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Abstract — The core losses prediction in laminated magnetic circuits has generated relentless
scientific research efforts. In this domain, the almost forty years old Statistical Theory of Losses
(STL) is still prevailing. Modern electrical energy conversion exposes laminated magnetic circuits
to higher frequencies and larger excitation fields. STL, which requires a full flux penetration,
poorly considered these intense stimuli. Recent studies proposed upgrading STL by modifying the
classical eddy current loss term using fractional derivative operators. Excellent predictions were
observed, but the lumped aspect inherent to STL means working with averaged quantities which
constitutes a limitation. Alternatively, local predictions and good simulation trajectories were
obtained for the frequency dependence of hysteresis by replacing the classic magnetic diffusion
equation with a fractional one. Still, the physical origin of the fractional diffusion equation
remains questionable. In the light of these results, we propose in this new study to review the
use of the fractional derivative operators for the core losses prediction. We eventually revealed
an alternative way to combine the classic diffusion equation to a fractional material law, leading
to the ultimate fractional method, with physical fundaments, few parameters, and accurate

results on significant frequency bandwidths.

Index Terms—Magnetic hysteresis, power converter, diffusion equation, fractional derivative,
frequency effect, electrical steel.



I. INTRODUCTION

The magnetic core losses in electromagnetic devices have been studied for years [1]. It is
a critical aspect of a new prototype design as these losses highly affect the conversion efficiency
and the temperature distribution. Progress in this domain has been constant, fueled by the
evolution of knowledge, technology, and instrumentation. Even if the first study on this topic was
exposed in the early 20t century [1][2], the list of recent publications is remarkably long [3]-[7].
A plausible explanation for this surge of interest is the evolution of electromagnetic devices:
faster, compacter, and more efficient, pushing the magnetic materials towards unprecedented
working conditions (10 kHz in [5]). The hysteresis cycle is the standard magnetic signature of a
magnetic core. It gives access to essential information, including coercivity, permeability, and the
energy losses W [8]-[10]. The latter expressed in J-m3 is equal to the Ba(Hsurf) hysteresis cycle
area (where Bais the magnetic flux density and Hsurf, the surface tangent magnetic excitation
field). One well-known empirical equation to evaluate W in ferromagnetic electric steel
laminations traces back to the original work of Steinmetz [11] more than a century ago. It is

expressed with a scaling relation:
W=k f-B, P (1)

Where f and Bap stand respectively for the frequency and the maximum induction. k, a, and 8
are known as the Steinmetz coefficients. In Eg. 1, both exponents are non-integer numbers (1 <
B <3,2<a< 3[12]-[14]), foreshadowing the use of non-integer operators for W’s accurate
simulations. In Steinmetz's publication, a and 3 are estimated empirically for every value of f

and Bap. Unfortunately, this pragmatic approach shows limited predictive capability. Many years



later, Bertotti et al. described the Statistical Theory of Losses (STL) [15][16], introducing the

concept of losses separation and leading to Eq. (2):
W = Wy, + Wi + Wy (2)

Where, Why is the hysteresis loss contribution. Why is frequency-independent and related to
elementary domain wall motions occurring at a microscopic scale. Why depends on the grain size,
the texture, and the distribution of the precipitates. Wa is the classical eddy current loss term.
W is the only contribution that would arise in a perfectly homogeneous material (no magnetic

domain). Wa is derived from Maxwell’s equations and can be written as:

_od?  1/f (dB,)?
=2 (0 a .

o is the electrical conductivity and d the magnetic sheet thickness. The last term Wex is the excess
loss. Wex is a dynamic contribution related to the magnetic domains' kinetic and frequency

dependency.

