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Abstract: 

Magnetic losses in a laminated ferromagnetic core have been studied for years. However, 

magnetization mechanisms are complex, and the ideal model is still lacking. Classic resolution in 

the time domain combines a 1D magnetic diffusion equation with a viscosity-based magneto 

dynamic material law (first-order differential equation). This simultaneous resolution has already 

been solved by matrix inversion: the diffusion equation temporal term is replaced by its 

differential equation expression. It leads to a fast solution but overestimates the excess losses 

linked to the dynamic of the magnetic domains wall motions. Improved material laws using 

power operators have alternatively been tested. However, it is impossible to regroup the 

magnetic field terms on the same side of the final equation, and the resolution can only go 

through complex iterative methods (fixed point, Newton-Raphson). In this study, we propose to 

combine a fractional diffusion equation and a fractional viscosity-based magneto dynamic 

differential equation. Matrix resolution is possible, such as an accurate simulation of the dynamic 

behavior by adjusting the fractional order. The space term of the diffusion equation being solved 

by space discretization, the combined resolution leads to local information (excitation and 

induction fields). The number of dynamic parameters is limited but large enough for excellent 

simulation results.  
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1 - Introduction: 

Electromagnetic actuators and convertors are omnipresent in contemporary society. The 

magnetic core is a critical conversion element. An accurate evaluation of the conversion law is 

mandatory in the design of new electromagnetic devices. The first scientific work on this topic 

was published by Steinmetz more than a century ago [1]. Still, it is a timely issue, and the list of 

recent publications on this subject is simply breathtaking ([2]-[11] in less than a year). Zirka et al. 

in [12] wrote, “despite the long history of the problem and an undoubted requirement for its 

solution for numerous applications, it should be recognized that the general physical model of a 

ferromagnetic sheet has not yet been developed, not is likely to be developed in the foreseeable 

future.”  

Among a vast list of publications, some should receive immediate attention, like the 

Steinmetz's empirical approach published at the end of the 19th century [1]. Seventy years later 

(1952), Polivanov [13], followed by Pry, and Bean [14], proposed the first qualitative models for 

the magnetization mechanisms. Even limited, these theories remained prevalent for many years 

up to Bertotti's Statistical Theory of Losses (STL), which is still nowadays the most used method 

to evaluate the ferromagnetic losses in electromagnetic conversions [15]. 

STL is based on the concept of losses separation. It works under sinusoidal magnetization and 

assumes the absence of skin effect (less than 150 Hz in typical electrical steels [16]). The total 

loss per cycle 𝑊௧௧ is supposed to be the sum of three contributions (Eq. 1): 

          𝑊௧௧ = 𝑊௬௦௧ + 𝑊௦ + 𝑊௫            (1) 

𝑊௬௦  is the frequency-independent hysteresis loss contribution. 𝑊௦ (Eq. 2) is the classical 

eddy current loss term: 
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𝑊௦ is derived from Maxwell’s equations, it is due to the macroscopic eddy currents. 𝐵 is 

the projection of induction field 𝐵
ሬሬሬሬ⃗  averaged through the sheet cross-section in the 𝑂௬

ሬሬሬሬ⃗  direction 

(Fig.1). 𝜎 is the electrical conductivity, and 𝑑 the lamination thickness. The last term 𝑊௫ is the 

excess eddy current loss (Eq.3), it is attributed to the magnetic domains kinetic as observed 

during the magnetization process.   
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                                                  (3) 

𝑆 is the cross-section, 𝐺 = 0.1356 a dimensionless coefficient and 𝑉 a 𝑀𝑎𝑥(𝐵) dependent 

statistical parameter linked to the microstructure. STL is a powerful tool, but it is a lumped 

method. Its application frequency range is limited, and it cannot be solved in the time domain.  

Based on STL limitations, alternative methods were proposed. Among them, the 

simultaneous resolution of the Maxwell diffusion equation (Eq.4) and a viscosity-based magneto 

dynamic material law gave the most accurate results [17].  

