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ABSTRACT
As an unsupervised ensemble learning strategy, clustering en-
semble combines multiple base clusterings into a high-quality
one and has achieved successful applications in image anal-
ysis and data mining. However, extant clustering ensemble
methods are ineffective to handle the data uncertainty in clus-
tering consensus process, which may mislead to poor cluster-
ing ensemble results. To tackle the problem, we propose a sta-
ble clustering ensemble (SCE) method based on evidence the-
ory (Dempster–Shafer theory) in this paper. Specifically, we
construct a belief function of cluster membership to measure
the uncertainty and stability of data instances in clustering en-
semble and thereby implement the stable clustering ensemble
algorithm. We test the proposed stable clustering ensemble
method in the tasks of structural data clustering and image
segmentation. The experimental results validate the proposed
method is effective to process the uncertain data and produce
high-quality data clusterings.

Index Terms— Clustering ensemble, stability, evidence
theory

1. INTRODUCTION

Clustering ensemble methods have been proposed to combine
multiple base clusterings into a single one, called the consen-
sus, which aims at producing a more accurate and robust clus-
tering of data [1]. Clustering ensemble has been successfully
applied in the areas of image analysis [2], computer vision
[3], multimedia [4] and data mining [5].

Although previous research works have achieved a great
progress, extant clustering ensemble methods ignored the un-
certainty of data in the clustering consensus process, which
may mislead to poor clustering ensemble results. Specifically,
if a data instance is partitioned unsteadily into different clus-
ters in multiple base clusterings, it is indicated that the data
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instance is unstable in the consensus process and has much
uncertainty in clustering ensemble. For the tasks of image
analysis, the unstable pixels in the clustering ensemble corre-
spond the uncertain regions of images. To improve the perfor-
mances of data analysis, it is required to formulate and handle
the data uncertainty in clustering ensemble.

To tackle the problem, we propose a stable clustering
ensemble (SCE) method based on evidence theory (Demp-
ster–Shafer theory) in this paper. In the proposed method, we
construct a belief function of cluster membership to measure
the uncertainty and stability of data instances in clustering en-
semble and thereby implement the stable clustering ensemble
algorithm. Based on the stability measure, we can divide data
instances into two categories: cluster core and cluster halo
[6]. Cluster core consists of the stable data instances with
little uncertainty, which represent the structure of data dis-
tribution. In contrast, cluster halo contains the unstable data
instances with high uncertainty, which denote the uncertain
boundaries of clusters. To implement the stable clustering
ensemble, we first detect the cluster core in clustering con-
sensus as the certain fundamental clusters and then gradually
distribute the uncertain data instances in the cluster halo into
certain clusters. The main contributions of this paper are
summarized below.

• Propose a measure of data stability in clustering en-
semble based on evidence theory.

• Implement a stable clustering ensemble algorithm with
stability measure to handle uncertain data in clustering
consensus.

The rest of the paper is organized as follows. Section 2 briefly
reviews the foundations of clustering ensemble and evidence
theory. In Section 3, we introduce the proposed stable clus-
tering ensemble method in detail, which include the stability
measure with evidence theory and the clustering ensemble al-
gorithm. In Section 4, the experiments are conducted to verify
the proposed method. Section 5 concludes the paper work.



2. BACKGROUND

Basics of Clustering Ensemble
Let X = {x1, ..., xn} be a data set and Π = {π1, ..., πB}
denotes B base clusterings generated by multiple clustering
procedures. Clustering ensemble aims at combining multiple
base clusterings Π into an accurate and robust clustering. In
general, clustering ensemble consists of two stages of gener-
ating base clusterings and assembling the consensus cluster-
ing result.

The diversity and quality of base clusterings are the key
factors to affect the performances of clustering ensemble.
Three kinds of strategies were investigated to generate di-
verse and accurate base clusterings, which include: 1) diverse
parameter setting strategy [7] that uses one clustering al-
gorithm with random cluster centers or cluster numbers; 2)
diverse algorithm strategy [8] that uses various clustering
algorithms to generate diverse base clusterings; 3) diverse
feature strategy [9] that represents data clusterings in differ-
ent feature spaces. For assembling the base clusterings, the
methodologies can be categorized into following four kinds
[10]. Feature based approach that transforms the clustering
ensemble problem into the clustering of categorical data [11].
Direct approach, which is based on the relabeling process to
find the best matched clustering [12]. Graph-based approach
that utilizes the graph representation to solve the clustering
ensemble problem [13]. Co-association approach that cre-
ates the pairwise correlation matrix among data instances to
assemble base clusterings [14].

