
HAL Id: hal-03835923
https://hal.science/hal-03835923

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

k-apices of Minor-closed Graph Classes. II.
Parameterized Algorithms

Ignasi Sau, Giannos Stamoulis, Dimitrios M. Thilikos

To cite this version:
Ignasi Sau, Giannos Stamoulis, Dimitrios M. Thilikos. k-apices of Minor-closed Graph Classes. II. Pa-
rameterized Algorithms. ACM Transactions on Algorithms, 2022, 18 (3), pp.1-30. �10.1145/3519028�.
�hal-03835923�

https://hal.science/hal-03835923
https://hal.archives-ouvertes.fr

k-apices of minor-closed graph classes. II. Parameterized algorithms1

Ignasi Sau2 Giannos Stamoulis3 Dimitrios M. Thilikos2

Abstract

Let G be a minor-closed graph class. We say that a graph G is a k-apex of G if G contains a set
S of at most k vertices such that G \ S belongs to G. We denote by Ak(G) the set of all graphs
that are k-apices of G. In the first paper of this series we obtained upper bounds on the size
of the graphs in the minor-obstruction set of Ak(G), i.e., the minor-minimal set of graphs not
belonging to Ak(G). In this article we provide an algorithm that, given a graph G on n vertices,
runs in time 2poly(k) · n3 and either returns a set S certifying that G ∈ Ak(G), or reports that
G /∈ Ak(G). Here poly is a polynomial function whose degree depends on the maximum size of
a minor-obstruction of G. In the special case where G excludes some apex graph as a minor, we
give an alternative algorithm running in 2poly(k) · n2-time.

Keywords: graph minors; parameterized algorithms; graph modification problems; irrelevant
vertex technique; Flat Wall Theorem.

1A conference version of this paper appeared in the Proceedings of the 47th International Colloquium on Automata,
Languages and Programming (ICALP), volume 168 of LIPICs, pages 95:1–95:20, 2020.

2LIRMM, Université de Montpellier, CNRS, Montpellier, France. Supported by the ANR projects DEMOGRAPH
(ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), ELIT (ANR-20-CE48-0008), the French-German Collabora-
tion ANR/DFG Project UTMA (ANR-20-CE92-0027), and the French Ministry of Europe and Foreign Affairs, via
the Franco-Norwegian project PHC AURORA. Emails: ignasi.sau@lirmm.fr, sedthilk@thilikos.info.

3LIRMM, Université de Montpellier, Montpellier, France. Email: gstamoulis@lirmm.fr.

1

ar
X

iv
:2

00
4.

12
69

2v
2

 [
cs

.D
S]

 2
 M

ar
 2

02
1

Contents

1 Introduction 3

2 Definitions and preliminary results 6
2.1 Restating the problem . 6
2.2 Preliminaries . 6

3 Flat walls 8
3.1 Walls and subwalls . 8
3.2 Paintings and renditions . 10
3.3 Flatness pairs . 11
3.4 Homogeneous walls . 13

4 Auxiliary algorithmic and combinatorial results 16
4.1 Finding an irrelevant vertex . 16
4.2 Combinatorial results for branching . 18

5 The general algorithm 19
5.1 Iterative compression . 20
5.2 The algorithm . 20

6 The apex-minor free case 22
6.1 Finding an apex graph as a minor . 22
6.2 Quickly finding a wall . 24
6.3 The algorithm . 26
6.4 Correctness of the algorithm . 28

7 Algorithms for variants of Vertex Deletion to G 29
7.1 The general framework . 29
7.2 Variants of Vertex Deletion to G . 29

8 Discussion and concluding remarks 31

2

1 Introduction

Graph modification problems are fundamental in algorithmic graph theory. Typically, such a
problem is determined by a graph class G and some prespecified setM of local modifications, such
as vertex/edge removal or edge addition/contraction or combinations of them, and the question
is, given a graph G and an integer k, whether it is possible to transform G to a graph in G by
applying k modification operations from M. A plethora of graph problems can be formulated
for different instantiations of G and M. Applications span diverse topics such as computational
biology, computer vision, machine learning, networking, and sociology [25]. As reported by Roded
Sharan in [53], already in 1979 Garey and Johnson mentioned 18 different types of modification
problems [26, Section A1.2]. For more on graph modification problems, see [10, 25] as well as the
running survey in [14]. In this paper we focus our attention on the vertex deletion operation. We
say that a graph G is a k-apex of a graph class G if there is a set S ⊆ V (G) of size at most k such
that the removal of S from G results in a graph in G. In other words, we consider the following
meta-problem.

Vertex Deletion to G
Input: A graph G and a non-negative integer k.
Objective: Find, if it exists, a set S ⊆ V (G), certifying that G is k-apex of G.

To illustrate the expressive power of Vertex Deletion to G, if G is the class of edgeless (resp.
acyclic, planar, bipartite, (proper) interval, chordal) graphs, we obtain the Vertex Cover (resp.
Feedback Vertex Set, Vertex Planarization, Odd Cycle Transversal, (proper) In-
terval Vertex Deletion, Chordal Vertex Deletion) problem.

By the classical result of Lewis and Yannakakis [40], Vertex Deletion to G is NP-hard for
every non-trivial graph class G. To circumvent its intractability, we study it from the parameterized
complexity point of view and we parameterize it by the number k of vertex deletions. In this setting,
the most desirable behavior is the existence of an algorithm running in time f(k) ·nO(1), where f is
a computable function depending only on k. Such an algorithm is called fixed-parameter tractable,
or FPT-algorithm for short, and a parameterized problem admitting an FPT-algorithm is said
to belong to the parameterized complexity class FPT. Also, the function f is called parametric
dependence of the corresponding FPT-algorithm, and the challenge is to design FPT-algorithms
with small parametric dependencies [15,18,21,43].

Unfortunately, we cannot hope for the existence of FPT-algorithms for every graph class G.
Indeed, the problem is W-hard1 for some classes G that are closed under induced subgraphs [41] or,
even worse, NP-hard, for k = 0, for every class G whose recognition problem is NP-hard, such as
some classes closed under subgraphs or induced subgraphs (for instance 3-colorable graphs), edge
contractions [12], or induced minors [19].

On the positive side, a very relevant subset of classes of graphs does allow for FPT-algorithms.
These are classes G that are closed under minors2, or minor-closed. To see this, we define Ak(G) as
the class of the k-apices of G, i.e., the yes-instances of Vertex Deletion to G, and observe that

1Implying that an FPT-algorithm would result in an unexpected complexity collapse; see [18].
2A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges, see Subsec-

tion 2.2 for the formal definitions.

3

if G is minor-closed then the same holds for Ak(G) for every k ≥ 0. This, in turn, implies that for
every k, Ak(G) can be characterized by a set Fk of minor-minimal graphs that are not in Ak(G);
we call these graphs the obstructions of Ak(G) and we know that they are finite because of the
Robertson and Seymour’s theorem [47]. In other words, we know that the size of the obstruction
set of Ak(G) is bounded by some function of k. Then one can decide whether a graph G belongs to
Ak(G) by checking whether G excludes all members of the obstruction set of Ak(G), and this can
be checked by using the FPT-algorithm in [46] (see also [20]).

As the Robertson and Seymour’s theorem [47] does not construct Fk, the aforementioned argu-
ment is not constructive, i.e., it is not able to construct the claimed FPT-algorithm. An important
step towards the constructibility of such an FPT-algorithm was done by Adler et al. [2], who proved
that Fk is effectively computable. In the first paper of this series [52] we give an explicit upper
bound on the size of the graphs in Fk, namely we prove that every graph in Fk has size bounded
by an exponential tower of height four of a polynomial function in k, whose degree depends on the
size of the minor-obstructions of G. The focus of the current paper is on the parametric dependence
of FPT-algorithms to solve the Vertex Deletion to G problem, i.e., for recognizing the class
Ak(G).

The task of specifying (or even optimizing) this parametric dependence for different instantia-
tions of G occupied a considerable part of research in parameterized algorithms. The most general
result in this direction states that, for every t, there is some contant c such that if the graphs in
G have treewidth at most t, then Vertex Deletion to G admits an FPT-algorithm that runs
in time ck · nO(1) [23, 35]. Reducing the constant c in this running time has attracted research on
particular problems such as Vertex Cover [13] (with c = 1.2738), Feedback Vertex Set [37]
(with c = 3.619), Apex-Pseudoforest [11] (with c = 3), Pathwidth 1 Vertex Deletion
(with c = 4.65) [16], or Pumpkin Vertex Deletion [30]. The first step towards a parameterized
algorithm for Vertex Deletion to G for cases where G has unbounded treewidth was done in [42]
and later in [31] for the Vertex Planarization problem, and the best parameterized dependence
for this problem is 2O(k·log k) ·n, achieved by Jansen et al. [29]. These results were later extended by
Kociumaka and Marcin Pilipczuk [38], who proved that if Gg is the class of graphs of Euler genus
at most g, then Vertex Deletion to Gg admits a 2Og(k2·log k) · nO(1)-time3 algorithm.

Our results. In this paper we give an explicit FPT-algorithm for Vertex Deletion to G for
every fixed minor-closed graph class G. In particular, our main results are the following.
Theorem 1. If G is a minor-closed graph class, then Vertex Deletion to G admits an algorithm
running in time 2poly(k) · n3, for some polynomial poly whose degree depends on G.

We say that a graph H is an apex graph if it is a 1-apex of the class of planar graphs.
Theorem 2. If G is a minor-closed graph class excluding some apex graph, then Vertex Deletion
to G admits an algorithm running in time 2poly(k) · n2, for some polynomial poly whose degree
depends on G.

In Section 7 we explain how the algorithms of Theorem 1 and Theorem 2 can be modified in
order to apply to a series of variants of Vertex Deletion to G.

3Given a tuple t = (x1, . . . , x`) ∈ N` and two functions χ, ψ : N→ N, we write χ(n) = Ot(ψ(n)) in order to denote
that there exists a computable function φ : N` → N such that χ(n) = O(φ(t) · ψ(n)).

4

Our techniques. We provide here just a very succinct enumeration of the techniques that we use
in order to achieve Theorem 1 and Theorem 2; a more detailed description with the corresponding
definitions is provided, along with the algorithms, in the next sections.

Our starting point to prove Theorem 1 is to use the standard iterative compression technique
of Reed et al. [45] (Lemma 21). This allows us to assume that we have at hand a slightly too
large set S ⊆ V (G) such that G \ S ∈ G. We run the algorithm of Proposition 10 from [51] that
(since G \S ∈ G) either concludes that the treewidth of G is polynomially bounded by k, or finds a
large flat wall W together with an apex set A. In the first case, we use the main algorithmic result
of Baste et al. [5] (Proposition 4) to solve the problem parameterized by treewidth, achieving the
claimed running time. Proposition 10 is an improved version of the original “Flat Wall Theorem”
of Robertson and Seymour [46], whose proof is based on the recent results of Kawarabayashi et
al. [33], which we state using the framework that we recently introduced in [51]. This framework is
presented in Section 3 and provides the formal definitions of a series of combinatorial concepts such
as paintings and renditions (Subsection 3.2), flatness pairs and tilts (Subsection 3.3), as well as a
notion of wall homogeneity (Subsection 3.4) alternative to the one given in [46]. All these concepts
are extensively used in our proofs, as well as in those in the first article of this series [52].

Once we have the large flat wall W and the apex set A, we see how many vertices of S ∪A have
enough neighbors in the “interior” of W . Two possible scenarios may occur. If the “interior” of W
has enough neighbors in the set S ∪ A, we apply a combinatorial result of [52] (Proposition 18),
based on the notion of canonical partition of a wall, that guarantees that every possible solution
should intersect S ∪A, and we can branch on it.

On the other hand, if the interior of W has few neighbors in S ∪ A, we find in W a packing
of an appropriate number of pairwise disjoint large enough subwalls (Proposition 19) and we find
a subwall whose interior has few (a function not depending on k) neighbors in S ∪ A. We then
argue that we can define from it a flat wall in which we can apply the irrelevant vertex technique
of Robertson and Seymour [46] (Corollary 17). We stress that this flat subwall is not precisely a
subwall of W but a tiny “tilt” of a subwall of W, a concept introduced in [51] that is necessary
for our proofs. In order to apply the irrelevant vertex technique, the main combinatorial tool is
Proposition 15, which as been proved in [52] and that is an enhancement of a result of Baste et
al. [5], as we discuss in Subsection 4.1.

In order to achieve the improved running time claimed in Theorem 2, we do not use iterative
compression. Instead, we directly invoke Lemma 26, which is a variation of [51, Lemma 11] and
whose proof uses [1,3,32,44], that either reports that we have a no-instance, or concludes that the
treewidth of G is polynomially bounded by k, or finds a large wallW in G. If the treewidth is small,
we proceed as above. If a large wall is found, we apply Proposition 10 and we now distinguish two
cases. If a large flat wall is found, we find an irrelevant vertex using again Lemma 16. Otherwise,
inspired by an idea of Marx and Schlotter [42], we exploit the fact that G excludes an apex graph,
and we use flow techniques to either find a vertex that should belong to the solution, or to conclude
that we are dealing with a no-instance.

Organization of the paper. In Section 2 we give some basic definitions and preliminary results.
In Section 3 we introduce flat walls along with all the concepts and results around the Flat Wall
Theorem, using the framework of [51]. In Section 4 we present several algorithmic and combinatorial

5

results that will be used in the algorithms, when finding an irrelevant vertex or when applying the
branching step. In Section 5 and Section 6 we present the main algorithms claimed in Theorem 1
and Theorem 2, respectively. In Section 7 we explain how to modify our algorithms so to deal with
a series of variants of the Vertex Deletion to G problem. We conclude in Section 8 with some
directions for further research.