                    ∇ଶ𝐻ሬሬ⃗ = 𝜎
ௗሬ⃗

ௗ௧
                                                              (4) 

Where 𝐻ሬሬ⃗  is the magnetic excitation field. In a laminated ferromagnetic core and for 

geometrical reasons, it is common to reduce Eq.4 to the thickness dimension (1D). 𝐵ሬ⃗  and 𝐻ሬሬ⃗  being 

always parallel to the lamination direction, both these vectors quantities can be reduced to their 

scalar projection: 

                డ
మு(௭,௧)

డ௭మ = 𝜎
ௗ(௭,௧)

ௗ௧
                                                              (5) 

Eq.5 left member is classically discretized through finite differences leading to local 

information. 
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Fig.1 – Ferromagnetic electrical steel lamination: 1D space discretization and geometrical information. 

Eq.5 is impossible to be solved in itself, and resolution can only be obtained by coupling it to 

a material law. For this, viscosity-based magneto dynamic differential equations are promoted 

[17][18], the simplest being: 

        𝜌 ቀ
ௗ(௭,௧)

ௗ௧
ቁ = 𝐻(𝑧, 𝑡) − 𝑓௦௧௧

ିଵ(𝐵(𝑧, 𝑡))                          (6) 

Where 𝜌 can be a constant or a 𝐵 dependent function for better accuracy (see Eq.8), and 

𝑓௦௧௧
ିଵ(𝐵(𝑧, 𝑡)) a frequency-independent contribution calculated from a quasi-static hysteresis 

model (like the J-A model or the Preisach model in their inverse configuration 𝐵(𝐻)[19]). 

A strong formulation (Eq.7) can be written by isolating 𝑑𝐵(𝑧, 𝑡)/𝑑𝑡 in both equations (Eq.5 

and 6):  

        డ
మு(௭,௧)

డ௭మ = 𝜎
ு(௭,௧)ିೞೌ

షభ((௭,௧))

ఘ
                                                (7) 
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Eq.7 can be solved by matrix inversion without an iterative method by moving all the 𝐻(𝑧, 𝑡) 

terms to the same side of the equation. Like this, Eq.7’s resolution is fast and always convergent. 

Unfortunately, Eq.7 overestimates the magnetic losses in the high-frequency range as it 

inappropriately considers the excess losses.  

In [12], much better results are obtained with the viscosity-based magneto dynamic 

differential equation given below: 

        ௗ

ௗ௧
=

ఋ

()
|𝐻(𝑡) − 𝐻௦௧௧(𝐵)|ఈ()                                                (8) 

Where 𝛿 is a directional parameter (= +/- 1) and the 𝐵’s dependent functions 𝛼(𝐵) and 𝑔(𝐵) 

are set by comparison with experimental results. The matrix inversion-type resolution is 

unfortunately forbidden in this configuration as it is impossible to regroup all the  𝐻(𝑧, 𝑡) terms 

on the same side of the equation. Thus, in [12], the combined resolution is obtained using the 

iterative Newton-Raphson method associated with the TriDiagonal-Matrix Algorithm (TDMA). 

Such a high number of parameters lead to excellent simulation results, but many limitations 

remain, including: 

 the 𝛼(𝐵) and 𝑔(𝐵) identification 

 the convergency of the iterative methods 

 

2 - fractional derivative method 

Fractional derivative operators have already been used for the simulation of the magnetic 

losses in a laminated ferromagnetic core. Different mathematical methods have been tested so 
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far (fractional diffusion equation [19], fractional differential equation [20][21], lump model [22]), 

and accurate results were always obtained on broad frequency bandwidths.  

The fractional diffusion equation can be derived from eq.5:  

                డ
మு(௭,௧)

డ௭మ = 𝜎
ௗ(௭,௧)

ௗ௧                                                               (9) 

This equation is somehow connected to the generalized fractional Maxwell equations. Still, their 

relations need to be established, so is their physical meaning.  

Similarly, the fractional differential equation can be derived from eq.6.  