Preliminaries of Evidence Theory
Evidence theory, also referred to as Dempster–Shafer (D-S)
theory or theory of belief functions [15, 16] is a theoretical
framework for reasoning with partial and unreliable informa-
tion. Let a variable w taking values in a finite set Ω, a mass
function on Ω is defined as a mapping from 2Ω to [0,1], satis-
fying the following condition∑

A∈Ω

m (A) = 1. (1)

Each quantitym (A) can be interpreted as the probability that
the evidence supports w ∈ A. In particular, m (Ω) is the
probability that the evidence tells us nothing about w, i.e., the
unknown probability. A subset A of Ω such that m (A) > 0
is called a focal set of m. The mass function for which Ω is
the only focal set is said to be vacuous, it represents total ig-
norance. Given a mass function m, belief bel and plausibility
function pl are defined by

bel (A) =
∑

φ 6=B⊆A

m (B), (2)

pl (A) =
∑

B∩A 6=φ

m (B). (3)

For all A ⊆ Ω, the quantities bel (A) and pl (A) denote the
degree of total support in A and the degree that the evidence
consistent with A, respectively.

3. METHODS

3.1. Measuring data stability in clustering ensemble

Given B base clusterings for ensemble Π = {π1, ..., πB},
the uncertainty of a data instance in the clustering ensemble
is related to the stability of the data instance belonging to a
cluster under the partitions of different base clusterings [17].
Suppose some data instances are partitioned into a cluster in
one base clustering, but in other base clusterings, these data
instances are distributed into different clusters. It is natural
to consider that the hypothesis of these data instances belong-
ing to the same cluster is inconclusive. Next we utilize the
evidence theory to measure the stability of belongingness of
data to clusters.

We define a discernment frame Ω = {c,¬c} to discern
whether data belong to a cluster c or not (¬c). For a data
instance xi belonging to a cluster cπg in the base clustering
πg , its mass function of cluster membership can be defined as

m
πg
i (A) =



t 6=g∑
πt∈Π

∑
xj∈cπg

f(i, j, πt)

(B − 1) · |cπg |
, A = {cπg}

1−

t6=g∑
πt∈Π

∑
xj∈cπg

f(i, j, πt)

(B − 1) · |cπg |
, A = Ω

(4)
where |cπg | is the number of data instances in the cluster cπg .
f(i, j, πt) is defined by

f(i, j, πt) =

{
1, xi, xj in the same cluster of πt
0, otherwise.

(5)

Through accumulating the evidences of data co-occurrence in
a cluster from other B − 1 base clusterings, mπg

i ({cπg}) de-
notes the probability mass of the instance xi certainly belong-
ing to the cluster cπg in the base clustering πg , and mπg

i (Ω)
denotes the unknown mass (uncertainty).

Based on the mass function above, we can further for-
mulate the pairwise relationship between data instances us-
ing Dempster’s combination rule. Suppose Θ = {s,¬s} is
a frame of discernment, in which s denotes a pair of data in-
stances belonging to the same cluster, and ¬s means that they
belong to different clusters. For a pair of data instances xi
and xj , the belief and uncertainty about the hypothesis that xi
and xj belong to the same cluster are defined below.

bel
πg
ij ({s}) = m

πg
i ({cπg}) ·mπg

j ({cπg}), (6)

m
πg
ij (Θ) = m

πg
i (Ω) ·mπg

j (Ω). (7)



If xi and xj belong to different clusters, mπg
ij ({¬s}) = 1,

bel
πg
ij ({s}) and mπg

ij (Θ) are both zero.
Considering all the base clustering, the average belief and

uncertainty about that xi and xj belong to a same cluster are
obtained by

belij({s}) =
1

B

B∑
t=1

belπti,j({s}), (8)

mij(Θ) =
1

B

B∑
t=1

mπt
i,j(Θ). (9)

In general, if a data instance is certainly assigned to a clus-
ter by most base clusterings, we consider that the instance is
stable in the clustering ensemble. Therefore, we measure the
stability of a data instance xi through accumulating its prob-
ability mass in all base clusterings.

Stability(xi) =
∑
πt∈Π

mπt
i ({cπt}) (10)

Moreover, based on the stability measure, we can find the
highly stable data instances from data sets to form the cluster
core. Here we adopt the average stability degree of all data
instances as the threshold to select the stable data in clustering
ensemble.