1.5
dt (4)

Wiy = /oSGV, - [/ f|°1dit

G = 0.1356 is a dimensionless coefficient, S the cross-section area, and Vo a max(Ba) dependent
statistical parameter associated with the microstructure. STL is an efficient tool for predicting
ferromagnetic losses. It is still widely used, especially for Oriented Grains electrical steel (FeSi
GO) laminated sheets. However, STL was set assuming full magnetic field penetration and no skin
effect; thus, its domain of validity remains limited to a few hundred hertz [17]. A few years later,
core loss predictions were improved by abandoning the lumped relations and replacing them

with space discretized methods. The 1D resolution of combining the magnetic field diffusion



equation Eq. (5) for the classic loss contribution and a viscosity-based magneto-dynamic model
for both the hysteresis and the excess one gave the best results [18]. For this material law, a basic

expression Eqg. (6) can lead to a robust formulation Eq. (7) naturally solved by matrix inversion

[19]:
VH=0-2 (5)
p- S =H— Hyae(B) (6)
V2H = o - T Hsat®) (7)

Here, B and H are local quantities. p is a constant depending on the tested specimen's nature
and geometry [20]. Unfortunately, for this simple approach, the frequency dependency of the
excess losses is not taken into account appropriately, and overestimations can be observed in

the high-frequency range. Much better results are obtained with Eq. (8) [21]:

B &
Pl |H — Hgeae(B)[2® (8)

Where § is a directional parameter (= +/- 1) and the B dependent functions a(B) and g(B) are
set by comparison with experimental results. Such a high number of parameters ends up with
excellent simulation results but requires a significant amount of experimental data, which is

complex to obtain in an industrial environment.



Il. THEORITICAL CONSIDERATION

In this context of frequency limitation or over-sophisticated approaches, the demand for
alternative techniques still exists. In light of this, new methods arose based on mathematical
operators gathered from the framework of the fractional derivatives. Different methodologies
have already been tested, including fractional differential equations [22][23]. Both the classic
Preisach and lJiles-Atherton quasi-static hysteresis models Hstat(B) have been extended to the

frequency dependence through the consideration of a fractional viscoelastic-type dynamic term:

d"B,
' qm = Hgurr — Hstat(B) (9)

Where n is the fractional order. Hybrid solutions have also been proposed, like in [24], where STL
was partially modified. Authors obtained accurate simulation results on a significant frequency
bandwidth, assuming the skin effect as solely affecting Wc and replacing its usual expression with

a fractional derivative one:

W = Wy + W + Wey = §[Hay(Ba)]dB, (10)
den = th + Hep + Hex (11)
W = §[Hyy(Ba) + He(Ba) + Hex(B,)]dB, (12)
dnBa dBa 0.5
W= ﬁ[th(Ba) +p- 22+ oSGV, - 5 | = ]dBa (13)

This method provides precise losses estimation and works with a limited number of parameters,
but, like the original STL, local information is not accessible. Even if the macroscopic eddy
currents are taken into account, the distribution of H and B through the specimen cross-section
remains unknown. The anomalous fractional diffusion equation is another option that seems to

provide satisfactory results on a large frequency bandwidth:



VH=o 2 (14)
In [25], this equation is solved in 1D for a laminated electrical steel sheet and 2D in [26] for a
massive toroidal ferromagnetic core. In these publications and for energetical reasons, the
fractional order is limited to the [0 — 1] range [27][28]. In Eq. (13), a decrease of n reduces the
dynamic of the magnetic field diffusion, and for a given frequency f under sinus Ba imposed
condition, it minimizes the losses. This observation is crucial as it somehow leads to an
inconsistency in the low-frequency range where STL provides correct simulation results. The
simultaneous consideration of the classic and excess losses by the anomalous fractional
derivative equation means that accurate simulation results in the low-frequency range can only
be obtained by over-estimating the pseudo electrical conductivity o’. Fractional derivatives
provide flexibility to the simulation method, allowing correct fittings on significant frequency
bandwidths, but limitation remains:

e the lumped methods described in [21]-[23] are accurate but limited to average
information.

e The anomalous fractional diffusion equation defined in [25]-[27] gives local information,
but its physical meaning is questionable, and correct simulation results mean inaccurate
electrical conductivity.

In light of these first observations, we propose in this work to further review the use of the
fractional derivative operators for the loss prediction, conclude based on comparison criteria,

and describe an ultimate fractional technique solving all the issues listed above while conserving

excellent accuracy.



