, a force, a moment. w A distributed wrench.

Z

A matrix spanning the null space of J, the matrix of the kinematic constraints.

I. INTRODUCTION Continuum robots [START_REF] Hirose | Biologically inspired snake-like robots[END_REF] have been introduced in order to enhance the limited interaction capacities of rigid-link robot manipulators. Most of them are made with a serial architecture, composed by a serial assembly of slender rods deformed by wires [START_REF] Camarillo | Mechanics modeling of tendon-driven continuum manipulators[END_REF], [START_REF] Gravagne | Large deflection dynamics and control for planar continuum robots[END_REF], electromagnets [START_REF] Edelmann | Estimation-based control of a magnetic endoscope without device localization[END_REF], [START_REF]Magnetic control of continuum devices[END_REF], fluidic actuators [START_REF] Ikeuchi | Development of pressure-driven micro active catheter using membrane micro emboss following excimer laser ablation (MeME-x) process[END_REF]- [START_REF]Practical kinematics for real-time implementation of continuum robots[END_REF], shape memory alloy based actuators [START_REF] Langelaar | Modeling of a shape memory alloy active catheter[END_REF], [START_REF] Lee | Biomedical applications of electroactive polymers and shape memory alloys[END_REF], electro-active polymers [START_REF] Lee | Fabrication and characterization of laser-micromachined polypyrrole-based artificial muscle actuated catheters[END_REF], [START_REF] Kim | Electroactive Polymers for Robotic Applications[END_REF] or other types of actuation (e.g. concentric tube robots [START_REF] Dupont | Design and control of concentric-tube robots[END_REF]- [START_REF] Webster | Mechanics of precurved-tube continuum robots[END_REF] or also multi-backbone robots [START_REF] Simaan | Snake-like units using flexible backbones and actuation redundancy forenhanced miniaturization[END_REF]- [START_REF] Wang | Simplied kinematics of continuum robot equilibrium modulation via moment coupling effects and model calibration[END_REF]).

While being of interest for many applications requiring safe human-robot interaction, like minimally invasive surgery [START_REF] Burgner-Kahrs | Continuum robots for medical applications: A survey[END_REF], serial continuum robots have also their own limitations. Typically, they have low stiffness and limited dynamics capacities. In order to overcome these issues, the concept of continuum parallel robots (CPR) have been recently explored. CPRs were first proposed in [START_REF] Bryson | Toward parallel continuum manipulators[END_REF], [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF]. Similarly as for rigid-link parallel robots [START_REF] Merlet | Parallel Robots[END_REF], CPRs are composed of several kinematic chains connected in parallel and attached to a moving platform. However, each kinematic chain is made of elastic links subject to large deformations.

There is a growing interest in CPRs and several architectures have been recently proposed, among which we may distinguish (the list is not exhaustive):

• CPRs with legs of varying lengths, like for instance in [START_REF] Bryson | Toward parallel continuum manipulators[END_REF], [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF], [START_REF] Young | Implementation of a 6-DOF parallel continuum manipulator for delivering fingertip tactile cues[END_REF], [START_REF] Pacchierotti | Task-driven PCA-based design optimization of wearable cutaneous devices[END_REF] where continuum Gough-Stewartlike platforms were studied. • CPRs with legs of constant lengths, mounted on a motor moving on the ground. Several planar CPRs of this type have been proposed in [START_REF] Altuzarra | Kinematic analysis of a continuum parallel robot[END_REF]- [START_REF] Mauze | Nanometer precision with a planar parallel continuum robot[END_REF] and some spatial robots have been analyzed in [START_REF] Yang | Continuum delta robot: a novel translational parallel robot with continuum joints[END_REF]- [START_REF] Chen | Kinetostatics modeling and analysis of parallel continuum manipulators[END_REF]. • CPRs actuated by tendons [START_REF] Lilge | Tendon actuated continuous structures in planar parallel robots: A kinematic analysis[END_REF]- [START_REF] Boettcher | Design of a reconfigurable parallel continuum robot with tendon-actuated kinematic chains[END_REF].

• Reconfigurable CPRs [START_REF] Boettcher | Design of a reconfigurable parallel continuum robot with tendon-actuated kinematic chains[END_REF], [START_REF] Anderson | Continuum reconfigurable parallel robots for surgery: Shape sensing and state estimation with uncertainty[END_REF] in which the position or orientation of the motors can be modified. • CPRs with legs constrained by intermediate links [START_REF] Orekhov | Modeling parallel continuum robots with general intermediate constraints[END_REF]- [START_REF] Wu | Design, modeling, and workspace analysis of an extensible rod-driven parallel continuum robot[END_REF].

The geometrico-static model of these robots 1 was the main focus of several works. In [START_REF] Bryson | Toward parallel continuum manipulators[END_REF], [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF], the model was established by using the Cosserat's rod theory: This theory allows obtaining a system of nonlinear Differential Algebraic Equations (DAEs) characterizing the robot's static equilibrium. In [START_REF] Altuzarra | Forward and inverse kinematics in 2-dof planar parallel continuum manipulators[END_REF]- [START_REF] Altuzarra | Position analysis in planar parallel continuum mechanisms[END_REF] a quasi-analytical description of the robot equilibrium configurations based on the Kirchhoff's model with planar assumptions, is proposed. However, this model is valid under planar motion conditions only (spatial robots cannot be modelled) and it allows to apply wrenches on the platform only (gravity field on the legs cannot be taken into account for instance). In [START_REF] Lilge | Tendon actuated continuous structures in planar parallel robots: A kinematic analysis[END_REF], [START_REF] Nuelle | Modeling, calibration, and evaluation of a tendon-actuated planar parallel continuum robot[END_REF], the Piecewise Constant Curvature model [START_REF] Webster | Design and kinematic modeling of constant curvature continuum robots: A review[END_REF] was applied while lumped modelling and finite differences were used in [START_REF] Chen | Kinetostatics modeling and analysis of parallel continuum manipulators[END_REF] and in [START_REF] Zaccaria | An analytical formulation for the geometrico-static problem of continuum planar parallel robots[END_REF], respectively. More details on the modelling of Cosserat beams are provided in Section I-A.

These models can serve then in order to characterize some geometry or kinematic properties of the robot, like for instance: The robot workspace [START_REF] Bryson | Toward parallel continuum manipulators[END_REF], [START_REF] Altuzarra | Position analysis in planar parallel continuum mechanisms[END_REF], [START_REF] Mauze | Nanometer precision with a planar parallel continuum robot[END_REF], [START_REF] Yang | Continuum delta robot: a novel translational parallel robot with continuum joints[END_REF], [START_REF] Lilge | Tendon actuated continuous structures in planar parallel robots: A kinematic analysis[END_REF], [START_REF] Orekhov | Analysis and validation of a teleoperated surgical parallel continuum manipulator[END_REF]- [START_REF] Zaccaria | Workspace computation of planar continuum parallel robots[END_REF]; The end-effector positioning error [START_REF] Mauze | Nanometer precision with a planar parallel continuum robot[END_REF], [START_REF] Yang | Continuum delta robot: a novel translational parallel robot with continuum joints[END_REF]; Kinetostatic properties (compliance, force transmission, or manipulability) [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF]; Singularities [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]. One of the most crucial property to be assessed is the robot elastic stability [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF]. Using technics of optimal control theory, it is shown in [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF], that a robot static configuration is not necessarily a minimizer of the potential energy, and that its stability must be verified by analyzing second-order conditions based on the analysis of the non-discretized DAEs characterizing the robot deformation given by the calculus of variations. However, although mathematically exact, the method for checking the stability in [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF] is based on tools from optimal control theory that are unfamiliar to the mechanical engineering culture. In further details, this analysis is based on a rather intricate stability test based on the detection of the so-called "conjugate points": If conjugate points can be detected, the robot is unstable; Otherwise it is stable. In [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], the DAEs were discretized and the stability was studied by checking the positive-definiteness of the Hessian matrix of the potential energy. However, in order to get a good pose estimation with any discretized model, the number of elements must be large (typically > 1000 with finite differences), leading to big size matrices and little computational efficiency.