3.2. Clustering ensemble with stable data

Based on the stability measure of data instances, we can im-
plement the stable clustering ensemble to handle the uncer-
tainty in clustering consensus. The process of the stable clus-
tering ensemble consists of the following two stages.

1. In the fist stage, we select the highly stable data in-
stances as the cluster core and perform clustering of
these stable data to capture the certain clusters of data
distribution.

2. In the second stage, considering the remained unstable
data as cluster halo, we distributed each data instance
in the cluster halo into a cluster in the certain clustering
obtained in the first stage.

For a selected stable instance xi among n data instances,
its belief and uncertainty of pairwise relationship belonging
to the same cluster are defined in equation (8) and (9). We
utilize the pairwise belief and uncertainty to form the feature
vector R(i) of xi,

R(i) = {beli1({s}), ..., belin({s}),mi1(Θ), ...,min(Θ)}.
(11)

For each pair of stable instances from cluster core xi, xj , we
can measure their similarity using cosine measure and con-
struct a evidential similarity matrix (ESM), in which each el-
ement is computed as

ESMij =
< R(i), R(j) >√

< R(i), R(i) > · < R(j), R(j) >
. (12)

Algorithm 1 Clustering ensemble with stable data
Input: Stability degrees stability(xi) of data instances
{x1..., xi..., xn} among B base clusterings;

Output: Clusters of data instances;
1: Average the stability degree as the threshold T ;
2: cluster core = {xi|stability(xi) > T, i = 1, ..., n};
3: cluster halo = {xi|stability(xi) ≤ T, i = 1, ..., n};
4: Construct the similarity matrix ESM of cluster core;
5: Use HC algorithm on ESM to form clusters C of stable

data;
6: while |cluster halo| > 0 do
7: Get a data instance from cluster halo, assign it into the

nearest cluster in C;
8: Update the cluster and remove the instance from the

cluster halo;
9: end while

10: return the updated clusters.

Based on ESM of all the stable data instances, we simply
utilize a hierarchical clustering (HC) algorithm [18] to form
the clusters of cluster core. These clusters can be considered
as the certain part of the final clustering result. For the re-
mained unstable data instances in cluster halo, we assign each
instance into its nearest cluster of stable data instances and up-
date the cluster iteratively until all the unstable data instances
are assigned. The process of the stable clustering ensemble is
shown in Algorithm 1. Using the algorithm, we can obtain a
clustering ensemble result P = {pc1, ..., pck′}, in which pci
denotes the ith cluster and k

′
is the cluster number. If it is

required to further merge the clusters in P , we can adopt the
pairwise similarity measure between clusters pci and pcj and
perform HC algorithm again to merge the clusters in P .

4. EXPERIMENTS

In the experiments, we implement two tests to validate the
superiority of the proposed stable clustering ensemble (SCE)
method. The first test aims to verify the effectiveness of the
SCE method for data clustering, we perform the SCE method
on 10 structural data sets including both synthetic data sets
(Flame, 2d-3c-no123, Aggregation, Chainlink, Wingnut) and
UCI data sets (Ecoli, Segmentation, Glass, Knowledge Mod-
eling, Yeast), and compare the clustering results with other
6 representative clustering ensemble methods, which include
WTQ [19], WCT [19], CSM [19], MCLA [1], CSPA [1] and
HGBF [20]. In the second test, we validate the ability of
SCE for image analysis, we utilize the SCE method for image
segmentation on Berkeley Segmentation Dataset and compare
the segmentation results produced by other kinds of clustering
methods.

For the experiment implementation, K-means algorithm
is used to generate base clusterings and the cluster number of
each base clustering is set as

√
n, n is the data instance num-

ber. In the comparative experiments, we run each algorithm



10 times and present the average results. Besides, the decay
factor parameter in the comparative methods WCT, WTQ are
set to 0.9.

In the first test on structural data sets, we adopt the well-
known criteria ARI [21] and NMI [1] to evaluate the cluster-
ing quality and generate 50 base clusterings for ensemble on
each data set. Table 1 and 2 list the ARI and NMI evaluations
of clustering results produced by all the comparative cluster-
ing ensemble methods. It is obvious that the proposed SCE
method achieves the best performance.