Ill. THE FRACTIONAL DERIVATIVE CALCULATION

Fractional Calculus (FC) is not new, and the first documents mentioning this branch of
mathematics were published at the end of the seventeen century [28][29]. However, it is only
recently that FC abandoned a purely mathematical perspective and started to generate interest
in the applied science and engineering community [30][31]. FC can now be found in domains as
diverse as biology, finance, or even signal processing [32]-[34]. FC shines by its faculty to simulate
correctly long memory and long-range processes [35]. This non-locality in space and time can be
observed in many phenomena, including fractional spaces [36], abnormal porous media [37],
viscoelasticity [38], and diffusion processes [39]. Both the latter can specifically find an echo in
the dynamical behavior of the magnetization processes described in this manuscript. Space
fractional derivatives are recommended for the consideration of diffusion non-locality, which in
other words, means to give a dependence of a local derivative result to every node of the
discretized geometrical space [40]. These operators can be used with success to modulate the
speed of the diffusion process according to the space position, the diffusion direction, and
orientation. In the context of the magnetization process, where the electrical conductivity is
supposed to be constant and isotropic, such operators are of limited interest. Time fractional
derivatives are suggested in the context of long-time heavy tail decays, which involve the totality
of the history in resolving a time derivative. Time fractional derivatives are well suited to
ferromagnetic hysteresis, in which real-time behavior is strongly dependent on the specimen
history. Derivatives in the time domain must respect the causality principle, a backward definition

of decreasing time variation exists but doesn’t match our experimental situation. This study limits



the time-fractional derivative definitions to a forward context. Eq. (15) gives the forward

Griinwald-Letnikov expression:

[ precy = Jim h™ - Ym=o :m ft = mh)
{( _F(:(;;n)=m'(m+1)'---(n+m_1) 1
(m), =1

Where (n)m is known as the Pochhammer symbol and I the gamma function. Eq. (15) exhibits

multiple interesting properties [35], including:

e linearity
e additivity and commutativity
e neutral and inverse elements

e backward compatibility

If f(-) can be Laplace or Fourier transformed, its time-fractional derivative can also be expressed
through an integral. The forward regularized Liouville derivative Eq. (16) is the integral form of

Eq. (15) [35].

m¢e(m)
[f(t —1) —u(n)- YN~ 1EDTPTO, Tm] O ' U (16)

m!

n —
Dff(t) = e

Where u(-) is the unit step function. The Liouville expression (Eq. (17)) is another fractional
derivative definition that can be interpreted in terms of convolution between f(t) and

tnu(t)/T(1-n) [41].

an(t)_r(1 = .t (t=D™f(0) - dr (17)

(—o0 < t < +0)



In this study, both the Griinwald-Letnikov and the Riemann-Liouville were tested, and close

simulation results and performances were observed.

IV. THE FRACTIONAL DERIVATIVE AS ATOOL FOR THE SIMULATION OF MAGNETIC LOSSES
Higher frequencies are promoted by the latest technological developments in the
electrical energy conversion domain. Traditional magnetic core loss predictive methods have not
been designed for high-frequency levels and show limitations. An ideal scenario would be
accurate on a large frequency bandwidth, with physical meaning, few parameters, and local

information. These criteria are listed in Table 1.

TABLE |

Core loss simulation method comparison criteria and simulation objectives.

Comparison criteria

Core losses under a harmonic regime
Core losses under arbitrary signals and transient regime

Spatial distribution (Skin effect)

Methods using time-fractional derivative operators show good potential. They are reviewed in

this section.

A. The fractional differential equation method

The quasi-static Hysteresis losses Why are observed in the low-frequency range. They are due to

domain wall motions of dynamical behaviors decorrelated to the excitation one. A good



estimation of this contribution can be obtained by assuming these domain wall motions act like
mechanical dry-frictions [42][43]. For higher frequencies, these dry frictions turn to become
viscoelastic, and p-dBa/dt (equivalent to a lossy viscous damper, Eq. (6) is the typical additional
contribution to take into account this change. Fig. 2 — c depicts the linear frequency dependency
of the loss as obtained by solving Eq. (6) in sinus Ba imposed conditions (max(Ba) = 1.5 T). The
quasi-static contribution (Fig. 1) comes from the J-A"* model [44], and its parameters in Table 2
are set to match the magnetic answer of a typical FeSi GO [45]. Fig. 1 —a shows centered cycles,

and Fig. 1 — b Why as a function of max(Ba).