A. Methods for modelling Cosserat rods

At the crossroads of rigid body mechanics and continuum mechanics, the Cosserat rod model is an ideal tool for the study of slender bodies undergoing large deformations. Initially presented as an abstract object [START_REF] Cosserat | Theorie des corps deformables[END_REF], it has been applied over time to many problems in engineering sciences such as structural mechanics, where it gave birth to the geometrically exact finite element method (GE-FEM) [START_REF] Simo | On the dynamics in space of rods undergoing large motions -a geometrically exact approach[END_REF], in ocean engineering for the simulation of submarine cables [START_REF] Burgess | Bending stiffness in a simulation of undersea cable deployment[END_REF], or in computer graphics, for the needs of interactive simulation [START_REF] Bergou | Discrete elastic rods[END_REF]. In robotics, whether for the study of hyper-redundant bioinspired locomotion [START_REF] Boyer | Macro-continuous computed torque algorithm for a three-dimensional eel-like robot[END_REF], the simulation and control of non-invasive continuous medical robots [START_REF] Mahvash | Stiffness control of surgical continuum manipulators[END_REF], [START_REF] Burgner-Kahrs | Continuum robots for medical applications: A survey[END_REF], or for the design of new concepts of soft arms [START_REF] Renda | Discrete cosserat approach for multisection soft manipulator dynamics[END_REF], it is gradually becoming a standard, comparable to the multi-body models of rigid robotics. In these various contexts, the exploitation of the Cosserat model can be divided into two main categories depending on whether one considers the model as fully continuous [START_REF] Boyer | Macro-continuous computed torque algorithm for a three-dimensional eel-like robot[END_REF], [START_REF] Till | Real-time dynamics of soft and continuum robots based on cosserat-rod models[END_REF], or whether one seeks to reduce it on a functional basis of finite dimension [START_REF] Renda | Discrete cosserat approach for multisection soft manipulator dynamics[END_REF], [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF]. In the first case, direct and inverse dynamic models have been proposed and applied to several issues related to simulation and control, while in the second case, beyond the PCC (Piecewise Constant Curvature) and PCS (Piecewise Constant Strain) methods [START_REF] Webster | Design and kinematic modeling of constant curvature continuum robots: A review[END_REF], [START_REF] Renda | Discrete cosserat approach for multisection soft manipulator dynamics[END_REF], the reduction of the strain fields on an arbitrary functional basis [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF], has opened new promising perspectives for robotics.

B. Originality of the work and organization of the paper

The contributions of the article are of two kinds depending on whether one considers the Cosserat modeling viewpoint of [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF] or the stability analysis of CPRs from [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] and [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF].In the first case, the paper extends the modeling by strain modes to the statics of CPRs, i.e., to closed kinematic loop systems consisting of rigid bodies and Cosserat rods connected by active or passive localized joints. It should be noted that such an extension of the strain-based parameterization has already been proposed in [START_REF] Armanini | Discrete cosserat approach for closed-chain soft robots: Application to the fin-ray finger[END_REF] to deal with the dynamics of closed-chain soft robots. However, in [START_REF] Armanini | Discrete cosserat approach for closed-chain soft robots: Application to the fin-ray finger[END_REF], this extension was performed with the Piecewise Constant Strain (PCS) approach, i.e., with the first zero order components of the higher dimensional polynomial strain basis used in this paper. As a consequence of this difference, unlike in [START_REF] Armanini | Discrete cosserat approach for closed-chain soft robots: Application to the fin-ray finger[END_REF], the accuracy of the model proposed here is not increased by adding pieces to the bodies, in the manner of what is done for spatial discretization in FEM, but rather by increasing the dimension of a strain basis defined on a single piece along each body. Moreover, while in [START_REF] Armanini | Discrete cosserat approach for closed-chain soft robots: Application to the fin-ray finger[END_REF], the kinematic constraints of the closing loops are treated at the level of accelerations and used to remove their associated Lagrange multipliers in the dynamic equilibrium, our approach is purely static and exclusively based on a geometric model of kinematic loops and the static equilibria of the subsystems. As a consequence of this choice, it is more directly adapted to the usual needs of kinetostatic analysis in parallel robotics where dynamics is ignored, at least at first. Without anticipating too much on the results of the article, we will show that this is possible to accurately predict the robot configuration with a very reduced number of strain modes in comparison to other standard discretization methods. Typically, 10 elastic variables per leg lead to a prediction accuracy of 50 microns for 1-meterlength rods. Moreover, for a same accuracy, the computational time required by the approach is similar to that based on the full continuous Cosserat model of [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF], while it is 100 times faster than the simulation approach based on finite-differences used in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]. In the second context, we show that the proposed formalism is compatible with the stability analysis framework shown in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], but making it more efficient. Indeed, once the static model of a CPR is reduced on a basis of strain modes, it takes the usual form of Lagrangian mechanics and its elastic stability can be studied by simply analyzing the spectrum of the reduced Hessian of the potential energy [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF] as this is done for any finite-dimensional model. However, in our case, the size of the Hessian matrices to be computed is much smaller than with the finite-difference approach used in the simulations of [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], making the analysis of the spectrum much more computational efficient. Beyond its conceptual simplicity, it is worth noting that the calculation of the reduced Hessian of the CPR only requires the computation of matrices already derived for the calculation of the robot kinemato-static model2 . Thus, our formalism offers an efficient alternative approach to the optimal-control-based analysis of the full continuous model of [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF], which is used in our simulations as a reference. Based on all these remarks, the main motivation of the article is to show how the static stability analysis of CPRs can be performed with the usual methods of finite dimensional mechanics.

The paper is organized as follows. The next section deals with the computation of geometrico-static model of a single rod. We reintroduce the discretization framework proposed in [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF] that was used in order to obtain the dynamics model of continuum robots with serial architecture. However, we modified the approach so that we can have a computation of the Jacobian matrices relating the motion of the leg tip to the model input variables. In Section III, we first compute the geometry and kinematic constraint equations necessary in order to close the kinematic chains, and we then show how to obtain the CPR geometrico-static model based on the equations for a single rod. Then, in Section IV, the kinematostatic model is developed, and the way to verify the robot stability is detailed. Section VI presents some case studies, and finally, in Section VII, conclusions are drawn.

II. MODEL OF A COSSERAT BEAM

In this section, we apply the geometrically-exact assumed strain modes parametrization of [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF] to a single rod, and propose a different numerical implementation of its kinetostatic equations. This model will be next used to derive the multi-rod model of a CPR.

A. Geometry and kinematics of the beam

In what follow, for the sake of concision, we use a bit of Lie group notations [START_REF] Murray | Robotic Manipulation[END_REF]. We detail them in the Appendix A. Let p i (s=0)

p i (s=l i ) p i (s) O Fixed frame s d 02 d 03 d 01 d i1 d i2 d i3 A i h i (s) S i
Fig. 1. Parameterization of the continuum slender rod us consider an hyperelastic beam for which we assume that displacements are finite and strains are small. In what follows, we consider that this beam will be one of the legs of a CPR. Therefore, we will attach a subscript i to all of its variables. The Cosserat model consider that this deformable body can be modeled by a set of continuously rigid cross-sections stacked along a material line, parameterized by a curvilinear abscissa s ∈ [0, l i ]. The location of the cross-section at the abscissa s is parameterized by a frame

F i (s) = (S i , d i1 , d i2 , d i3 )(s)
, where S i (s) and d i1 (s) coincide with the center of the cross section and its unit normal vector, respectively. As a result, the pose of the s-cross-section is parameterized by the action of an element g i ∈ SE(3) on the reference frame F 0 = (O, d 01 , d 02 , d 03 ): g i (s) = (R i , p i )(s), where R i (s) ∈ SO(3) is the rotation matrix of F i (s) with respect to (wrt) F 0 and p i ∈ R3 is the position of S i (s) in F 0 . Hence, the configuration space of each beam, considered as floating, i.e. disconnected from other bodies, is naturally defined as the field of homogeneous transformations of its cross-sectional frames wrt the inertial frame g i . The space / time variations of g i are modelled by two twist field from [0, l i ] to R 6 , defined by 3 :

ξ i = κ i γ i = (g -1 i g ′ i ) ∨ , η i = ω i v i = (g -1 i ġi ) ∨ , (1) 
where (.) ′ = ∂(.)/∂s and ( .) = ∂(.)/∂t. In these expressions, κ i and γ i define the angular and linear space-variation rates of cross-sectional frames along the rod, while ω i and v i are their angular and linear velocities, all expressed in the mobile cross-sectional frames (note that throughout the paper, all the tensors and vectors related to a rigid body are expressed in its mobile frame). Rearranging (1) provides the s-ODE g ′ i = g i ξi , which once supplemented with initial conditions g i (0) = g i0 , allows the field g i , to be reconstructed. Therefore, one can parameterize the Cosserat beam configuration by (g i0 , ξ i ). Based on this parametrization, a key relation, given in [START_REF] Briot | Technical report associated with the paper: "A Geometrically-Exact Assumed Strain Modes Approach for the Geometrico-and Kinemato-static Modellings of Continuum Parallel Robots[END_REF], relates the twist field η i to the strain field time-derivative ξi by:

η i (s) = Ad -1 g i (s) Ad g i0 η i0 + s 0 Ad g i (x) ξi dx (2) 
where we note η i0 = η i (0), while Ad g , is a (6 × 6) matrix allowing a twist to be transported from a frame to another one, both frames being related by the transformation g (see Appendix A).