Table 1. ARI evaluations of comparative clustering methods
Data sets MCLA HBGF CSPA CSM WTQ WCT SCE
Flame 0.5190 0.4858 0.4514 0.7171 0.6511 0.8081 0.8392
2d-3c-no123 0.6045 0.5265 0.5547 0.8617 0.8132 0.9109 0.9849
Aggregation 0.5613 0.5173 0.528 0.9338 0.9563 0.971 0.9920
Chainlink 0.4276 0.2110 0.1962 0.1988 0.3100 0.3751 0.4784
Wingnut 0.8276 0.899 0.769 0.8807 0.8304 0.8501 0.9843
Glass 0.2250 0.1884 0.1523 0.2527 0.1968 0.2098 0.2572
Ecoli 0.3637 0.2941 0.2816 0.3625 0.4359 0.3619 0.7540
KM 0.1722 0.1863 0.1849 0.2654 0.2412 0.2574 0.3006
Yeast 0.0909 0.0695 0.0673 0.0997 0.1075 0.0919 0.1490
Segmentation 0.4210 0.4283 0.3958 0.4811 0.3577 0.3405 0.4769

Table 2. NMI evaluations of comparative clustering methods
Data sets MCLA HBGF CSPA CSM WTQ WCT SCE
Flame 0.4784 0.4599 0.4295 0.6389 0.5638 0.7284 0.7833
2d-3c-no123 0.6337 0.5849 0.6253 0.8608 0.7944 0.8947 0.9575
Aggregation 0.7681 0.7246 0.7290 0.9666 0.9566 0.9803 0.9884
Chainlink 0.2891 0.3455 0.0842 0.4318 0.4769 0.5939 0.5025
Wingnut 0.7697 0.8463 0.6673 0.8267 0.7445 0.7656 0.9478
Glass 0.3498 0.3160 0.2836 0.3807 0.3570 0.3606 0.3822
Ecoli 0.5465 0.4938 0.4921 0.5822 0.5763 0.5680 0.7130
KM 0.2700 0.2956 0.2981 0.3704 0.3331 0.3528 0.4142
Yeast 0.2023 0.1794 0.1725 0.2092 0.2280 0.2121 0.2507
Segmentation 0.5397 0.5398 0.5095 0.6059 0.5882 0.5336 0.6418

Besides the structural data, we also test the SCE method
on unstructural images. We perform the clustering ensemble
methods on the images from Berkeley Segmentation Dataset
for image segmentation. Comparing with traditional clus-
tering ensemble methods, SCE can effectively fuse multiple
clustering-based segmentation results and detect the uncertain
regions based on the stability measure. To illustrate this, we
generate 20 segmentations using Chan-Vese method [22] with
random initial contours. The stability of each pixel in an im-
age is calculated by equation (10), Fig.1 shows the uncertain
image regions (marked by gray color) that consist of the un-
stable pixels in multiple segmentation results.

Table 3. Evaluations of image segmentation results
Methods PRI ↑ VOI ↓ GCE ↓ BDE ↓

WTQ 71.10 3.42 43.44 15.49
WCT 71.38 3.40 42.88 15.36
CSM 71.34 3.40 42.83 15.57

MCLA 72.05 3.43 43.72 14.73
CSPA 71.10 3.54 45.35 15.47
HBGF 71.64 3.49 44.43 15.11
SCE 75.81 3.07 36.95 13.81

Fig. 1. Example of image segmentation based on SCE, (b-c)
two different segmentation results, (d) the ensemble segmen-
tation in which uncertain regions are marked by gray color.

Fig. 2. Segmentation results based on different clustering en-
semble methods.

Utilizing different clustering ensemble methods for image
segmentation, we evaluate the clustering-based segmentation
results by the measurements of BDE [23], PRI [24], VOI [25]
and GCE [26]. To accelerate the clustering-based segmenta-
tion, we compress image pixels to superpixels [27] for clus-
tering ensemble. Moreover, referring to [28], we initialize the
cluster number from 2 to 6 for each image and determine the
optimal cluster number to form the final image segmentation
according to the highest PRI. Table 3 lists the detailed evalu-
ations and Fig.2 presents some comparative segmentation re-
sults. We can find that our method produces more precise
image segmentations than other clustering methods.

5. CONCLUSION

To tackle the drawback of handling the data uncertainty in
clustering ensemble, we propose a stability measure of data
in clustering ensemble based on evidence theory and thereby
implement a stable clustering ensemble (SCE) method with
the stability measure. The experiments of structural data clus-
tering and image segmentation validate the superiority of the
proposed SCE method. Our future work will focus on the
acceleration of the stability computation.



6. REFERENCES

[1] Alexander Strehl and Joydeep Ghosh, “Cluster
ensembles—a knowledge reuse framework for combin-
ing multiple partitions,” Journal of machine learning
research, vol. 3, no. Dec, pp. 583–617, 2002.