2 Definitions and preliminary results

Our first step is to restate the problem in a more convenient way. We next give some basic definitions
and preliminary results.

2.1 Restating the problem

Let F be a finite non-empty collection of non-empty graphs. We use F ≤m G to denote that some
graph in F is a minor of G.

Given a graph class G, its minor obstruction set is defined as the set of all minor-minimal
graphs that are not in G, and is denoted by obs(G). Given a finite non-empty collection of non-
empty graphs F , we denote by exc(F) as the set containing every graph G that excludes all graphs
in F as minors.

Let G be a minor-closed graph class and F be its obstruction set. Clearly, Vertex Deletion
to G is the same problem as asking, given a graph G and some k ∈ N, for a vertex set S of at most
k vertices such that G \ S ∈ exc(F). Following the terminology of [5–8, 23, 24, 35, 36], we call this
problem F-M-Deletion.

Some conventions. In what follows we always denote by F the set obs(G) of the instantiation
of Vertex Deletion to G that we consider. Notice that, given a graph G and an integer k,
(G, k) is a yes-instance of F-M-Deletion if and only if G ∈ Ak(exc(F)). Given a graph G, we
define its apex number to be the smallest integer a for which G is an a-apex of the class of planar
graphs. Also, we define the detail of G, denoted by detail(G), to be the maximum among |E(G)|
and |V (G)|. We define three constants depending on F that will be used throughout the paper
whenever we consider such a collection F . We define aF as the minimum apex number of a graph
in F , we set sF = max{|V (H)| | H ∈ F}, and we set `F = max{detail(H)| | H ∈ F}. Unless stated
otherwise, we denote by n and m the number of vertices and edges, respectively, of the graph
under consideration. We can always assume that G has OsF (k ·n) edges, otherwise we can directly
conclude that (G, k) is a no-instance (for this, use the fact that graphs excluding some graph as a
minor are sparse [39,55]).

2.2 Preliminaries

Sets and integers. We denote by N the set of non-negative integers. Given two integers p and
q, the set [p, q] contains every integer r such that p ≤ r ≤ q. For an integer p ≥ 1, we set [p] = [1, p]
and N≥p = N \ [0, p − 1]. Given a non-negative integer x, we denote by odd(x) the minimum odd
number that is not smaller than x. For a set S, we denote by 2S the set of all subsets of S and,
given an integer r ∈ [|S|], we denote by

(S
r

)
the set of all subsets of S of size r and by

(S
≤r
)
the set

6

of all subsets of S of size at most r. If S is a collection of objects where the operation ∪ is defined,
then we denote ⋃⋃⋃⋃⋃⋃⋃⋃⋃S = ⋃

X∈S X.

Basic concepts on graphs. All graphs considered in this paper are undirected, finite, and
without loops or multiple edges. We use standard graph-theoretic notation and we refer the reader
to [17] for any undefined terminology. Let G be a graph. We say that a pair (L,R) ∈ 2V (G)×2V (G)

is a separation of G if L ∪R = V (G) and there is no edge in G between L \R and R \ L. Given a
vertex v ∈ V (G), we denote by NG(v) the set of vertices of G that are adjacent to v in G. A vertex
v ∈ V (G) is isolated if NG(v) = ∅. For S ⊆ V (G), we set G[S] = (S,E ∩

(S
2
)
) and use the shortcut

G \ S to denote G[V (G) \ S]. Given a vertex v ∈ V (G) of degree two with neighbors u and w, we
define the dissolution of v to be the operation of deleting v and, if u and w are not adjacent, adding
the edge {u,w}. Given two graphs H,G, we say that H is a dissolution of G if H can be obtained
from G after dissolving vertices of G. Given an edge e = {u, v} ∈ E(G), we define the subdivision
of e to be the operation of deleting e, adding a new vertex w and making it adjacent to u and v.
Given two graphs H and G, we say that H is a subdivision of G if H can be obtained from G after
subdividing edges of G.

Treewidth. A tree decomposition of a graph G is a pair (T, χ) where T is a tree and χ : V (T)→
2V (G) such that

• ⋃
t∈V (T) χ(t) = V (G),

• for every edge e of G there is a t ∈ V (T) such that χ(t) contains both endpoints of e, and

• for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T) | v ∈ χ(t)} is connected.

The width of (T, χ) is equal to max
{
|χ(t)| − 1

∣∣ t ∈ V (T)
}
and the treewidth of G, denoted by

tw(G), is the minimum width over all tree decompositions of G.
To compute a tree decomposition of a graph of bounded treewidth, in the proof of Lemma 26 in

Section 6 we will use the single-exponential 5-approximation algorithm for treewidth of Bodlaender
et al. [9, Theorem VI].

Proposition 3. There is an algorithm that, given an graph G and an integer k, outputs either
a report that tw(G) > k, or a tree decomposition of G of width at most 5k + 4. Moreover, this
algorithm runs in 2O(k) · n-time.

Contractions and minors. The contraction of an edge e = {u, v} of a simple graph G results in
a simple graph G′ obtained from G \ {u, v} by adding a new vertex uv adjacent to all the vertices
in the set NG(u) ∪NG(v) \ {u, v}. A graph G′ is a minor of a graph G, denoted by G′ ≤m G, if G′
can be obtained from G by a sequence of vertex removals, edge removals, and edge contractions. If
only edge contractions are allowed, we say that G′ is a contraction of G. Given two graphs H and
G, if H is a minor of G then for every vertex v ∈ V (H) there is a set of vertices in G that are the
endpoints of the edges of G contracted towards creating v. We call this set model of v in G. Recall
that, given a finite collection of graphs F and a graph G, we use notation F ≤m G to denote that
some graph in F is a minor of G.

7

We present here the main result of Baste et al. [5], which we will use in order to solve F-M-
Deletion on instances of treewidth bounded by an appropriate function of k.

Proposition 4. Let F be a finite collection of graphs. There exists an algorithm that, given a triple
(G, tw, k) where G is a graph of treewidth at most tw and k is a non-negative integer, it outputs, if
it exists, a vertex set S of G of size at most k such that G \ S ∈ exc(F). Moreover, this algorithm
runs in 2OsF (tw·log tw) · n-time.

3 Flat walls

In this section we deal with flat walls, using the framework of [51]. More precisely, in Subsec-
tion 3.1, we introduce walls and several notions concerning them. In Subsection 3.2, we provide the
definitions of a rendition and a painting. Using the above notions, in Subsection 3.3, we define flat
walls and provide some results about them, including the Flat Wall Theorem (namely, the version
proved by Kawarabayashi et al. [33]) and its algorithmic version restated in the “more accurate”
framework of [51]. Finally, in Subsection 3.4, we present the notion of homogeneity and an algo-
rithm from [51] that allows us to detect a homogenous flat wall “inside” a given flat wall of “big
enough” height. We note that the definitions of this section can also be found in [51,52].

3.1 Walls and subwalls

We start with some basic definitions about walls.

Walls. Let k, r ∈ N. The (k × r)-grid is the graph whose vertex set is [k] × [r] and two vertices
(i, j) and (i′, j′) are adjacent if and only if |i − i′| + |j − j′| = 1. An elementary r-wall, for some
odd integer r ≥ 3, is the graph obtained from a (2r × r)-grid with vertices (x, y) ∈ [2r]× [r], after
the removal of the “vertical” edges {(x, y), (x, y + 1)} for odd x + y, and then the removal of all
vertices of degree one. Notice that, as r ≥ 3, an elementary r-wall is a planar graph that has a
unique (up to topological isomorphism) embedding in the plane R2 such that all its finite faces
are incident to exactly six edges. The perimeter of an elementary r-wall is the cycle bounding
its infinite face, while the cycles bounding its finite faces are called bricks. Also, the vertices in
the perimeter of an elementary r-wall that have degree two are called pegs, while the vertices
(1, 1), (2, r), (2r − 1, 1), (2r, r) are called corners (notice that the corners are also pegs).

An r-wall is any graph W obtained from an elementary r-wall W̄ after subdividing edges (see
Figure 1). A graph W is a wall if it is an r-wall for some odd r ≥ 3 and we refer to r as the height
of W. Given a graph G, a wall of G is a subgraph of G that is a wall. We insist that, for every
r-wall, the number r is always odd.

We call the vertices of degree three of a wall W 3-branch vertices. A cycle of W is a brick (resp.
the perimeter) of W if its 3-branch vertices are the vertices of a brick (resp. the perimeter) of W̄ .

We denote by C(W) the set of all cycles of W. We use D(W) in order to denote the perimeter of
the wall W. A brick of W is internal if it is disjoint from D(W).

Subwalls. Given an elementary r-wall W̄ , some odd i ∈ {1, 3, . . . , 2r − 1}, and i′ = (i + 1)/2,
the i′-th vertical path of W̄ is the one whose vertices, in order of appearance, are (i, 1), (i, 2), (i +

8

Figure 1: An 11-wall and its five layers, depicted in alternating orange and green. The central
vertices of the wall are depicted in red.

1, 2), (i + 1, 3), (i, 3), (i, 4), (i + 1, 4), (i + 1, 5), (i, 5), . . . , (i, r − 2), (i, r − 1), (i + 1, r − 1), (i + 1, r).
Also, given some j ∈ [2, r − 1] the j-th horizontal path of W̄ is the one whose vertices, in order of
appearance, are (1, j), (2, j), . . . , (2r, j).

A vertical (resp. horizontal) path of an r-wall W is one that is a subdivision of a vertical (resp.
horizontal) path of W̄ . Notice that the perimeter of an r-wall W is uniquely defined regardless of
the choice of the elementary r-wall W̄ . A subwall of W is any subgraph W ′ of W that is an r′-wall,
with r′ ≤ r, and such the vertical (resp. horizontal) paths of W ′ are subpaths of the vertical (resp.
horizontal) paths of W.

Layers. The layers of an r-wall W are recursively defined as follows. The first layer of W is
its perimeter. For i = 2, . . . , (r − 1)/2, the i-th layer of W is the (i − 1)-th layer of the subwall
W ′ obtained from W after removing from W its perimeter and removing recursively all occurring
vertices of degree one. We refer to the (r − 1)/2-th layer as the inner layer of W. The central
vertices of an r-wall are its two branch vertices that do not belong to any of its layers. See Figure 1
for an illustration of the notions defined above.

Central walls. Given an r-wall W and an odd q ∈ N≥3 where q ≤ r, we define the central q-
subwall of W, denoted by W (q), to be the q-wall obtained from W after removing its first (r− q)/2
layers and all occurring vertices of degree one.

Tilts. The interior of a wall W is the graph obtained from W if we remove from it all edges of
D(W) and all vertices of D(W) that have degree two in W. Given two walls W and W̃ of a graph
G, we say that W̃ is a tilt of W if W̃ and W have identical interiors.

The following result is derived from [1]. We will use it in the improved algorithm of Theorem 2
in Section 6, in order to find a wall in a graph of bounded treewidth, given a tree decomposition of
it.

9

Proposition 5. There is an algorithm that, given a graph G on m edges, a graph H on h edges
without isolated vertices, and a tree decomposition of G of width at most k, it outputs, if it exists,
a minor of G isomorphic to H. Moreover, this algorithm runs in 2O(k log k) · hO(k) · 2O(h) ·m-time.

3.2 Paintings and renditions

In this subsection we present the notions of renditions and paintings, originating in the work of
Robertson and Seymour [46]. The definitions presented here were introduced by Kawarabayashi et
al. [33] (see also [5, 51]).

Paintings. A closed (resp. open) disk is a set homeomorphic to the set {(x, y) ∈ R2 | x2 +y2 ≤ 1}
(resp. {(x, y) ∈ R2 | x2 + y2 < 1}). Let ∆ be a closed disk. Given a subset X of ∆, we denote its
closure by X̄ and its boundary by bd(X). A ∆-painting is a pair Γ = (U,N) where

• N is a finite set of points of ∆,

• N ⊆ U ⊆ ∆, and

• U \N has finitely many arcwise-connected components, called cells, where, for every cell c,

◦ the closure c̄ of c is a closed disk and
◦ |c̃| ≤ 3, where c̃ := bd(c) ∩N.

We use the notation U(Γ) := U, N(Γ) := N and denote the set of cells of Γ by C(Γ). For convenience,
we may assume that each cell of Γ is an open disk of ∆.

Notice that, given a ∆-painting Γ, the pair (N(Γ), {c̃ | c ∈ C(Γ)}) is a hypergraph whose hy-
peredges have cardinality at most three and Γ can be seen as a plane embedding of this hypergraph
in ∆.

Renditions. Let G be a graph and let Ω be a cyclic permutation of a subset of V (G) that we
denote by V (Ω). By an Ω-rendition of G we mean a triple (Γ, σ, π), where

(a) Γ is a ∆-painting for some closed disk ∆,

(b) π : N(Γ)→ V (G) is an injection, and

(c) σ assigns to each cell c ∈ C(Γ) a subgraph σ(c) of G, such that

(1) G = ⋃
c∈C(Γ) σ(c),

(2) for distinct c, c′ ∈ C(Γ), σ(c) and σ(c′) are edge-disjoint,
(3) for every cell c ∈ C(Γ), π(c̃) ⊆ V (σ(c)),
(4) for every cell c ∈ C(Γ), V (σ(c)) ∩⋃c′∈C(Γ)\{c} V (σ(c′)) ⊆ π(c̃), and
(5) π(N(Γ)∩ bd(∆)) = V (Ω), such that the points in N(Γ)∩ bd(∆) appear in bd(∆) in the

same ordering as their images, via π, in Ω.