            𝜌 ቀ
ௗ(௭,௧)

ௗ௧ ቁ = 𝐻(𝑧, 𝑡) − 𝑓௦௧௧
ିଵ(𝐵(𝑧, 𝑡))                        (10) 

All the fractional derivative methods exhibit a common feature. They all come from a classic 

magnetic losses simulation method where the first-order time derivative term was replaced with 

a fractional derivative one. Time fractional derivatives are suggested in the context of long-time 

heavy tail decays. The totality of the history is involved in a time t fractional derivative resolution. 

Time fractional derivatives are well suited to ferromagnetic hysteresis, in which real-time 

behavior is strongly dependent on the specimen history. The fractional derivative order 

constitutes an additional degree of freedom that can be adjusted to precisely fit the experimental 

results. 

Just like Eq.5 and 6 have been regrouped in Eq.7, if n in Eq.9 and Eq.10 is equal, their fractional 

versions can be rearranged the same way:  

                                                ௗ
(௭,௧)

ௗ௧ =
ଵ

ఙ

డమு(௭,௧)

డ௭మ =
ு(௭,௧)ିೞೌ

షభ((௭,௧))

ఘ
                                 (11) 
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Then, Eq.11’s space term can be discretized in 1D using finite differences (see Fig.1, for the 

node distribution), and the whole equation is solved through matrix inversion (Euler’s method) 

as described in [17]: 

           [𝑀] ∙ [𝐻] = [𝑆ଵ] + [𝑆ଶ]                                                            (12) 

Here, [M] is the stiffness matrix made out of constant terms, [H] includes the unknown excitation 

fields, and [S1], [S2] are defined as: 

[𝑆ଵ] = 
𝐻௦௨

0
⋮

൩   [𝑆ଶ] =

⎣
⎢
⎢
⎡

ఙమ

ఘ
∙ 𝐻ଵೞೌ

(𝐵ଵ)

ఙమ

ఘ
∙ 𝐻ଶೞೌ

(𝐵ଶ)

⋮ ⎦
⎥
⎥
⎤

        (13) 

For each simulation time step, the determination of [H] is followed by a local calculus of 𝐵(𝑧, 𝑡), 

resolution of Eq.14 for every node of the mesh:  

                   𝐵(𝑡) =
ௗషቆ

ಹ()షೞೌ
షభ(ಳ())

ഐ
ቇ

ௗ௧ష                                                  (14) 

Eventually, 𝐵(𝑡) is calculated by averaging all 𝐵(𝑡) through the specimen cross-section: 

                              𝐵(𝑡) =
∑ (௧)


భ


                                                              (15) 

Where 𝑝 is the number of space discretization. 

 

3 – Comparison to experimental results 

The measurement of the magnetic losses in a magnetic lamination is described by 

international standards [23][24]. For the classic Epstein frame method [23], the reproducibility 

standard deviation must be maintained lower than 1.5% up to 1.5 T for non-oriented electrical 

steels and up to 1.7 T for oriented ones.  
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Similarly, the reproducibility of the magnetic behavior of same-grade electrical steel is far 

from ensured by the manufacturer. In [25], for instance, the test values are supposed to be typical 

but not guaranteed. 

The accumulation of the characterization setup’s and the specimen behavior’s uncertainties 

makes access to reliable and comparable experimental data hazardous. For all these reasons, we 

opted for already published experimental results [22], instead of engaging in a new testing 

campaign. The specimens tested were grain-oriented electrical steel (FeSi 3 wt% GO) sheets of 

thickness 0.22 mm and conductivity 2 106 S·m-1. We refer readers to the original document [22] 

for additional information, including the experimental conditions. 

In Fig.2 below, simulated and measured 𝑊௧௧ are compared for increasing values of max(𝐵) 

and increasing value of the frequencies. Some local simulated hysteresis cycles 𝐻(𝐵) are plotted 

for different amplitude and frequency conditions. The simulation method described in section 2 

works under 𝐻௦௨(𝑡) imposed conditions, however following the international standards 

recommendations, all measurements were obtained under sinus 𝐵(𝑡) imposed conditions. 

