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 
Abstract—Magnetic losses in a ferromagnetic lamination 

can be separated into three contributions. Bertotti 
theoretically assessed this distribution at the end of the 20th 
century in the Statistical Theory of Losses (STL), triggering 
significant progress in understanding the dissipation 
mechanisms. Recent studies have shown the possibility of 
reconstructing a hysteresis cycle from the high-frequency 
Barkhausen noise signal. Applying STL to the Barkhausen 
noise cycles has never been done before. Still, it could help 
establish a parallel with the measurement of the 
magnetization cycle versus frequency and the energy loss. 
However, STL analysis in its ultimate description requires 
sinusoidal flux density, while Barkhausen noise 
measurements are usually done with a constant excitation 
slope. Multiple magnetic flux density control methods were 
described in the literature and are reviewed in this 
manuscript. However, the Barkhausen noise context, 
requiring high-frequency sampling during the 
magnetization cycle, is more constraining. Therefore, 
specific performance criteria were considered, followed by 
numerical tests to determine the most adapted method to a 
Barkhausen STL description. Eventually, the Proportional 
Iterative Learning Control (P-ILC) gave the highest 
satisfaction rate and was chosen for experimental tests. 
Some of these experimental results are provided in the 
manuscript discussion together with suggestions for 
convergence speed improvement. It is, for instance, 
recommended to increase the gain near saturation, where 
the system response is poor. 
 

Index Terms—Magnetic Barkhausen noise energy, waveform 
control, feedback, magnetic losses 

I. INTRODUCTION 

Magnetic cores are omnipresent in electrical energy 
conversion and transport. Losses inevitably happen while 
magnetic cores operate and are a significant cause of 
inefficiency. During one magnetization cycle, these losses are 
equivalent to the area of the Ba(Hsurf) hysteresis cycle obtained 
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by plotting the flux density Ba averaged through the tested 
specimen cross-section as a function of the tangent surface 
excitation field Hsurf [1]: 

                           P =  ∮ Bୟ(Hୱ୳୰୤) · dHୱ୳୰୤                     (1)  

The first attempts for the hysteresis losses prediction trace 
back to Steinmetz's model (Eq. 2) [2][3]. This empirical relation 
was limited to sinusoidal Ba conditions and stated that iron 
losses followed a fractional power “law” of both frequency f 
and Bୟ୫ୟ୶

 (peak value of sinusoidal Ba): 

                             P = k ∙  𝑓ୟ ∙ Bୟ୫ୟ୶
ୠ                              (2)  

where k, a, and b were three constant parameters depending on 
the nature and geometry of the magnetic circuit. Loss separation 
was initially proposed in 1924 with Jordan's work [4], who 
assumed that magnetic core losses could be divided (Eq. 3) in a 
static contribution Pst and a dynamic contribution related to 
classical eddy current loss Pcl [4]-[6]: 

                          P = Pୱ୲ + Pୡ୪ = α ∙  𝑓 + β ∙ 𝑓ଶ           (3) 

where α and β were fit parameters. This simple approach was 
later improved by adding an excess loss term to match the 
experimental data, wrongly approximated by Eq. 3 (grain-
oriented electrical steels FeSi GO, etc. [7]). Initially, the 
physical justification for the additional contribution was 
unknown, and it was even referred to as “anomalous” loss. It 
was obtained by either modifying β or simply adding a third 
contribution or “excess” loss (Pexc) [8]: 

                                  P = Pୱ୲ + Pୡ୪ + Pୣ ୶                     (4) 

This empirical method found theoretical foundations from 
Bertotti Statistical Theory of Losses (STL) [9], expressed in 
terms of power in Eq. 5 or energy in Eq. 6 (ast, acl and aexc are 
fitting parameters): 

                  P = aୱ୲  ∙ 𝑓 + aୡ୪ ∙ 𝑓ଶ + aୣ୶ୡ ∙ 𝑓
య

మ              (5) 

             W(𝑓) =  
୔

௙
=  aୱ୲ + aୡ୪ ∙ 𝑓 + aୣ୶ୡ ∙ ඥ𝑓               (6) 

STL is an advanced theoretical method that brought 
significant progress in understanding the magnetization 
mechanisms [10]-[16]. It is, however, worth mentioning that 
STL supposes a full flux penetration which restricts its domain 
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of validity to approximately 100 Hz for a typical FeSi GO 
(thickness = 300 μm). 

Recent works [17]-[19] have demonstrated the feasibility of 
plotting hysteresis cycles from Barkhausen noise measurement. 
For this, the so-called Magnetic Barkhausen Noise energy 
MBNenergy (Eq. 7) is plotted as a function of Hsurf. 

       MBNୣ୬ୣ୰୥୷(t) = ν ∙  ∫ sign ቀ
ୢୌ౩౫౨౜

ୢୱ
ቁ ∙ V୑୆୒

ଶ (s) ∙ ds
୲

଴
       (7) 

ν is a normalization coefficient and VMBN the magnetic 
Barkhausen noise voltage drop across the sensor coil. 
Comparably to the classic Ba(Hsurf), MBNenergy(Hsurf) hysteresis 
cycles depend on the excitation frequency and thus reflect 
physical properties. It is, therefore, tempting to apply STL to 
these alternative cycles and get additional insights regarding the 
physics of the magnetization mechanisms. MBNenergy is linked 
predominantly to the magnetic domain wall motions; thus, in 
the MBNenergy STL, the classical loss contribution, related to the 
macroscopic eddy currents and first-order-frequency-
dependent, should be negligible. Hence, the frequency 
dependency of the MBNenergy hysteresis cycle energy is 
expected to be written as in Eq. 8: 

