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

Abstract-Magnetic losses in a ferromagnetic lamination can be separated into three contributions. Bertotti theoretically assessed this distribution at the end of the 20th century in the Statistical Theory of Losses (STL), triggering significant progress in understanding the dissipation mechanisms. Recent studies have shown the possibility of reconstructing a hysteresis cycle from the high-frequency Barkhausen noise signal. Applying STL to the Barkhausen noise cycles has never been done before. Still, it could help establish a parallel with the measurement of the magnetization cycle versus frequency and the energy loss. However, STL analysis in its ultimate description requires sinusoidal flux density, while Barkhausen noise measurements are usually done with a constant excitation slope. Multiple magnetic flux density control methods were described in the literature and are reviewed in this manuscript. However, the Barkhausen noise context, requiring high-frequency sampling during the magnetization cycle, is more constraining. Therefore, specific performance criteria were considered, followed by numerical tests to determine the most adapted method to a Barkhausen STL description. Eventually, the Proportional Iterative Learning Control (P-ILC) gave the highest satisfaction rate and was chosen for experimental tests. Some of these experimental results are provided in the manuscript discussion together with suggestions for convergence speed improvement. It is, for instance, recommended to increase the gain near saturation, where the system response is poor.

Index Terms-Magnetic Barkhausen noise energy, waveform control, feedback, magnetic losses

I. INTRODUCTION

Magnetic cores are omnipresent in electrical energy conversion and transport. Losses inevitably happen while magnetic cores operate and are a significant cause of inefficiency. During one magnetization cycle, these losses are equivalent to the area of the Ba(Hsurf) hysteresis cycle obtained Patrick Fagan, Anastasios Skarlatos and Christophe Reboud are with LIST, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
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P = ∮ B (H ) • dH (1) 
The first attempts for the hysteresis losses prediction trace back to Steinmetz's model (Eq. 2) [2][3]. This empirical relation was limited to sinusoidal Ba conditions and stated that iron losses followed a fractional power "law" of both frequency f and B

(peak value of sinusoidal Ba):

P = k • 𝑓 • B (2) 
where k, a, and b were three constant parameters depending on the nature and geometry of the magnetic circuit. Loss separation was initially proposed in 1924 with Jordan's work [START_REF] Jordan | Die ferromagnetischen Konstanten für schwache Wechselfelder[END_REF], who assumed that magnetic core losses could be divided (Eq. 3) in a static contribution Pst and a dynamic contribution related to classical eddy current loss Pcl [START_REF] Jordan | Die ferromagnetischen Konstanten für schwache Wechselfelder[END_REF]- [START_REF] Krall | Analysis and implementation of algorithms for calculation of iron losses for fractional horsepower electric motors[END_REF]:

P = P + P = α • 𝑓 + β • 𝑓 (3) 
where α and β were fit parameters. This simple approach was later improved by adding an excess loss term to match the experimental data, wrongly approximated by Eq. 3 (grainoriented electrical steels FeSi GO, etc. [START_REF] Goss | [END_REF]). Initially, the physical justification for the additional contribution was unknown, and it was even referred to as "anomalous" loss. It was obtained by either modifying β or simply adding a third contribution or "excess" loss (Pexc) [START_REF] Shilling | Magnetic properties and domain structure in grain-oriented 3% Si-Fe[END_REF]: P = P + P + P (4) This empirical method found theoretical foundations from Bertotti Statistical Theory of Losses (STL) [START_REF] Bertotti | Hysteresis in magnetism: for physicists, materials scientists, and engineers[END_REF], expressed in terms of power in Eq. 5 or energy in Eq. 6 (ast, acl and aexc are fitting parameters):

P = a • 𝑓 + a • 𝑓 + a • 𝑓 (5) 
W(𝑓) = = a + a • 𝑓 + a • 𝑓 (6) 
STL is an advanced theoretical method that brought significant progress in understanding the magnetization mechanisms [START_REF] Bertotti | The prediction of power losses in soft magnetic materials[END_REF]- [START_REF] Zhao | Modified loss separation in FeSi laminations under arbitrary distorted flux[END_REF]. It is, however, worth mentioning that STL supposes a full flux penetration which restricts its domain Recent works [START_REF] Ducharne | Characterization and modeling of magnetic domain wall dynamics using reconstituted hysteresis loops from Barkhausen noise[END_REF]- [START_REF] Fagan | Multiscale modelling of the magnetic Barkhausen noise energy cycles[END_REF] have demonstrated the feasibility of plotting hysteresis cycles from Barkhausen noise measurement. For this, the so-called Magnetic Barkhausen Noise energy MBNenergy (Eq. 7) is plotted as a function of Hsurf.

MBN (t) = ν • ∫ sign • V (s) • ds (7) 
ν is a normalization coefficient and VMBN the magnetic Barkhausen noise voltage drop across the sensor coil.