Therefore, an inversion of the simulation method was performed, we opted for an explicit 

approach, by testing a 𝐻௦௨’s window for every simulation step time and conserving the value 

minimizing the difference between the simulation and the targeted imposed 𝐵(𝑡). J-A-1 was 

used for the quasi-static hysteresis contribution. The dynamic simulation parameters were set 

through the minimization of an uncertainty function (Eq.16): 

        𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (%) =
ଵ


∑

ቚௐೌೞ
ିௐೞ

ቚ

ௐೌೞ


ୀଵ                      (16) 

Where 𝑞 was the number of time discretization, all the simulation parameters are given in 

Tab.1.  
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Ten nodes were used for the half thickness as we noticed that from ten and beyond the 

influence of the space discretization was imperceptible. Also, a minimum of a hundred timesteps 

per period was required to obtain consistent simulation results. 

Tab.1 –Simulation parameters. 
 

Static contribution parameters  Dynamic contribution parameters 

     
J-A-1 Parameters Typical value    Typical value 

a (A.m-1) 6  ρ 0.044 
Ms (A.m-1) 1353000  n 0.83 
k (A.m-1) 19    

c 0.15    
α 8 10-6    

 
 

 

Fig.2 – Comparison simulation/measurement for 𝑊௧௧, and simulated local hysteresis cycles for different amplitude 
and frequency conditions. 

 

max(Ba) = 1.5T, 
freq = 100 Hz 

max(Ba) = 1.5T, 
freq = 3000 Hz 

max(Ba) = 1T, 
freq = 3000 Hz 

max(Ba) = 0.4T, 
freq = 3000 Hz 

max(Ba) = 0.4T, 
freq = 100 Hz 
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Tab.2 summarizes quantitatively the simulation methods accuracy. An approximated 6.7 % 

uncertainty was reached. The simulation times were lower than a second for a 1000 timestep 

discretization. 

Tab.2 – 𝑊௧௧ uncertainty for all the experimental situations tested. 
 

Freq (Hz)  50 100 200 300 500 700 1000 1200 1500 1700 2000 2300 2500 3000  Uncertainty 
(%) 

BMAX (T)                  
0.4  28.30 27.70 0.00 9.30 9.00 11.70 12.60 13.60 12.10 13.60 13.40 13.10 12.90 10.68  13.43 

0.5  12.50 10.00 0.00 16.60 14.20 12.90 9.70 12.70 11.80 10.70 12.40 12.90 8.80 9.50  11.05 

0.7  16.60 19.50 2.80 4.30 6.10 8.20 7.00 5.80 5.80 4.80 3.20 3.00 1.70 1.81  6.47 

0.8  18.60 20.60 0.50 2.50 4.80 4.10 3.60 6.10 2.70 1.90 0.10 0.60 4.60 1.28  5.14 

1  3.00 4.50 8.00 9.70 8.80 6.60 7.00 3.60 1.80 0.40 1.90 2.00 3.90 3.49  4.62 

1.3  0.00 5.60 9.10 7.40 4.90 3.40 2.00 0.10 0.90 1.70 2.40 2.50 4.30 4.49  3.49 

1.5  3.40 15.00 5.80 4.00 3.40 2.50 2.20 0.30 0.00 0.30 0.00 0.40 0.90 3.34  2.97 
                  

Uncertainty 
(%) 

 11.77 14.70 3.74 7.69 7.31 7.06 6.30 6.03 5.01 4.77 4.77 4.93 5.30 4.94  6.74 

 
   Uncertainty < 5 % 

 

   
5 % < Uncertainty < 

10 %  

   
10 % < Uncertainty < 

20 %  

   20 % < Uncertainty 
 

 
It is worth noting in Fig.2, the evolution of the local hysteresis cycles. As expected, these cycles 

exhibit a similar shape in the low-frequency range and diverge at 3 kHz. However, this divergence 

is relatively weak and can be interpreted as a limited contribution of the macroscopic eddy 

currents, which can be justified as a combination of the laminated ferromagnetic core size and 

the relatively low electrical conductivity of the FeSi 3wt% GO electrical steel.    

 

4 – Conclusion 

The performance of electromagnetic devices depends mainly on their magnetic energy 

conversion efficiency. The adequate modeling of this efficiency is essential in device design 

processes. The present work addressed the absence of a simulation method that yields 
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satisfactory modeling results for ferromagnetic materials on large frequency bandwidth and large 

amplitude variations.   