                          W୑୆୒౛౤౛౨ౝ౯
(𝑓) = bୱ୲ + bୣ୶ୡ ∙ ඥ𝑓                (8)                                                                

with bst and bexc, two constants. Eq. 8 is purely hypothetical and 
has never been validated by comparison to experimental results. 
By increasing the magnetization frequency, the available 
frequency band of the MBN spectral density is expected to shift 
upward. Still, this effect remains unclear and the comparison 
with STL is expected to bring clarification. Even if STL was 
originally developed, for the sake of simplicity, by assuming 
that the magnetization process occurs under controlled 
macroscopic constant induction derivative (triangular 
induction), the ensuing formulation was successively modified 
to comply with sinusoidal and generic induction waveform. Eq. 
6 supposes this condition to be respected [15]. In the case of 
Barkhausen noise measurements, either the excitation current 
or the magnetic excitation Hsurf is usually imposed triangular 
[21][22] and measurements rarely done under sinusoidal flux 
density. Ba(Hsurf) and MBNenergy(Hsurf) can be obtained from the 
same experimental setup. Therefore, a suitable method for the 
flux density control during Barkhausen noise measurement can 
be inspired by published work related to standard hysteresis 
characterizations [23]-[30]. Still, additional constraints owed to 
Barkhausen noise measurement have to be considered before 
setting the most adapted method. A magnetic characterization 
setup contains two non-linear elements (the inductor yoke used 
to drive the magnetic field Hsurf and the tested sample). 
Analytical solutions are sometimes proposed for setting the 
induction control system. Still, the effect of hysteresis and the 
to-be-measured properties of the specimen makes them 
approximative hence iterative methods prevail. The focus of 
this paper is to examine a wide range of digital feedback 
methods found in the literature to assure a sinusoidal flux 
density during hysteresis measurements and select the most 
appropriate one for the specific context of the Barkhausen noise 
STL application. Comparisons exist in the literature [31], but 
they are limited to two or three methods and never deal with the 
specific Barkhausen noise perspective. The study is restricted 
to digital feedback methods [24]-[30]. Even if widespread 
before the proliferation of computers, the analog feedback 

methods [30][32][33] are poorly tunable and less robust since 
they rely on discrete components whose values can be 
challenging to set, especially if heated. Analog systems work in 
real-time. Perturbations cannot be anticipated, and high 
precisions cannot be reached on a wide range of frequencies and 
materials. Other problems can arise if the system is strongly 
non-linear and has unstable feedback [20]. It should also be 
noted that high-gain high-bandwidth analog (real-time) 
feedback can suppress large-amplitude Barkhausen noise 
activity [1][20]. For the same reasons, this paper will not 
consider hybrid methods (obtained by combining digital and 
analog feedback methods [34][35]). 

II. REVIEW OF ITERATIVE FEEDBACK METHODS 

A. Performance criteria 

This study aims to define and test the most efficient magnetic 
flux density control method in the context of the MBNenergy 
hysteresis cycle characterization and STL application 
[21][22][36]. To obtain adapted comparisons and reach our 
objective, a specific series of criteria has been defined:  
 Number of iterations: a reduced number of iterations is 
important, especially in the low-frequency range where a 
measure can take several minutes and generate large data files 
complex to process. It is also critical in the high-frequency 
range, where thermal transfers due to the magnetic losses can 
affect the experimental conditions and the magnetic response of 
the material. 
 Accuracy: Convergence should be reached with a minimum 
error. Error estimations can take different forms, including 
relative Euclidean difference, form factor difference, Pearson 
dissimilarity, total harmonic distortion, etc. 
 Number of parameters: Feedback control parameters must be 
tuned for each new experimental situation. Optimizing a large 
number of parameters requires a lot of experimental data.  
 Robustness: the feedback method should remain undisturbed 
by external stimuli, including white noises, drifts, and offsets. 
 Memory allocation and computation time efficiency: The 
ideal feedback method computes an iteration with reduced time 
and limited memory capacity. This criterion is especially 
detrimental for techniques based on square matrix inversion 
requiring high computation capacity and large memory 
allocation. 
 Universality: This criterion is related to the capability of 
providing satisfactory results in different experimental 
conditions without extensive calibrations processes. 

A feedback method providing a positive answer to all the 
criteria listed above does not exist. Many approaches have been 
described in the literature [21]-[27], and each technique can 
perform well in specific conditions. This study aims to compare 
these methods to find the most suitable feedback technique in 
the particular context of the MBNenergy(Hsurf) hysteresis cycles 
characterization. 

B. Detailed description of iterative feedback methods 

Let us introduce the feedback notation and a general 
feedback scheme (Fig. 1)  
 YG(t) is the reference, i.e. the ideal desired goal output (at 
time t). 
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Fig. 1 – Feedback structure. 
 yM(t,j) is the measured output of iteration j (at time t). 
 ϵ(t,j)= yG(t) - yM(t,j) is the error of j-th iteration (at time t). 
 x(t,j) is the system input of j-th iteration (at time t). 

1) Iterative Learning Control (ILC) 
 A straightforward iterative method for the control of a non-

linear system can be derived from the classical real-time 
Proportional Integral Derivative (PID) technique: 

             x(t) = K୔ ·  ϵ(t) + K୍ · ∫ ϵ(s) ds + Kୈ ·  
ୢ஫

ୢ୲

୲

଴
                (9)                                                                     

with Kp, KI, and KD, the proportional, integral, and derivative 
gains. The iterative PID method has been described by several 
authors, including Gruebler et al. in [37], and consists in: 

                          x(t, j + 1) = x(t, j) + Δx(t, j)                       (10) 

  Δx(t, j) =  K୔ ·  ϵ(t, j) + K୍ · ∫ ϵ(s, j) ds + Kୈ  ·
ୢ஫

ୢ୲
(t, j)

୲

଴
   (11) 

In their simplest form (proportional correction only), the 
above equations can be simplified, which leads to the 
Proportional-Iterative Learning Control formulation P-ILC 
[37]: 

                        x(t, j + 1) = x(t, j) + K୔ · ϵ(t, j)                        (12) 

The phase-lead ILC method is similar to P-ILC but involves 
the addition of a constant delay τ in the error term [38][39]: 

                   x(t, j + 1) = x(t, j) + K୔ ·  ϵ(t + τ, j)                    (13) 

P-ILC is simple; the inputs are reduced to ϵ(t,j), and 
parameters to Kp. Its implementation is very straightforward, 
and, like classic PID, it can be very robust with the right choice 
of Kp. However, the choice between high gain/fast convergence 
and small gain/no divergence makes the optimization tricky, 
typically ending with a slower convergence speed at the benefit 
of better robustness. 