TABLE Il

J-Al parameters for a typical FeSi GO laminated electrical steel sheet.

J-A! Parameters | Typical value

a(Aml) 4.4
Ms (A m?) 1.41 106
k (Am?) 13
C 0.42

(o4 9.8 10°
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Fig. 1.a Quasi-static Ba(Hsurf) hysteresis centered cycles simulation under sinus Ba imposed
conditions using the J-A"*model and the parameters depicted in Table 2. Fig. 1.b Why as a function
of max(Ba) in the same conditions.
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Fig. 2.a Hysteresis Ba(Hsurf) cycles under increasing f as simulated with Eq. 5. Fig. 2.b dW/df as
a function of p. Fig. 2.c Hysteresis core losses prediction, solving Eq. 5 under sinus flux density
imposed conditions and max(Ba) =1.5T.

Fig . 2 —a shows some Eq. (6) Ba(Hsurf) hysteresis cycles for increasing f, and Fig. 2 — b illustrates
that for a given max(Ba), Eq. (6) leads to a dW/df proportional to p. As observed in Fig. 2 —c,
p-dBa/dt gives a linear frequency dependence of W, and p sets the slope. However, the
experimental observations are far from linear, limiting the viability of Eq. (6) to a modest
frequency bandwidth. p-d"Ba/dtn is the alternative solution proposed in [22][23]. The first-order
derivative viscoelastic term is converted to a fractional one, and Eq. (9) becomes a fractional
differential equation. Eq. (9) is easy to solve in sinus Ba imposed conditions as the fractional
derivatives of harmonic functions have analytical solutions (Eq. 18, 19):

f(t) = e'at (18)

DPf(t) = a" - (cos (at + ng) + isin (at + ng)) (19)
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Fig. 3 Hysteresis core losses W simulation under sinus Ba imposed condition using the fractional
viscoelastic differential equation (Eq. (9)) and increasing values of p, f, n, and max(Ba).
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Fig. 4 Hysteresis core losses W simulation as a function of f under sinus Ba imposed condition
using the fractional viscoelastic differential equation Eq. (9) for max(Ba)= 1.5 T, p = 0.038 and
increasing n.

Fig. 3 shows the loss variations for increasing p, f, n, and max(Ba), and Fig. 4 the fractional-order

influence for given p and max(Ba). p is set randomly to 0.038 and max(Ba) to 1.5 for comparison

purposes [24]. Table 2 quasi-static parameters are considered for all these simulations.

B. The hybrid lump method

The resolution of Eq. (9) in sinus Ba imposed conditions is fast, simple, and provides flexible
simulation results. Still, it is also restrictive as it limits the frequency dependence to a unique
term. It indirectly supposes that W« and Wex are equally affected by the frequency, which
contradicts previous studies [49][50]. In [24], Liu et al. proposed a different approach to better

adequate real-life observations. They suggested keeping Why and Wex as described by STL and



restricting the use of the fractional viscoelastic term p-d"Ba/dt" to the only Wa contribution. The
resulting equation Eqg. (13) remains simple as every element can be considered separately (Fig.

5), and excellent results are observed up to 3 kHz.
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Fig. 5.a Hysteresis core losses distribution (Why, W and Wex) simulated under sinus Ba imposed
condition using the hybrid method proposed in [24] for max(Ba) = 1.5 T, p = 0.038 and n = 0.8.
Why, Wex comes from [24]. Fig. 5.b Hysteresis core losses W variations under identical conditions
forn€[0.1-0.9].

Unfortunately, compared to other methods, the capability of solving the time-dependent
problem is lost. Fig. 5 — a depicts the hysteresis core losses distribution obtained by solving Eq.