10

3.3 Flatness pairs

In this subsection we define the notion of a flat wall. The definitions given in this subsection
are originating in [51]. We refer the reader to that paper for a more detailed exposition of these
definitions and the reasons for which we introduced them. We use the more accurate framework
of [51] concerning flat walls, instead of that of [33], in order to be able to use tools that are developed
in [51] and [52] and will be useful in future applications as well.

Flat walls. Let G be a graph and let W be an r-wall of G, for some odd integer r ≥ 3. We say
that a pair (P,C) ⊆ D(W)×D(W) is a choice of pegs and corners for W if W is the subdivision
of an elementary r-wall W̄ where P and C are the pegs and the corners of W̄ , respectively (clearly,
C ⊆ P). To get more intuition, notice that a wallW can occur in several ways from the elementary
wall W̄ , depending on the way the vertices in the perimeter of W̄ are subdivided. Each of them
gives a different selection (P,C) of pegs and corners of W.

We say that W is a flat r-wall of G if there is a separation (X,Y) of G and a choice (P,C) of
pegs and corners for W such that:

• V (W) ⊆ Y,

• P ⊆ X ∩ Y ⊆ V (D(W)), and

• if Ω is the cyclic ordering of the vertices X ∩Y as they appear in D(W), then there exists an
Ω-rendition (Γ, σ, π) of G[Y].

We say that W is a flat wall of G if it is a flat r-wall for some odd integer r ≥ 3.

Flatness pairs. Given the above, we say that the choice of the 7-tuple R = (X,Y, P,C,Γ, σ, π)
certifies that W is a flat wall of G. We call the pair (W,R) a flatness pair of G and define the
height of the pair (W,R) to be the height of W. We use the term cell of R in order to refer to the
cells of Γ.

We call the graph G[Y] the R-compass of W in G, denoted by compassR(W). We can assume
that compassR(W) is connected, updating R by removing from Y the vertices of all the connected
components of compassR(W) except of the one that contains W and including them in X (Γ, σ, π
can also be easily modified according to the removal of the aforementioned vertices from Y). We
define the flaps of the wall W in R as flapsR(W) := {σ(c) | c ∈ C(Γ)}. Given a flap F ∈ flapsR(W),
we define its base as ∂F := V (F)∩π(N(Γ)). A cell c of R is untidy if π(c̃) contains a vertex x of W
such that two of the edges of W that are incident to x are edges of σ(c). Notice that if c is untidy
then |c̃| = 3. A cell c of R is tidy if it is not untidy.

Cell classification. Given a cycle C of compassR(W), we say that C is R-normal if it is not
a subgraph of a flap F ∈ flapsR(W). Given an R-normal cycle C of compassR(W), we call a cell
c of R C-perimetric if σ(c) contains some edge of C. Notice that if c is C-perimetric, then π(c̃)
contains two points p, q ∈ N(Γ) such that π(p) and π(q) are vertices of C where one, say P in

c , of the
two (π(p), π(q))-subpaths of C is a subgraph of σ(c) and the other, denoted by P out

c , (π(p), π(q))-
subpath contains at most one internal vertex of σ(c), which should be the (unique) vertex z in

11

∂σ(c) \ {π(p), π(q)}. We pick a (p, q)-arc Ac in ĉ := c ∪ c̃ such that π−1(z) ∈ Ac if and only if P in
c

contains the vertex z as an internal vertex.
We consider the circle KC = ⋃⋃⋃⋃⋃⋃⋃⋃⋃

{Ac | c is a C-perimetric cell of R} and we denote by ∆C the
closed disk bounded by KC that is contained in ∆. A cell c of R is called C-internal if c ⊆ ∆C

and is called C-external if ∆C ∩ c = ∅. Notice that the cells of R are partitioned into C-internal,
C-perimetric, and C-external cells.

Let c be a tidy C-perimetric cell of R where |c̃| = 3. Notice that c\Ac has two arcwise-connected
components and one of them is an open disk Dc that is a subset of ∆C . If the closure Dc of Dc

contains only two points of c̃ then we call the cell c C-marginal.

Influence. For every R-normal cycle C of compassR(W) we define the set

influenceR(C) = {σ(c) | c is a cell of R that is not C-external}.

A wallW ′ of compassR(W) isR-normal ifD(W ′) isR-normal. Notice that every wall ofW (and
hence every subwall ofW) is an R-normal wall of compassR(W).We denote by SR(W) the set of all
R-normal walls of compassR(W). Given a wall W ′ ∈ SR(W) and a cell c of R, we say that c is W ′-
perimetric/internal/external/marginal if c isD(W ′)-perimetric/internal/external/marginal, respec-
tively. We also use KW ′ , ∆W ′ , influenceR(W ′) as shortcuts for KD(W ′), ∆D(W ′), influenceR(D(W ′)),
respectively.

Regular flatness pairs. We call a flatness pair (W,R) of a graph G regular if none of its cells
is W -external, W -marginal, or untidy.

Tilts of flatness pairs. Let (W,R) and (W̃ ′, R̃′) be two flatness pairs of a graph G and let
W ′ ∈ SR(W). We assume that R = (X,Y, P,C,Γ, σ, π) and R̃′ = (X ′, Y ′, P ′, C ′,Γ′, σ′, π′). We say
that (W̃ ′, R̃′) is a W ′-tilt of (W,R) if

• R̃′ does not have W̃ ′-external cells,

• W̃ ′ is a tilt of W ′,

• the set of W̃ ′-internal cells of R̃′ is the same as the set of W ′-internal cells of R and their
images via σ′ and σ are also the same,

• compassR̃′(W̃ ′) is a subgraph of ⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(W ′), and

• if c is a cell in C(Γ′) \ C(Γ), then |c̃| ≤ 2.

The next observation follows from the third item above and the fact that the cells corresponding
to flaps containing a central vertex of W ′ are all internal (recall that the height of a wall is always
at least three).
Observation 6. Let (W,R) be a flatness pair of a graph G and W ′ ∈ SR(W). For every W ′-tilt
(W̃ ′, R̃′) of (W,R), the central vertices of W ′ belong to the vertex set of compassR̃′(W̃ ′).

12

Also, given a regular flatness pair (W,R) of a graph G and a W ′ ∈ SR(W), for every W ′-tilt
(W̃ ′, R̃′) of (W,R), by definition none of its cells is W̃ ′-external, W̃ ′-marginal, or untidy – thus,
(W̃ ′, R̃′) is regular. Therefore, regularity of a flatness pair is a property that its tilts “inherit”.
Observation 7. If (W,R) is a regular flatness pair, then for every W ′ ∈ SR(W), every W ′-tilt of
(W,R) is also regular.

We next present one of the main results of [51].

Proposition 8. There exists an algorithm that, given a graph G, a flatness pair (W,R) of G, and
a wall W ′ ∈ SR(W), outputs a W ′-tilt of (W,R) in O(n+m)-time.

We present here the Flat Wall Theorem and, in particular, the version proved by Kawarabayashi
et al. [33, Theorem 1.5]. This result will be used in the proof of correctness of the algorithm of
Theorem 2.

Proposition 9. There are two functions f1 : N → N and f2 : N → N, where the images of f1 are
odd numbers, such that if r is an odd integer in N≥3, t ∈ N≥1, G is a graph that does not contain
Kt as a minor, and W is an f1(t) · r-wall of G, then there is a set A ⊆ V (G) where |A| ≤ f2(t)
and a flatness pair (W̃ ′, R̃′) of G \A of height r. Moreover f1(t) = O(t26) and f2(t) = O(t24).

We conclude this subsection with the following result from [51] that allows us to find a regular
flatness pair in a minor-free graph of “big enough” treewidth.

Proposition 10. There is a function f3 : N→ N and an algorithm that receives as input a graph
G, an odd integer r ≥ 3, and a t ∈ N≥1, and outputs, in time 2Ot(r2) · n, one of the following:

• a report that Kt is a minor of G,

• a tree decomposition of G of width at most f3(t) · r, or

• a set A ⊆ V (G) with |A| ≤ f2(t) and a regular flatness pair (W,R) of G\A of height r. (Here
f2(t) is the function of Proposition 9.)

Moreover, f3(t) = 2O(t2 log t).

We note that the result of [51] also returns a tree decomposition of the flatness pair. However,
this additional output is not needed in the algorithms of this paper.

3.4 Homogeneous walls

We first present some definitions on boundaried graphs and folios that will be used to define the
notion of homogeneous walls. Following this, we present some results concerning homogeneous
walls that are key ingredients in the application of the irrelevant vertex technique in our proofs.

13

Boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple G = (G,B, ρ) where G is
a graph, B ⊆ V (G), |B| = t, and ρ : B → [t] is a bijection. We say that G1 = (G1, B1, ρ1)
and G2 = (G2, B2, ρ2) are isomorphic if there is an isomorphism from G1 to G2 that extends
the bijection ρ−1

2 ◦ ρ1. The triple (G,B, ρ) is a boundaried graph if it is a t-boundaried graph for
some t ∈ N. As in [46] (see also [5]), we define the detail of a boundaried graph G = (G,B, ρ) as
detail(G) := max{|E(G)|, |V (G) \ B|}. We denote by B(t) the set of all (pairwise non-isomorphic)
t-boundaried graphs and by B(t)

` the set of all (pairwise non-isomorphic) t-boundaried graphs with
detail at most `. We also set B = ⋃

t∈N B(t).

We define the treewidth of a boundaried graph G = (G,B, ρ), denoted by tw(G), as the minimum
width of a tree decomposition (T, χ) of G for which there is some u ∈ V (T) such that B ⊆ χ(u).
Notice that the treewidth of a t-boundaried graph is always lower-bounded by t− 1.

Folios. We say that (M,T) is a tm-pair if M is a graph, T ⊆ V (M), and all vertices in V (M) \T
have degree two. We denote by diss(M,T) the graph obtained from M by dissolving all vertices
in V (M) \ T. A tm-pair of a graph G is a tm-pair (M,T) where M is a subgraph of G. We
call the vertices in T branch vertices of (M,T). We need to deal with topological minors for the
notion of homogeneity defined below, on which the statement of [5, Theorem 5.2] relies. If M =
(M,B, ρ) ∈ B and T ⊆ V (M) with B ⊆ T, we call (M, T) a btm-pair and we define diss(M, T) =
(diss(M,T), B, ρ). Note that we do not permit dissolution of boundary vertices, as we consider all
of them to be branch vertices. If G = (G,B, ρ) is a boundaried graph and (M,T) is a tm-pair of
G where B ⊆ T, then we say that (M, T), where M = (M,B, ρ), is a btm-pair of G = (G,B, ρ).
Let G1,G2 be two boundaried graphs. We say that G1 is a topological minor of G2, denoted by
G1 �tm G2, if G2 has a btm-pair (M, T) such that diss(M, T) is isomorphic to G1. Given a G ∈ B
and a positive integer `, we define the `-folio of G as

`-folio(G) = {G′ ∈ B | G′ �tm G and G′ has detail at most `}.

The number of distinct `-folios of t-boundaried graphs is upper-bounded in the following result,
proved first in [6] and used also in [5].

Proposition 11. There exists a function f4 : N2 → N such that for every t, ` ∈ N, |{`-folio(G) |
G ∈ B(t)

` }| ≤ f4(t, `). Moreover, f4(t, `) = 22O((t+`)·log(t+`))
.

Augmented flaps. Let G be a graph, A be a subset of V (G) of size a, and (W,R) be a flatness
pair of G \ A. For each flap F ∈ flapsR(W) we consider a labeling `F : ∂F → {1, 2, 3} such that
the set of labels assigned by `F to ∂F is one of {1}, {1, 2}, {1, 2, 3}. Also, let ã ∈ [a]. For every set
Ã ∈

(A
ã

)
, we consider a bijection ρÃ : Ã→ [ã]. The labelings in L = {`F | F ∈ flapsR(W)} and the

labelings in {ρÃ | Ã ∈
(A
ã

)
} will be useful for defining a set of boundaried graphs that we will call

augmented flaps. We first need some more definitions.
Given a flap F ∈ flapsR(W), we define an ordering Ω(F) = (x1, . . . , xq), with q ≤ 3, of the

vertices of ∂F so that

• (x1, . . . , xq) is a counter-clockwise cyclic ordering of the vertices of ∂F as they appear in the
corresponding cell of C(Γ). Notice that this cyclic ordering is significant only when |∂F | = 3,

14

in the sense that (x1, x2, x3) remains invariant under shifting, i.e., (x1, x2, x3) is the same as
(x2, x3, x1) but not under inversion, i.e., (x1, x2, x3) is not the same as (x3, x2, x1), and

• for i ∈ [q], `F (xi) = i.

Notice that the second condition is necessary for completing the definition of the ordering Ω(F),
and this is the reason why we set up the labelings in L.

For each set Ã ∈
(A
ã

)
and each F ∈ flapsR(W) with tF := |∂F |, we fix ρF : ∂F → [ã+ 1, ã+ tF]

such that (ρ−1
F (ã+ 1), . . . , ρ−1

F (ã+ tF)) = Ω(F). Also, we define the boundaried graph

FÃ := (G[Ã ∪ F], Ã ∪ ∂F, ρÃ ∪ ρF)

and we denote by F Ã the underlying graph of FÃ. We call FÃ an Ã-augmented flap of the flatness
pair (W,R) of G \A in G.

Palettes and homogeneity. For each R-normal cycle C of compassR(W) and each set Ã ⊆ A,

we define (Ã, `)-palette(C) = {`-folio(FÃ) | F ∈ influenceR(C)}. Given a set Ã ⊆ A, we say that
the flatness pair (W,R) of G \ A is `-homogeneous with respect to Ã if every internal brick of W
has the same (Ã, `)-palette (seen as a cycle of compassR(W)). Also, given a collection S ⊆ 2A, we
say that the flatness pair (W,R) of G \A is `-homogeneous with respect to S if it is `-homogeneous
with respect to every Ã ∈ S.