2) Fourier Series Proportional-Iterative Learning 
Control (FSP-ILC) 

Switching from the time domain to the frequency domain can 
be highly beneficial by simplifying mathematical operations. 
The Fourier transform being linear, Eq. 14 becomes 15: 

            x(t, j + 1) = x(t, j) + K୔ · [yୋ(t) − y୑(t, j)]              (14) 

           X(𝑓, j + 1) = X(𝑓, j) + K୔ · [Yୋ(f) − Y୑(𝑓, j)]           (15) 

Where X(f,j) is the Fourier transform of x(t,j). Fourier 
transforms lead to complex numbers, and FSP-ILC works with 
complex number formalism. While Fourier Distribution 
Iterative Learning Control FDP-ILC would apply Eq. 15 to the 
whole frequency spectrum, FSP-ILC is limited only to the 
excitation frequency’s multiples (fexc) and can even be reduced 
to those of substantial contribution. Eq. 16 gives FSP-ILC’s 
equation when k ∈ [1 – M]:    

X(k ⋅ 𝑓 ୶ୡ, j + 1) = X(k ⋅ 𝑓 ୶ୡ, j) + K୔ · [Yୋ(k ⋅ 𝑓 ୶ୡ) − Y୑(k ⋅
𝑓 ୶ୡ, j)]                                                                                 (16) 

FSP-ILC performance is relatively close to those of P-ILC. 
The main advantage of the former is its ability to ignore all the 

high-frequency components (> M·fexc), including white noise 
and power source oscillations, especially when fexc is low. Its 
main drawback is the two Fourier transforms and the sum of 
complex numbers required per iteration, slowing down the 
control speed and inducing limitations in the low-frequency 
range. The computation time can be reduced significantly if 
Fast Fourier Transform (FFT) is employed, but at the additional 
restriction that the number of samples in the waveform becomes 
a power of 2. 

3) Phase Correction by determination of Measure-Goal 
Delay (PhC-MGD) 

P-ILC performances depend on the power supply dynamic 
response and capability to generate x without undesired phase 
lag. A phase correction is sometimes needed to increase the 
feedback performance. For this, several methods have been 
proposed, including PhC-MGD, a technique described by 
Stupakov et al. in [21]. In this method, a preliminary step 
increases x until yM reaches the required amplitude. This 
operation is achieved by a P-ILC correction of gain modulated 
by yM’s amplitude identified at the previous stage (Eq. 17): 

        x(t, j + 1) = x(t, j) · ൜1 +
୏ౌ ·[୫ୟ୶(୷ృ)ି୫ୟ୶(୷౉(୨))]

୫ୟ୶൫୶(୨)൯
ൠ        (17) 

Once yM reaches the required threshold, x is recalculated 
through a sum of two weighted contributions (Gph is the 
weight), the corrected phase contribution xph and the corrected 
amplitude contribution xampl: 

x(t, j + 1) = G୮୦ ·  x୮୦(t, j + 1) + ൫1 − G୮୦൯ · xୟ୫୮୪(t, j + 1)                             
(18) 

where xph is calculated as follows: 
 the measure is normalized according to the targeted 
waveform: 

                                  y୑ = y୑ ·
୫ୟ୶ (୷ృ)

୫ୟ୶ (୷౉)
                                       (19)   

 the resulting signal is divided into sections where the targeted 
waveform is monotonic,  
 the delay ø(t) (see Fig. 2) between the targeted waveform and 
the measurement is estimated. 
 ø(t) is applied simultaneously to yM and x and leads to the 
delayed versions yreq and xph: 

                          ቊ
x୮୦(t, j + 1) = x(t + ø(t), j)

y୰ୣ୯(t, j + 1) = y୑(t + ø(t), j)
                   (20) 

 

Fig. 2 – PhC-MGD delay illustration. 
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Xampl is obtained from a P-ILC method of yreq targeted 
waveform instead of the usual yG: 

       xୟ୫୮୪(t, j + 1) = x(t, j) + K୔ · ൣy୰ୣ୯(t, j) − y୑(t, j)൧     (21) 

In [21], Gph has a non-zero value exclusively in the high-
frequency range when phase shift exists. The main drawback of 
PhC-MGD is the normalization step, which flattens the 
measurement signal in the presence of undesired noise peaks 
and makes the phase delay estimation complicated. This noise 
issue has been solved partially in [21] by taking one thousand 
points per cycle, interpolating Hsurf with a cubic spline, and 
smoothing Ba with a numerical filter. 

4) Phase Correction by P-ILC on angles (PhC-P-ILC) 
In 2005, Zurek et al. in [40] proposed a correction method 

described as the combination of two steps: 
 An amplitude correction leading to x∗ (an intermediary 
variable) and assimilated to a P-ILC of effective gain inversely 
proportional to yM’s amplitude: 

                    x∗(t, j + 1) = x(t, j) + K୔
஫(୲,୨)

୫ୟ୶൫୷౉(୨)൯
                      (22)                     

      x∗(t, j + 1) = x(t, j) +
୏ౌ

୫ୟ୶(୷౉(୨))
[yୋ(t) − y୑(t, j)]          (23) 

 A phase correction applied through a phase delay function 
F: 

                               x(t, j + 1) = F[x∗(t, j + 1)]                   (24) 

During this phase correction, every involved quantity is 
expressed by its Fourier series (Eq. 25 to 28): 

         y୑(t, j) = a଴ + ∑ a୩(j) sin[2π k𝑓ଵ t + ϕ୩(j)]୑
୩ୀଵ       (25)   

            yୋ(t) = b଴ + ∑ b୩ sin[2π k𝑓ଵ t + ψ୩]୑
୩ୀଵ                (26)   

          x∗(t, j) = c଴ + ∑ c୩(j) sin[2π k𝑓ଵ t + θ୩(j)]୑
୩ୀଵ         (27)    

          I(t, j) = d଴ + ∑ d୩(j) sin [2π k𝑓ଵ t + β୩(j)]୑
୩ୀଵ         (28) 

where M is the number of considered harmonics, 𝑓ଵ is the 
targeted waveform frequency, ai, bi, ci, and di are the Fourier 
amplitudes, and I the output current. I and x are linked through 
Eq. 29. They are identical if the source is an ideal unity gain 
amplifier (Gsource = 1): 

                               I(t, j) = Gୱ୭୳୰ୡୣ(s) · x(t, j)                    (29) 

øi, ψi, θi and βi, are the Fourier phase lags associated to ai, bi, ci, 
and di. With this formalism:  

x(t, j + 1) = F[x∗(t, j + 1)] =  ∑ c୩(j + 1) · sin[2π kfଵ t +୑
୩ୀ଴

θ୩(j + 1) + α୩(j + 1)]                                                         (30) 

and, 

                    α୩(j + 1) = α୩(j) + K஑ · (ψ୩ − β୩(j))           (31) 

αk is the kth harmonic applied phase lag, and Kα a proportional 
gain. PhC-P-ILC reduces the influence of the power source but 
works in the Fourier domain, which means time-consuming 
direct and inverse transformations (especially when the number 
of considered data points is large). The implementation is 
complex compared to P-ILC.  