By combining a fractional diffusion equation with a fractional viscosity-based magneto 

dynamic law, the authors defined a very efficient simulation method. This model can be solved 

simply through matrix inversion. It gives local information and offers sufficient adjustable 

parameters to allow excellent simulation results in a wide range of experimental situations. 

As no iterative resolution is required, convergency is ensured, and explicit inversion can be 

performed to obtain sinus-type imposed 𝐵 simulation results as imposed by the characterization 

standards. The finite difference discretization of the diffusion equation space term gives access 

to local information and provides interesting information regarding the macroscopic eddy 

current generation and distribution.  

Tab.3 below summarizes the pros and cons of the most classical methods for the core loss 

simulation, including the technique described in this manuscript. 

Tab.3 – Comparative study of the core loss simulation methods 
 

 

Steinmetz's empirical 
formula                              

[1] 

Bertotti's statistical 
theory of losses                                                      

[15]  

Combination diffusion 
equation / simple 

viscosity-based 
magneto dynamic 

differential equation  
[17] 

Combination diffusion 
equation / advanced 

viscosity-based 
magneto dynamic 

differential equation                                         
[12] 

Combination fractional 
diffusion equation / 
fractional viscosity-

based magneto 
dynamic differential 

equation  

Time domain / Frequency 
domain 

Frequency 
domain 

Frequency 
domain 

Time domain Time domain Time domain 

Simulation speed ++ ++ + - + 

Accuracy -- - - ++ ++ 

Number of parameters + + + - + 

required experimental data - + + - + 
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This study is limited to the FeSi 3wt% GO electrical steel, but different materials will be tested 

in the near future. The restriction to laminated core-type geometry will also be overcome by 

extending the method to toroidal or even unsymmetrical geometries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

References: 

[1] C.P. Steinmetz, “On the law of hysteresis,” AIEE Trans., vol. 9, pp. 3 – 64, 1892. Reprinted 
under the title “A Steinmetz contribution to the AC power revolution,” Introduction by J.E. 
Brittain, Proc. IEEE, vol. 72, n° 2, pp. 196 – 221, 1984. 
 
[2] H. Zhao, H. H. Eldeeb, Y. Zhang, D. Zhang, Y. Zhan, G. Xu, O. A. Mohammed, “An improved 
core loss model of ferromagnetic materials considering high-frequency and non-sinusoidal 
supply,” IEEE Trans. Ind. App., 2021. 
 
[3] C. S. Schneider, S.D. Gedney, N. Ojeda-Ayala, M.A.  Travers, “Dynamic exponential model of 
ferromagnetic hysteresis,” Phys. B: Cond. Mat., vol. 607, 421802, 2021. 
 
[4] I. Sirotic, M. Kovacic, S. Stipetic, “Methodology and measurement setup for determining PWM 
contribution to iron loss in laminated ferromagnetic materials,” IEEE Trans. Ind. App., 2021. 
 
[5] B. Ducharne, P. Tsafack, Y.A. Tene Deffo, B. Zhang, G. Sebald, “Anomalous fractional magnetic 
field diffusion through cross-section of a massive toroidal ferromagnetic core,” Com. in Nonlin. 
Sci. and Num. Sim., vol. 92, 105450, 2021. 
 
[6] M. Elyoussef, S. Clenet, A. Vangorp, A. Benabou, P. Faverolle, J.C. Mipo, “Improving global 
ferromagnetic characteristics of laminations by heterogenous deformation,” IEEE Trans. En. 
Conv., 2021. 
 
[7] X. Zhao, H. Xu, Z. Cheng, Z. Du, L. Zhou, D. Yuan, “A simulation method for dynamic hysteresis 
and loss characteristics of GO silicon steel sheet under non-sinusoidal excitation,” IEEE Trans. 
App. Supercond., 2021. 
 
[8] P. Guo, W. Huang, W. Guo, L. Weng, “High frequency losses calculating model for 
magnetostrictive materials considering variable DC bias,” IEEE Trans. Mag., 2021. 
 