Comparably to the classic Ba(Hsurf), MBNenergy(Hsurf) hysteresis cycles depend on the excitation frequency and thus reflect physical properties. It is, therefore, tempting to apply STL to these alternative cycles and get additional insights regarding the physics of the magnetization mechanisms. MBNenergy is linked predominantly to the magnetic domain wall motions; thus, in the MBNenergy STL, the classical loss contribution, related to the macroscopic eddy currents and first-order-frequencydependent, should be negligible. Hence, the frequency dependency of the MBNenergy hysteresis cycle energy is expected to be written as in Eq. 8:

W (𝑓) = b + b • 𝑓 (8) 
with bst and bexc, two constants. Eq. 8 is purely hypothetical and has never been validated by comparison to experimental results. By increasing the magnetization frequency, the available frequency band of the MBN spectral density is expected to shift upward. Still, this effect remains unclear and the comparison with STL is expected to bring clarification. Even if STL was originally developed, for the sake of simplicity, by assuming that the magnetization process occurs under controlled macroscopic constant induction derivative (triangular induction), the ensuing formulation was successively modified to comply with sinusoidal and generic induction waveform. Eq. 6 supposes this condition to be respected [START_REF] Ragusa | Loss decomposition in non-oriented steel sheets: the role of the classical losses[END_REF]. In the case of Barkhausen noise measurements, either the excitation current or the magnetic excitation Hsurf is usually imposed triangular [START_REF] Stupakov | A system for controllable magnetic measurements of hysteresis and Barkhausen noise[END_REF][22] and measurements rarely done under sinusoidal flux density. Ba(Hsurf) and MBNenergy(Hsurf) can be obtained from the same experimental setup. Therefore, a suitable method for the flux density control during Barkhausen noise measurement can be inspired by published work related to standard hysteresis characterizations [START_REF] Grote | Measurement of the magnetic properties of soft magnetic material using digital real-time current control[END_REF]- [START_REF] White | A multichannel magnetic flux controller for periodic magnetizing conditions[END_REF]. Still, additional constraints owed to Barkhausen noise measurement have to be considered before setting the most adapted method. A magnetic characterization setup contains two non-linear elements (the inductor yoke used to drive the magnetic field Hsurf and the tested sample). Analytical solutions are sometimes proposed for setting the induction control system. Still, the effect of hysteresis and the to-be-measured properties of the specimen makes them approximative hence iterative methods prevail. The focus of this paper is to examine a wide range of digital feedback methods found in the literature to assure a sinusoidal flux density during hysteresis measurements and select the most appropriate one for the specific context of the Barkhausen noise STL application. Comparisons exist in the literature [START_REF] Baranowski | Comparison of digital methods of the control of flux density shape[END_REF], but they are limited to two or three methods and never deal with the specific Barkhausen noise perspective. The study is restricted to digital feedback methods [START_REF] Zurek | Practical implementation of universal digital feedback for characterisation of soft magnetic materials under controlled AC waveforms[END_REF]- [START_REF] White | A multichannel magnetic flux controller for periodic magnetizing conditions[END_REF]. Even if widespread before the proliferation of computers, the analog feedback methods [START_REF] White | A multichannel magnetic flux controller for periodic magnetizing conditions[END_REF][32] [START_REF] Pólik | Measuring and control the hysteresis loop by using analog and digital integrators[END_REF] are poorly tunable and less robust since they rely on discrete components whose values can be challenging to set, especially if heated. Analog systems work in real-time. Perturbations cannot be anticipated, and high precisions cannot be reached on a wide range of frequencies and materials. Other problems can arise if the system is strongly non-linear and has unstable feedback [20]. It should also be noted that high-gain high-bandwidth analog (real-time) feedback can suppress large-amplitude Barkhausen noise activity [START_REF] Fiorillo | Measurement and characterization of magnetic materials[END_REF][20]. For the same reasons, this paper will not consider hybrid methods (obtained by combining digital and analog feedback methods [34][35]).

II. REVIEW OF ITERATIVE FEEDBACK METHODS

A. Performance criteria

This study aims to define and test the most efficient magnetic flux density control method in the context of the MBNenergy hysteresis cycle characterization and STL application [START_REF] Stupakov | A system for controllable magnetic measurements of hysteresis and Barkhausen noise[END_REF][22] [START_REF] Patel | A new adaptive automated feedback system for Barkhausen signal measurement[END_REF]. To obtain adapted comparisons and reach our objective, a specific series of criteria has been defined:  Number of iterations: a reduced number of iterations is important, especially in the low-frequency range where a measure can take several minutes and generate large data files complex to process. It is also critical in the high-frequency range, where thermal transfers due to the magnetic losses can affect the experimental conditions and the magnetic response of the material.  Accuracy: Convergence should be reached with a minimum error. Error estimations can take different forms, including relative Euclidean difference, form factor difference, Pearson dissimilarity, total harmonic distortion, etc.  Number of parameters: Feedback control parameters must be tuned for each new experimental situation. Optimizing a large number of parameters requires a lot of experimental data.  Robustness: the feedback method should remain undisturbed by external stimuli, including white noises, drifts, and offsets.  Memory allocation and computation time efficiency: The ideal feedback method computes an iteration with reduced time and limited memory capacity. This criterion is especially detrimental for techniques based on square matrix inversion requiring high computation capacity and large memory allocation.  Universality: This criterion is related to the capability of providing satisfactory results in different experimental conditions without extensive calibrations processes. A feedback method providing a positive answer to all the criteria listed above does not exist. Many approaches have been described in the literature [START_REF] Stupakov | A system for controllable magnetic measurements of hysteresis and Barkhausen noise[END_REF]- [START_REF] Matsubara | Acceleration technique of waveform control for single sheet tester[END_REF], and each technique can perform well in specific conditions. This study aims to compare these methods to find the most suitable feedback technique in the particular context of the MBNenergy(Hsurf) hysteresis cycles characterization.

B. Detailed description of iterative feedback methods

Let us introduce the feedback notation and a general feedback scheme (Fig. 1)  YG(t) is the reference, i.e. the ideal desired goal output (at time t).  yM(t,j) is the measured output of iteration j (at time t).  ϵ(t,j)= yG(t) -yM(t,j) is the error of j-th iteration (at time t).  x(t,j) is the system input of j-th iteration (at time t).