5) Non-linear correction with a Quasi-Newtonian Method 
(QNM) 

In 2008, Yamamoto et al. in [41] described QNM, a non-
linear iterative control method derived from the BFGS-like 

technique published by Li and Fukushima [42] a few years 
before. The BFGS algorithm (Broyden-Fletcher-Goldfarb-
Shanno) can be described as a line search optimization method, 
and Li's method is the derivative-free version of this algorithm. 

At each iteration, several variables need to be evaluated: an 
N·N Hessian matrix Bj (where N is the size of vector x), yM, yG, 
and ϵM.  

                                     ϵ୑(t, j) = f[x(t, j)]                           (32) 

B0 (initialization at j = 0) is defined as an identity matrix, and 
f a function to minimize. For each iteration j, the following 
algorithm is run: 
 the search direction pj is found by solving: 

                                   B୨ିଵ ∙  p୨ =  −ϵ୑୨ିଵ
                          (33) 

 the step-size αj is set to 1, a new measure is made with: 

                                   x୲ୣ୫୮ = x୨ିଵ + α୨ ∙  p୨                       (34) 

 which leads to obtaining yMtemp and ϵ୲ୣ୫୮. 

 if the error is not small enough ቀቛϵ୑୲ୣ୫୮ቛ > ρ ∙ ቛϵ୑୨ିଵቛ −

σଶ  ∙ ฮp୨ฮ
ଶ

ቁ the previous step is repeated, but αj is contracted by 

a factor β ∈ [0 – 1]: 

                                            α୨ = β ·  α୨                                (35) 

This step is repeated until ቀቛϵ୑୲ୣ୫୮ቛ > (1 + η୨) ∙ ቛϵ୑୨ିଵቛ − σଵ ·

 ฮα୨ ∙  p୨ฮ
ଶ

ቁ  

 Bj is updated according to Eq. 36 below: 

B୨ = B୨ିଵ + θ୨ ·
൫஫౪౛ౣ౦ି ஫ౠషభ൯ି୆ౠషభ·൫୶౪౛ౣ౦ି୶ౠషభ൯

ฮ஫౪౛ౣ౦ି ஫ౠషభฮ
మ · ൫x୲ୣ୫୮ −

x୨ିଵ൯
୘

                                                                                   (36)  

where θj is set to ensure Bj is not singular. 
 xj, and yj  are set from the temporary variables: x୨ =

x୲ୣ୫୮, y୨ = y୲ୣ୫୮ 
QNM differs from [42] by a different initialization of αj:  

                                          α୨ =
ଵ

ଵା ฮ஫ౠషభฮ
                                     (37) 

QNM converges faster than P-ILC, especially near saturation, 
where P-ILC requires hundreds of iterations. But, QNM suffers 
from several weaknesses, including the excessive number of 
parameters: the fixed parameters ρ, β, θത , σ1, σ2 and the variable 
ones such as η and θ modified for every iteration: 

                               ∑ η୨
ାஶ
୩ ୀ ଴ < η < ∞                          (38)   

                                หθ୨ିଵ − 1ห <  θത                              (39)  

Another drawback is the computationally expensive inversion 
of square matrix. Convergence speed is also impacted by the 
multiple measurements needed per iteration. Hence, QNM is 
inadequate in the very-low-frequency range. 

6) Least-Square Method for a Hsurf(Ba) Polynomial 
Identification (LSM-PI) 

In 2011, Anderson [43] proposed LSM-PI, an alternative 
iterative method which can be summarized as follows: 
 Like in PhC-MGD, the data set y୑ is divided into monotonic 
sections, and an offset is applied to obtain x(yM=0)=0 for each 
section. 
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 X(yM) is defined for every section and approximated by a 
high-order polynomial (up to order of 30 in [40]): 

                        x(y୑) ≈  ∑ a୧ · y୑
୧ (t)ଷ଴

୧ୀଵ                                (40) 

 ai coefficients are determined with a least-squares method, 
and a phase term is considered for the hysteretic behavior. 
 x is calculated from Eq. 40 by replacing yM by yG (Eq. 41): 

                  x(t) =  ∑ a୧ ∙  yୋ
୧ (t)ଷ଴

୧ୀଵ                              (41) 

This method converges with a minimal number of iterations 
(just three as claimed in [43]), but its performance relies heavily 
on the order of the polynomial function. Many oscillation issues 
are noticed (especially near saturation, where the magnetic 
permeability µ is low, but the Hsurf(Ba) slope is high). The least-
squares optimization is computationally expensive, especially 
if many sampling points are considered. This problem can be 
lessened by expressing Hsurf(Ba) in a different orthonormal 
system. Moreover, this method assumes that Hsurf(Ba) is 
bijective, which is not the case if the maxima of Hsurf and Ba are 
not simultaneous (as it is in the high-frequency range). In that 
case, a phase delay must be considered to avoid wrong results 
from the least-square optimization. 

7) Other methods 
It is not possible to provide an exhaustive list of all feedback 

methods and their modifications described in the scientific and 
technical literature. The main techniques introduced in the 
sections above have been numerically implemented and tested 
in this study. They have been chosen for their singularities and 
originalities, but more methods exist, and even if not detailed 
nor tested, they are worth mentioning in this manuscript: 
 In 2016, Zhang et al. in [44] described a proportional 
corrector, working in the frequency domain and in which both 
magnitudes and phases are corrected. For every harmonic, the 
correction can be written as: 

X୫ୟ୥ = K୔ౣ౗ౝ
∙  ቂYୋౣ౗ౝ

− Y୑୫ୟ୥ቃ + K୍ౣ౗ౝ
∙ ∫ ቀYୋ୫ୟ୥

−

Yୋౣ౗ౝ
ቁ dt                                                                                   (42)                                                

X୮୦ = K୔౦౞
∙  ቂYୋ౦౞

− Y୑୮୦
ቃ + K୍౦౞

∙ ∫(Yୋ୮୦
− Y୑୮୦

)dt   (43) 