The following observation is a consequence of the fact that, given a wall W and a subwall W ′
of W, every internal brick of a tilt W ′′ of W ′ is also an internal brick of W.
Observation 12. Let ` ∈ N, G be a graph, A ⊆ V (G), S ⊆ 2A, and (W,R) be a flatness pair of
G \A. If (W,R) is `-homogeneous with respect to S, then for every subwall W ′ of W, every W ′-tilt
of (W,R) is also `-homogeneous with respect to S.

Let a, ã, ` ∈ N, where ã ≤ a. Also, let G be a graph, A be a subset of V (G) of size at most
a, and (W,R) be a flatness pair of G \ A. For every flap F ∈ flapsR(W), we define the function
var(A,ã,`)

F :
(A
≤ã
)
→ {`-folio(G) | G ∈ ⋃i∈[ã+3] B(i)} that maps each set Ã ∈

(A
≤ã
)
to the set `-folio(FÃ).

We also use the following result that follows from Proposition 11 and the fact that |
(A
≤ã
)
| =

O(|A|ã) (see also [52]).

Lemma 13. There exists a function f5 : N3 → N such that if a, ã, ` ∈ N, where ã ≤ a, G is a
graph, A is a subset of V (G) of size at most a, and (W,R) is a flatness pair of G \A, then

|{var(A,ã,`)
F | F ∈ flapsR(W)}| ≤ f5(a, ã, `).

Moreover, f5(a, ã, `) = 2aã·2O((ã+`)·log(ã+`))
.

Lemma 13 allows us to define an injective function σ : {var(A,ã,`)
F | F ∈ flapsR(W)} → [f5(a, ã, `)]

that maps each function in {var(A,ã,`)
F | F ∈ flapsR(W)} to an integer in [f5(a, ã, `)]. Using σ, we

define a function ζA,ã,` : flapsR(W)→ [f5(a, ã, `)], that maps each flap F ∈ flapsR(W) to the integer
σ(var(A,ã,`)

F). In [51], given a w ∈ N, the notion of homogeneity is defined with respect to a flap-
coloring ζ of (W,R) with w colors, that is a function from flapsR(W) to [w]. This function gives rise

15

to the ζ-palette of each R-normal cycle of compassR(W) which, in turn, is used to define the notion
of a ζ-homogeneous flatness pair. Hence, using the terminology of [51], ζA,ã,` is a flap-coloring of
(W,R) with f5(a, ã, `) colors, that “colors” each flap F ∈ flapsR(W) by mapping it to the integer
σ(var(A,ã,`)

F), and the notion of `-homogeneity with respect to
(A
≤ã
)
defined here can be alternatively

interpreted as ζA,ã,`-homogeneity. The following result, which is the application of a result of Sau
et al. [51, Lemma 13] for the flap-coloring ζA,ã,`, provides an algorithm that, given a flatness pair
of “big enough” height, outputs a homogeneous flatness pair.

Proposition 14. There is a function f6 : N4 → N, whose images are odd integers, and an algorithm
that receives as input an odd integer r ≥ 3, ã, a, ` ∈ N, where ã ≤ a, a graph G, a set A ⊆ V (G) of
size at most a, and a flatness pair (W,R) of G\A of height f6(r, a, z, `), and outputs a flatness pair
(W̆ , R̆) of G \ A of height r that is `-homogeneous with respect to

(A
≤ã
)
and is a W ′-tilt of (W,R)

for some subwall W ′ of W. Moreover, f6(r, a, ã, `) = O(rf5(a,ã,`)) and the algorithm runs in time
2O(f5(a,ã,`)·r log r) · (n+m).

The price of homogeneity. As Proposition 14 indicates, finding a homogeneous flat wall inside
a flat wall has a price, corresponding to the function f6(r, a, ã, `) of the required height of the given
flat wall. The “polynomial gap” between the height of the given flatness pair (W,R) of G \A and
the homogenous flat wall that is returned is determined by the function f5 of Observation 12, that
bounds the number of different folios that can be rooted through the augmented flaps of (W,R),
for each possible augmentation of each flap with a subset of A of size at most ã. In this paper,
we will use Proposition 14 in order to compute a flat wall that is homogeneous with respect to
2A, that is, for ã = a. We set ca,` = f5(a, a, `) and we point out that, in general, it follows that
ca,` = 22O((a+`)·log(a+`))

. However, by using the notion of representatives instead of folios as in [5], we
can obtain a smaller bound of ca,` = 2O((a+`)·log(a+`)). We call caF ,`F the palette-variety of F .

4 Auxiliary algorithmic and combinatorial results

In this section we provide some algorithmic and combinatorial results that will support the main
algorithms of this paper. In Subsection 4.1 we provide an algorithm that finds an irrelevant ver-
tex inside a “large enough” homogeneous flat wall, while, in Subsection 4.2, we define canonical
partitions of walls and we present some combinatorial results that allow our algorithms to branch.

4.1 Finding an irrelevant vertex

The irrelevant vertex technique was introduced in [46] for providing an FPT-algorithm for the
Disjoint Paths problem. Moreover, this technique has appeared to be quite versatile and is now
a standard tool of parameterized algorithm design (see e.g., [15, 54]). The applicability of this
technique for F-M-Deletion is materialized in this section by the algorithm of Lemma 16.

For the proof of Lemma 16 we need the next combinatorial result, Proposition 15, whose proof
is presented in [52]. Proposition 15 intuitively states that, given a graph G and a homogeneous
flatness pair (W,R) of G of “big enough” height, it holds that for every W (q)-tilt (Ŵ , R̂) of (W,R),
compassR̂(Ŵ) can be “safely” removed from the input graph G, in the sense that (G, k) and (G \
V (compassR̂(Ŵ)), k) are equivalent instances of F-M-Deletion. In [52] we insisted on a proof of

16

Proposition 15 that requires homogeneity with respect to 2A (that is, with respect to every possible
subset of A) in order to find an irrelevant wall, no matter the choice of the hitting set. This is an
enhancement of the result of [5, Theorem 5.2], which allows to reroute minors outside a part of the
wall that is homogeneous with respect to a particular apex set. When aiming to detect a wall that
is irrelevant for F-M-Deletion, we do not know a priori which is the hitting set, and therefore
we need to ask, firstly, for a wall that is irrelevant for every choice of a hitting set S and, secondly,
for homogeneity that captures all possible remaining (after the deletion of S) apex sets of the flat
wall in order to apply [5, Theorem 5.2] for such an apex set. For these reasons, this enhancement
of [5, Theorem 5.2] is essential for our case.

The running time of the next result depends on the function ful coming from the Unique Linkage
Theorem from [34] (see also [48,49]). Recall that `F = max{detail(H) | H ∈ F}.

Proposition 15. There exist two functions f7 : N4 → N and f8 : N2 → N, where the images
of f7 are odd numbers, such that for every a, k ∈ N, every odd q ∈ N≥3, and every graph G, if
A is a subset of V (G) of size at most a and (W,R) is a regular flatness pair of G \ A of height
at least f7(a, `F , q, k) that is f8(a, `F)-homogeneous with respect to 2A, then for every W (q)-tilt
(Ŵ , R̂) of (W,R), it holds that (G, k) and (G \ V (compassR̂(Ŵ)), k) are equivalent instances of
F-M-Deletion. Moreover, f7(a, `F , q, k) = O(k · (ful(16a+ 12`F))3 + q), where ful is the function
of the Unique Linkage Theorem, and f8(a, `F) = a+ `F + 3.

By applying Proposition 8 on top of Proposition 15, in order to find a tilt that is guaranteed to
be irrelevant by Proposition 15, we directly get the following algorithm, which outputs a flatness
pair (Ŵ , R̂) of an input graph G such that (G, k) and (G \ V (compassR̂(Ŵ)), k) are equivalent
instances of F-M-Deletion. In fact, in the rest of the paper, we use a slightly weaker version of
Lemma 16, referred as Corollary 17, that outputs just an irrelevant vertex. Here, we prove this
more general result for future use.

Lemma 16. There exists an algorithm with the following specifications:

Find-Irrelevant-Wall(k, q, a,G,A,W,R)
Input: Three integers k, q, a ∈ N, with odd q ≥ 3, a graph G, a set A ⊆ V (G) of size at most a, and
a regular flatness pair (W,R) of G\A of height at least f7(a, `F , q, k) that is f8(a, `F)-homogeneous
with respect to 2A.
Output: A flatness pair (Ŵ , R̂) of G \ A that is a W (q)-tilt of (W,R) and such that (G, k) and
(G \ V (compassR̂(Ŵ)), k) are equivalent instances of F-M-Deletion.
Moreover, this algorithm runs in O(n+m)-time.

Notice that Lemma 16 together with Observation 6 imply Corollary 17 if we set q = 3 and
output a central vertex of the obtained 3-wall.

Corollary 17. There exists an algorithm with the following specifications:

Find-Irrelevant-Vertex(k, a,G,A,W,R)
Input: Two integers k, a ∈ N, a graph G, a set A ⊆ V (G) of size at most a, and a regular flatness
pair (W,R) of G \ A of height at least f7(a, `F , 3, k) that is f8(a, `F)-homogeneous with respect to
2A.

17

Output: A vertex v ∈ V (G) such that (G, k) and (G \ v, k) are equivalent instances of F-M-
Deletion.
Moreover, this algorithm runs in O(n+m)-time.

4.2 Combinatorial results for branching

In this subsection, we present the notion of a canonical partition and provide two combinatorial
results that will justify a branching step of our algorithm and, if such a step cannot be applied,
the existence of a wall that will allow the application of the irrelevant vertex technique. Canonical
partitions were introduced in [52].

Canonical partitions. Let r ≥ 3 be an odd integer. LetW be an r-wall and let P1, . . . , Pr (resp.
L1, . . . , Lr) be its vertical (resp. horizontal) paths. For every even (resp. odd) i ∈ [2, r − 1] and
every j ∈ [2, r − 1], we define A(i,j) to be the subpath of Pi that starts from a vertex of Pi ∩ Lj
and finishes at a neighbor of a vertex in Lj+1 (resp. Lj−1), such that Pi ∩ Lj ⊆ A(i,j) and A(i,j)

does not intersect Lj+1 (resp. Lj−1). Similarly, for every i, j ∈ [2, r − 1], we define B(i,j) to be the
subpath of Lj that starts from a vertex of Pi ∩ Lj and finishes at a neighbor of a vertex in Pi−1,

such that Pi ∩ Lj ⊆ A(i,j) and A(i,j) does not intersect Pi−1.

Figure 2: A 5-wall and its canonical partition Q. The orange bag is the external bag Qext.

For every i, j ∈ [2, r − 1], we denote by Q(i,j) the graph A(i,j) ∪B(i,j) and Qext to be the graph
W \

⋃
i,j∈[2,r−1]Qi,j . Now consider the collection Q = {Qext} ∪ {Qi,j | i, j ∈ [2, r − 1]} and observe

that the graphs in Q are connected subgraphs ofW and their vertex sets form a partition of V (W).
We call Q the canonical partition of W. Also, we call every Qi,j , i, j ∈ [2, r − 1] an internal bag of
Q, while we refer to Qext as the external bag of Q. See Figure 2 for an illustration of the notions
defined above. For every i ∈ [(r − 1)/2], we say that a set Q ∈ Q is an i-internal bag of Q if V (Q)
does not contain any vertex of the first i layers of W. Notice that the 1-internal bags of Q are the
internal bags of Q.

Let (W,R) be a flatness pair of a graph G. Consider the canonical partition Q ofW.We enhance
the graphs of Q so to include in them all the vertices of G by applying the following procedure. We
set Q̃ := Q and, as long as there is a vertex x ∈ V (compassR(W)) \ V (⋃⋃⋃⋃⋃⋃⋃⋃⋃Q̃) that is adjacent to a
vertex of a graph Q ∈ Q̃, update Q̃ := Q̃ \ {Q}∪{Q̃}, where Q̃ = compassR(W)[{x}∪V (Q)]. Since
compassR(W) is a connected graph, in this way we define a partition of the vertices of compassR(W)
into subsets inducing connected graphs. We call the Q̃ ∈ Q̃ that contains Qext as a subgraph the
external bag of Q̃, and we denote it by Q̃ext, while we call internal bags of Q̃ all graphs in Q̃\{Q̃ext}.
Moreover, we enhance Q̃ by adding all vertices of G \ V (compassR(W) in its external bag, i.e., by

18

updating Q̃ext := G[V (Q̃ext) ∪ V (G \ V (compassR(W))]. We call such a partition Q̃ a (W,R)-
canonical partition of G. Notice that a (W,R)-canonical partition of G is not unique, since the sets
in Q can be “expanded” arbitrarily when introducing vertex x.

Let (W,R) be a flatness pair of a graph G of height r, for some r ≥ 3 and Q̃ be a (W,R)-
canonical partition of G. For every i ∈ [(r − 1)/2], we say that a set Q ∈ Q̃ is an i-internal bag of
Q̃ if it contains an i-internal bag of Q as a subgraph.

Next we identify a combinatorial structure that guarantees the existence of a set of q = OsF (k)
vertices that intersects every solution S of F-M-Deletion with input (G, k). This will permit
branching on q simpler instances of the form (G′, k − 1). Recall that aF is the minimum apex
number of a graph in F . The following result is proved in [52].
Proposition 18. There exist three functions f9, f10, f11 : N3 → N, such that if F is a finite set of
graphs, G is a graph, k ∈ N, A is a subset of V (G), (W,R) is a flatness pair of G \A of height at
least f9(aF , sF , k), Q̃ is a (W,R)-canonical partition of G\A, A′ is a subset of vertices of A that are
adjacent, in G, to vertices of at least f10(aF , sF , k) f11(aF , sF , k)-internal bags of Q̃, and |A′| ≥ aF ,
then for every set S ⊆ V (G) of size at most k such that G \ S ∈ exc(F) it holds that S ∩ A′ 6= ∅.
Moreover, f9(a, s, k) = O(2a ·s5/2 ·k5/2), f10(a, s, k) = O(2a ·s3 ·k3), and f11(a, s, k) = O((a2+k)·s),
where a = aF and s = sF .