B. Geometrically-exact strain modes reduction

The beams considered in this paper are long and thin, thus we will neglect the shear and stretch, and use the Cosserat submodel of inextensible Kirchhoff rods. The rods being assumed to be straight when at rest, this can be done by imposing [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF]:

ξ i = κ i γ i = Φ i (s)q ei e 1 (3) 
where e 1 = [1 0 0] T and q ei is a set of generalized coordinates defined as the coefficients of the curvature field components in a basis of strain modes, i.e. we have:

Φ i = diag(Φ m1 i1 , Φ m2 i2 , Φ m3 i3 ) (4) 
with Φ mj ij a shape function row-matrix of m j modes. For instance, one can use a simple basis of monomials

Φ mj ij = [1 s s 2 . . . s mj -1 ].
However, other choices motivated by numerical reasons can be adopted (e.g. orthogonal Legendre or Chebyshev polynomials, splines...). In the following of the paper, we decided to use Legendre polynomials. At the end, the vector q ei is made of m i = m 1 + m 2 + m 3 components. With this further reduction, the configuration space of our n Cosserat beams is defined by the set of all possible (g i0 , q ei )s. As a first illustration of this reduction, note that introducing this reduced kinematics into (2) provides the reduced kinematic relation on the strain basis:

η i (s) = J i1 (s)η i0 + J i2 (s) qei , (5) 
with

J i1 (s) = Ad -1 g i (s) Ad g i0 is an (6 × 6) matrix and J i2 (s) = Ad -1 g i (s) J i3 (s), J i3 (s) = s 0 Ad g i (x) BΦ i dx, J i2
, and J i3 being (6 × m i ) matrices. It should be mentioned that in the general three-dimensional case, the expression of the matrix J i3 (s) (and thus J i2 (s)) cannot be explicitly obtained, but can be still computed using standard numerical integration algorithms.

C. Reduced model of the restoring forces

In the small strains assumption, the curvature-twist field κ i can be related to the stress-couple c i by the linear constitutive relation:

c i = H a κ i (6) 
where

H a = diag(G J 1 , E J 2 , E J 3 )
in which E and G are the Young's and shear moduli of the material, respectively, and J 1 , J 2 and J 3 are the second moments of area (around the axes of the local frame) of the cross-sections, respectively. Introducing (3) to ( 4) into the definition of the virtual power of internal forces (stress), and simplifying, we get its (reduced) expression:

P ⋆ int,i = li 0 c T i κ⋆ i ds = q⋆T ei K ei q ei (7)
where the symbol " ⋆ " indicates a virtual velocity or power, while K ei = li 0 Φ T i H a Φ i ds is a constant matrix of generalized stiffness.

D. Reduced model of the external forces

Here we consider a deformable rod subject to two external wrenches exerted at each of its extremities (

w i0 = [m T i0 f T i0 ] T at s = 0 and w il = [m T il f T il ] T at s = l i , where f i0 (f il , resp.
) and m i0 (m il , resp.) are the force and moment of the wrench w i0 (w il , resp.)), and to a density of pose-dependent external wrench w distributed along it. In these loading conditions, the virtual power of external forces is given by:

P ⋆ ext,i = li 0 wT i η ⋆ i ds + w T i0 η ⋆ i0 + w T il η ⋆ il , (8) 
where η il = η i (l i ). Now, introducing the virtualization of ( 5), into this expression, and simplifying, allows expressing the virtual power of external forces as:

P ⋆ ext,i = η ⋆ i0 q⋆ ei T li 0 J T i (s) wi ds + w i0 0 + J T i (l i )w il (9) 
with J i (s) = J i1 (s) J i2 (s) .

E. Reduced static balance of a single rod

Finally, stating that the balance of virtual works P ⋆ ext,i = -P ⋆ int,i holds for any value of q⋆ ei and η ⋆ i0 , provides, with the expressions ( 7) and ( 9), the static balance of each beam in its reduced configuration space C 3 i :

W i Q ei = w i0 + Wi + J T i1 (l i )w il K ei q ei + Q wi + J T i2 (l i )w il = 0 (10) 
where

Wi = li 0 J T i1 (s) wi ds, Q wi = li 0 J T i2 (s) wi ds, while W i ∈ R 6 , Q ei ∈ R mi .

F. Practical implementation of the equations

We now focus our interest on the numerical computation of [START_REF] Lee | Biomedical applications of electroactive polymers and shape memory alloys[END_REF]. This computation needs to integrate the s-ODE g ′ i = g i ξi while preserving the orthogonality of R i . This could be achieved by quadrature, using Magnus expansion of controlled order [START_REF] Orekhov | Solving Cosserat rod models via collocation and the Magnus expansion[END_REF]. Here we circumvent the difficulty by parameterizing the beam rotation matrices R i (s) with unit quaternions

h i (s) = h i0 (s) + h i1 (s)i + h i2 (s)j + h i3 (s)k, with h T i h i = 1 and we have R i (s) = R i (h i (s)) and h ′ i = A(κ i )h i /2
with A(κ i ) a standard operator reminded in [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF]. As a result, the different vectors and matrices of ( 10)
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Fig. 2. A general continuum parallel robot can be numerically computed for each leg, by applying a standard ODE integrator to:

∂ ∂s       h i p i J i3 Wi Q wi       =       A(κ i )h i /2 R i (h i )γ i Ad g i (s) BΦ i Ad T g i0 Ad -T g i (s) wi J T i3 Ad -T g i (s) wi       (11) 
with, as inputs considered to be known: q ei , h i (0) and p i (0), the initial values of the other variables being null. It should be noted that, in [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF], two successive forward and backward integrations of the Cosserat model with assumed modes are used in order to compute the above generalized external forces. Here, we have preferred a Jacobian formulation of the problem, which leads to the same numerical results in a single pass. Next section deals with the computation of the geometrico-static model of parallel robots.

III. GEOMETRY AND KINEMATIC DESCRIPTION OF THE CONTINUUM PARALLEL ROBOT

In this section, we first describe the general class of continuum parallel robots that we are going to analyze, as it is proposed in [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF], [START_REF] Altuzarra | Position analysis in planar parallel continuum mechanisms[END_REF]. Then, we provide the general expressions for its geometry and kinematic constraints.

A. Description of the continuum parallel robot

Let us describe the generic continuum parallel robot architecture that we consider in this paper (Fig. 2): it is a robot which is made of n slender flexible beams (called legs). An extremity of each rod is connected to a motor at one end (points A i , i = 1, ..., n), the other extremity to a rigid moving platform via a joint (at points B i , i = 1, ..., n), which is either a passive revolute joint, a passive spherical joint or a fixed joint, as proposed in [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF], [START_REF] Altuzarra | Position analysis in planar parallel continuum mechanisms[END_REF]. The legs can be either of constant length and connected at points A i to an active revolute or prismatic joint as it was done in [START_REF] Altuzarra | Position analysis in planar parallel continuum mechanisms[END_REF], or of variable length, i.e. acting like a soft cylinder fixed on the ground at point A i as proposed in [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF]. Other types of legs could be considered, by modifying the equations of the constraints and the Jacobian matrices associated to the motions of the motors. The robot moving platform, on which is located the end-effector, is considered to be rigid and endowed with the frame F p : (P, d p1 , d p2 , d p3 ) attached it, with P the platform center of mass. Its configuration is parameterized by g p = (R p , p p ) ∈ SE(3)where R p is the rotation matrix of F p with respect to F 0 , with also

η p = (g -1 p ġp ) ∨ = [ω T p v T p ] T ∈ se(3) ∼ = R 6
, the platform twist (in the platform frame), ω p and v p being the platform rotational and linear velocities, respectively. Thus, using the previous parametrization of legs, the configuration of our continuum parallel robot can first be parameterized by g p and the set of all the (g 0i , q ei )s. Note that in this definition of the configuration space, all the beams and the platform are disconnected from each other. In the next section, such a connection is performed. This concerns the connection of each leg with the base and with the platform, the first being ensured with a minimal set of coordinates, the second with a set of constraints and Lagrange multipliers.

B. Geometry and kinematics constraints of the CPR

Each leg of the CPR can be seen as a continuum beam which is subject to two types of geometry and kinematic constraints: platform and motor constraints.

1) Motor constraints: For the robots studied in this paper, motors are placed at one extremity of the beam (point A i at s = 0). Other types of motors, with distributed actuation or soft cylinders (i.e. legs with varying length), could be also taken into account by using the formalism of [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF]. However, we restrict our approach to the case of rods of constant length for reasons of brevity. The position of the motor i is denoted as q ai , and all motor variables are grouped in the vector q a ∈ R n . When the motor i is mounted at the proximal end of the beam i (at s = 0), the pose g i0 = (R i , p i )(0) of the proximal frame F i (0), whose position and/or orientation may vary depending on the motor displacement, is a function of q ai , i.e.:

g i0 -G i (q ai ) = 0 (12) 
thus leading to the generic kinematic constraints:

η i0 -J ai qai = 0, (13) 
where

J ai = [(1 -σ)a T i σa T i ]
T with a i the direction of the motor axis, and σ = 0 if the actuated joint is revolute, σ = 1 if it is a prismatic one. Invoking duality between efforts and velocities through virtual powers, we also have:

τ ai q⋆ ai = w T i0 η ⋆ i0 and thus τ ai -J T ai w i0 = 0, (14) 
where τ ai is the motor force or torque. Note that ( 12), ( 13) and ( 14) define a reduction of the configuration space of the beams, which are now connected to the base. Formally, using these relations for modelling our CPR means that its configurations are now parameterized by g p and the set of all the (q ai , q ei )s. Finally, in all the subsequent developments, we use this later definition of the configuration space of a CPR. In particular, the connection of the legs with the platform does not require any further reduction, since it leads to using Lagrange multipliers in the model.