Then, x(t,j+1) is written as a Fourier series thanks to the Xmag 
and Xph coefficients. This method shares the same strengths and 
weaknesses as FSP-ILC but is also very sensitive to the non-
linear behavior of the ferromagnetic sample. In [44], this issue 
is solved by correcting the calculated phases based on a look-
up table. Unfortunately, no details are provided about the 
method for constructing such a look-up table. 
 In [45], White et al. use a proportional derivative PD-ILC 
method to control the excitation current I (assuming that Hsurf is 
proportional to I and the resistances and inductances values 
perfectly known). Good results are obtained, but compared to 
P-ILC the implementation is complex and requires detailed 
knowledge of the experimental conditions and their evolution 
during the test, which is not trivial considering that the 
inductance varies significantly with the level of excitation. 
 In [46], Bosack et al. start from Jiles-Atherton's model and 
assumes the magnetization M can be written as: 

                
ୢ୑

ୢ୲
= g(Hୱ୳୰୤ , M, t) + f(Hୱ୳୰୤ , M, u)                (44)   

where f and g are two known functions, and u is a control 
variable, defined by: 

        
ୢୌ౩౫౨౜

ୢ୲
=

ୢୌబ

ୢ୲
+

ୢୌౙ

ୢ୲
=

ୢୌబ

ୢ୲
+ u                                (45)   

H0 is the ambient field excitation, and Hc is the corrected 
contribution. The resolution of the system gives: 

                u =  −
ୢୌబ

ୢ୲
− K୔ ∙ f(M) ∙ (M − M୥୭ୟ୪)                       (46) 

  Eq. 46 looks like a Kp proportional correction. No details about 
the practical implementation are given in [46], except the use of 
a real-time PID corrector. The estimations of f and g rely on 
identification steps, and calibration must be made each time the 
whole system changes, which can be time-consuming, 
especially if recalibration is to be applied at each new 
measurement frequency. Finally, non-linear algorithms have 
also been described in contexts unrelated to magnetic waveform 
control (electrohydraulic molding machine in [47] or 
lithographic apparatus in [48]). Like QNM, these methods 
require matrices inversion, limiting the experimental sampling 
rate and leading to feedback control incompatible with 
MBNenergy characterizations. 

C. Required precision criterion 

All the methods described in this section have been developed 
to comply with international magnetic characterization 
standards, and different criteria have been proposed for their 
validation. It is worth noting that some of these criteria apply to 
the time derivative z of the targeted waveform x.  

These criteria include: 
 The relative Euclidean Difference : 

             d୰ୣୢ(x, y) =  ට
∫[୶(୲)ି୷(୲)]మୢ୲

∫ ୶(୲)మ ୢ୲
                            (47) 

 The Form Factor (applied only to z. It is worth noting that z 
criteria are particularly difficult to meet, as any minor distortion 
in x gets amplified due to the derivative): 

  FFD(z, y′) =  |𝐹𝐹(𝑧) − 𝐹𝐹(𝑦′)| =  ቚ
ோெௌ(௭)

஺௏ீ(|௭|)
−

ோெௌ(௬ᇱ)

஺௏ீ(|௬ᇱ|)
 ቚ  (48) 

   The Pearson coefficient: 

       d୮ୣୟ୰ୱ୭୬(x, y) =  
∫[୷(୲)ି୅୚ (୷)][୶(୲)ି୅୚ୋ(୶)]ୢ୲

ඥ∫[୷(୲)ି୅୚ୋ(୷)]మୢ୲  ∫[୶(୲)ି୅୚ (୶)]మୢ୲ 
      (49)  

   The Total Harmonic Distortion (applied only to z): 

                       THD(z) =
ට∑ ୸ౡ

మశಮ
ౡసమ

௭
                                  (50)   

Tab. 1 – Accuracy criteria of the methods described in this 
section. 

Source 
Euclidean 
Difference 

Form Factor 
Pearson 

Coefficient 
Other 

[24] P-ILC    Amplitude error < 
0.2% 

[41] QNM  1.11  ± 1%  Distortion < 1% 

[43] LSM-PI  1.11  ± 0.1%  THD < 0.1% 

[21] PhC-MGD  1.11  ± 0.1% > 1 - 10-5 
Amplitude error < 

0.1% 

[44] 
< 0.3% 

(magnitudes 
and phases) 

   

[40] PhC-P-ILC  1.11  ± 1%  
THD < 1%; 

Amplitude error < 
0.1% 
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   The Amplitude Error: 

                   AE(x, y) =  
(୶ౣ౗౮ି୶ౣ౟౤)ି(୷ౣ౗౮ ି୷ౣ౟౤)

୶ౣ౗౮ି୶ౣ౟౤
                      (51)   

Table 1 provides the target values as applied in the literature. 
Even if different waveforms can have the same form factor 
[20][41], the IEEE standards recommend the use of this 
criterion for the magnetic hysteresis and losses characterization 
[49][50]. It is unsurprising to find it applied in many studies. 
For the MBNenergy characterization, we found it relevant to 
apply the following criteria: 
 Relative Euclidean Difference < 0.5% 
 z Form Factor = Fgoal ± 0.5%     
 Pearson coefficient > 1 – 3 · 10-5  
 z THD < 0.5%  

III. NUMERICAL IMPLEMENTATION 

In our quest toward the “best” iterative method for MBNenergy 

hysteresis cycles, characterization, and STL application, all the 
techniques described in section 2 have been numerically 
implemented using MATLAB®. A sigmoid-type anhysteretic 
behavior (Eq. 52) has been used to simulate the material’s 
answer:  

                y୑(t, j) = f[x(t, j)] =  
ଶ

஠
 arctan [x(t, j)]                   (52)   

Eq. (52) is convenient as saturation is taken into account, and 
xG can be expressed analytically: 

                                 xୋ(t) = tan ൬
஠

ଶ
yୋ(t)൰                                 (53)   

The objective is to find xG leading to a sinusoidal yG. A 
preliminary test consists in plotting the spectral content of xG as 
a function of yG’s amplitude (Fig. 3). 

 
Fig. 3 – xG harmonic content vs. yG amplitude. 