1) Iterative Learning Control (ILC) A straightforward iterative method for the control of a nonlinear system can be derived from the classical real-time Proportional Integral Derivative (PID) technique:

x(t) = K • ϵ(t) + K • ∫ ϵ(s) ds + K • (9) 
with Kp, KI, and KD, the proportional, integral, and derivative gains. The iterative PID method has been described by several authors, including Gruebler et al. in [START_REF] Gruebler | Losssurface-based iron loss prediction for fractional horsepower electric motor design[END_REF], and consists in:

x(t, j + 1) = x(t, j) + Δx(t, j) (10) 
Δx(t, j) = K • ϵ(t, j) + K • ∫ ϵ(s, j) ds + K • (t, j) (11) 
In their simplest form (proportional correction only), the above equations can be simplified, which leads to the Proportional-Iterative Learning Control formulation P-ILC [START_REF] Gruebler | Losssurface-based iron loss prediction for fractional horsepower electric motor design[END_REF]:

x(t, j + 1) = x(t, j) + K • ϵ(t, j) (12) 
The phase-lead ILC method is similar to P-ILC but involves the addition of a constant delay τ in the error term [START_REF] Freeman | Experimental evaluation of iterative learning control algorithms for non-minimum phase plants[END_REF][39]:

x(t, j + 1) = x(t, j) + K • ϵ(t + τ, j) (13) P-ILC is simple; the inputs are reduced to ϵ(t,j), and parameters to Kp. Its implementation is very straightforward, and, like classic PID, it can be very robust with the right choice of Kp. However, the choice between high gain/fast convergence and small gain/no divergence makes the optimization tricky, typically ending with a slower convergence speed at the benefit of better robustness.

2) Fourier Series Proportional-Iterative Learning

Control (FSP-ILC) Switching from the time domain to the frequency domain can be highly beneficial by simplifying mathematical operations. The Fourier transform being linear, Eq. 14 becomes 15:

x(t, j + 1) = x(t, j) + K • [y (t) -y (t, j)] (14) X(𝑓, j + 1) = X(𝑓, j) + K • [Y (f) -Y (𝑓, j)]
(15) Where X(f,j) is the Fourier transform of x(t,j). Fourier transforms lead to complex numbers, and FSP-ILC works with complex number formalism. While Fourier Distribution Iterative Learning Control FDP-ILC would apply Eq. 15 to the whole frequency spectrum, FSP-ILC is limited only to the excitation frequency's multiples (fexc) and can even be reduced to those of substantial contribution. Eq. 16 gives FSP-ILC's equation when k

∈ [1 -M]: X(k ⋅ 𝑓 , j + 1) = X(k ⋅ 𝑓 , j) + K • [Y (k ⋅ 𝑓 ) -Y (k ⋅ 𝑓 , j)]
(16) FSP-ILC performance is relatively close to those of P-ILC. The main advantage of the former is its ability to ignore all the high-frequency components (> M•fexc), including white noise and power source oscillations, especially when fexc is low. Its main drawback is the two Fourier transforms and the sum of complex numbers required per iteration, slowing down the control speed and inducing limitations in the low-frequency range. The computation time can be reduced significantly if Fast Fourier Transform (FFT) is employed, but at the additional restriction that the number of samples in the waveform becomes a power of 2.

3) Phase Correction by determination of Measure-Goal Delay (PhC-MGD) P-ILC performances depend on the power supply dynamic response and capability to generate x without undesired phase lag. A phase correction is sometimes needed to increase the feedback performance. For this, several methods have been proposed, including PhC-MGD, a technique described by Stupakov et al. in [START_REF] Stupakov | A system for controllable magnetic measurements of hysteresis and Barkhausen noise[END_REF]. In this method, a preliminary step increases x until yM reaches the required amplitude. This operation is achieved by a P-ILC correction of gain modulated by yM's amplitude identified at the previous stage (Eq. 17):

x(t, j + 1) = x(t, j) • 1 + •[ ( ) ( ( ))] ( ) (17) 
Once yM reaches the required threshold, x is recalculated through a sum of two weighted contributions (Gph is the weight), the corrected phase contribution xph and the corrected amplitude contribution xampl:

x(t, j + 1) = G • x (t, j + 1) + 1 -G • x (t, j + 1) (18)
where xph is calculated as follows:  the measure is normalized according to the targeted waveform:

y = y • ( ) ( ) (19) 
 the resulting signal is divided into sections where the targeted waveform is monotonic,  the delay ø(t) (see Fig. 2) between the targeted waveform and the measurement is estimated.  ø(t) is applied simultaneously to yM and x and leads to the delayed versions yreq and xph:

x (t, j + 1) = x(t + ø(t), j) y (t, j + 1) = y (t + ø(t), j)

Fig. 2 -PhC-MGD delay illustration.

Xampl is obtained from a P-ILC method of yreq targeted waveform instead of the usual yG:

x (t, j + 1) = x(t, j) + K • y (t, j) -y (t, j) (

In [START_REF] Stupakov | A system for controllable magnetic measurements of hysteresis and Barkhausen noise[END_REF], Gph has a non-zero value exclusively in the highfrequency range when phase shift exists. The main drawback of PhC-MGD is the normalization step, which flattens the measurement signal in the presence of undesired noise peaks and makes the phase delay estimation complicated. This noise issue has been solved partially in [START_REF] Stupakov | A system for controllable magnetic measurements of hysteresis and Barkhausen noise[END_REF] by taking one thousand points per cycle, interpolating Hsurf with a cubic spline, and smoothing Ba with a numerical filter.