2) Platform constraints: The platform constrains the extremity of each beam to be attached on it through a passive joint located at point B i . Several types of joints, leading to different constraints, can be considered, as spherical joints, fixed joints or also revolute or cardan joints. For reasons of concision, we focus only here on spherical and fixed joints. The equations for other types of joints can be derived by using the results of [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF], [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]. Thus,

• For fixed joints: the frame F i (l i ) attached at the end of the beam i, and parameterized by

g il = (R i , p i )(l i ) = (R il , p il ), is coincident with the frame F pBi : (B i , d p1 , d p2 , d p3 ) parameterized by g pBi = (R p , p Bi ) to within a constant transformation g ci = (R ci , 0), R ci = R T p R il being a constant rotation matrix. Note that p Bi = p p + R p b i , vector b i being a constant in F p .
In other words, we have the geometric constraints:

p p + R p b i -p il = 0 (15) (R p R ci R T il -R il R T ci R T p ) ∨ = 0 (16) 
also written as Ψ i = 0. Time-differentiating these geometric constraints, and simplifying the resulting expressions (or alternatively using standard twist kinematics), provides the kinematics constraints associated to [START_REF] Webster | Mechanics of precurved-tube continuum robots[END_REF][START_REF] Simaan | Snake-like units using flexible backbones and actuation redundancy forenhanced miniaturization[END_REF]:

T i η p -η il = 0 (17) 
where

T i = Ad g -1 il g p = R T ci 0 3×3 R T ci bi R T ci (18) 
Using [START_REF]Magnetic control of continuum devices[END_REF] in s = l i , and ( 13), ( 17) can be rewritten as:

T i η p -J i1 J ai qai -J i2 qei = 0 (19) 
• For spherical joints: for such joints, there are only constraints on the positions, not on the orientations. Then, for the geometry, only constraint (15) holds while for kinematics, the constraint (17) should be rewritten as:

0 3×3 1 3×3 (T i η p -η il ) = 0 (20) 
Again, using [START_REF]Magnetic control of continuum devices[END_REF], and [START_REF] Dupont | Design and control of concentric-tube robots[END_REF], this constraint can be detailed as:

0 3×3 1 3×3 (T i η p -J i1 J ai qai -J i2 qei ) = 0 (21)
In what follows, we will use generic notations for characterizing the platform constraints:

• for the geometry:

Ψ i (q ai , q ei , g p ) = 0 (22) 
• for the kinematics:

Ψi = J qa i J qe i J pi   qai qei η p   = 0 (23) 
where

J pi = C i T i , J qa i = -C i J i1 J ai , J qe i = -C i J i2 , with C i = 1 6×6 in the case of a fixed joint, C i = 0 3×3 1 3×3 in the case of a spherical joint.
3) Final form of the leg constraints: Finally, when stacking all constraints for the n robot legs:

• The total geometric constraints are defined by all relations [START_REF] Merlet | Parallel Robots[END_REF], for i = 1, . . . , n:

Ψ = [Ψ T 1 . . . Ψ T n ] T (24) 
In what follows, n Ψ denotes the number of components in Ψ, and Ψ ∈ R nΨ . • The total kinematic constraints are defined by all the relations [START_REF] Young | Implementation of a 6-DOF parallel continuum manipulator for delivering fingertip tactile cues[END_REF], for i = 1, . . . , n:

Ψ = J v = 0 (25) 
where

v = [ qT a qT e η T p ] T , q a = [q a1 . . . q an ] T ∈ R n , q e = [q T e1 . . . q T en ] T ∈ R ne , with n e = n i=1 m i , J = [J qa J qe J p ], with J p = [J T p1 . . . J T pn ] T ∈ R nΨ×6
, and J qa and J qe two block-diagonal matrices defined by

J qa = diag(J qa 1 , . . . , J qa n ) ∈ R nΨ×n , J qe = diag(J qe 1 , . . . , J qe n ) ∈ R nΨ×ne . Thus, J ∈ R nΨ×(n+m)
where m = n e + 6. Note that ( 24) and ( 25) defines a geometric and kinematic model of the CPR on its configuration space.

IV. GEOMETRICO-STATIC MODEL OF THE

CONTINUUM PARALLEL ROBOT In this section, we provide the expressions for the continuum parallel robots geometrico-static model that will relate:

• the n variables in q a , • the n values of the motor generalized forces τ a = [τ a1 . . . τ an ] T , • the n e variables in q e , • the six independent components of the group transformation g p , • the n Ψ components of a set of Lagrange multipliers λ, to the robot external loading. Furthermore, we discuss the algorithmic implementation of the equations.

A. Geometrico-static model

According to our definition of the configuration space of a CPR, we need to set the static balance of the platform in SE(3) (indeed, the space of wrenches se(3) ⋆ ), and those of legs connected to the base, in the space of their motor and strain coordinates. These equations are related together through a set of reaction wrenches whose components define some Lagrange multipliers in charge of forcing the constraints imposed by the connection of the legs with the platform. Let us now consider the static balance of the platform: each leg exerts on it a wrench w il = [m T il f T il ] T through the joint at point B i , which balances an external wrench w p = [m T p f T p ] T , which is expressed in the platform frame (f p is its force, m p its moment), and includes the gravity effects. As a result, the force and moment static balances are, at point P , and in the inertial basis:

R p f p - n i=1 R i f il = 0 (26) R p m p - n i=1 R i m il - n i=1 R p b i × R i f il = 0 ( 27 
)
or also, in terms of wrenches:

w p - n i=1 T T i w il = 0 (28)
where T i is defined as in [START_REF] Wang | Simplied kinematics of continuum robot equilibrium modulation via moment coupling effects and model calibration[END_REF]. Assuming the joints to be ideal, the components of w il along their allowed degrees of freedom are zero, while the others define the vector of Lagrange multipliers λ i according to the relation:

w il = C T i λ i ( 29 
)
where C i is a selection matrix defined below [START_REF] Young | Implementation of a 6-DOF parallel continuum manipulator for delivering fingertip tactile cues[END_REF]. Introducing ( 29) into (28) provides the expected platform static balance of wrenches:

w p - n i=1 J T pi λ i = 0 ( 30 
)
where we used the notations below [START_REF] Young | Implementation of a 6-DOF parallel continuum manipulator for delivering fingertip tactile cues[END_REF]. To get the static balance of legs, we introduce ( 29) into [START_REF] Lee | Biomedical applications of electroactive polymers and shape memory alloys[END_REF], that we project onto the legs configuration space by pre-multiplying the first of their rows by J T ai . This provides the expected static balances of the legs:

Q ai Q ei = τ ai + J T ai Wi -J T qa i λ i K ei q ei + Q wi -J T qe i λ i = 0 (31) 
where we used the notations introduced in ( 23), while remark that Q ai ∈ R. Now, stacking ( 24) and ( 30) with all equations (31) for i = 1, . . . , n, provides the expression of the geometrico-static model of a CPR:

E = H -J T λ = 0 Ψ = 0 ( 32 
)
where J is defined by [START_REF] Altuzarra | Kinematic analysis of a continuum parallel robot[END_REF],

H = [H T a H T e H T p ] T ∈ R n+ne+6 in which: • H a = [H T a1 . . . H T an ] T ∈ R n with H ai = τ ai + J T ai Wi ∈ R (33 
) Wi being defined in [START_REF] Lee | Biomedical applications of electroactive polymers and shape memory alloys[END_REF],

• H e = [H T e1 . . . H T en ] T ∈ R ne with H ei = K ei q ei + Q wi ∈ R mi (34) 
Q wi being defined in [START_REF] Lee | Biomedical applications of electroactive polymers and shape memory alloys[END_REF],

• H p = w p ∈ R 6 , • λ = [λ T 1 . . . λ T n ]
T ∈ R nΨ can be seen as a vector of Lagrange multipliers, that gathers all the independent components of the wrenches w il .

The number of equations in [START_REF] Yang | Continuum delta robot: a novel translational parallel robot with continuum joints[END_REF] is thus equal to n+m+n Ψ (remind that m = n e + 6), since we have:

• as many equations in E as the number of variables in [ qT a qT e η T p ] T , i.e. there are n + n e + 6 equations in E.

• n Ψ equations in Ψ.
The number of unknowns to be found is equal to 2n+m+n Ψ , since we have:

• n variables in q a and n e variables in q e , • 6 independent variables in g p ,

• n variables in τ a and n Ψ variables in λ. Thus, there is a total of n+m+n Ψ equations for 2n+m+n Ψ unknowns in [START_REF] Yang | Continuum delta robot: a novel translational parallel robot with continuum joints[END_REF]. Finding solutions to [START_REF] Yang | Continuum delta robot: a novel translational parallel robot with continuum joints[END_REF] is the goal of the next section.