(13) under sinus flux density, max(Ba) = 1.5 T and n = 0.8. Fig. 5 — b shows the influence of n on

the frequency dependence of W.

C. The fractional diffusion equation method

With Eq. (13), Liu et al. [24] have provided an excellent way to precisely simulate the magnetic
losses on a considerable frequency bandwidth. The frequency impacts Wc and Wex differently,
which agrees with STL. However, Eg. (13) remains a lumped-element method, and local
information (distribution of H and B) is still unavailable. In [25][26], the authors proposed
considering the magnetic losses differently. Their idea found its origin in the description of the
classic losses as described by the Maxwell diffusion equation Eq. (5). In the low-frequency range,
under sinus flux density imposed conditions, the resolution of this equation is supposed to give
the same amount of losses as STL classic losses contribution (Wcl). This statement is verified in
Fig. (6), where the classical hysteresis loss contribution is simulated from both the STL and the
Maxwell expressions. The diffusion equation is solved in 1D using finite differences for the space
term [27][48]-[52] and considering the lamination thickness and the space step equal to 0.2 mm

and 0.002 mm, respectively (q = 100 nodes for the whole thickness).
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Fig. 6.a Comparison of the classic losses frequency dependence Wd(f) calculated using the STL
expression and the 1D Maxwell diffusion equation. Fig. 6.b Same comparison in the low-

frequency range.

The conductivity is set to 1.99 10° S:m™, like in [24]. The space discretization is homogeneous,

and B, is calculated by averaging the local magnetic values Bi:



_1l,B@

B, ”

(20)

Fig. 6 results confirm the excellent prediction of STL, especially in the low-frequency range where
the complete flux penetration condition is valid. In the following figure, the classic diffusion
equation is replaced by a fractional one as described in [27]. The fractional diffusion equation
and the generalized fractional Maxwell equations [53] seem connected. Still, their relations need
to be established. Even if the mathematical description of the fractional Maxwell equations has
already been described in the literature [54], one may question the physical meaning of such
description. Similar to complex mechanical media (fractal geometries, composites materials, etc.
[54][55]), magnetization processes involve multi-scale interactions, although this parallel has not
been addressed yet. Eqg. (14) in sinus Ba imposed condition and max(Ba) = 1.5 T is solved explicitly
with a limited tested window (+/- 3 A-m™) of Hsurf centered around its value at t = t - dt. The finite
differences are still used for the space term and the forward Griinwald-Letnikov Eq. (15) for the
time-fractional derivative term. The time discretization is about 1000 points per period, and a
complete hysteresis cycle is obtained in less than a minute. Besides the questionable physical
origin of the fractional diffusion equation, another issue is noticed: a decrease of n reduces the

losses.
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Fig. 7.a Classic hysteresis losses Wea simulation as a function of f under sinus Ba imposed
condition using the fractional diffusion equation (Eq. 13) and for n € [0.1 — 0.9]. Fig. 7.b Same
comparison in the low-frequency range.



As commented in the introduction, correct simulation results can only go through a wrong
estimation of the electrical conductivity. A hybrid method like in 3.2, where the fractional
diffusion equation would be restricted to the classic losses, can be considered and lead to the
simulation results depicted in Fig. 8 below (like Fig. 5 — b, the flux density is imposed sinus and
max(Ba) = 1.5 T). Similar trajectories are observed between Fig. 5 — b and Fig. 8. Still, the same
values of n can lead to very different amounts of losses. In [24], the classic losses are weighted

by p, and even in the low n range, high values of the classic losses can be obtained.
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Fig. 8 Hysteresis core losses simulation as a function of f under sinus flux density imposed
condition using the fractional diffusion equation method Eq. (13) and for n € [0.1 - 0.9].