4) Phase Correction by P-ILC on angles (PhC-P-ILC)

In 2005, Zurek et al. in [START_REF] Zurek | Use of novel adaptive digital feedback for magnetic measurements under controlled magnetizing conditions[END_REF] proposed a correction method described as the combination of two steps:  An amplitude correction leading to x * (an intermediary variable) and assimilated to a P-ILC of effective gain inversely proportional to yM's amplitude:

x * (t, j + 1) = x(t, j) + K ( , ) ( ) [START_REF] Stupakov | Analog of the induction law for the magnetic Barkhausen noise[END_REF] x * (t, j + 1) = x(t, j) +

( ( )) [y (t) -y (t, j)] (23) 
 A phase correction applied through a phase delay function F:

x(t, j + 1) = F[x * (t, j + 1)] (24) 
During this phase correction, every involved quantity is expressed by its Fourier series (Eq. 25 to 28):

y (t, j) = a + ∑ a (j) sin[2π k𝑓 t + ϕ (j)] (25) 
y (t) = b + ∑ b sin[2π k𝑓 t + ψ ] (26) 
x * (t, j) = c + ∑ c (j) sin[2π k𝑓 t + θ (j)]

I(t, j) = d + ∑ d (j) sin [2π k𝑓 t + β (j)] ( (27) 
) 28 
where M is the number of considered harmonics, 𝑓 is the targeted waveform frequency, ai, bi, ci, and di are the Fourier amplitudes, and I the output current. I and x are linked through Eq. 29. They are identical if the source is an ideal unity gain amplifier (Gsource = 1):

I(t, j) = G (s) • x(t, j) (29) 
øi, ψi, θi and βi, are the Fourier phase lags associated to ai, bi, ci, and di. With this formalism:

x(t, j + 1) = F[x * (t, j + 1)] = ∑ c (j + 1) • sin[2π kf t + θ (j + 1) + α (j + 1)] (30) and, α (j + 1) = α (j) + K • (ψ -β (j)) (31 
) αk is the k th harmonic applied phase lag, and Kα a proportional gain. PhC-P-ILC reduces the influence of the power source but works in the Fourier domain, which means time-consuming direct and inverse transformations (especially when the number of considered data points is large). The implementation is complex compared to P-ILC. 5) Non-linear correction with a Quasi-Newtonian Method (QNM) In 2008, Yamamoto et al. in [START_REF] Yamamoto | Waveform control for magnetic testers using a quasi-Newton method[END_REF] described QNM, a nonlinear iterative control method derived from the BFGS-like technique published by Li and Fukushima [START_REF] Li | A derivative-free line search and global convergence of Broyden-like method for non-linear equations[END_REF] a few years before. The BFGS algorithm (Broyden-Fletcher-Goldfarb-Shanno) can be described as a line search optimization method, and Li's method is the derivative-free version of this algorithm.

At each iteration, several variables need to be evaluated: an N•N Hessian matrix Bj (where N is the size of vector x), yM, yG, and ϵM. ϵ (t, j) = f[x(t, j)] (32) B0 (initialization at j = 0) is defined as an identity matrix, and f a function to minimize. For each iteration j, the following algorithm is run:  the search direction pj is found by solving:

B • p = -ϵ (33) 
 the step-size αj is set to 1, a new measure is made with:

x = x + α • p (34) 
which leads to obtaining yMtemp and ϵ .  if the error is not small enough ϵ

> ρ • ϵ - σ • p the previous step is repeated, but αj is contracted by a factor β ∈ [0 -1]: α = β • α ( 35 
)
This step is repeated until ϵ

> (1 + η ) • ϵ -σ • α • p
 Bj is updated according to Eq. 36 below:

B = B + θ • • • x - x ( 36 
)
where θj is set to ensure Bj is not singular.  xj, and yj are set from the temporary variables: x = x , y = y QNM differs from [START_REF] Li | A derivative-free line search and global convergence of Broyden-like method for non-linear equations[END_REF] by a different initialization of αj:

α = (37) 
QNM converges faster than P-ILC, especially near saturation, where P-ILC requires hundreds of iterations. But, QNM suffers from several weaknesses, including the excessive number of parameters: the fixed parameters ρ, β, θ , σ1, σ2 and the variable ones such as η and θ modified for every iteration:

∑ η < η < ∞ (38) θ -1 < θ ( 39 
)
Another drawback is the computationally expensive inversion of square matrix. Convergence speed is also impacted by the multiple measurements needed per iteration. Hence, QNM is inadequate in the very-low-frequency range. 6) Least-Square Method for a Hsurf(Ba) Polynomial Identification (LSM-PI) In 2011, Anderson [START_REF] Anderson | Constant dB/dt DC characterisation through digital control of magnetic field[END_REF] proposed LSM-PI, an alternative iterative method which can be summarized as follows:  Like in PhC-MGD, the data set y is divided into monotonic sections, and an offset is applied to obtain x(yM=0)=0 for each section.

 X(yM) is defined for every section and approximated by a high-order polynomial (up to order of 30 in [START_REF] Zurek | Use of novel adaptive digital feedback for magnetic measurements under controlled magnetizing conditions[END_REF]):

x(y ) ≈ ∑ a • y (t) (40)  ai coefficients are determined with a least-squares method, and a phase term is considered for the hysteretic behavior.  x is calculated from Eq. 40 by replacing yM by yG (Eq. 41):

x(t) = ∑ a • y (t) (41 
) This method converges with a minimal number of iterations (just three as claimed in [START_REF] Anderson | Constant dB/dt DC characterisation through digital control of magnetic field[END_REF]), but its performance relies heavily on the order of the polynomial function. Many oscillation issues are noticed (especially near saturation, where the magnetic permeability µ is low, but the Hsurf(Ba) slope is high). The leastsquares optimization is computationally expensive, especially if many sampling points are considered. This problem can be lessened by expressing Hsurf(Ba) in a different orthonormal system. Moreover, this method assumes that Hsurf(Ba) is bijective, which is not the case if the maxima of Hsurf and Ba are not simultaneous (as it is in the high-frequency range). In that case, a phase delay must be considered to avoid wrong results from the least-square optimization.