When yG’s amplitude is large, high amplitude harmonics are 
generated, triggering issues if the power source dynamic 
performance is limited. Waveform control is easier at low 
amplitude (no saturation and quasi-linear material behavior). 
THD of xG can reach 0% at very low amplitudes, it however 
increases up to 18% at 0.75·max(yG) and even 51% at 
0.95·max(yG). THD values exceeding 100% are possible if no 
control is applied [20], and this is expected to occur for even 
deeper saturation. No noise has been considered in all the 
following tests. The power amplifier is supposed to be ideal 
(infinite bandwidth, etc.), with perfect impedance matching. 

The sampling frequency has been reduced to 500 Hz to limit the 
memory allocation and reach convergence even with QNM.  

A. Shallow saturation 

The tested methods are firstly compared in a shallow 
saturation case: 

                               𝑦ீ(𝑡) = 0.75 sin(2𝜋𝑡)                            (54)   

The simulations are stopped when the Relative Euclidean 
Difference or the Form Factor Difference falls below 10-10. The 
maximum iteration number is set to 600. On the one hand, such 
low error is only achievable in simulation; experimental 
conditions are affected by white noise, drifts, etc. On the other 
hand, such high accuracy allows testing the methods with yM 
extremely close to yG. Table 2 gives the simulation parameters, 
and Fig. 4 the simulation results. 

Tab. 2 – Shallow saturation simulation parameters. 
 Parameters 

P-ILC, FDP-ILC kP = 2.77 

FSP-ILC kP = 2.77, NHARMONICS = 200 

PhC-P-ILC KP = 4.4,  kα = 0 

PhC-MGD GPH = 0, KP = 1 

QNM Same parameters as in [29], except λ = 0.5 and β= 0.6 

LSM-PI NPOWERS = 45 

 

 

Fig. 4 – Relative Euclidean and form factor differences for the 
shallow saturation test. 

Convergence is obtained for all the methods tested. LSM-PI 
and PhC-MGD are the fastest, with approximately 10 iterations. 
Still, for both these methods, the amplitude correction step 
requires a lot of intermediary measurements, which can be 
problematic in the low-frequency range. QNM converges after 
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40 iterations but needs long calculation times. P-ILC follows 
with around 60 iterations and minimal calculation times. 
Finally, FSP-ILC converges after almost 180 iterations. It is 
worth noting the residual error on P-ILC and FSP-ILC inherent 
to those methods and impossible to remove. Table 3 concludes 
this first set of tests by comparing the methods based on the 
criteria described in sub-section 2.1: 

Tab. 3 – Performance comparison for the shallow saturation 
test. 

  
Num. 

of 
iter. 

Num. 
of 

meas. 

Fin. rel. 
euc. diff. 

Final 
form 
factor 

Calc. 
time per 
iter. (s) 

Total  
calc. 

time (s) 

P-ILC 66 66 < 10-10 8.9·10-10 4.7·10-4 0.031 

FDP-ILC 66 66 < 10-10 8.9·10-10 4.2·10-4 0.023 

FSP-ILC 60 60 2.5·10-8 1.6·10-9 0.008 0.47 

PhC-P-ILC 174 174 2.2·10-9 7.6·10-10 0.01 1.7 

PhC-MGD 11 196 9.9·10-5 < 10-10 0.031 0.338 

QNM 40 90 1.4·10-8 < 10-10 0.52 20.92 

LSM-PI 7 192 9.0·10-10 < 10-10 0.39 2.743 

Table 3 “calculation time” only considers the waveform 
identification computation time, i. e., it does not include 
additional times associated with virtual measurement 
simulation (equivalent to the measurement time in the 
experimental setup). 

B. Deep saturation 

In the next test, the iteration methods are tested closer to a 
fully saturated configuration, where larger non-linearity is 
present: 

                   𝑦ீ(𝑡) = 0.95 sin(2𝜋𝑡)                               (55)   

 

 
Fig. 5 – Relative Euclidean and form factor differences for the 

deep saturation test. 

The maximum iteration number is raised to 1500 since overall 
convergence is slower in this case. Fig. 5 gives the simulation 
results, and Table. 4 the simulation parameters. 

Tab. 4 – Deep saturation simulation parameters 

 
Again, QNM and PhC-MGD show the fastest convergence 

speed. PhC-P-ILC is also very fast, outclassing QNM, 
exhibiting temporary convergence errors. P-ILC converges 
slowly for this test, but unlike PhC-P-ILC, it never gets stuck 
on a precision plateau. Table 5 compares the performances. The 
precision criterion is set to < 10-7. 

Tab. 5 – Performance comparison for the deep saturation test. 

  
Num. 

of 
iter. 

Num. 
of 

meas. 

Fin. rel. 
euc. diff. 

Final 
form 
factor 

Calc. 
time per 
iter. (s) 

Total  
calc. time 

(s) 

P-ILC 653 653 1.29·10-6 < 10-7 2.7·10-4 0.176 

FDP-ILC 653 653 1.29·10-6 < 10-7 4.2·10-4 0.272 

FSP-ILC 637 637 1.69·10-6 < 10-7 0.009 5.97 

PhC-P-ILC 87 87 9.97·10-7 < 10-7 0.012 1.02 

PhC-MGD 24 3182 9.78·10-5 < 10-7 0.19 4.61 

QNM 179 484 9.57·10-5 < 10-7 0.49 88.8 

LSM-PI 3 3161 2.03·10-6 < 10-7 2.21 6.63 

A high number of iterations limits LSM-PI and PhC-MGD 
performances. QNM’s iterations number is lower, but each 
requires a significant calculation time. The PhC-P-ILC method 
converges with a reduced number of iterations, eight times 
lower than P-ILC, but the calculation time for the latter is 
extremely short. 

C. Overall simulation results 

Table 6 compiles the comparisons based on the performance 
criteria defined in sub-section 2.1. 

Tab. 6 – Performances comparison based on the performance 
criteria defined in sub-section 2.1. 

  
Num. 
of var. 

Exec. 
time 
(per 
iter.) 

Conv. 
speed 

Preci
sion 

Achiev. 
samp. 
Freq. 

Robu
stness 

P-ILC / 
FDP-ILC 

1 Low 
Low-
Med. 

High High High 

FSP-ILC 1 Med. 
Low-
Med. 

Med. High High 

PhC-P-ILC 2 Med. Med. High High High 

PhC-MGD 2 Med. High High Med. Low 

QNM 6 High High High Low Low 

LSM-PI N 
Very 
high 

High High Med. Low 

MBNenergy measurements require high sampling frequency, up 
to several hundreds of kHz, and long-time measurements 
leading to huge memory size for numerical feedback variables. 