B. Forward and inverse geometrico-static problems

The geometrico-static model (32) is a system of n + m + n Ψ equations and 2n + m + n Ψ unknowns (q, τ a , λ) = (q a , q p , q u , τ a , λ), where q p denotes a vector of n controlled outputs generally chosen among the parameters of the platform while q u is the vector of residual uncontrolled coordinates. As a consequence, fixing n variables to some desired values, provides a square system of equations, having generically a finite number of solutions. The forward geometrico-static problem consists in fixing the n motor positions q a to some desired values and to compute the corresponding n controlled coordinates, the n input torques τ a , the m uncontrolled coordinates q pu and the n Ψ Lagrange multipliers λ so that (q, τ a , λ) is solution of the implicit geometrico-static model [START_REF] Yang | Continuum delta robot: a novel translational parallel robot with continuum joints[END_REF]. It should be mentioned that a variant of the forward geometricostatic problem consists in fixing τ a , instead of q a . However, we will not further discuss about this alternative choice. The inverse geometrico-static problem consists in fixing the n controlled coordinates q p to some desired values, and to compute the corresponding n motor positions q a , the n input torques τ a , the m uncontrolled coordinates q u , and the n Ψ Lagrange multipliers λ, so that (q, τ a , λ) is solution of the implicit geometrico-static model [START_REF] Yang | Continuum delta robot: a novel translational parallel robot with continuum joints[END_REF].

In both cases, the computed configurations q a , q p and q u , and input efforts τ a , are only local extrema that must be additionally checked to be local minimizers of the potential energy (see [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]), i.e., to be actual stable configurations. The computed multipliers λ are useless in practice, but they actually have to be computed when solving Lagrange conditions associated to an equality constrained optimization problem. Moreover, they are necessary to assess the stability of the associated solution. The stability conditions of the computed local extrema, are detailed further in Section V-D.

C. Algorithmic implementation

For solving this system of equations, standard solvers can be used (e.g. Newton-Raphson, Levenberg-Marquardt, Trust Region algorithms [START_REF] Nocedal | Numerical Optimization[END_REF]: those three methods are available in the fsolve function in Matlab). In any case, the inputs/outputs will be:

• for the forward geometric problem:

inputs: imposed values for q a , and an initial guess for q pu = [q p q u ] T , τ a and λ, outputs: values for q pu , τ a and λ.

• for the inverse geometric problem:

inputs: imposed values for q p , and an initial guess for q au = [q a q u ] T , τ a and λ, outputs: values for q au , τ a and λ.

Whatever the type of problem, the geometrico-static model (32) will be solved by following the steps detailed hereafter:

1) Provide initial values for q, τ a and λ: the algorithm will update the values of the unknowns only, and keep constant the values that have been fixed (q a for the forward prolem, q p for the inverse problem),

2) For i = 1, . . . , n, solve the system of ODEs ( 11) ⇒ Obtain the values of Wi , Q wi , p il , R il and J i2 (l i ); in this work, we used a standard Runge-Kutta 45 solver (function ode45 in Matlab), but another type of solver could have been chosen (see for instance [START_REF] Gekeler | Mathematical Methods for Mechanics[END_REF]) 3) Compute H, Ψ and J, then compute the model equations (32), 4) Iterate with the nonlinear equation solver (i.e. change the values of the unknowns in q, τ a and λ) as long as both E and Ψ are not equal to 0. It should be mentioned here that using one of the above mentioned standard iterative solvers (e.g. Newton-Raphson, Levenberg-Marquardt, Trust Region algorithms [START_REF] Nocedal | Numerical Optimization[END_REF]), requires to compute the Jacobian matrices of the model. By default, this can be achieved numerically by resorting to finite differences approximations. However, using their exact analytical expressions allows to considerably speed up the computational time. This second approach is here used and the corresponding expressions of the Jacobian matrices are detailed in the report [START_REF] Briot | Technical report associated with the paper: "A Geometrically-Exact Assumed Strain Modes Approach for the Geometrico-and Kinemato-static Modellings of Continuum Parallel Robots[END_REF].

Next Section deals with the computation of the kinematostatic model.

V. KINEMATO-STATIC MODEL OF THE CONTINUUM PARALLEL ROBOT

In this Section, we give the expression of the kinemato-static model, which relates

• The variations ∆q a , ∆q e , of the motor and elastic coordinates • The variation ∆Σ p = (g -1 p ∆g p ) ∨ ∈ se(3) ∼ = R 6 of the platform configuration (in the platform frame). Note that if this variation were performed with respect to time, it would merely coincide with the platform twist η p , • To the variations ∆τ a , ∆w p and ∆λ of the input efforts, platform wrenches and Lagrange multipliers, where, in these variables, the symbol ∆(.) stands for a small variation of the variable written on its right-hand side. These models are derived in order to define the singularity cases of the CPR.

We also discuss the conditions for robot stability.

A. Derivatives of the geometrico-static model

The kinemato-static model of the robot can be derived by computing the variation of the equations (32) w.r.t. all variables q a , q e , p p and h p , w.r.t. multipliers λ as well, but also w.r.t. τ a and w p . Thus, the kinemato-static model is given by:

∆E =P E ∆Σ p + ∂E ∂qa ∆q a + ∂E ∂qe ∆q e + ∂E ∂λ ∆λ + ∂E ∂w ∆w = 0 (35) 
where ∆w = [∆τ T a ∆w T p ] T ∈ R 6+n , and the kth component p Ek of P E is given by:

p Ek = ∂E k ∂pp T R p R T p ∂E k ∂Rp -∂E k ∂Rp T R p ∨T ∈ R 1×6 (36) 
with, from [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF], E k the kth component of E. Additionally, ∆Ψ = J qa ∆q a + J qe ∆q e + J p ∆Σ p = 0 (37)

As a result, the kinemato-static model of the CPR can be written as:

W E ∆w = P E ∆Σ p + A E ∆q a + E E ∆q e + Λ E ∆λ (38) 0 = J p ∆Σ p + J qa ∆q a + J qe ∆q e (39) 
with:

• A E = ∂E ∂qa ∈ R (n+m)×n , • E E = ∂E ∂qe ∈ R (n+m)×ne , • Λ E = ∂E ∂λ = J T ∈ R (n+m)×nΨ
and

W E = -   1 n×n 0 0 0 0 1 6×6   ∈ R (n+m)×(n+6) .
The expressions of the Jacobian matrices A E and E E can be obtained by using the approach [START_REF] Rucker | Computing jacobians and compliance matrices for externally loaded continuum robots[END_REF]. They are provided in the report [START_REF] Briot | Technical report associated with the paper: "A Geometrically-Exact Assumed Strain Modes Approach for the Geometrico-and Kinemato-static Modellings of Continuum Parallel Robots[END_REF].

B. Kinemato-static model of the CPR

For the kinemato-static analysis, there is little interest to characterize the variations ∆λ w.r.t. to the others. Therefore, it is worthy to eliminate the multipliers variations ∆λ from the system of equations. Removing ∆λ can be done by using the matrix Z spanning the nullspace of the matrix Λ T E , which satisfies Z T Λ E = 0 by definition. Under the assumption that Λ E is full rank, the matrix [Z Λ E ] is square and nonsingular. Therefore, left-multiplying [START_REF] Anderson | Continuum reconfigurable parallel robots for surgery: Shape sensing and state estimation with uncertainty[END_REF] by the nonsingular square matrix [Z Λ E ]

T gives rise to the following block-triangularized system equivalent to [START_REF] Anderson | Continuum reconfigurable parallel robots for surgery: Shape sensing and state estimation with uncertainty[END_REF]:

0 =Z T (P E ∆Σ p + A E ∆q a + E E ∆q e -W E ∆w) (40) 0 =Λ T E (P E ∆Σ p + A E ∆q a + E E ∆q e + Λ E ∆λ -W E ∆w). (41) 
Finally, we can gather Equations ( 40) and ( 39) to obtain the final expression of the kinemato-static model of a CPR:

A ∆q a + P ∆Σ p + E ∆q e = W∆w, (42) 
where

A = Z T A E J qa ∈ R r×n , P = Z T P E J p ∈ R r×6 , E = Z T E E J qe ∈ R r×ne , W = Z T W E 0 ∈ R r×(n+6) (43) 
where r = n+m (recall that m = n e +6). Remaining Eq. ( 41) can be then used in order to compute the variation ∆λ.

Note also that the same elimination process could be used to remove the variables ∆q e from [START_REF] Wu | Design, modeling, and workspace analysis of an extensible rod-driven parallel continuum robot[END_REF], provided that E is a full rank matrix.