7) Other methods

It is not possible to provide an exhaustive list of all feedback methods and their modifications described in the scientific and technical literature. The main techniques introduced in the sections above have been numerically implemented and tested in this study. They have been chosen for their singularities and originalities, but more methods exist, and even if not detailed nor tested, they are worth mentioning in this manuscript:  In 2016, Zhang et al. in [START_REF] Zhang | Measurement of threedimensional magnetic properties with feedback control and harmonic compensation[END_REF] described a proportional corrector, working in the frequency domain and in which both magnitudes and phases are corrected. For every harmonic, the correction can be written as:

X = K • Y -Y + K • ∫ Y - Y dt (42) 
X = K • Y -Y + K • ∫(Y -Y )dt (43) 
Then, x(t,j+1) is written as a Fourier series thanks to the Xmag and Xph coefficients. This method shares the same strengths and weaknesses as FSP-ILC but is also very sensitive to the nonlinear behavior of the ferromagnetic sample. In [START_REF] Zhang | Measurement of threedimensional magnetic properties with feedback control and harmonic compensation[END_REF], this issue is solved by correcting the calculated phases based on a lookup table. Unfortunately, no details are provided about the method for constructing such a look-up table.  In [START_REF] White | Control of flux in magnetic circuits for Barkhausen noise measurements[END_REF], White et al. use a proportional derivative PD-ILC method to control the excitation current I (assuming that Hsurf is proportional to I and the resistances and inductances values perfectly known). Good results are obtained, but compared to P-ILC the implementation is complex and requires detailed knowledge of the experimental conditions and their evolution during the test, which is not trivial considering that the inductance varies significantly with the level of excitation.  In [START_REF] Bosack | Closed loop control of hysteretic magnetization[END_REF], Bosack et al. start from Jiles-Atherton's model and assumes the magnetization M can be written as:

= g(H , M, t) + f(H , M, u) (44) 
where f and g are two known functions, and u is a control variable, defined by:

= + = + u (45) 
H0 is the ambient field excitation, and Hc is the corrected contribution. The resolution of the system gives:

u = - -K • f(M) • (M -M ) (46) 
Eq. 46 looks like a Kp proportional correction. No details about the practical implementation are given in [START_REF] Bosack | Closed loop control of hysteretic magnetization[END_REF], except the use of a real-time PID corrector. The estimations of f and g rely on identification steps, and calibration must be made each time the whole system changes, which can be time-consuming, especially if recalibration is to be applied at each new measurement frequency. Finally, non-linear algorithms have also been described in contexts unrelated to magnetic waveform control (electrohydraulic molding machine in [START_REF] Havlicsek | Non-linear control of an electrohydraulic injection molding machine via iterative adaptive learning[END_REF] or lithographic apparatus in [START_REF] Heertjes | Non-linear iterative learning control with applications to lithographic machinery[END_REF]). Like QNM, these methods require matrices inversion, limiting the experimental sampling rate and leading to feedback control incompatible with MBNenergy characterizations.

C. Required precision criterion

All the methods described in this section have been developed to comply with international magnetic characterization standards, and different criteria have been proposed for their validation. It is worth noting that some of these criteria apply to the time derivative z of the targeted waveform x.

These criteria include:  The relative Euclidean Difference :

d (x, y) = ∫[ ( ) ( )] ∫ ( ) (47) 
 The Form Factor (applied only to z. It is worth noting that z criteria are particularly difficult to meet, as any minor distortion in x gets amplified due to the derivative):

FFD(z, y′) = |𝐹𝐹(𝑧) -𝐹𝐹(𝑦′)| = ( ) (| |) - ( ) (| |) (48)  The Pearson coefficient: d y) = ∫[ ( ) ( )][ ( ) ( )] ∫[ ( ) ( )] ∫[ ( ) ( )] (49) 
 The Total Harmonic Distortion (applied only to z):

THD(z) = ∑ (50) 
Tab. 1 -Accuracy criteria of the methods described in this section. 

Table 1 provides the target values as applied in the literature. Even if different waveforms can have the same form factor [20] [START_REF] Yamamoto | Waveform control for magnetic testers using a quasi-Newton method[END_REF], the IEEE standards recommend the use of this criterion for the magnetic hysteresis and losses characterization [START_REF]magnetic properties of electrical steel strip and sheet by means of an Epstein frame[END_REF][50]. It is unsurprising to find it applied in many studies. For the MBNenergy characterization, we found it relevant to apply the following criteria:

 Relative Euclidean Difference < 0.5%  z Form Factor = Fgoal ± 0.5%  Pearson coefficient > 1 -3 • 10 -5  z THD < 0.5% III. NUMERICAL IMPLEMENTATION
In our quest toward the "best" iterative method for MBNenergy hysteresis cycles, characterization, and STL application, all the techniques described in section 2 have been numerically implemented using MATLAB®. A sigmoid-type anhysteretic behavior (Eq. 52) has been used to simulate the material's answer:

y (t, j) = f[x(t, j)] = arctan [x(t, j)] (52) 
Eq. ( 52) is convenient as saturation is taken into account, and xG can be expressed analytically:

x (t) = tan y (t) ( 53 
)
The objective is to find xG leading to a sinusoidal yG. A preliminary test consists in plotting the spectral content of xG as a function of yG's amplitude (Fig. 3). Fig. 3 -xG harmonic content vs. yG amplitude. When yG's amplitude is large, high amplitude harmonics are generated, triggering issues if the power source dynamic performance is limited. Waveform control is easier at low amplitude (no saturation and quasi-linear material behavior). THD of xG can reach 0% at very low amplitudes, it however increases up to 18% at 0.75•max(yG) and even 51% at 0.95•max(yG). THD values exceeding 100% are possible if no control is applied [20], and this is expected to occur for even deeper saturation. No noise has been considered in all the following tests. The power amplifier is supposed to be ideal (infinite bandwidth, etc.), with perfect impedance matching.