The next result is also proved in [52] and intuitively states that, given a flatness pair (W,R) of
“big enough” height and a (W,R)-canonical partition Q̃ of G, we can find a “packing” of subwalls of
W that are inside some central part ofW and that the vertex set of every internal bag of Q̃ intersects
the vertices of the flaps in the influence of at most one of these walls. We will use this result in
the case where the set A′ of Proposition 18 is “small”, i.e., there are only “few” vertices in A that
have “big enough” degree with respect to the central part of the canonical partition, and therefore
Proposition 18 cannot justify branching. Following the latter condition and Proposition 19, we will
be able to find a flatness pair with “few” apices so as to build irrelevant vertex arguments inside
its compass.
Proposition 19. There exists a function f12 : N3 → N such that if p, z ∈ N≥1, x ∈ N≥3 is an
odd integer, G is a graph, (W,R) is a flatness pair of G of height at least f12(z, x, p), and Q̃ is a
(W,R)-canonical partition of G, then there is a collection W = {W1, . . . ,Wz} of x-subwalls of W
such that

• for every i ∈ [z], ⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wi) is a subgraph of
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{Q | Q is a p-internal bag of Q̃} and

• for every i, j ∈ [z], with i 6= j, there is no internal bag of Q̃ that contains vertices of both
V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wi)) and V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wj)).

Moreover, f12(z, x, p) = O(
√
z · x+ p).

5 The general algorithm

In this section we present the general algorithm for F-M-Deletion. The existence of this algorithm
proves Theorem 1. In Subsection 5.1, we explain how to employ the iterative compression technique
so as to ask for an algorithm for a new, more convenient to solve, problem and, in Subsection 5.2,
we develop an algorithm for this new problem.

19

5.1 Iterative compression

In order to prove Theorem 1, we apply the iterative compression technique (introduced in [45]; see
also [15]) and we give a 2poly(k) · n2-time algorithm for the following problem.

F-M-Deletion-Compression
Input: A graph G, a k ∈ N, and a set S of size k + 1 such that G \ S ∈ exc(F).
Objective: Find, if exists, a set S′ ⊆ V (G) of size at most k such that G\S′ ∈ exc(F).

In other words, given an input (G, k, S) of F-M-Deletion-Compression, we have at hand a
graph G and a “slightly larger than k” hitting set S, and we aim to find a hitting set of size at most
k, that is a certificate that (G, k) is a yes-instance of F-M-Deletion. Given this set S, we can
directly assume that G \S does not contain a big clique as a minor and therefore we can deal with
this minor-free graph, and thus, due to Proposition 10, we can obtain either a tree decomposition
of G of “small” width (and solve the problem using the dynamic programming algorithm of [5]),
or a flat wall on top of which we build our branching and irrelevant vertex technique arguments.
In this way, we manage to avoid the “big clique” possible output of Proposition 10. However, this
swifting from F-M-Deletion to F-M-Deletion-Compression comes together with an extra
linear factor in the running time of the algorithm, as observed in the following (see [15]).
Observation 20. If there is an algorithm solving F-M-Deletion-Compression in f(k) · nc-time,
then there exists an algorithm solving F-M-Deletion in O(f(k) · nc+1)-time.

In Subsection 5.2 we prove that F-M-Deletion-Compression can be solved in 2poly(k)·n2-time
(Lemma 21). This along with Observation 20 yield Theorem 1.

5.2 The algorithm

In this subsection we present the algorithm solving F-M-Deletion-Compression.
We set c̃a,` := f4(a, f8(a, `)) = 22O((a+`)·log(a+`))

, where f4 is the number of different folios given in
Proposition 11 and f8 is the function given in Proposition 15, in order to find an irrelevant vertex.

Lemma 21. Let F be a finite collection of graphs. There is an algorithm solving F-M-Deletion-
Compression in 2Os(k2·(c+2)) · n2-time, where a = aF , s = sF , ` = `F , and c = c̃a,`.

Proof. For simplicity, in this proof, we use c instead of c̃aF ,`F , s instead of sF , ` instead of `F , a
instead of aF , and recall that ` = O(s2) and a ≤ s. Also, we set

z = f7(a− 1, `, 3, k), d = f8(a, `), b = f6(z, a, a, d) = OsF (kc),
m = f9(a, s, k), x = f10(a, s, k), l = (f2(s) + k + 1) · x,
p = f11(a, s, k), h = f12(l + 1, b, p), and r = odd(max{m,h}) = Os(kc+2).

We present the algorithm Solve-Compression, whose input is a quadruple (G, k′, k, S) where G
is a graph, k′ and k are non-negative integers with k′ ≤ k, and S is a subset of V (G) such that
|S| = k and G \ S ∈ exc(F). The algorithm returns, if it exists, a solution for F-M-Deletion on
(G, k′). Certainly, we may assume that k′ < k, otherwise S is already a solution and we are done.
The steps of the algorithm are the following:

20

Step 1. Run the algorithm of Proposition 10 with input (G \ S, r, s). Since G \ S ∈ exc(F) and
F ≤m Ks, the algorithm outputs, in time 2Os(r2) ·n = 2Os(k2·(c+2)) ·n, either a tree decomposition of
G \ S of width at most at most f3(s) · r, or a set A ⊆ V (G) with |A| ≤ f2(s) and a regular flatness
pair (W,R) of G \A of height r. In the first case, we solve F-M-Deletion-Compression in time
2Os(r log r) · n = 2Os(kc+2 log k) · n using the algorithm of Proposition 4. In what follows we examine
the second case, where the algorithm of Proposition 10 outputs a set A ⊆ V (G) with |A| ≤ f2(s)
and a regular flatness pair (W,R) of G \A of height r.

We consider a (W,R)-canonical partition Q̃ of G \ (S ∪A). We compute, in O(n)-time, the set

A? = {v ∈ S ∪A | v is adjacent, in G, to vertices of at least x p-internal bags of Q̃}

and we proceed to the second step.

Step 2. The algorithm examines two cases depending on the size of the A?. In the first case, the
branching case, the outcome is a set of vertices, the set S ∪A, that should intersect every possible
solution. In the second case, the irrelevant vertex case, the outcome is an irrelevant vertex.

[Branching case]. It holds that |A?| ≥ a. In this case the algorithm recursively calls
Solve-Compression with input (G \ x, k′ − 1, |S \ x|, S \ x) for every x ∈ A?, and if one of these
new instances is a yes-instance, certified by a set S̄, then returns S̄ ∪ {x}, otherwise it returns that
(G, k′) is a no-instance.

Proposition 18 implies that the above branching step of the algorithm is correct.

[Irrelevant vertex case]. It holds that |A?| < a. We consider a family W = {W1, . . . ,Wl+1} of
l + 1 b-subwalls of W such that for every i ∈ [l + 1], ⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wi) is a subgraph of ⋃⋃⋃⋃⋃⋃⋃⋃⋃{Q |
Q is a p-internal bag of Q̃} and for every i, j ∈ [l + 1], where i 6= j, there is no internal bag Q ∈ Q̃
that contains vertices of both V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wi)) and V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wj)). The existence of W
follows from the fact that r ≥ h = f12(l + 1, b, p) and Proposition 19.

Notice that the vertices in (S∪A)\A? are adjacent, in G, to vertices of at most x·|(S∪A)\A?| ≤
x ·(f2(s)+k+1) = l p-internal bags of Q̃. Hence, taking into account the aforementioned properties
of the walls W1, . . . ,Wl+1, there exists an i ∈ [l+ 1] such that no vertex in (S ∪A) \A? is adjacent
to vertices of V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wi)). In other words, if there exists a vertex v ∈ V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wi))
that is adjacent, in G, to a vertex u ∈ S ∪A, then u ∈ A?. The fact that |A?| < a implies that, for
this i, there are less than a vertices in S ∪A that are adjacent to vertices of V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wi)).

Since Wi is a b-subwall of W and (W,R) is a flatness pair of G\ (S∪A), we apply the algorithm
of Proposition 8, and obtain, in linear time, a flatness pair (W̃i, R̃i) of G \ (S ∪ A) that is a Wi-
tilt of (W,R). Notice that since (W̃i, R̃i) is a Wi-tilt of (W,R), compassR̃i

(W̃i) is a subgraph of⋃⋃⋃⋃⋃⋃⋃⋃⋃
influenceR(W̄i) and, due to Observation 7, (W̃i, R̃i) is regular. This implies that, if Ai is the set

of vertices from S ∪ A that are adjacent to vertices of compassR̃i
(W̃i) in G, then Ai ⊆ A? and

therefore |Ai| < a. Notice that, by adding the vertices of (S ∪ A) \ Ai to G \ (S ∪ A), we obtain a
flatness pair (W̃i, R̃

′
i) of G\Ai such that compassR̃i

(W̃i) = compassR̃′i(W̃i). Applying the algorithm
of Proposition 14 for (b, a, a, d,G,Ai, W̃i, R̃

′
i), we obtain a flatness pair (W̆i, R̆i) of G \Ai of height

z that is d-homogeneous with respect to 2Ai and is a W̃ ′i -tilt of (W̃i, R̃i) for some subwall W̃ ′i of
W̃i. Due to Observation 7, (W̆i, R̆i) is also regular. This algorithm runs in 2Os(k log k) · n-time.

21

We now apply Find-Irrelevant-Vertex of Corollary 17 for (k, a,G,Ai, W̆i, R̆i) and obtain a
vertex v such that (G, k) and (G \ v, k) are equivalent instances of F-M-Deletion. According to
Corollary 17, this vertex can be detected in linear time, and the algorithm correctly calls recursively
Solve-Compression with input (G \ v, k′, k, S). This completes the irrelevant vertex case.

Recall that |S ∪A| ≤ k + 1 + f2(s) = Os(k). Therefore, if T (n, k′, k) is the running time of the
above algorithm, then

T (n, k′, k) ≤ 2Os(k2·(c+2)) · n+ max{T (n− 1, k′, k),Os(k) · T (n, k − 1, k)}

that, given that k′ ≤ k, implies that T (n, k′, k) = 2Os(k2·(c+2)) · n2.

Notice now that the output of Solve-Compression on (G, k, k + 1, S) gives a solution for F-
M-Deletion-Compression on this instance.

6 The apex-minor free case

In this section we present an improved algorithm solving F-M-Deletion in the case where aF = 1.
The existence of this algorithm proves Theorem 2. In Subsection 6.1, we show that a graph that
contains a flat wall that is “highly connected” to a vertex in its apex set, also contains any apex
graph as a minor. In Subsection 6.2, we provide an algorithm that will allow us to detect a wall
inside a graph G in linear time. In Subsection 6.3, we provide the improved algorithm that solves
F-M-Deletion in the case where aF = 1 and, in Subsection 6.4, we prove its correctness.

6.1 Finding an apex graph as a minor

Grids. Let k ∈ N≥2. We use the term k-grid to refer to the (k × k)-grid. We say that a graph is
a partially triangulated r-grid if it can be obtained from an r-grid after adding edges in such a way
that the remaining graph remains planar.

Let k, r ∈ N≥2. A vertex of a (k × r)-grid is called internal if it has degree four, and otherwise
it is called external. We define the perimeter of a (k × r)-grid to be the unique cycle of the grid of
length at least three that does not contain internal vertices.

Figure 3: A 9-grid and its central 5-grid.

Let r ∈ N≥2 and H be an r-grid. Given an i ∈ d r2e, we define the i-th layer of H recursively as
follows. The first layer of H is its perimeter, while, if i ≥ 2, the i-th layer of H is the (i − 1)-th
layer of the grid created if we remove from H its perimeter. Given two odd integers r, q ∈ N≥3 such

22

that q ≤ r and an r-grid H, we define the central q-grid of H to be the graph obtained from H if
we remove from H its r−q

2 first layers. See Figure 3 for an illustration of the notions defined above.
Given a partially triangulated r-grid H, we call central q-grid of H the subgraph of H induced by
the vertices of the central q-grid of the underlying grid of H.

Given a graph G and a vertex v ∈ V (G), we say that a graph H is a v-fixed contraction of G
if H can be obtained from G after contracting edges that are not incident with v. A graph H is a
v-apex partially triangulated r-grid if it can be obtained from a partially triangulated r-grid Γ after
adding a new vertex v and some edges between v and vertices in V (Γ). Α complete v-apex partially
triangulated r-grid is a graph obtained from a v-apex partially triangulated r-grid by adding every
edge between v and the vertices of the grid.

The following result is a special case of [51, Lemma 29].

Proposition 22. There exist three functions f13, f14, and f15 : N→ N, such that if r ∈ N, H is a
v-apex partially triangulated h-grid, where v ∈ V (H) and h ≥ f13(r)+2 ·f15(r), and vertex v has at
least f14(r) neighbors in the central f13(r)-grid of H \{v}, then H contains as a v-fixed contraction
a complete v-apex partially triangulated r-grid. Moreover, f13(r) = O(r5), f14(r) = O(r6), and
f15(r) = O(r2).

The following easy observation intuitively states that every planar graph H is a minor of a big
enough grid, where the relationship between the size of the grid and |V (H)| is linear (see e.g., [50]).

Proposition 23. There is a function f16 : N→ N such that every planar graph on n vertices is a
minor of the f16(n)-grid. Moreover, f16(n) = O(n).