D. Combination of the classical diffusion equation to a fractional material law

Like Eq. (5) and (6) are regrouped in (7), if nis similarin (9) and (14), a similar rearrangement can

be applied :



d"B(zt) _ 10%H(zt) _ H(zt)—fstatic  (B(zD)
dtn o 922 p

(21)

Eqg. (23) can be solved through matrix inversion (Euler’s method) as described in [18]. For each
simulation time step, the determination of local H(z,t) is followed by a resolution of Eq. (24),

leading to B(z,t) for every node of the mesh:

H(z,t)—fstatic_l(B(z,t)))
p

dt—n

d‘n<
B(zt) = (22)

This method is attractive, and its computation is straightforward. It provides local information
and accurate simulation results. Still, the physical meaning of Eq. 14 and the associated fractional

Maxwell equations remains unsolved. An even better approach starts from a reformulation of

Eqg. (9):
d"B(zt) _ H(ZY—Hstat(B(zY)) (9)
dtn p
d'™" rd"B(zt)\ _ d'™" (H(zt)—Hstar(B(z,1))
dti-n ( dtn ) ~ det-n ( p ) (3)
dB(zt)) _ d'™" (H(zt)-Hstat(B(z 1)
( dt ) o dtl—n( P ) ©)

By isolating dB/dt this way, the concatenation with Eq. (6) is still possible and leads to Eq. (23):

10%H(zt) _ d'7" (H(z,t)—Hstat(B(z,t)))

6 8z2  dtl-n p (23)

Euler’s method (matrix inversion) is no more applicable, but the resolution describes in [25] is.
The right term is expressed through the forward Griinwald-Letnikov expression Eg. (26), and the
left term through finite differences. Fig. 9 depicts the space discretization and the boundary

conditions.
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In this configuration, the matrix resolution is still possible, but the stiffness matrix needs to be

recalculated at every step time. Once all H(z,t) are obtained from the matrix resolution, Eq. (24)

is applied to every node of the mesh leading to B(z,t).
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Fig. 9 1D space discretization resolution scheme, including the boundary conditions.
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Fig. 10 Hysteresis core losses simulation as a function of f under sinus flux density imposed
condition using the combination of the diffusion equation and the fractional material law, Eq.
(26), and forn € [0.1 - 0.9].

Fig. 10 gives the core losses simulated with Eq. 26 in sinus Ba imposed condition and max(Ba) =
1.5T. The explicit method is used again so are the J-A model and Table 2 parameters for the static
contributions. Fig. 11 depicts B(z,t) and H(z,t) chronograms as obtained from the resolution of
the method mentioned above and different values of n and frequencies. As anticipated, a

significant skin effect can be observed at 200 Hz when n is high. Oppositely for low n, the

magnetic behaviors of the top and center layers are confounded.

V. COMPARISONS TO EXPERIMENTAL RESULTS
The measurement methods of the magnetic core losses in a ferromagnetic lamination are

described in international standards [56]-[58].
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Fig. 11 Bi(t) and Hi(t) for f =200 Hz and n = 1, 0.6 and 0.2 respectively.

For the Epstein frame method [57], the reproducibility standard deviation is 1.5% up to 1.5 T for
non-oriented electrical steels and 1.7 T for oriented ones. Similarly, the reproducibility of the
magnetic behavior of same-grade electrical steel is far from ensured by the manufacturer. In [59],

for instance, the test values are supposed to be typical but not guaranteed. The accumulation of



the characterization setup and the specimen behavior uncertainties makes access to reliable and
comparable experimental data hazardous. For these reasons, such as the fact that typical FeSi
GO has been substantially studied and many convergent experimental data can be found in the
literature, we used already published experimental results instead of carrying out a new testing
campaign. In this section, all the experimental results came from [17][24] and [60][61]. The
specimens tested were FeSi Go laminations of thickness 0.22 mm and conductivity 1.99 10® S-m"
1. We refer readers to the original documents for additional information, including the
experimental conditions. In Fig. 11 below, simulations and measurements are compared for
increasing max(Ba) values. Concerning the simulations, three methods were tested:
_ the fractional differential equation method (sub-section 3.1),
_ the hybrid lump method (sub-section 3.2),
_ The combination of the diffusion equation and a fractional material law (sub-section 3.4).