The sampling frequency has been reduced to 500 Hz to limit the memory allocation and reach convergence even with QNM.

A. Shallow saturation

The tested methods are firstly compared in a shallow saturation case: 𝑦 (𝑡) = 0.75 sin(2𝜋𝑡) (54) The simulations are stopped when the Relative Euclidean Difference or the Form Factor Difference falls below 10 -10 . The maximum iteration number is set to 600. On the one hand, such low error is only achievable in simulation; experimental conditions are affected by white noise, drifts, etc. On the other hand, such high accuracy allows testing the methods with yM extremely close to yG. Table 2 gives the simulation parameters, and Fig. 4 Convergence is obtained for all the methods tested. LSM-PI and PhC-MGD are the fastest, with approximately 10 iterations. Still, for both these methods, the amplitude correction step requires a lot of intermediary measurements, which can be problematic in the low-frequency range. QNM converges after Table 3 "calculation time" only considers the waveform identification computation time, i. e., it does not include additional times associated with virtual measurement simulation (equivalent to the measurement time in the experimental setup).

B. Deep saturation

In the next test, the iteration methods are tested closer to a fully saturated configuration, where larger non-linearity is present:

𝑦 (𝑡) = 0.95 sin(2𝜋𝑡) (55) 
Fig. 5 -Relative Euclidean and form factor differences for the deep saturation test.

The maximum iteration number is raised to 1500 since overall convergence is slower in this case. Fig. 5 gives the simulation results, and Table . 4 the simulation parameters.

Tab. 4 -Deep saturation simulation parameters

Again, QNM and PhC-MGD show the fastest convergence speed. PhC-P-ILC is also very fast, outclassing QNM, exhibiting temporary convergence errors. P-ILC converges slowly for this test, but unlike PhC-P-ILC, it never gets stuck on a precision plateau. Table 5 compares the performances. The precision criterion is set to < 10 -7 .

Tab. 5 -Performance comparison for the deep saturation test. A high number of iterations limits LSM-PI and PhC-MGD performances. QNM's iterations number is lower, but each requires a significant calculation time. The PhC-P-ILC method converges with a reduced number of iterations, eight times lower than P-ILC, but the calculation time for the latter is extremely short.

C. Overall simulation results

Table 6 compiles the comparisons based on the performance criteria defined in sub-section 2.1.

Tab. 6 -Performances comparison based on the performance criteria defined in sub-section 2.1. MBNenergy measurements require high sampling frequency, up to several hundreds of kHz, and long-time measurements leading to huge memory size for numerical feedback variables. A pre-treatment on Ba is required to reach convergence.

Oppositely, P-ILC does not require a perfect drift compensation to reach convergence. After all the numerical tests performed in this study, and based on Table 6 analysis, P-ILC appears to be the most adapted method in the context of the MBNenergy(Hsurf) hysteresis cycles characterization. In the next section, improvements are proposed for even better and faster convergence.

IV. P-ILC EXTENSIONS P-ILC is an excellent method for magnetization control digital feedback. P-ILC is simple to implement and tune. It is robust and fast. Its only limitation comes from the convergence speed, especially near saturation when the permeability falls and where a weak variation of Hsurf generates an even lower variation of Ba. This problem can be partially solved by increasing the proportional gain, but the response will diverge in the high permeability zones. A better solution consists in modulating Kp according to the system answer:

x(t, j + 1) = x(t, j) + K (t, j)ϵ(t, j) (56) This method requires additional parameters and should be considered with special attention. It can be implemented from an error array based on the two previous iterations (P-ILC-2 [START_REF] Zheng | A novel iterative learning control method and control system design for active magnetic bearing rotor imbalance of primary helium circulator in high-temperature gas-cooled reactor[END_REF]) and give Eq. 57:

x(t, j + 2) = x(t, j + 1) + K ϵ(t, j + 1) + K ϵ(t, j) (

The resulting error becomes a weighted sum of j+1 and j errors iterations. A generalized version (P-ILC-N) considering all the previous state N can even be written by extending Eq. 57:

x(t, j + N) = x(t, j + N -1) + ∑ K ϵ(t, j + N -q) (58) P-ILC-N convergence is faster. It is also more robust than standard P-ILC [START_REF] Zheng | A novel iterative learning control method and control system design for active magnetic bearing rotor imbalance of primary helium circulator in high-temperature gas-cooled reactor[END_REF]. But a minimum of N measurements are necessary for the corrector to be fully working. All K coefficients need to be optimized individually, which can be complex and demanding in experimental data. Hence, N should be kept as small as possible unless a reliable model is available for simulation. Another possibility consists of structuring the P-ILC iterative law as a Taylor approximation (assuming x is a yM smooth function):

x(y ) = x(y ) + A(y )(y -y )

If x(t,j+1)= xG(t), higher orders Taylor approximation gives P-ILC-TA, Eq. 60:

x(t, j + 1) = x(t, j) + ∑ K ϵ(t, j)

It is also possible to replace A in Eq. 59 with its optimal value, as obtained by the Taylor's approximation (P-ILC-TD):