In the proof of Theorem 2, we will need the following result.

Lemma 24. There exist three functions f17, f18, f19 : N→ N, such that if F is a finite set of graphs
containing an apex graph, G is a graph, A is a subset of V (G), (W,R) is a flatness pair of G \A of
height at least f17(sF), Q̃ is a (W,R)-canonical partition of G \A, and there is a vertex in A that
is adjacent, in G, to at least f18(sF) f19(sF)-internal bags of Q̃, then F ≤m G.

Proof. Let f13, f14, and f15 be the functions of Proposition 22 and f16 be the function of Propo-
sition 23. We set r = f16(sF − 1), f17(sF) = f13(r) + 2 · f15(r) + 2, f18(sF) = f14(r), and
f19(sF) = f15(r). Let G be a graph, A ⊆ V (G), (W,R) be a flatness pair of G\A of height h, where
h ≥ f17(sF), Q̃ be a (W,R)-canonical partition of G \ A, and v be a vertex in A that is adjacent,
in G, to at least f18(sF) f19(sF)-internal bags of Q̃.

We contract every bag in Q̃ to a vertex. Observe that this results in a planar graph (since
(W,R) is a flatness pair) that is a partially triangulated (h− 2)-grid Γ̄ (whose vertices correspond
to the internal bags of Q̃) together with an extra vertex uext (which corresponds to the external
bag of Q̃) that is adjacent to all the vertices in the perimeter of Γ̄. We contract an edge between
uext and a vertex in the perimeter of Γ̄ and we denote by Γ the obtained partially triangulated
(h − 2)-grid. We set Γ+v to be the graph obtained from Γ by adding the vertex v and the edges
{v, u}, if u is a vertex of Γ that corresponds to a bag Q ∈ Q̃ that contains a vertex adjacent, in G,
to v. Notice that Γ+v is a v-apex partially triangulated (h−2)-grid that is a minor of G. Moreover,
observe that since v is adjacent, in G, to vertices of an f19(sF)-internal bag of Q̃, then, since
f19(sF) = f15(r) and h− 2 ≥ f13(r) + 2 · f15(r), vertex v is also adjacent to a vertex in the central

23

f19(sF)-grid of Γ = Γ+v \ {v}. Thus, v has at least f18(sF) neighbors in the central f19(sF)-grid of
Γ. By Proposition 22, Γ+v contains as a v-fixed contraction a complete v-apex r-grid and therefore,
since r = f16(sF − 1), by Proposition 23 every apex graph on at most sF vertices is a minor of G.
Thus, F ≤m G, and the lemma follows.

6.2 Quickly finding a wall

In this subsection we prove Lemma 26 that intuitively states that there is an algorithm that, given
a graph G and two non-negative integers r and k, outputs either that (G, k) is a no-instance of
F-M-Deletion, or a report that the treewidth of G is polynomially bounded by r and k, or
an r-wall of G. Before stating Lemma 26, we present the following result of Kawarabayashi and
Kobayashi [32], which provides a linear relation between the treewidth and the height of a largest
wall in a minor-free graph.

Proposition 25. There is a function f20 : N→ N such that, for every t, r ∈ N and every graph G
that does not contain Kt as a minor, if tw(G) ≥ f20(t) · r, then G contains an r-wall as a subgraph.
In particular, one may choose f20(t) = 2O(t2·log t).

Lemma 26 is a variation of [51, Lemma 11] that we prove in this subsection. The version
presented here will be useful for the design of the algorithm of Theorem 2. Recall that sF =
max{|V (H)| | H ∈ F}.

Lemma 26. There exists an algorithm with the following specifications:

Find-Wall(G, r, k)
Input: A graph G, an odd r ∈ N≥3, and a k ∈ N.
Output: One of the following:

• Either a report that G has treewidth at most f20(sF) · r + k, or

• an r-wall W of G, or

• a report that (G, k) is a no-instance of F-M-Deletion.

Moreover, this algorithm runs in 2OsF (r2+(k+r)·log(k+r)) · n-time.

The algorithm of Lemma 26 is a recursive one. Namely, given an instance of this algorithm, we
compute a smaller-sized instance and recurse. This is achieved by using the following result that
is derived from [44]. For a detailed analysis of the results of [44], see [3].

Proposition 27. There exists an algorithm with the following specifications:

Input: A graph G and a t ∈ N such that |V (G)| ≥ 12t3.
Output: A graph G? such that |V (G?)| ≤ (1− 1

16t2) · |V (G)| and:

• Either G? is a subgraph of G such that tw(G) = tw(G?), or

• G? is obtained from G after contracting the edges of a matching in G.

Moreover, this algorithm runs in 2O(t) · n-time.

24

We now have all the ingredients to prove Lemma 26.

Proof of Lemma 26. We set c := f20(sF) · r+ k. We now describe a recursive algorithm as follows.

We first argue for the base case, namely when |V (G)| < 12c3. To check whether tw(G) ≤ c, we
use the algorithm of Arnborg et al. [4], which runs in time O(|V (G)|c+2) = 2OsF ((r+k)·log(r+k)), and
if this is the case, we report the same and stop. If not, we aim to find an r-wall of G or conclude
that we are dealing with a no-instance. We first consider an arbitrary ordering (v1, . . . , v|V (G)|)
of the vertices of G. For each i ∈ [|V (G)|], we set Gi to be the graph induced by the vertices
v1, . . . , vi. We iteratively run the algorithm of Proposition 3 on Gi and c for increasing values of
i. This algorithm runs in 2O(c) · |V (G)| = 2OsF (r+k)-time. Let j ∈ [|V (G)|] be the smallest integer
such that the above algorithm outputs a report that tw(Gj) > c and notice that there exists a tree
decomposition (Tj , χj) of Gj (obtained by the one of Gj−1 by adding the vertex vj to all the bags)
of width at most 5c+ 5. Thus, we can call the algorithm of Proposition 4 with input (Gj , 5c+ 5, k)
(which runs in 2OsF (c·log c) · |V (Gj)| = 2OsF ((r+k)·log(r+k))-time) in order to find, if it exists, a set
Sj ⊆ V (Gj) such that |Sj | ≤ k and F �m Gj \ Sj . We distinguish two cases.

• If such a set Sj does not exist, then we can safely report that (G, k) is a no-instance.

• If such a set Sj exists, then we call the algorithm of Proposition 5 for Gj \ Sj (and the
decomposition of Gj \ Sj obtained from (Tj , χj) by removing the vertices of Sj from the
all the bags in order to check whether it contains an elementary r-wall W as a minor. This
algorithm runs in 2O(c·log c) ·rO(c) ·2O(r2) · |V (Gj \Sj)| = 2OsF ((r+k)·log(r+k)) ·rOsF (r+k) ·2O(r2) =
2OsF (r2+(r+k)·log(r+k))-time, since |E(W)| = O(r2). Since Gj \ Sj does not contain KsF as a
minor and tw(Gj \ Sj) ≥ c − k = f20(sF) · r and because of Proposition 25, this algorithm
will output an elementary r-wall W of Gj \ Sj . We also return W as a wall of G.

Therefore, in the case where |V (G)| < 12c3, we obtain one of the three possible outputs in time
2OsF (r2+(r+k) log(r+k)).

If |V (G)| ≥ 12c3, then we call the algorithm of Proposition 27 with input (G, c), which outputs
a graph G? such that |V (G?)| ≤ (1− 1

16c2) · |V (G)| and

• either G? is a subgraph of G such that tw(G) = tw(G?), or

• G? is obtained from G after contracting the edges of a matching in G.

In both cases, we recursively call the algorithm on G? and we distinguish the following two
cases.

Case 1: G? is a subgraph of G such that tw(G) = tw(G?).

(a) If the recursive call on G? reports that tw(G?) ≤ c, then we return that tw(G) ≤ c.

(b) If the recursive call on G? outputs an r-wall W of G?, then we return W as a wall of G.

(c) If (G?, k) is a no-instance, then we report that (G, k) is also a no-instance.

Case 2: G? is obtained from G after contacting the edges of a matching in G.

25

(a) If the recursive call on G? reports that tw(G?) ≤ c, then we do the following. We first
notice that the fact that tw(G?) ≤ c implies that tw(G) ≤ 2c, since we can obtain a tree
decomposition (T , χ) of G from a tree decomposition (T ?, χ?) of G?, by replacing, in every
t ∈ T ?, every occurrence of a vertex of G? that is a result of an edge contraction by its
endpoints in G. Thus, we can call the algorithm of Proposition 4 with input (G, 2c, k) (which
runs in 2OsF (c log c) · n-time) in order to find, if it exists, a set S such that |S| ≤ k and
F �m G \ S. We distinguish again two cases.

• If such a set S does not exist, then the algorithm reports that (G, k) is a no-instance.
• If such a set S exists, then we apply the algorithm of Proposition 3 with input (G\S, 2c)
(which runs in 2O(c) · n-time) and we get a tree decomposition of G \ S of width at
most 10c + 4. Using this decomposition, we call the algorithm of Proposition 5 for
G \ S in order to check whether it contains an elementary r-wall W as a minor. This
algorithm runs in 2O(c·log c) · rO(c) · 2O(r2) ·n = 2OsF ((r+k)·log(r+k)) · rOsF (r+k) · 2O(r2) ·n =
2OsF (r2+(r+k)·log(r+k)) · n-time, since |E(G \ S)| = O(n) and |E(W)| = O(r2). If this
algorithm outputs an elementary r-wall W of G \ S, then we output W. Otherwise,we
can safely report, because of Proposition 25, that tw(G) ≤ f20(sF) · r + k = c.

(b) If the recursive call on G? outputs an r-wall W ? of G?, then by uncontracting the edges of
M in W ? we can return an r-wall of G.

(c) If (G?, k) is a no-instance, then we report that (G, k) is also a no-instance.

It is easy to see that the running time of the above algorithm is

T (n, k, r) ≤ T

(
(1− 1

12c2) · n, k, r
)

+ 2OsF (r2+(r+k) log(r+k)) · n,

which implies that T (n, k, r) = 2OsF (r2+(r+k) log(r+k)) · n, as claimed.

6.3 The algorithm

In this subsection we prove that, in the case where aF = 1, there is an algorithm that solves F-
M-Deletion in time 2OsF (k2(c+2)) · n2, where c = ca,`F and a = f2(sF). Note that the existence of
such an algorithm implies Theorem 2.

Let G be graph and let W be a wall of G. The drop, denoted by DW ′ , of a subwall W ′ of W
is defined as follows. If contract in G the perimeter of W to a single vertex v, DW ′ is the unique
2-connected component of the resulting graph that contains the interior ofW ′.We call the vertex v
the pole of the drop DW ′ .

Our algorithm avoids iterative compression in a similar fashion as done by Marx and Schlotter
in [42] for the Vertex Planarization problem. The algorithm has three main steps. We first
set a = f2(sF) and we define d = f8(a, `F),

β = f7(0, `F , 3, k), λ = f18(sF) · (a+ 1), q = f19(sF),
η = f12(λ+ 1, β, q), z = odd(max{f17(sF), η}), w = f6(z, a, 0, d),
b = 3 + f3(sF) · w, l = f10(1, sF , k) · (k + a), p = f11(1, sF , k),
h = f12(l + 1, b, p), r = odd(max{f9(1, sF , k), h}), and R = odd(f1(sF) · r + k) = OsF (kc+2).

26

Step 1. Run the algorithm of Lemma 26 with input (G,R, k) and, in 2OsF (k2(c+2)) · n-time, ei-
ther report a no-answer, or conclude that tw(G) ≤ f20(sF) · R + k and solve F-M-Deletion in
2OsF (kc+2·log k) · n-time using the algorithm of Proposition 4, or obtain an R-wall W̃ of G. In the
third case, consider all the

(R
b

)2 = 2OsF (kc log k) b-subwalls of W̃ and for each one of them, say W,
construct its drop DW , and run the algorithm of Proposition 10 with input (DW \ {vW }, w, sF),
where vW is the pole of DW . This takes time 2OsF (kc) · n. If for some of these drops the result is
a set A ⊆ V (DW \ {vW }) with |A| ≤ a and a regular flatness pair (W ′,R′) of (DW \ {vW }) \ A of
height w, then proceed to Step 2, otherwise proceed to Step 3.

Step 2. We apply the algorithm of Proposition 14 with input (z, a, 0, d,DW \ {vW }, A,W ′,R′),
which outputs a flatness pair (W̆ , R̆) of (DW \ {vW }) \ A of height z that is d-homogeneous
with respect to

(A
≤0
)

= {∅} and is a W ∗-tilt of (W ′,R′) for some subwall W ∗ of W ′. This takes
2OsF (k log k) · n-time. By Observation 7, (W̆ , R̆) is regular. Let A? := A ∪ {vW } and keep in mind
that (DW \ {vW }) \A = DW \A?. Consider all the β-subwalls of W̆ , which are at most

(z
β

)2 many,
and for each of them, say Ŵ , check in linear time whether there is an edge, in DW , between A? and
V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR̆(Ŵ)). If this is the case for every such a subwall, then proceed to Step 3. If not, let
Ŵ be a β-subwall of W̆ such that no vertex of A? is adjacent to V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR̆(Ŵ)). By applying
Proposition 8 for the flatness pair (W̆ , R̆) of DW \ A? and the subwall Ŵ of W̆ , we obtain in
linear time a Ŵ -tilt (W ′′,R′′) of (W̆ , R̆). Keep in mind that (W ′′,R′′) is a flatness pair of DW \A?
which is also regular and d-homogeneous with respect to {∅}, due to Observation 7 and Observa-
tion 12, respectively. Also, notice that, since (W ′′,R′′) is a Ŵ -tilt of (W ′,R′), compassR′′(W ′′) is
a subgraph of ⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR′(Ŵ) and therefore no vertex of A? is adjacent, in DW , to a vertex of
compassR′′(W ′′). The latter implies that we can obtain a 7-tuple R̃′′ from R′′ by adding all vertices
of G \ V (compassR′′(W ′′)) such that compassR̃′′(W ′′) = compassR′′(W ′′) and (W ′′, R̃′′) is a flatness
pair of G. We apply Find-Irrelevant-Vertex of Corollary 17 with input (k, 0, G, ∅,W ′′, R̃′′) and
obtain, in linear time, an irrelevant vertex v such that (G, k) and (G\ v, k) are equivalent instances
of F-M-Deletion. Then the algorithm runs recursively on the equivalent instance (G \ v, k).
Notice that Step 2 can be seen as the irrelevant vertex case of our algorithm.