R
e

l. 
E

u
cl

. D
iff

.

 Parameters 

P-ILC, FDP-ILC kP = 3 

FSP-ILC kP = 3, NHARMONICS = 200 

PhC-P-ILC KP = 5.6, kα = 0 

PhC-MGD GPH = 0, KP = 0.4 

QNM Same parameters as in [29], except λ = 0.5 and β= 0.5 

LSM-PI NPOWERS = 70 
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Methods that rely on matrix inversions like QNM or parameter 
optimization like LSM-PI are unsuitable. This issue can be 
partially solved by downsampling the signals, applying 
correction, and upsampling the resulting waveforms by 
interpolation (PhC-MGD [21]). But it means complexity and 
uncertainty in the measurement treatment. White noise's 
consequence on the working signals is another issue to 
consider. Methods like PhC-MGD require an intense averaging 
process to reach convergence which means extended time 
acquisition (several cycles) or a sliding window filter. These 
treatments bring complexity in the signals processing and 
potentially additional phase delays. Since Ba is obtained by 
integrating a noisy signal, a drift is always expected. Such a 
drift can be problematic on methods that normalize signals or 
expect yM to have a specific amplitude (PhC-MGD, LSM-PI). 
A pre-treatment on Ba is required to reach convergence. 
Oppositely, P-ILC does not require a perfect drift compensation 
to reach convergence. After all the numerical tests performed in 
this study, and based on Table 6 analysis, P-ILC appears to be 
the most adapted method in the context of the MBNenergy(Hsurf) 
hysteresis cycles characterization. In the next section, 
improvements are proposed for even better and faster 
convergence. 

IV. P-ILC EXTENSIONS 

P-ILC is an excellent method for magnetization control digital 
feedback. P-ILC is simple to implement and tune. It is robust 
and fast. Its only limitation comes from the convergence speed, 
especially near saturation when the permeability falls and 
where a weak variation of Hsurf generates an even lower 
variation of Ba. This problem can be partially solved by 
increasing the proportional gain, but the response will diverge 
in the high permeability zones. A better solution consists in 
modulating Kp according to the system answer: 

                      x(t, j + 1) = x(t, j) + K୔(t, j)ϵ(t, j)                     (56)   

This method requires additional parameters and should be 
considered with special attention. It can be implemented from 
an error array based on the two previous iterations (P-ILC-2 
[51]) and give Eq. 57: 

    x(t, j + 2) = x(t, j + 1) + K୔ଵ
ϵ(t, j + 1) + K୔ଶ

ϵ(t, j)   (57)   

The resulting error becomes a weighted sum of j+1 and j 
errors iterations. A generalized version (P-ILC-N) considering 
all the previous state N can even be written by extending Eq. 
57: 

   x(t, j + N) = x(t, j + N − 1) + ∑ K୔౧
ϵ(t, j + N − q)୒

୯ୀଵ  (58)   

P-ILC-N convergence is faster. It is also more robust than 
standard P-ILC [51]. But a minimum of N measurements are 
necessary for the corrector to be fully working. All K୔୯

 

coefficients need to be optimized individually, which can be 
complex and demanding in experimental data. Hence, N should 
be kept as small as possible unless a reliable model is available 
for simulation. Another possibility consists of structuring the P-
ILC iterative law as a Taylor approximation (assuming x is a yM 
smooth function): 

                        x(yୋ) = x(y୑) + A(y୑)(yୋ − y୑)                 (59)   

If x(t,j+1)= xG(t), higher orders Taylor approximation gives 
P-ILC-TA, Eq. 60: 

                  x(t, j + 1) = x(t, j) + ∑ K୔ୱ
 ϵ(t, j)ୱ୒

ୱୀଵ              (60)  

It is also possible to replace A in Eq. 59 with its optimal value, 
as obtained by the Taylor's approximation (P-ILC-TD): 

  𝑥(𝑦ீ ) = 𝑥(𝑦ெ) +
ௗ௫

ௗ௬
(𝑦ெ) (𝑦ீ − 𝑦ெ) ⇒

ௗ௫

ௗ௬
=

ଵ
೏೤

೏ೣ

∝
ଵ

ఓ
    (61)   

                              ⇒ 𝐾௉(𝑡, 𝑗) =
ௗ௫

ௗ௬ಾ
(𝑡, 𝑗)                                (62)   

P-ILC-TD can reach high-speed convergence rates. Kp being 
inversely proportional to the system reactivity, the correction 
will be significant when dyM/dx is small. However, relying on 
derivatives, P-ILC-TD requires exact measurement, no noise, 
delays, or bandwidth limitations. Otherwise, this method 
diverges very quickly. Finally, the deep saturation test (sub-
section 3.2) was repeated, and all P-ILC new variants were 
tested. Fig. 6 shows the simulation results, and Table 7 shows 
the corresponding iteration numbers. 

 
Fig. 6 – Relative Euclidean differences, deep saturation test 

for the different P-ILC methods. 
Tab. 7 – Comparative results based on the iterations number 

before convergence. 
  Number of iterations 

P-ILC 2135 

P-ILC-TA (7th degree) 1835 

P-ILC-3 979 

P-ILC-9 613 

P-ILC-TD 55 

All alternative methods converge faster than P-ILC. P-ILC-
TD outclasses all the proposed methods. An iterative process 
close to P-ILC-TD robust enough to handle white noise would 
be by far the most indicated method. 

V. EXPERIMENTAL SETUP AND IMPLEMENTATION 

The experimental setup used for the Barkhausen noise 
characterization has been precisely described in [19]. The 
excitation of the sample is based on single C-yoke with the 
magnetizing winding, and with the sensors attached to the 
sample under test. An overall 2D view of this experimental 
setup is depicted in Fig. 7. 
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Fig. 7 – Overall 2D view of the Barkhausen noise 
experimental setup. 