𝑥(𝑦 ) = 𝑥(𝑦 ) + (𝑦 ) (𝑦 -𝑦 ) ⇒ = ∝ (61) 
⇒ 𝐾 (𝑡, 𝑗) = (𝑡, 𝑗)

P-ILC-TD can reach high-speed convergence rates. Kp being inversely proportional to the system reactivity, the correction will be significant when dyM/dx is small. However, relying on derivatives, P-ILC-TD requires exact measurement, no noise, delays, or bandwidth limitations. Otherwise, this method diverges very quickly. Finally, the deep saturation test (subsection 3.2) was repeated, and all P-ILC new variants were tested. Fig. 6 shows the simulation results, and Table 7 shows the corresponding iteration numbers. All alternative methods converge faster than P-ILC. P-ILC-TD outclasses all the proposed methods. An iterative process close to P-ILC-TD robust enough to handle white noise would be by far the most indicated method.

V. EXPERIMENTAL SETUP AND IMPLEMENTATION

The experimental setup used for the Barkhausen noise characterization has been precisely described in [START_REF] Fagan | Multiscale modelling of the magnetic Barkhausen noise energy cycles[END_REF]. The excitation of the sample is based on single C-yoke with the magnetizing winding, and with the sensors attached to the sample under test. An overall 2D view of this experimental setup is depicted in Fig. 7. Fig. 7 -Overall 2D view of the Barkhausen noise experimental setup. The power amplifier was a Kepco BOP100-10MG. The excitation coil was made out of 10 turns. The studied specimens were all grain-oriented electrical steels (FeSi GO 3wt%, M140-27). Their dimensions were 280 x 30 x 0.3 mm, with the length in the easy magnetization direction. Two 120 turns coils were wound around the specimen and plugged in opposite directions as recommended in [START_REF] Moses | AC Barkhausen noise in electrical steels: Influence of sensing technique on interpretation of measurements[END_REF]. The distance separating the sensor coils was set arbitrarily to 10 mm, as used in the previous work [19][53][54] by the authors. The influence of this distance has not been investigated in detail. Two Krohn-Hite 3362 amplifiers-filters were used for the signal conditioning and a National Instruments DAQ USB-6346 acquisition card, controlled through a GUI in Python and of 500 kHz sampling frequency for their acquisitions. Python® and Matlab® were used for the numerical treatment. Eq. ( 63 The 200 mHz current peak is unexpectedly high as compared to other frequencies. However, this difference could be caused simply by the non-linearity of the magnetic material because of the larger difference in amplitude as evident from Table 8. Table 8 summarizes the accuracy of the experimental results by comparing them using sub-section 2.3 criteria.

Tab. 8 -Experimental performances comparison based on the accuracy criteria defined in sub-section 2. 

Criteria met

Criteria not met Some Fig. 8 experimental results do not reach the accuracy targeted by the international standards. On the first hand, these standards imposed tight specifications of the experimental conditions (geometry, measurements, etc.), far from the experimental setup depicted in Fig. 7. IEC 60404-3 [50] related to the single sheet tester imposed by instant to use a top and a bottom yoke of large dimensions as displayed in Fig. 9. On the other hand, Fig. 7 setup has been designed based on usual MBN observation methods, like in a non-destructive testing context where magnetization waveform control is not required and never done (see [START_REF] Stewart | Magnetic Barkhausen noise analysis of stress in steel[END_REF]- [START_REF] Ding | Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination[END_REF] for examples). This setup delivers magnetic excitation significantly less homogeneous compared to those of [50], and the volume of the tested specimen is reduced. These limitations result in a considerable increase in the magnetization control complexity, justifying a lower accuracy in Table 8 results. A phase delay was also noticed between I(t) and Ba(t). This delay could be a source of divergence for some ILC algorithms (like QNM, whose core assumption relies on the I(Ba) bijectivity). Finally, Fig. 10 shows, as examples, the 20 Hz, 1.8 T sinus flux density, Ba(Hsurf), and MBNenergy(Hsurf) measured cycles. Differences can be observed between the experimental MBNenergy(Hsurf) and the Ba(Hsurf) hysteresis cycles. Those differences were expected and can be explained as follows:  All magnetization contributions are involved in the Ba(Hsurf) hysteresis cycles, mainly the domain wall motions and the magnetization rotation.  For the MBNenergy(Hsurf) cycle, the contribution is limited to the domain wall motions.

It is worth noting the difference at saturation once the cycle is closed. On the first hand, the MBNenergy(Hsurf) cycle reaches a flat saturation. No more variation of the MBNenergy is observed, reflecting the entire disappearance of the domain wall motions. On the other hand, the Ba(Hsurf) still varies. The magnetization rotation remains active and increases the magnetic flux density. The differences are expected to be even more pronounced in the higher frequency range. When Ba(Hsurf) cycles reflect all STL contributions, the MBNenergy(Hsurf) ones are limited to the domain wall motion contributions excluding, notably, the classical loss contribution.

VI. CONCLUSION

Studying the magnetization mechanisms in magnetic cores is a genuine problem that has generated substantial research efforts. A fine study of the MBNenergy(Hsurf) hysteresis cycle excitation frequency dependency and its prediction through an STL-like theory is expected to bring insights into the physical behavior of the magnetization mechanisms.

For this, the flux density has to be imposed sinusoidal from the quasi-static state up to approximately a few hundred Hz, depending on the nature of the tested specimen. Such control might be seen as a simple problem. Still, because of the strong linearities, the practical aspect happens to be especially complex, hence the proliferation of the feedback algorithms in the literature ( [START_REF] Zurek | Use of novel adaptive digital feedback for magnetic measurements under controlled magnetizing conditions[END_REF]- [START_REF] Anderson | Constant dB/dt DC characterisation through digital control of magnetic field[END_REF] are good examples).