The dynamic simulation parameters for the hybrid lump method were those of [24]. For both
the other ways, they were set through the minimization of an uncertainty function:

ﬂ. p |Wmeasi_Wsimi|

Uncertainty (%) = - Yics (25)

Whneas;
Where p is the time discretization’s number, the static parameters came from Table 2. Table 3
gives the dynamic simulation parameters for the fractional differential equation and the diffusion
equation/fractional material law methods. Eq. 24 gives the expression of Vo (associated with Eq.
13) as a function of max(Ba) used for the hybrid lump method:

Vo = —0.076 - max (B,) + 0.25 (26)
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Fig. 12 Comparison simulations/experimental results for the three simulation methods.

TABLE Il

Dynamic simulation parameters.

Fractional Diffusion equation +
differential fractional material
equation method: law method:
P ‘ 0.05 D ‘ 0.045
0.835

n ‘ 0.83 n

Table 4 depicts the simulation methods accuracy quantitatively, and Table 5 compared the

methods regarding the criteria defined in Table 1 and the performances.



Quantitative comparisons (uncertainty) for all Fig. 12 simulation tests.

Fractional differential equation method:

Freq (Hz)

Buax (T)

0.4
0.5
0.7
0.8
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15

Uncertainty (%)

Hybrid lump method:

Freq (Hz)

Bwax (T)

0.4
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0.7
0.8
1
13
1.5

Uncertainty (%)

Diffusion equation + fractional material law method:

Freq (Hz)

BMI'\X (T)

0.4
0.5
0.7
0.8
1
13
15

Uncertainty (%)

TABLE IV

Uncertaint
100 200 300 500 700 1000 1200 1500 1700 2000 2300 2500 3000 o0
101 | 136 | 226 | 264 | 231 | 231 | 233 | 227 | 213 | 211 | 206 | 201 | 190 2058
137 | 159 | 186 | 283 | 246 | 217 | 181 | 199 | 183 | 166 | 171 | 175 | 137 18.79
101 | 155 | 886 | 936 | 100 | 112 | 102 | 866 | 834 | 7.21 | 578 | 542 | 0.15 7.47
122 | 296 | 478 | 673 | 817 | 719 | 662 | 586 | 479 | 381 | 217 | 139 | 263 533
193 | 7.74 | 000 | 466 | 426 | 333 | 446 | 139 | 003 | 200 | 336 | 332 | 477 452
170 | 514 | 073 | 170 | 054 | 015 | 077 | 208 | 284 | 334 | 374 | 376 | 516 3.61
134 | 485 | 141 | 128 | 151 | 134 | 131 | 012 | 061 | 040 | 003 | 053 | 0.79 2.12
137 112 103
S SR ST ) 3 974 927 868 805 778 755 743 661 8.92
100 200 300 500 700 1000 1200 1500 1700 2000 2300 2500 3000 U";‘?';?'"t
6
835 | 13.1 | 3.86 | 0.84 | 247 | 019 | 154 | 270 | 229 | 3.60 | 456 | 482 | 559 415
363 | 203 | 125 | 102 | 657 | 488 | 183 | 581 | 509 | 459 | 654 | 7.79 | 548 5.06
130 | 128 | 376 | 385 | 215 | 101 | 106 | 104 | 174 | 197 | 176 | 217 | 140 3.68
124 | 115 | 553 | 399 | 153 | 082 | 023 | 064 | 053 | 092 | 052 | 051 | 173 3.15
154 | 122 | 643 | 198 | 155 | 077 | 156 | 002 | 042 | 101 | 112 | 032 | 003 3.30
163 | 120 | 7.74 | 678 | 687 | 522 | 486 | 442 | 410 | 312 | 220 | 143 | 102 5.86
126 | 112 | 637 | 643 | 493 | 301 | 174 | 143 | 086 | 078 | 246 | 370 | 410 4.60
117 107
s ;0 4% 488 373 227 183 229 215 229 274 29 276 4.26
100 200 300 500 700 1000 1200 1500 1700 2000 2300 2500 3000 Unce(:;?'"t
Y (%,
902 | 079 | 11.8 | 183 | 161 | 173 | 181 | 181 | 17.0 | 170 | 169 | 165 | 157 14.85
022 | 547 | 987 | 222 | 192 | 171 | 137 | 161 | 147 | 132 | 139 | 145 | 108 13.19
186 | 7.98 | 401 | 540 | 671 | 843 | 7.56 | 6.14 | 595 | 492 | 359 | 326 | 2.00 6.51
200 | 867 | 029 | 3.12 | 502 | 441 | 404 | 350 | 250 | 162 | 003 | 069 | 468 451
111 | 128 | 420 | 142 | 140 | 082 | 212 | 084 | 217 | 410 | 542 | 530 | 671 4.50
132 | 931 | 272 | 123 | 207 | 215 | 299 | 418 | 484 | 412 | 430 | 313 | 259 438
107 | 827 | 152 | 141 | 098 | 098 | 092 | 231 | 275 | 249 | 199 | 143 | 2.70 2.96
11.8
763 493 761 737 732 708 732 713 679 660 641 647 7.27