C. Forward and inverse kinematico-static problems

Using the definition of ∆w below [START_REF] Lilge | Tendon actuated continuous structures in planar parallel robots: A kinematic analysis[END_REF], one can introduce the two matrices W a and W p and detail the right hand side of (42) as:

W∆w = -W a ∆τ a -W p ∆w p . (44) 
A square system of equations is obtained by fixing n + 6 components in the vectors ∆q a , ∆q e , ∆Σ p and ∆w p , leading to the forward and inverse kinemato-static problems:

• Forward kinemato-static problem: Given ∆q a ∈ R n and usually ∆w p ∈ R 6 , compute ∆q e , ∆Σ p and ∆τ a by solving the linear system [START_REF] Wu | Design, modeling, and workspace analysis of an extensible rod-driven parallel continuum robot[END_REF], which becomes a system of r equations and r unknowns. Provided that matrix P E W a is nonsingular, the solution of the forward kinemato-static problem is

  ∆Σ p ∆q e ∆τ a   = -P E W a -1 A W p ∆q a ∆w p . ( 45 
)
It should be mentioned that instead of putting the vector ∆w p as input of the forward kinemato-static problem, 6 other components of the vector ∆Σ T p ∆q T e ∆τ T a T could have been chosen. • Inverse kinemato-static problem: Given ∆Σ p ∈ R 6 and usually ∆τ a ∈ R n , compute ∆q a , ∆q e and ∆w p by solving the linear system [START_REF] Wu | Design, modeling, and workspace analysis of an extensible rod-driven parallel continuum robot[END_REF], which becomes again a system of n+m equations and n+m unknowns. Provided that matrix A E W p is nonsingular, the solution of the inverse kinemato-static problem is

  ∆q a ∆q e ∆w p   = -A E W p -1 P W a ∆Σ p ∆τ a . (46) 
It should also be mentioned that instead of setting the vector ∆τ a as an input of the inverse kinematostatic problem, n other components of the vector ∆q T a ∆q T e ∆w T p T could have been used.

Finally, the unsolvability of the forward and inverse kinemato-static problems due to the nonregularity of the matrices to be inverted in ( 45) and ( 46) leads to the main conditions of singularities. General conditions of singularities of the kinemato-static model have been analyzed in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF].

D. Stability analysis of the CPR

For analyzing the robot static stability, let us come back to the definition of its potential energy. Here, external 3D moments being non-conservative [START_REF] Ziegler | Principles of Structural Stability[END_REF], we consider that none of them is applied on the robot. As a result, its total potential energy U is provided by the expression:

U = n i=1 li 0 1 2 c T i κ i -f T i p i ds -0 f T p p p -τ T a q a ( 47 
)
where fi is a distributed external force on the leg i, 0 f p is a force applied on the platform, constant in the world frame, and the expressions of c i and κ i are provided as a function of q e in Section II. A solution of the geometrico-static model is necessarily a configuration which minimizes the potential energy U under the geometric constraints Ψ = 0, for a fixed value of τ a , i.e. it is a solution to the following optimization problem:

(g p , q a , q e ) = argmin(U ) subject to Ψ = 0 (48)

A solution to this optimization problem is also a solution to the equation:

δL = 0 ( 49 
)
where L is a Lagrangian function given by L = U +Ψ T λ and δL is its first variation which is a function of the variations δΣ p , δq a , δq e and δλ, i.e.

δL = p T L δΣ p + a T L δq a + e T L δq e + l T L δλ = 0 (50) 
Skipping the mathematical derivations, it can be proven that [a T L e T L p T L ] T = E and that l L = Ψ, i.e. the variation (50) leads to the geometrico-static model. As a result, the righthand side of the equations ( 38) and ( 39) defines the second variation of L as a function of the variations ∆Σ p , ∆q a , ∆q e and ∆λ. As shown in [START_REF] Nocedal | Numerical Optimization[END_REF], the stability of the configuration can thus be checked by analysing the positive-definiteness of the matrix H r defined as:

H r = Z T HZ (51) 
where

H = A E E E P E (52) 
all these matrices being given above. Let us now deal with some case studies.

VI. CASE STUDIES

In this section, we will model two robots (a planar robot with two degrees of controllability, and a spatial one, with two degrees of controllability) and compare the model prediction of our approach with the full continuous approach of [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF].

A. The planar RF RF R robot

In this Section, we study the continuum planar parallel robot RF RF R robot made of two rods which has been presented in [START_REF] Altuzarra | Forward and inverse kinematics in 2-dof planar parallel continuum manipulators[END_REF] (Fig. 3). It is composed of two actuated revolute (R) joints, each being mounted on the ground and attached at one extremity of a flexible rod (F ). Both flexible rods are connected at their extremity through a passive revolute (R) joint. The pose q p is the coordinates of the point P denoted by (x, y).

Parameters of the rods are as follows: They are straight at rest, with length L = 1 m, and circular cross-sections of radius 1 mm, their Young's and shear moduli are E = 210 GPa and G = 82 GPa, respectively, and their density is ρ = 7800 kg/m 3 . The distance ℓ A1A2 between the two motors is ℓ A1A2 = 0.4 m. No external wrench is applied. The joint at the end-effector (point P ) is considered to be massless.

The robot is modeled with the planar deformation assumption used in [START_REF] Altuzarra | Forward and inverse kinematics in 2-dof planar parallel continuum manipulators[END_REF], [START_REF] Zaccaria | An analytical formulation for the geometrico-static problem of continuum planar parallel robots[END_REF] and Kirchhoff internal kinematics (i.e. inextensibility and unshearability are assumed). Numerical resolution is performed with our approach taking the same
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Fig. 3. Schematics of the RF RF R robot (to scale). number of bending modes m j per leg (in what follows, m j = 3, 4 or 5), and with the continuous approach and shooting algorithm of [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] (also restricted to the planar Kirchhoff kinematics) with Matlab. The reduced approach of the article is then compared to [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] in terms of accuracy of prediction for the geometrico-static model, computational time, and stability prediction.

It should be mentioned that, for all computations shown thereafter (for both our model and the continuous Cosserat model [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF]), the solver used is the Levenberg-Marquardt algorithm encoded in the Matlab fsolve function, with an initial damping of 0.1.

1) Model prediction accuracy: For checking the model accuracy, let us first estimate the position of the end-effector both with our model and the model [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] along a path followed by the motors defined by:

q a (t) = t n c (q af -q a0 ) + q a0 (53) 
where q a0 (q af , resp.) is the motor initial (final, resp.) configuration, n c is the number of tested configuration along the path and t an integer between 0 and n c . Here, we took q a0 = [2.59 0.55] T rad, q af = [5.76 3.67] T rad. An example of computed configurations along this path for n c = 10 is shown in Fig. 4.

The error of prediction between our model (denoted as Mod. #1) and the model [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] (denoted as Mod. #2) 4 for the end-effector position for n c + 1 = 51 configurations computed by feeding the forward geometrico-static models with the equation ( 53) is shown in Fig. 5(a), and a summary of the results is presented in Table I. As expected, the prediction error decreases with the number of modes. With five modes per leg (i.e. q e has 10 components in totality), the mean error is lower than 30 microns, which is usually much enough for a robot with legs of 1 m, when considering all disturbing unmodelled phenomena that could arise in a real experimentation.

We then compared the same robot modelled with a finite difference approach as in [START_REF] Zaccaria | An analytical formulation for the geometrico-static problem of continuum planar parallel robots[END_REF] (denoted as Mod. #3) with Mod. #2. Indeed, finite differences is a standard procedure for solving the Cosserat model, which is used in many papers such as [START_REF] Peyron | A numerical framework for the stability and cardinality analysis of concentric tube robots: Introduction and application to the follow-the-leader deployment[END_REF]- [START_REF] Renda | Dynamic model of a multibending soft robot arm driven by cables[END_REF], and comparing the results of our modelling approach with it is worthy of investigation. Results are shown in Fig. 5(b), and a summary of the results is presented in Table II. For having an error similar the error obtained with our approach with 4 modes per leg only, 1000 elements per leg (and thus, 2000 elastic variables) are necessary, which leads to system of equations of large dimension which are time consuming to solve. We finally compared the validity of the inverse geometricostatic model, i.e. the error of prediction of the motor angle values with respect to Mod. #2, along a path followed by the end-effector defined by:

q p (t) = t n c (q pf -q p0 ) + q p0 (54) 
where q p0 (q pf , resp.) is the end-effector initial (final, resp.) configuration. Here, we took q p0 and q pf as the initial and final configurations of corresponding to q a0 and q af , respectively. Results are provided in Tab. I. With five modes per legs, the prediction error of our model is lower than 1.5e-4 degrees, which is more than acceptable.