Step 3. Consider all the r-subwalls of W̃ , which are at most
(R
r

)2 = 2OsF (kc log k) many, and for
each of them, compute its canonical partition Q. Then, for each p-internal bag Q of Q, add a
new vertex vQ and make it adjacent to all vertices in Q, then add a new vertex xall and make it
adjacent to all xQ’s, and in the resulting graph, for every vertex y of G that is not in the union of
the internal bags of Q, check, in time O(k · |E(G)|) = OsF (k · n) (using standard flow techniques),
whether there are f10(1, sF , k) internally vertex-disjoint paths from xall to y. If this is indeed the
case for some y, then y should belong to every solution of F-M-Deletion for the instance (G, k),
and the algorithm runs recursively on the equivalent instance (G \ y, k − 1). If no such a vertex y
exists, then report that (G, k) is a no-instance of F-M-Deletion.
Note that Step 3 can be seen as a trivial branching case where the only choice is vertex y.

Notice that the third step of the algorithm, when applied takes time 2OsF (kc log k) ·n2. However,
it cannot be applied more than k times during the course of the algorithm. As the first step runs
in time 2OsF (k2(c+2) log k) · n, and the second step runs in time 2OsF (k log k) · n, they may be applied

27

at most n times, and the claimed time complexity follows.

6.4 Correctness of the algorithm

In this subsection we prove the correctness of the algorithm presented in Subsection 6.3.
Recall that a = f2(sF), d = f8(a, `F),

β = f7(0, `F , 3, k), λ = f18(sF) · (a+ 1), q = f19(sF),
η = f12(λ+ 1, β, q), z = odd(max{f17(sF), η}), w = f6(z, a, 0, d),
b = 3 + f3(sF) · w, l = f10(1, sF , k) · (k + a), p = f11(1, sF , k),
h = f12(l + 1, b, p), r = odd(max{f9(1, sF , k), h}), and R = odd(f1(sF) · r + k) = OsF (kc+2).

Let (G, k) be a yes-instance and let S be a solution, i.e., a subset of V (G) of size at most k
such that G \ S ∈ exc(F) and let W̃ be an R-wall of G. Then, since R ≥ f1(sF) · r + k, there
is an (f1(sF) · r)-subwall of W̃ , say W ?, that does not contain vertices of S. The wall W ? is an
(f1(sF) · r)-wall of G \S, and therefore by Proposition 9 there is a set A ⊆ V (G \S), with |A| ≤ a,
and a flatness pair (W,R) of G \ (S ∪A) of height r.

Let Q̃ be a (W,R)-canonical partition of G\ (S∪A). For each p-internal bag Q of Q̃, add a new
vertex vQ and make it adjacent to all vertices in Q, then add a new vertex xall and make it adjacent
to all vQ’s. In the resulting graph, if there are f10(1, sF , k) internally vertex-disjoint paths from
xall to a vertex v ∈ S ∪ A, then this is checked in Step 3 (since connectivity of the internal bags
implies that every such a path can be rerouted in order to intersect the wall) and the algorithm
correctly (due to Proposition 18) runs recursively on the equivalent instance (G \ v, k − 1). If this
is not the case, then for each vertex v of S ∪A there are less than f10(1, sF , k) p-internal bags of Q̃
that contain vertices adjacent to v. This means that the p-internal bags of Q̃ that contain vertices
adjacent to some vertex of S ∪A are at most f10(1, sF , k) · (k + a) = l.

We consider a family W = {W1, . . . ,Wl+1} of l + 1 b-subwalls of W such that for every i ∈
[z], ⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wi) is a subgraph of ⋃⋃⋃⋃⋃⋃⋃⋃⋃{Q | Q is a p-internal bag of Q̃} and for every i, j ∈ [z],
with i 6= j, there is no internal bag of Q̃ that contains vertices of both V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wi)) and
V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR(Wj)). The existence of W follows from the fact that r ≥ h = f12(l + 1, b, p) and
Proposition 19.

The fact that the p-internal bags of Q̃ that contain vertices adjacent to some vertex of S ∪ A
are at most l implies that there exists an i ∈ [l + 1] such that no vertex of V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR̂(Wi)) is
adjacent, in G, to a vertex in S ∪ A. Thus, if DWi is the drop of Wi, and D−Wi

:= DWi \ {vWi},
where vWi is the pole of DWi , then D−Wi

≤m G \ (S ∪A). This, in turn, implies that D−Wi
∈ exc(F)

and therefore D−Wi
does not contain KsF as a minor. Additionally, we notice that D−Wi

contains
the central (b− 2)-subwall W̄i of Wi as a subgraph and since W̄i has height b− 2 = f3(sF) ·w+ 1,
it holds that tw(D−Wi

) > f3(sF) · w. Therefore, by applying the algorithm of Proposition 10 with
input (D−Wi

, w, sF), we must find a set A ⊆ V (DWi \ {vWi}) with |A| ≤ a and a regular flatness
pair (W ′,R′) of D−Wi

\A of height w. This should be detected in Step 1.
We apply the algorithm of Proposition 14 with input (z, a, 0, d,D−Wi

, A,W ′,R′), which outputs
a flatness pair (W̆ , R̆) of D−Wi

\ A of height z that is d-homogeneous with respect to
(A
≤0
)

= {∅}
and is a W ∗-tilt of (W ′,R′) for some subwall W ∗ of W ′. We set A? := A∪ {vWi} and keep in mind

28

that DWi \ A? = D−Wi
\ A. Let Q̃′ be a (W̆ , R̆)-canonical partition of DWi \ A?. Since DWi is a

subgraph of D−Wi
and D−Wi

∈ exc(F), we observe that DWi ∈ exc(F). Hence, as a consequence of
Lemma 24, every vertex in A? has neighbors in less than f18(sF) q-internal bags of Q′′. Therefore,
since λ = f18(sF) · (a + 1) ≥ f18(sF) · |A?| and ρ ≥ η = f12(λ + 1, β, q), it follows, due to
Proposition 19, that there is a β-subwall W̄ of W ′ such that no vertex of V (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceR′(W̄)) is
adjacent, in DWi , to a vertex in A?. Therefore, this β-subwall W̄ ofW ′ should be detected in Step 2.

7 Algorithms for variants of Vertex Deletion to G

We now present how our approach can be modified so to obtain FPT-algorithms for several variants
of the Vertex Deletion to G problem.

7.1 The general framework

Notice that both algorithms in Section 5 and Section 6 are based on one of the following three
scenarios for Vertex Deletion to G with input (G, k).

[Bounded treewidth case] A tree decomposition of G of width kO(1), or

[Branching case] a set B with |B| = O(k) such that (G, k) is a yes-instance if and only if, for
some x ∈ B, (G \ x, k − 1) is a yes-instance, or

[Irrelevant vertex case] a vertex x such that (G, k) is a yes-instance if and only if (G \ x, k) is
a yes-instance,

For each of the variants of Vertex Deletion to G that we consider, the algorithm recursively
runs on an equivalent instance with one vertex less (irrelevant vertex case), or branches on O(k)
equivalent instances where both k and the size of the graph are one less (branching case). The
eventual outcome is to reduce the problem to the bounded treewidth case, producing a tree de-
composition of G of width kO(1) (bounded treewidth case). In each variant of the problem, the
bounded treewidth case can be treated by a suitable modification of the dynamic programming
algorithm of [6], taking into account the main combinatorial result in [5]. For each variant that we
treat, the algorithm of Section 5 assumes that we have at hand a solution of Vertex Deletion
to G of size k, which can be found by the algorithm in Theorem 1.

We next present the problem variants and explain how to adapt the branching case and the
irrelevant vertex case for each of them.

7.2 Variants of Vertex Deletion to G

A common part of the inputs of all problems below is the pair (G, k), where G is a graph and k is
a non-negative integer, i.e., an input of Vertex Deletion to G.

29

Annotated. In the annotated version of Vertex Deletion to G, the input is a triple (G, k,R),
where R ⊆ V (G), and the problem asks for a solution S with S ⊆ R.

[Branching case]: we branch on (G \ x, k − 1, R \ x) for all the annotated vertices of B, i.e.,
for every x ∈ B ∩R. If there is no such a vertex, we report that (G, k,R) is a no-instance.

[Irrelevant vertex case]: we recurse on (G \ x, k,R \ x), as every irrelevant vertex for the
original problem is also an irrelevant vertex for its annotated variant.

Modulo. In the modulo version of Vertex Deletion to G, the input is a quadruple (G, k, q, p)
where q, p are integers, p is a prime, and q < p. The question is whether there is a solution S of
size at most k where |S| ≡ q (mod p).

[Branching case]: we branch on (G \ x, k − 1, q − 1 (mod p), p) for every x ∈ B.

[Irrelevant vertex case]: it is the same, as every irrelevant vertex for the original problem is
also an irrelevant vertex for this variant.

Weighted. In the weighted version of Vertex Deletion to G, the input is a triple (G, k,w)
where w : V (G) → R is a weight function assigning positive real weights to the vertices o G. The
problem asks for a solution S with ∑v∈S w(v) ≤ k.

[Branching case]: we branch on (G \ x, k −w(x),w \ {(x,w(x))}), for every x ∈ B.

[Irrelevant vertex case]: it is the same, as every irrelevant vertex for the original problem is
also an irrelevant vertex for its weighted variant.

For the above problem, if ε = min{w(x) | x ∈ V (G)}, then the parametric dependence of the
derived algorithm is 2poly(k/ε), as the size of the solution S is at most k/ε.

Counting. In the counting version of Vertex Deletion to G with input (G, k), the output is
the number #G(G, k) of all solutions of Vertex Deletion to G of size (at most) k. We treat the
case where we count solutions of size exactly k as the “≤ k”-case can be easily reduced to it.

[Branching case]: return ∑x∈B #G(G \ x, k − 1).

[Irrelevant vertex case]: return #G(G \ x, k − 1) + #(G \ x, k).

The above creates T (n, k) subproblems on bounded treewidth graphs, where

T (n, k) = max{O(k) · T (n− 1, k − 1), T (n− 1, k − 1) + T (n− 1, k)}.

This makes a total of 2O(k) · n problems, each solvable in 2kO(1) · n-time by the counting version of
the dynamic programming algorithm of [6], taking into account the analysis of [5].

30

Colored. In the colored version of Vertex Deletion to G, the input is a triple (G, k, χ)
where χ : V (G) → [k] is a function assigning colors from [k] to the vertices of G. The problem
asks for a solution S to Vertex Deletion to G that carries all k colors, i.e., for each i ∈ [k],
|S ∩ χ−1(i)| = 1. (Notice that the requested solution must have size exactly k.) To deal with this
problem, we deal with its annotated version where we permit χ : V (G) → {0, 1, . . . , k}, i.e., the
vertices in R := ⋃

i∈[k] χ
−1(i) are annotated, while the vertices in χ−1(0) cannot participate in a

solution (we call these vertices black vertices).

[Branching case]: we branch on (G \ x, k − 1, χ|x), for every x ∈ B ∩R, where

χ|x = {(v, χ(v)) | v ∈ V (G) \ χ−1(χ(x))} ∪ {(v, 0) | v ∈ χ−1(χ(x)) \ {x}}.

The new coloring χ|x turns black all vertices carrying the color of x. If B ∩ R = ∅, i.e., all
vertices in B are black, then we have a no-instance.

[Irrelevant vertex case]: Before we apply the irrelevant vertex case, we check whether there is
some i ∈ [k] with |χ−1(i)| ≤ 1, i.e., there is a color in [k] that appears once or is not used at
all. If |χ−1(i)| = 0, then we return that we have a no-instance. If χ−1(i) = {x}, then x should
belong to every possible solution and, in this case, we recurse on (G\x, k−1, χ\{(x, χ(x))}).
If now each color is used at least twice, we recurse on (G \ x, k, χ \ {(x, χ(x))}), i.e., apply
the irrelevant vertex case.

8 Discussion and concluding remarks

Apices of topological minors. Very recently, Fomin et al. [24] gave an FPT-algorithm running
in time Os,k(n4) for the following problem: for a fixed finite family of graphs F , each on at most s
vertices, decide whether an n-vertex input graph G is a k-apex of the class of graphs that exclude
the graphs in F as topological minors4. For every graph H, there is a finite set H of graphs such
that a graph G contains H as a minor if and only if G contains a graph in H as a topological
minor. Based on this observation, the result of Fomin et al. [24] implies that for every minor-closed
graph class G, Vertex Deletion to G admits an O(h(k, s) · n4)-time FPT-algorithm, where s
is the maximum size of an obstruction of G. Notice that this implication is a solid improvement
on Vertex Deletion to G with respect to the result of [2], where only the computability of h
is proved. However, as mentioned in [24], even for fixed values of s, the dependence of h on k is
humongous. Therefore, Theorem 1 can be seen as orthogonal to the result of [24]. An interesting
question is whether the ideas of this paper can be useful towards improving the the parametric
dependence of the algorithm of [24].