TABLE V
Simulation methods vs. comparison criteria

Simulation method

Fractional i Diffusion equation
- N . . Hybrid lump i
Comparison criteria differential + fractional
. method )
equation material law
Core loss (harmonic regime) ++ ++ ++
Core loss (transient regime) + -- ¥+
Spatial distribution -- -- 4+
Simulation speed + d
Number of parameters ++ -
Simulation objectives Performance criteria

As illustrated in Fig. 11 and observed in Table 4, an average precision of less than 10 % can be
obtained with the three methods tested. The Hybrid lump and the fractional diffusion equation
methods show accuracy levels close to 5 %, but four parameters (two for Vo, p, and n) are
necessary for the first method while only two are used by the second (p, and n).

Finally, under the same model settings conditions, the diffusion equation + fractional material
law speed is approximately 200 times slower than the other methods. However, with around 30
seconds per period, the simulation time remains reasonable and should not constitute a reason

to discriminate against this method.

VI. CONCLUSION
The problem of magnetic losses in laminated electrical steel sheets is constantly evolving. Old-
fashion, low-frequency, high-power transformers still exist. Still, new designs of improved

performances and working frequencies up to fifty times higher than the distribution frequency



are frequently seen nowadays. Former simulation tools like STL, adapted to the end of the 20th-
century electromagnetic environment, show limitations in this contemporary context. This
manuscript reviewed and studied alternative methods based on fractional derivatives operators.
Comparisons with experimental observations confirmed that the fractional derivative methods
could obtain accurate results on large frequency bandwidths.

On the one hand, the fractional differential equation method is simple to solve as an
analytical solution is available under sinus B imposed experimental conditions. On the other
hand, the well-admitted loss separation is impossible with a unique frequency-dependent
contribution. The hybrid method combining STL for the hysteresis and the excess losses to a
fractional derivative term for the classic ones is consistent as it respects the separation principle.
It is simple to solve as each contribution can be calculated separately, but it can’t provide local
information like the skin effect. The combination of the diffusion equation with a fractional
material law was the last option proposed in this study. Good accuracy was observed again. Once
the electrical conductivity is known, its implementation is easy as it relies on only a few
parameters (p and n). Furthermore, it gives access to local information, skin effect, etc.
Concerning the simulation speeds, the fractional differential equation and the hybrid method are
extremely fast. No iterative loops are necessary, and the simulation times are mainly due to the
initialization of the parameters and the results’ plots. The combination diffusion equation +
fractional material law method is definitively more demanding of computation time and
numerical resources. However, the simulation speed remains reasonable with less than a minute
per period using a standard computer. In this study, all tests and simulations were done following

the rules of the characterization standards. We know that the frequency effects can be observed



differently in domains like magnetic non-destructive testing (incremental permeability,
impedance spectroscopy, etc.). In the perspective of this study, tests will be done to check the
viability of the proposed method under these alternative experimental situations. The highest
frequency tested has been arbitrarily set to 3 kHz; still, it would be of significant interest to get

comparisons up to 10 kHz.
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