2) Computational time: We also want to analyze the computational performance of our model. For this, we fed the forward geometrico-model (our model (Mod #1) with 5 modes per leg, the continuous Cosserat model [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] (Mod #2) and the finite difference approach (Mod #3) with 1000 elements per leg) with the equation ( 53) for varying number of configu- rations n c and we recorded their durations for providing the results in terms of end-effector configuration. For making a fair comparison, for all models tested in this section:

• The initial configuration is already known and is used as the first initial guess of the solver. • For the other configurations, the initial guess is a predictor based on the knowledge of (i) the configuration computed at the step before, (ii) the model Jacobian matrix whose nullspace can be used in order to predict a Moreover, for the fsolve function, the stopping parameters are also set as identical for all models. Results are shown in Tab. III. Globally, our model with 5 modes per leg (i.e. with a mean accuracy of 30 microns) is as computational efficient as the continuous Cosserat model. For a lower accuracy of prediction, the computational time of the finite differences approach is already more than 100 time bigger.

3) Checking stability: In this section, we compare the prediction of stability based on the analysis of the spectrum of the matrix H r defined in Section V-D with the criterion defined in the work [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF]. In this latter context, the stability of the configuration is assessed by looking at the determinant of a matrix denoted as b λ (u) which must be computed all along an integration interval u ∈ [0, 1[. If this determinant is null for u = u cp ∈ [0, 1[, a so-called conjugate point appears, which is a condition of unstability. We do not provide any further details on the computation of the matrix b λ (u) and refer the reader to [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF] for any details of implementation.

In Figure 6, we show the robot end-effector configuration space computed with the flooding algorithm proposed in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF] for the leg buckling modes shown in Fig. 3. In this picture, we highlight in red the areas where the inverse condition number of the matrix H r in ( 51) is lower than 10 -4 , i.e. near which stability issues may appear. Note that this value of 10 -4 has been fixed in order to have a better display of the results in Fig. 6. For checking the prediction of stability based on our model, we define a path between points X 1 = (0, 0.8) m and X 5 = (0, -0.2) m along which the stability criterion defined in the work [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF] will be computed. Along this path, 50 points are defined. In Fig. 7, the minimal value of det(b λ ) for each point is plotted, in parallel as the smallest eigenvalue σ 1 of the matrix H r . From Figs. 7 and8, we observe the following things:

• From point X 1 (σ 1 > 0, σ 2 > 0) to point X 2 (σ 1 = 0, σ 2 > 0, excluded) on the singularity of H r (see Fig. 6), there is no conguate point • At point X 2 (σ 1 = 0, σ 2 > 0), a conjugate point appears on the integration interval at u = 0, meaning that we reached a limit of stability. • From point X 2 (σ 1 = 0, σ 2 > 0) to point X 4 (σ 1 < 0, σ 2 = 0, excluded), a single conjugate point exists on the interval u ∈ [0 1[, meaning that the robot is instable along this path. • At point X 4 (σ 1 < 0, σ 2 = 0), a second conjugate point appear, meaning that we cross a second zone of singularity of H r . • From point X 4 (σ 1 < 0, σ 2 = 0) to point X 5 (σ 1 < 0, σ 2 < 0), two conjugate points exist on the interval u ∈ [0 1[, meaning that the robot has two degrees of unstability. To summarize, every time an eigenvalue of the Hessian matrix crosses zero, a conjugate point appears.

B. The spatial 6 -RF S robot

Here, we study a continuum spatial parallel 6 -RF S robot made of six rods (Fig. 9). Each rod is connected at the ground via an actuated revolute joint (points A i ). Its extremity is linked to a rigid moving platform via a passive spherical joint (S joint at points B i ). Because the robot has six motors, it is possible to control the position and orientation of the frame F P : (P, x P , y P , z P ).

In the base frame F 0 : (O, x, y, z), positions of points A i are given by:

--→ OA i = r b [cos γ i sin γ i 0] T (i = 1, 2, 3) with r b = 0.25 m and γ 1 = 0, γ 2 = 2π/3, and γ 3 = -2π/3. In the platform frame F P , positions of points B i are given by: --→ P B i = r p [cos α i sin α i 0] T (i = 1, 2, 3) with r p = 0. shear moduli E = 210 GPa and G = 82 GPa, respectively, and density ρ = 7800 kg/m 3 . No external wrenches are applied. We used Matlab for encoding the robot both with our model taking the same number of modes m j for the bending per leg (in what follows, m j = 3, 4 or 5) and with the continuous Cosserat model [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] (assuming spatial Kirchhoff hypotheses with no extensibility). It should be mentioned that, due to the presence of passive spherical joints, no torsion is transmitted inside the legs. Therefore, no torsion deformation modes have been included into the model.
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We will then again compare our model to the approach [21] in terms of accuracy of prediction for the geometrico-static model, computational time and stability prediction.

It should be mentioned that, as previously, for all computations shown thereafter (for both our model and the model [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF]), the solver used is the Levenberg-Marquardt algorithm encoded in the Matlab fsolve function.

1) Model prediction accuracy: For checking the model accuracy, we used the same approach as in Section VI-A. We first estimate the position of the end-effector both with our model and the model in [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] along a path followed by the motors defined by the Eq. ( 53). Here, we took q a0 = [5.86 5.56 5.86 5.46 5.86 5.26] T rad, q af = [7.95 7.65 4.29 3.89 3.77 3.17] T rad. An example of computed configurations along this path for n c = 10 is shown in Fig. 10.

The error of prediction between our model (denoted as Mod. #1) and the model [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] (denoted as Mod. #2) for the end-effector position for n c + 1 = 51 configurations computed by feeding the forward geometrico-static models with the equation ( 53) is shown in Fig. 11(a), and a summary of the results (for both position and orientation errors) is presented in Table IV. It should be mentioned that the orientation error is calculated as the norm of the vector

R T Mod1 R Mod2 -R T Mod2 R Mod1 ∨
, where R Mod1 is the platform orientation matrix computed with our approach, and R Mod2 the platform orientation matrix computed with [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF]. Note that we did not compare our approach with finite (e) |b λ | at X 5 (σ 1 < 0, σ 2 < 0) Fig. 8. Stability criterion from [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF] at points X 1 , X 2 , X 3 , X 4 and X 5 .
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x P y P z P Fig. 9. Schematics of the 6 -RF S robot (to scale). differences in the spatial case. Indeed, as shown in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], for finite differences, 500 elements per leg in the spatial case (leading to 2000 variables per leg for modeling the elasticity) lead to an error of end-effector position estimation of 1 mm. However, due to the large size of the equation system (more than 12,000 equations), the computational time for a single configuration is bigger than 10 minutes. Therefore, in our opinion, further comparisons with our model and finite element approach were not relevant.

Again, as expected, the prediction error decreases with the number of modes per leg. With five modes per bending per leg, i.e. a total of 10 modes per leg (60 components in the vector q e in totality), the mean position estimation error is lower than 40 microns, while the mean angular estimation error is lower than 0.01 deg., which is usually much enough for a robot with Finally, again, we checked the validity of the inverse geometrico-static model, i.e. the accuracy of prediction for the motor position with respect to Mod. #2, knowing the endeffector pose. Here, we took the 51 end-effector configurations computed with Mod. #2 as inputs of the inverse geometricostatic model of Mod. #1 with five modes, and we computed the motor angles. Results are shown in Tab. V. Results show that the mean value of the errors of prediction is below 0.02 degrees, which is more than acceptable. A peak value of 0.17 degrees is obtained for the 6th motor of the robot, which is due to the presence of a singularity near the computed pose. Far from singularities, the accuracy of prediction is considerably better.

2) Computational time: We want to analyze the computational performance of our model, adopting the same strategy as in as in Section VI-A. Again, we fed the forward geometricomodel (our model with 5 modes per bending per length and the model [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF]) with the equation ( 53) for varying number of configurations n c and we recorded their durations for providing the results in terms of end-effector configuration. For making a fair comparison between both models tested in this section, we used the same assumptions as in Section VI-A2.

Results are shown in Tab. VI and we may conclude that our model is computational efficient.

3) Checking stability: As in Section VI-A3, we compare the prediction of stability based on the analysis of the spectrum of the matrix H r defined in Section V-D with the criterion defined in the work [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF].

In Figure 12, we show a slice in xy (for z = 0.635 m, ϕ = π/8 rad, θ = π/3 rad, and ψ = 0 rad, these three angles being defined according to a ZY Z sequence of Euler-angles) of the robot end-effector configuration space computed with the flooding algorithm proposed in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF] for the leg buckling modes shown in Fig. 9. In this picture, we highlight in red the areas where the inverse condition number of the matrix H r in (51) is lower than 5 • 10 -4 , i.e. close to the limit beyond which, stability issues may occur. For checking the prediction of stability based on our model, we define a path between points X 1 = (-0.4, 0) m and X 3 = (-0.4, 0.2) m (for z = 0.635 m, ϕ = π/8 rad, θ = π/3 rad, and ψ = 0 rad) along which the stability criterion defined in the work [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF] (presence of conjugate points) is computed. Along this path, 50 points are defined. In Fig. 13, the minimal value of det(b λ ) for each point is plotted, in parallel as the smallest eigenvalue σ 1 of the matrix H r . From Figs. 13 and 14, we observe the following facts:

• From point X 1 (σ 1 > 0) to point X 2 (σ 1 = 0, excluded) on the singularity of H r (see Fig. 12), there is no conjugate point. This result can be easily verified by assigning symbolic values to the components of Υ 1 and Υ 2 and developing all sides of the equation ( 58).