The power amplifier was a Kepco BOP100-10MG. The 
excitation coil was made out of 10 turns. The studied specimens 
were all grain-oriented electrical steels  (FeSi GO 3wt%, M140-
27). Their dimensions were  280 x 30 x 0.3 mm, with the length 
in the easy magnetization direction. Two 120 turns coils were 
wound around the specimen and plugged in opposite directions 
as recommended in [52]. The distance separating the sensor 
coils was set arbitrarily to 10 mm, as used in the previous work 
[19][53][54] by the authors. The influence of this distance has 
not been investigated in detail. Two Krohn-Hite 3362 
amplifiers-filters were used for the signal conditioning and a 
National Instruments DAQ USB-6346 acquisition card, 
controlled through a GUI in Python and of 500 kHz sampling 
frequency for their acquisitions. Python® and Matlab® were 
used for the numerical treatment. Eq. (63) - (65) summarized 
all the tests carried out: 

                          Bୟ(goal) = B sin(2πfୣ୶ୡt)                         (63)   

                                          B = 1.8 T                                         (64)   

                                fୣ୶ୡ = {0.2, 2, 20, 200} Hz                      (65)   

P-ILC was used to set the current waveforms. Fig. 8 depicts 
the experimental results obtained on three decades of frequency 
and Ba equal to 1.8 T, i.e., the worst-case analyzed scenario in 
terms of non-linear behavior. 

 
Fig. 8 – a I(t) experimental waveforms, Fig. 8 – b Ba(t) 

experimental waveforms,  

The 200 mHz current peak is unexpectedly high as compared 
to other frequencies. However, this difference could be caused 
simply by the non-linearity of the magnetic material because of 
the larger difference in amplitude as evident from Table 8. 
Table 8 summarizes the accuracy of the experimental results by 
comparing them using sub-section 2.3 criteria.  

Tab. 8 – Experimental performances comparison based on the 
accuracy criteria defined in sub-section 2.3. 

  200 mHz 2 Hz 20 Hz 200 Hz 
Goal (Int. 

stand.) 
Euc. Dist. 

(%) 
0.678 0.35 0.57 0.34 < 0.5 

Pears. 
Coef. 

0.9999897 0.99999394 0.9999841 0.99999438 > 0.99997 

Form 
Fact. Diff. 
(dB/dt)(%) 

0.74 0.29 0.14 0.31 < 0.5 

Amp. Diff. 
(%) 

0.96 0.27 0.05 0.3 < 1 

THD 
(dB/dt) 

(%) 
5.33 1.4 2.95 3.7 < 0.5 

 

 Criteria met  Criteria not met 

Some Fig. 8 experimental results do not reach the accuracy 
targeted by the international standards. On the first hand, these 
standards imposed tight specifications of the experimental 
conditions (geometry, measurements, etc.), far from the 
experimental setup depicted in Fig. 7. IEC 60404-3 [50] related 
to the single sheet tester imposed by instant to use a top and a 
bottom yoke of large dimensions as displayed in Fig. 9.  

 
Fig. 9 – IEC 60404-3 single sheet tester illustration and 

yoke dimensions 

On the other hand, Fig. 7 setup has been designed based on 
usual MBN observation methods, like in a non-destructive 
testing context where magnetization waveform control is not 
required and never done (see [55]-[58] for examples). This 
setup delivers magnetic excitation significantly less 
homogeneous compared to those of [50], and the volume of the 
tested specimen is reduced. These limitations result in a 
considerable increase in the magnetization control complexity, 
justifying a lower accuracy in Table 8 results. 

  

 

I 
(A

)

a 

a 

b 
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Fig. 10 – a Ba(Hsurf) experimental hysteresis cycle, Fig. 10 – 
b MBNenergy(Hsurf) renormalized experimental hysteresis 

cycles. 

A phase delay was also noticed between I(t) and Ba(t). This 
delay could be a source of divergence for some ILC algorithms 
(like QNM, whose core assumption relies on the I(Ba) 
bijectivity). Finally, Fig. 10 shows, as examples, the 20 Hz, 1.8 
T sinus flux density, Ba(Hsurf), and MBNenergy(Hsurf) measured 
cycles. Differences can be observed between the experimental 
MBNenergy(Hsurf) and the Ba(Hsurf) hysteresis cycles. Those 
differences were expected and can be explained as follows: 
 All magnetization contributions are involved in the Ba(Hsurf) 
hysteresis cycles, mainly the domain wall motions and the 
magnetization rotation. 
 For the MBNenergy(Hsurf) cycle, the contribution is limited to 
the domain wall motions. 

It is worth noting the difference at saturation once the cycle is 
closed. On the first hand, the MBNenergy(Hsurf) cycle reaches a 
flat saturation. No more variation of the MBNenergy is observed, 
reflecting the entire disappearance of the domain wall motions. 
On the other hand, the Ba(Hsurf) still varies. The magnetization 
rotation remains active and increases the magnetic flux density. 
The differences are expected to be even more pronounced in the 
higher frequency range. When Ba(Hsurf) cycles reflect all STL 
contributions, the MBNenergy(Hsurf) ones are limited to the 
domain wall motion contributions excluding, notably, the 
classical loss contribution. 

VI. CONCLUSION 

Studying the magnetization mechanisms in magnetic cores is 
a genuine problem that has generated substantial research 
efforts. A fine study of the MBNenergy(Hsurf) hysteresis cycle 
excitation frequency dependency and its prediction through an 
STL-like theory is expected to bring insights into the physical 
behavior of the magnetization mechanisms.  

For this, the flux density has to be imposed sinusoidal from 
the quasi-static state up to approximately a few hundred Hz, 
depending on the nature of the tested specimen. Such control 
might be seen as a simple problem. Still, because of the strong 
linearities, the practical aspect happens to be especially 
complex, hence the proliferation of the feedback algorithms in 
the literature ([40]-[43] are good examples).   

In this study, the theoretical problem of Ba control on a classic 
setup (yoke and sample) has been established, and the ILC (the 
iterative version of the classic PID controller) has been 

explained. Different ILC settings exist, and a detailed review of 
these methods was done in the second section of this manuscript 
providing valuable insights generalizable to every waveform 
control environment. For a proper choice, the experimental 
conditions and the final objective have to be perfectly defined 
from the very beginning.    

Then, six performance criteria have been proposed to identify 
the most adapted method in the specific context of the 
MBNenergy(Hsurf) hysteresis cycle characterization, and 
numerical tests were performed for a comparison purpose 
followed by conclusions.    

P-ILC gave the best performance and the highest satisfaction 
rate. It was therefore chosen for experimental implementation. 
Experimental tests were realized on a wide range of amplitude 
and frequency. We noticed, as expected, a more significant 
error for higher frequency (limitations of the practical setup 
bandwidth) and amplitude (stronger non-linear behavior of the 
tested specimen).  
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