In this study, the theoretical problem of Ba control on a classic setup (yoke and sample) has been established, and the ILC (the iterative version of the classic PID controller) has been explained. Different ILC settings exist, and a detailed review of these methods was done in the second section of this manuscript providing valuable insights generalizable to every waveform control environment. For a proper choice, the experimental conditions and the final objective have to be perfectly defined from the very beginning.

Then, six performance criteria have been proposed to identify the most adapted method in the specific context of the MBNenergy(Hsurf) hysteresis cycle characterization, and numerical tests were performed for a comparison purpose followed by conclusions.

P-ILC gave the best performance and the highest satisfaction rate. It was therefore chosen for experimental implementation. Experimental tests were realized on a wide range of amplitude and frequency. We noticed, as expected, a more significant error for higher frequency (limitations of the practical setup bandwidth) and amplitude (stronger non-linear behavior of the tested specimen).
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 1 Fig. 1 -Feedback structure.
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  on matrix inversions like QNM or parameter optimization like LSM-PI are unsuitable. This issue can be partially solved by downsampling the signals, applying correction, and upsampling the resulting waveforms by interpolation (PhC-MGD[START_REF] Stupakov | A system for controllable magnetic measurements of hysteresis and Barkhausen noise[END_REF]). But it means complexity and uncertainty in the measurement treatment. White noise's consequence on the working signals is another issue to consider. Methods like PhC-MGD require an intense averaging process to reach convergence which means extended time acquisition (several cycles) or a sliding window filter. These treatments bring complexity in the signals processing and potentially additional phase delays. Since Ba is obtained by integrating a noisy signal, a drift is always expected. Such a drift can be problematic on methods that normalize signals or expect yM to have a specific amplitude (PhC-MGD, LSM-PI).
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 6 Fig. 6 -Relative Euclidean differences, deep saturation test for the different P-ILC methods. Tab. 7 -Comparative results based on the iterations number before convergence. Number of iterations P-ILC 2135 P-ILC-TA (7th degree) 1835 P-ILC-3 979 P-ILC-9 613 P-ILC-TD 55

  Fig.7-Overall 2D view of the Barkhausen noise experimental setup. The power amplifier was a Kepco BOP100-10MG. The excitation coil was made out of 10 turns. The studied specimens were all grain-oriented electrical steels (FeSi GO 3wt%, M140-27). Their dimensions were 280 x 30 x 0.3 mm, with the length in the easy magnetization direction. Two 120 turns coils were wound around the specimen and plugged in opposite directions as recommended in[START_REF] Moses | AC Barkhausen noise in electrical steels: Influence of sensing technique on interpretation of measurements[END_REF]. The distance separating the sensor coils was set arbitrarily to 10 mm, as used in the previous work[START_REF] Fagan | Multiscale modelling of the magnetic Barkhausen noise energy cycles[END_REF][53][START_REF] Fagan | Effect of stress on the magnetic Barkhausen noise energy cycles: A route for stress evaluation in ferromagnetic materials[END_REF] by the authors. The influence of this distance has not been investigated in detail. Two Krohn-Hite 3362 amplifiers-filters were used for the signal conditioning and a National Instruments DAQ USB-6346 acquisition card, controlled through a GUI in Python and of 500 kHz sampling frequency for their acquisitions. Python® and Matlab® were used for the numerical treatment. Eq. (63) -(65) summarized all the tests carried out: B (goal) = B sin(2πf t) (63) B = 1.8 T (64) f = {0.2, 2, 20, 200} Hz (65) P-ILC was used to set the current waveforms. Fig. 8 depicts the experimental results obtained on three decades of frequency and Ba equal to 1.8 T, i.e., the worst-case analyzed scenario in terms of non-linear behavior.
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  40 iterations but needs long calculation times. P-ILC follows with around 60 iterations and minimal calculation times. Finally, FSP-ILC converges after almost 180 iterations. It is worth noting the residual error on P-ILC and FSP-ILC inherent to those methods and impossible to remove. Table3concludes this first set of tests by comparing the methods based on the criteria described in sub-section 2.1:

	Tab. 3 -Performance comparison for the shallow saturation
				test.			
		Num. of iter.	Num. of meas.	Fin. rel. euc. diff.	Final form factor	Calc. time per iter. (s)	Total calc. time (s)
	P-ILC	66	66	< 10 -10	8.9•10 -10	4.7•10 -4	0.031
	FDP-ILC	66	66	< 10 -10	8.9•10 -10	4.2•10 -4	0.023
	FSP-ILC	60	60	2.5•10 -8	1.6•10 -9	0.008	0.47
	PhC-P-ILC	174	174	2.2•10 -9	7.6•10 -10	0.01	1.7
	PhC-MGD	11	196	9.9•10 -5	< 10 -10	0.031	0.338
	QNM	40	90	1.4•10 -8	< 10 -10	0.52	20.92
	LSM-PI	7	192	9.0•10 -10	< 10 -10	0.39	2.743

  3. 

		200 mHz	2 Hz	20 Hz	200 Hz	Goal (Int. stand.)
	Euc. Dist. (%)	0.678	0.35	0.57	0.34	< 0.5
	Pears. Coef.	0.9999897	0.99999394	0.9999841	0.99999438	> 0.99997
	Form					
	Fact. Diff.	0.74	0.29	0.14	0.31	< 0.5
	(dB/dt)(%)					
	Amp. Diff. (%)	0.96	0.27	0.05	0.3	< 1
	THD					
	(dB/dt)	5.33	1.4	2.95	3.7	< 0.5
	(%)