Fig. 4 .

 4 Fig. 4. Path estimated for the RF RF R robot modelled with 5 modes per leg (to scale).
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 5 Fig.5. Error in the estimation of the end-effector position for our approach and for the finite difference approach[START_REF] Zaccaria | An analytical formulation for the geometrico-static problem of continuum planar parallel robots[END_REF] w.r.t. the continuous Cosserat model[START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] for 51 configurations of the RF RF R robot spread along the path shown in Fig.4.
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  1 m and α 1 = π/3, α 2 = π, and α 3 = -π/3. Parameters of the rods are: rods at rest are straight, their length L is equal to L = 1 m, that have circular cross-sections of radius 1 mm, Young's and
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 7 Fig. 7. Comparison stability criterion from [48] and the two first smallest eigenvalues σ 1 and σ 2 of the reduced Hessian matrix Hr.
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 10 Fig. 10. Path estimated for the 6 -RF S robot modelled with 5 modes per leg (to scale).
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 11 Fig. 11. Error in the estimation of the end-effector position orientation for our approach w.r.t. the continuous Cosserat model [21] for 51 configurations of the 6 -RF S robot spread along the path shown in Fig. 10.
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 1214 Fig. 12. Path tested in the workspace, at z = 0.635 m, ϕ = π/8 rad, θ = π/3 rad, and ψ = 0 rad, these three angles being defined in the ZY Z Euler-angle convention.

TABLE I MEAN

 I , MINIMAL AND MAXIMAL ESTIMATION ERRORS W.R.T. MOD. #2 FOR THE END-EFFECTOR POSITION AND FOR THE MOTOR ANGLE POSITIONS AS A FUNCTION OF THE NUMBER OF MODES PER LEG IN MOD. #1, COMPUTED ON 51 CONFIGURATIONS FOR THE RF RF R ROBOT.

		Position error [mm]	Motor angle error [mdeg]
	Nb. of modes	Min	Max Mean Min	Max	Mean
	3	0.11	9.22	1.50	13.75	18.50 16.13
	4	4.5e-3 2.68	0.68	3.10	3.18	3.14
	5	6.5e-5 0.13	0.029	1.40e-2 0.15	8.12e-2

TABLE III TOTAL

 III COMPUTATIONAL TIMES FOR THE nc + 1 CONFIGURATIONS WITH OUR MODEL (MOD #1, 5 MODES PER LEG), THE MODEL[START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] (MOD #2) AND FINITE DIFFERENCES (MOD #3, 1000 ELEMENTS PER LEG) FOR THE RF RF R ROBOT. All computations are run 10 times and the computational time provided is the mean time.• The analytical Jacobian matrices are implemented in both approaches in order to speed up the computation. • The setting parameters for the Matlab function ode45 are the "by-default" ones are are identical for all approaches.

	nc	Mod #1 [s] Mod #2 [s] Mod #3
	50	2.8	1.9	325
	30	1.6	1.1	202
	15	0.8	0.7	105
	10	0.6	0.4	87
	5	0.3	0.3	57
	variation of the model variables in the next configuration.

•

TABLE IV MEAN

 IV , MINIMAL AND MAXIMAL ESTIMATION ERRORS FOR THE END-EFFECTOR POSITION AS A FUNCTION OF THE NUMBER OF MODES COMPUTED ON 51 CONFIGURATIONS OF THE 6 -RF S ROBOT.

		Position err. [mm]	Angular err. [deg]
	Modes Min	Max Mean	Min	Max Mean
	3	0.09	4.49	1.14	0.10	1.24	0.37
	4	0.02	1.04	0.28	6.8e-3 0.30	0.08
	5	3.0e-4 0.14	3.6e-2	1.8e-3 0.04	0.01
	legs of 1 m.						

TABLE V MEAN

 V , MINIMAL AND MAXIMAL ESTIMATION ERRORS FOR THE MOTOR ANGLE POSITION AND ORIENTATION AS A FUNCTION OF THE NUMBER OF MODES COMPUTED ON 51 CONFIGURATIONS OF THE 6 -RF S ROBOT, WITH 5 MODES.

				Angular error [mdeg]		
		Mot#1 Mot#2 Mot#3 Mot#4 Mot#5 Mot#6
	Min	1.5e-2	0.33	8.9e-4	3.7e-4	9.2e-4	4.1e-3
	Max	52.22	36.59	31.59	13.80	3.68	176.84
	Mean 10.58	4.17	2.47	1.62	0.77	19.06

TABLE VI TOTAL

 VI COMPUTATIONAL TIMES FOR THE nc + 1 CONFIGURATIONS WITH OUR MODEL (MOD #1, 5 MODES), THE MODEL[START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] (MOD #2) FOR THE 6 -RF S ROBOT.

	nc	Mod #1 [s] Mod #2 [s]
	50	130	191
	30	80	124
	15	46	62
	10	27	41
	5	13	26

F. Boyer is with the Laboratoire des Sciences du Numérique (LS2N) at the Institut Mines Telecom Atlantique (IMTa), 44300, Nantes, France.

A geometrico-static (kinemato-static, resp.) model is a model which can be obtained by using not only the geometry (kinematics, resp.) equations of the robot, but also its statics equations.

Following[START_REF] Quennouelle | Kinematostatic modeling of compliant parallel mechanisms[END_REF], we prefer to replace the word kinetostatic by the word kinemato-static: Indeed, the former is an assembly of the words kinetics and statics, and is not related with our present interest in kinematics, i.e. with the study of the motion.

Note that any g i depends on both s and t but in different ways. In Cosserat theory, s playing the role of a continuous index (a label), g i depends on s in an explicit way. On the other hand, it depends on time in an implicit way, since its time-evolution is not imposed but governed by the static balance of forces. This explains why we note g i (s) and not g i (s, t).

Here, we consider that the numerical solution of the model[START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF] is the ground truth. However, even ODE solvers are prone to solution errors.
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Fig. [START_REF] Dupont | Design and control of concentric-tube robots[END_REF]. Comparison stability criterion from [START_REF] Till | Elastic stability of Cosserat rods and parallel continuum robots[END_REF] and the smallest eigenvalue σ 1 of the reduced Hessian matrix Hr.

• At point X 2 (σ 1 = 0), a conjugate point appears on the integration interval at u = 0, meaning that we reached a limit of stability.

conjugate point exists on the interval u ∈ [0 1[, meaning that the robot is unstable along this path. All these results showed the interest of our modelling approach.

VII. CONCLUSIONS

Several works have focused on the computation of geometrico-and kinemato-static models of CPRs. Those works can be sorted into two main categories: (i) models based on the continuous Cosserat equations and (ii) discretized models.

The first types of models are very accurate but assessing elastic stability with them is a complicated task. The second types of models allow easily checking the stability but they require a large number of elastic variables to be accurate.

In this paper, we extended an approach based on assumed strain modes that was developed for the dynamics of serial continuum robots to the statics of CPRs. We showed that our model give very similar results than those obtained with the full continuous Cosserat model, and this, with a very limited number of elastic variables, contrary to other standard discretization methods: Typically, 10 elastic variables per leg lead to a prediction accuracy of 50 microns for 1-meterlength rods. The method was not only accurate but also computationally efficient: For a better prediction accuracy than discretization based on finite-differences, it was more than 100 times faster. Furthermore, the computational time was similar to that for the continuous Cosserat model. Finally, it allows the elastic stability to be assessed, by only checking the reduced Hessian of the potential energy as for any discrete Lagrangian model. This reduced Hessian can be computed by using matrices already obtained for the calculation of the robot kinemato-static model, thus making the analysis of this robot property simpler than for the continuous Cosserat model. All the results have been validated on two case studies: a planar RF RF R robot and a spatial 6 -RF S robot.

Our future works will deal with the extension of the method to the dynamics of CPRs.

APPENDIX

A. Recalls of Lie group notations

Some notational conventions of Lie group theory, that can be found in [START_REF] Boyer | Dynamics of continuum and soft robots: A strain parameterization based approach[END_REF], are recalled here for reasons of convenience. A hat "∧" covering a vector Υ defines a matrix Υ whose expression depends on the dimension of Υ. If Υ ∈ R 3 , then Υ = Υ ∧ denotes the (3 × 3) skew symmetric matrix defined such that:

Reciprocally, the superscript "∨" is such that Υ∨ = Υ for any Υ ∈ R 3 or R 6 . The two operators Ad and ad are respectively defined for g = (R, p) ∈ SE(3) and Υ = [a T b T ] T by the two (6 × 6) matrices

Note that Ad g is the twist transformation matrix allowing to pass from one frame to another one, their relative pose being parameterized by the transformation g = (R, p). Note also that, if Υ = (g -1 g ′ ) ∨ , then we have:
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