[2] X. Zhang, L. Jiao, F. Liu, L. Bo, and M. Gong, “Spectral
clustering ensemble applied to sar image segmentation,”
IEEE TGRS, vol. 46, no. 7, pp. 2126–2136, 2008.

[3] M. Zhang, “Weighted clustering ensemble: A review,”
Pattern Recognition, p. 108428, 2021.

[4] X.D. Yue, D.Q. Miao, and L.B. Cao, “An efficient color
quantization based on generic roughness measure,” Pat-
tern Recognition, vol. 47, no. 4, pp. 1777–1789, 2014.

[5] Alexander Topchy, A.K. Jain, and William Punch,
“Clustering ensembles: Models of consensus and weak
partitions,” IEEE TPAMI, vol. 27, no. 12, pp. 1866–
1881, 2005.

[6] Alex Rodriguez and Alessandro Laio, “Clustering by
fast search and find of density peaks,” science, vol. 344,
no. 6191, pp. 1492–1496, 2014.

[7] H.G. Ayad and M.S. Kamel, “Cumulative voting con-
sensus method for partitions with variable number of
clusters,” IEEE TPAMI, vol. 30, no. 1, pp. 160–173,
2007.

[8] Y. Yang and K. Chen, “Temporal data clustering via
weighted clustering ensemble with different representa-
tions,” IEEE TKDE, vol. 23, no. 2, pp. 307–320, 2010.

[9] Z.Q. Tao, H.F. Liu, S. Li, Z.M. Ding, and Y. Fu, “From
ensemble clustering to multi-view clustering,” in IJCAI,
2017.

[10] Natthakan Iam-On and Tossapon Boongoen, “Compara-
tive study of matrix refinement approaches for ensemble
clustering,” Machine Learning, vol. 98, no. 1, pp. 269–
300, 2015.

[11] Claudio Carpineto and Giovanni Romano, “Consensus
clustering based on a new probabilistic rand index with
application to subtopic retrieval,” IEEE TPAMI, vol. 34,
no. 12, pp. 2315–2326, 2012.

[12] B. Fischer and J.M. Buhmann, “Bagging for path-based
clustering,” IEEE TPAMI, vol. 25, no. 11, pp. 1411–
1415, 2003.

[13] P. Zhou, X. Wang, and L. Du, “Clustering ensemble via
structured hypergraph learning,” Information Fusion,
vol. 78, pp. 171–179, 2022.

[14] A. Fred and A.K. Jain, “Combining multiple clusterings
using evidence accumulation,” IEEE TPAMI, vol. 27,
no. 6, pp. 835–850, 2005.

[15] G. Shafer, A mathematical theory of evidence, Princeton
university press, 1976.

[16] T. Denoeux, Z. Younes, and F. Abdallah, “Representing
uncertainty on set-valued variables using belief func-
tions,” Artificial Intelligence, vol. 174, no. 7, pp. 479–
499, 2010.

[17] F. Li, Y. Qian, J. Wang, C. Dang, and J. Liang, “Clus-
tering ensemble based on sample stability,” Artificial
Intelligence, vol. 273, pp. 37–55, 2019.

[18] S.C. Johnson, “Hierarchical clustering schemes,” Psy-
chometrika, vol. 32, no. 3, pp. 241–254, 1967.

[19] N. Iam-On, T. Boongoen, S. Garrett, and C. Price, “A
link-based approach to the cluster ensemble problem,”
IEEE TPAMI, vol. 33, no. 12, pp. 2396–2409, 2011.

[20] X.Z. Fern and C.E. Brodley, “Solving cluster ensem-
ble problems by bipartite graph partitioning,” in ICML,
2004, p. 36.

[21] L. Hubert and P. Arabie, “Comparing partitions,” Jour-
nal of Classification, vol. 2, no. 1, pp. 193–218, 1985.

[22] T.F. Chan and L.A. Vese, “Active contours without
edges,” IEEE TIP, vol. 10, no. 2, pp. 266–277, 2001.

[23] Jordi Freixenet, Xavier Munoz, David Raba, Joan Martı́,
and Xavier Cufı́, “Yet another survey on image segmen-
tation: Region and boundary information integration,”
in ECCV, 2002, pp. 408–422.

[24] Ranjith Unnikrishnan, Caroline Pantofaru, and Martial
Hebert, “Toward objective evaluation of image segmen-
tation algorithms,” IEEE TPAMI, vol. 29, no. 6, pp. 929–
944, 2007.
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