[9] R. Corcolle, L. Daniel, “3-D semi-analytical homogenization model for soft magnetic 
composites,” IEEE Trans. Mag., vol. 57, n°7, pp. 1 – 4, 2021. 
 
[10] K. Li, Z. Zhang, P. Wang, Y. Liu, J. Zeng, “A novel 3D simulation prediction model of mechanical 
properties of ferromagnetic materials via increment permeability method,” J Magn. Magn. Mat., 
vol. 536, 168137, 2021. 
 
[11] S. Zhang, B. Ducharne, S. Takeda, G. Sebald, T. Uchimoto, “Identification of the ferromagnetic 
hysteresis simulation parameters using classic non-destructive testing equipment,” J Magn. 
Magn. Mat., vol. 531, 167971, 2021. 
 
[12] S. E. Zirka, Y. I. Moroz, P. Marketos, A. J. Moses, "Viscosity-based magnetodynamic model of 
soft magnetic materials," IEEE Trans. Mag., vol. 42, n° 9, pp. 2121 - 2132, 2006. 



15 
 

 
[13] K. M. Polivanov, “Dynamic characteristics of ferromagnets,” Izv. Akad. Nauk SSSR, Ser. Fiz., 
vol. 16, pp. 449–464, 1952. 
 
[14] R. H. Pry and C. P. Bean, “Calculation of the energy loss in magnetic sheet materials using a 
domain model,” J. Appl. Phys., vol. 29, pp. 532–533, 1958 
 
[15] G. Bertotti, “General properties of power losses in soft ferromagnetic materials,” IEEE Trans. 
Magn., vol. 24, n° 1, pp. 621 – 630, 1988. 

[16] A. Broddefalk, M. Lindenmo, “Dependence of the power losses of a non-oriented 3% Si-steel 
on frequency and gaude,” J. of Mag. and Mag. Mat., Vol. 304, pp. 586-588, 2006. 
 
[17] M.A. Raulet, B. Ducharne, J.P. Masson and G. Bayada, “The magnetic field diffusion equation 
including dynamic hysteresis: a linear formulation of the problem,” IEEE Trans. Magn., vol. 40, n° 
2, pp. 872 – 875, 2004. 
 
[18] B. Gupta, B. Ducharne, G. Sebald, T. Uchimoto, “A space discretized ferromagnetic model for 
non-destructive eddy current evaluation”, IEEE Trans. on. Mag, Vol. 54, Iss. 3, 2018.  

[19] B. Ducharne, Y.A. Tene Deffo, B. Zhang, G. Sebald, “Anomalous fractional diffusion equation 
for magnetic losses in a ferromagnetic lamination,” The European Physical Journal Plus, 135:325, 
2020. 

[20] B. Zhang, B. Gupta, B. Ducharne, G. Sebald, T. Uchimoto, “Preisach’s model extended with 
dynamic fractional derivation contribution,” IEEE Trans. Magn., Vol. 54, n° 3, pp. 1 – 4, 2018. 
 
[21] B. Zhang, B. Gupta, B. Ducharne, G. Sebald, T. Uchimoto, “Dynamic magnetic scalar hysteresis 
lump model, based on Jiles-Atherton quasi-static hysteresis model extended with dynamic 
fractional derivative contribution,” IEEE Trans. Magn., vol. 54, n° 11, pp. 1 – 4, 2018. 
 
[22] R. Liu, L. Li, “Analytical prediction of energy losses in soft magnetic materials over broadband 
frequency range,” IEEE Trans. Power Electron., vol. 36, n° 2, pp. 2009 – 2017, 2021. 
 
[23] IEC 60404-2, “Magnetic materials – Part 2: Methods of measurement of the magnetic 
properties of electrical steel strip and sheet by means of an Epstein frame,” International 
Electrotechnical Commission, June 2008.  

[24] IEC 60404-3, “Magnetic materials – Part 3: Methods of measurement of the magnetic 
properties of electrical steel strip and sheet by means of a single sheet tester,” International 
Electrotechnical Commission, April 2010.  

[25] “FJE steel corporation catalogue: Electrical steel sheets JFE G-CORE, JFE N-CORE,” Japan, 
2003. 
 