Limitations of the irrelevant vertex technique. An intriguing open question is whether
Vertex Deletion to G admits a 2OsF (kc) · nO(1)-time algorithm for some universal constant c
that does not depend on the class G. Clearly, this is not the case of the algorithms of Theorem 1 and
Theorem 2, running in time 2OsF (k2(c+2)) ·n3 and 2Os(k2(c+2)) ·n2, respectively, where c is the palette-
variety of the minor-obstruction set F of G which, from the corresponding proofs, is estimated to

4The definition is as minors, except that only edges incident with at least a degree-two vertex can be contracted.

31

be c = 22O(s2·log s) and c = 22O(s24·log s)
, respectively (recall that s is the maximum size of a minor-

obstruction of G). We tend to believe that this dependence is unavoidable if we want to use the
irrelevant vertex technique, as it reflects the price of homogeneity, mentioned in Subsection 3.4.
Having homogeneous walls is critical for the application of this technique (see Lemma 16) when
G is more general than surface-embeddable graphs (in the bounded genus case, all subwalls are
already homogeneous). Is there a way to prove that this behavior is unavoidable subject to some
complexity assumption? An interesting result of this flavor, concerning the existence of polynomial
kernels for Vertex Deletion to G, was given by Giannopoulou et al. [27] who proved that, even
for minor-closed families G that exclude a planar graph, the dependence on G of the degree of the
polynomial kernel, which exists because of [23], is unavoidable subject to reasonable complexity
assumptions.

Kernelization. As mentioned above, Giannopoulou et al. [27] provided a polynomial kernel for
Vertex Deletion to G in the case where G excludes a planar graph. To the best of our knowledge,
the existence of a polynomial kernel is open for every family G whose obstructions are all non-planar.
In particular, no polynomial kernel is known even for the Vertex Planarization problem.

Other modification operations. Another direction is to consider graph modification to a
minor-closed graph class for different modification operations. Our approach becomes just sim-
pler in the case where the modification operation is edge removal or edge contraction. In these
two cases, we immediately get rid of the branching part of our algorithms and only the irrelevant
vertex part needs to be applied. Another challenge is to combine all aforementioned modifications.
This is more complicated (and tedious) but not more complex. What is really more complex is to
consider as well edge additions. We leave it as an open research challenge (a first step was done for
the case of planar graphs [22]).

Lower bounds. Concerning lower bounds for Vertex Deletion to G under the Exponential
Time Hypothesis [28], we are not aware of any lower bound stronger than 2o(k) ·nO(1) for any minor-
closed class G. This lower bound already applies when F = {K2}, i.e., for the Vertex Cover
problem [8,28].

Acknowledgements. We wish to thank the anonymous reviewers of the conference version of this
paper for their comments and remarks that improved the presentation of this manuscript. More-
over, we wish to thank Dániel Marx for his valuable remarks and advises regarding the variants of the
problem discussed in Section 7.

References

[1] Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and Dimitrios M. Thilikos. Faster
parameterized algorithms for minor containment. Theoretical Computer Science, 412(50):7018–
7028, 2011. doi:10.1016/j.tcs.2011.09.015. 5, 9

32

https://doi.org/10.1016/j.tcs.2011.09.015

[2] Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proc.
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 641–650,
2008. doi:10.5555/1347082.1347153. 4, 31

[3] Ernst Althaus and Sarah Ziegler. Optimal Tree Decompositions Revisited: A Simpler Linear-
Time FPT Algorithm. CoRR, abs/1912.09144, 2019. arXiv:1912.09144. 5, 24

[4] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.
doi:10.1137/0608024. 25

[5] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
951–970, 2020. doi:10.1137/1.9781611975994.57. 5, 6, 8, 10, 14, 16, 17, 20, 29, 30

[6] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. I. General upper bounds. SIAM Journal on Discrete Mathematics, 34(3):1623–1648,
2020. doi:10.1137/19M1287146. 6, 14, 29, 30

[7] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. II. Single-exponential algorithms. Theoretical Computer Science, 814:135–152, 2020.
doi:10.1016/j.tcs.2020.01.026. 6

[8] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. III. Lower bounds. Journal of Computer and System Sciences, 109:56–77, 2020. doi:
10.1016/j.jcss.2019.11.002. 6, 32

[9] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374. 7

[10] Hans L. Bodlaender, Pinar Heggernes, and Daniel Lokshtanov. Graph modification problems
(dagstuhl seminar 14071). Dagstuhl Reports, 4(2):38–59, 2014. doi:10.4230/DagRep.4.2.38.
3

[11] Hans L. Bodlaender, Hirotaka Ono, and Yota Otachi. A faster parameterized algorithm for
pseudoforest deletion. Discrete Applied Mathematics, 236:42–56, 2018. doi:10.1016/j.dam.
2017.10.018. 4

[12] Andries E. Brouwer and Henk Jan Veldman. Contractibility and NP-completeness. Journal
of Graph Theory, 11(1):71–79, 1987. doi:10.1002/jgt.3190110111. 3

[13] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026. 4

[14] Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey
of parameterized algorithms and the complexity of edge modification. CoRR, abs/2001.06867,
2013. arXiv:2001.06867. 3

33

https://doi.org/10.5555/1347082.1347153
http://arxiv.org/abs/1912.09144
https://doi.org/10.1137/0608024
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1137/19M1287146
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.jcss.2019.11.002
https://doi.org/10.1016/j.jcss.2019.11.002
https://doi.org/10.1137/130947374
https://doi.org/10.4230/DagRep.4.2.38
https://doi.org/10.1016/j.dam.2017.10.018
https://doi.org/10.1016/j.dam.2017.10.018
https://doi.org/10.1002/jgt.3190110111
https://doi.org/10.1016/j.tcs.2010.06.026
http://arxiv.org/abs/2001.06867

[15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3. 3, 16, 20

[16] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. An im-
proved FPT algorithm and a quadratic kernel for pathwidth one vertex deletion. Algorithmica,
64(1):170–188, 2012. doi:10.1007/s00453-011-9578-2. 4

[17] Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, 5th edition, 2017. doi:10.
1007/978-3-662-53622-3. 7

[18] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1. 3

[19] Michael R. Fellows, Jan Kratochvíl, Matthias Middendorf, and Frank Pfeiffer. The complexity
of induced minors and related problems. Algorithmica, 13(3):266–282, 1995. doi:10.1007/
BF01190507. 3

[20] Michael R. Fellows and Michael A. Langston. Nonconstructive tools for proving polynomial-
time decidability. Journal of the ACM, 35(3):727–739, 1988. doi:10.1145/44483.44491. 4

[21] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X. 3

[22] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Modification to planarity
is fixed parameter tractable. In Proc. of the 36th International Symposium on Theoretical
Aspects of Computer Science (STACS), volume 126 of LIPIcs, pages 28:1–28:17, 2019. doi:
10.4230/LIPIcs.STACS.2019.28. 32

[23] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-Deletion:
Approximation, Kernelization and Optimal FPT Algorithms. In Proc. of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 470–479, 2012. doi:
10.1109/FOCS.2012.62. 4, 6, 32

[24] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Hitting topological minors is FPT. In Proc. of the 52nd Annual ACM Symposium on Theory
of Computing (STOC), pages 1317–1326, 2020. doi:10.1145/3357713.3384318. 6, 31

[25] Fedor V. Fomin, Saket Saurabh, and Neeldhara Misra. Graph modification problems: A
modern perspective. In Proc. of the 9th International Workshop on Frontiers in Algorithmics
(FAW), volume 9130 of LNCS, pages 3–6. Springer, 2015. doi:10.1007/978-3-319-19647-3\
_1. 3

[26] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979. URL: https://dl.acm.org/doi/10.
5555/574848. 3

34

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00453-011-9578-2
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/BF01190507
https://doi.org/10.1007/BF01190507
https://doi.org/10.1145/44483.44491
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.4230/LIPIcs.STACS.2019.28
https://doi.org/10.4230/LIPIcs.STACS.2019.28
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.1007/978-3-319-19647-3_1
https://doi.org/10.1007/978-3-319-19647-3_1
https://dl.acm.org/doi/10.5555/574848
https://dl.acm.org/doi/10.5555/574848

[27] Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. Uni-
form kernelization complexity of hitting forbidden minors. ACM Transactions on Algorithms,
13(3):35:1–35:35, 2017. doi:10.1145/3029051. 32

[28] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774. 32

[29] Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization algo-
rithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130. 4

[30] Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh, and Stéphan Thomassé. Hitting
and harvesting pumpkins. SIAM Journal on Discrete Mathematics, 28(3):1363–1390, 2014.
doi:10.1137/120883736. 4

[31] Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In Proc. of the
50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 639–648,
2009. doi:10.1109/FOCS.2009.45. 4

[32] Ken-ichi Kawarabayashi and Yusuke Kobayashi. Linear min-max relation between the
treewidth of an H -minor-free graph and its largest grid minor. Journal of Combinatorial
Theory, Series B, 141:165–180, 2020. doi:10.1016/j.jctb.2019.07.007. 5, 24

[33] Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. A new proof of the flat wall
theorem. Journal of Combinatorial Theory, Series B, 129:204–238, 2018. doi:10.1016/j.
jctb.2017.09.006. 5, 8, 10, 11, 13

[34] Ken-ichi Kawarabayashi and Paul Wollan. A Shorter Proof of the Graph Minor Algorithm:
The Unique Linkage Theorem. In Proc. of the 42nd ACM Symposium on Theory of Computing
(STOC), pages 687–694, 2010. doi:10.1145/1806689.1806784. 17

[35] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms, 12(2):21:1–21:41, 2016. doi:10.1145/
2797140. 4, 6

[36] Eun Jung Kim, Maria J. Serna, and Dimitrios M. Thilikos. Data-compression for parametrized
counting problems on sparse graphs. In Proc. of the 29th International Symposium on Al-
gorithms and Computation (ISAAC), volume 123 of LIPIcs, pages 20:1–20:13, 2018. doi:
10.4230/LIPIcs.ISAAC.2018.20. 6

[37] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Informa-
tion Processing Letters, 114(10):556–560, 2014. doi:10.1016/j.ipl.2014.05.001. 4

[38] Tomasz Kociumaka and Marcin Pilipczuk. Deleting Vertices to Graphs of Bounded Genus.
Algorithmica, 81(9):3655–3691, 2019. doi:10.1007/s00453-019-00592-7. 4

35

https://doi.org/10.1145/3029051
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1137/120883736
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1016/j.jctb.2019.07.007
https://doi.org/10.1016/j.jctb.2017.09.006
https://doi.org/10.1016/j.jctb.2017.09.006
https://doi.org/10.1145/1806689.1806784
https://doi.org/10.1145/2797140
https://doi.org/10.1145/2797140
https://doi.org/10.4230/LIPIcs.ISAAC.2018.20
https://doi.org/10.4230/LIPIcs.ISAAC.2018.20
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.1007/s00453-019-00592-7

[39] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica, 4:307–316, 1984. doi:10.1007/BF02579141. 6

[40] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:10.
1016/0022-0000(80)90060-4. 3

[41] Daniel Lokshtanov. Wheel-Free Deletion Is W[2]-Hard. In Proc. of the 3rd International
Workshop on Parameterized and Exact Computation (IWPEC), volume 5018 of LNCS, pages
141–147, 2008. doi:10.1007/978-3-540-79723-4_14. 3

[42] Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z. 4, 5, 26

[43] Rolf Niedermeier. Invitation to fixed parameter algorithms, volume 31. Oxford University
Press, 2006. doi:10.1093/ACPROF:OSO/9780198566076.001.0001. 3

[44] Ljubomir Perkovic and Bruce A. Reed. An improved algorithm for finding tree decompositions
of small width. International Journal of Foundations of Computer Science, 11(3):365–371,
2000. doi:10.1142/S0129054100000247. 5, 24

[45] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009. 5, 20

[46] Neil Robertson and Paul D. Seymour. Graph Minors. XIII. The Disjoint Paths Problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.
1006. 4, 5, 10, 14, 16

[47] Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001. 4

[48] Neil Robertson and Paul D. Seymour. Graph Minors. XXI. Graphs with unique linkages.
Journal of Combinatorial Theory, Series B, 99(3):583–616, 2009. doi:10.1016/j.jctb.2008.
08.003. 17

[49] Neil Robertson and Paul D. Seymour. Graph Minors. XXII. Irrelevant vertices in linkage
problems. Journal of Combinatorial Theory, Series B, 102(2):530–563, 2012. doi:10.1016/
j.jctb.2007.12.007. 17

[50] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.
1073. 23

[51] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. A more accurate view of the Flat
Wall Theorem. Manuscript submitted for publication, 2021. arXiv:2102.06463. 5, 8, 10, 11,
13, 15, 16, 23, 24

36

https://doi.org/10.1007/BF02579141
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/978-3-540-79723-4_14
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://doi.org/10.1142/S0129054100000247
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.jctb.2008.08.003
https://doi.org/10.1016/j.jctb.2008.08.003
https://doi.org/10.1016/j.jctb.2007.12.007
https://doi.org/10.1016/j.jctb.2007.12.007
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1006/jctb.1994.1073
http://arxiv.org/abs/2102.06463

[52] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-closed graph
classes. I. Bounding the obstructions. Manuscript submitted for publication, 2021. arXiv:
2103.00882. 4, 5, 8, 11, 15, 16, 18, 19

[53] Roded Sharan. Graph Modification Problems and their Applications to Genomic Research.
PhD thesis, Sackler Faculty of Exact Sciences, School of Computer Science, 2002. URL:
http://www.cs.tau.ac.il/thesis/thesis/Roded-Sharan-phd.pdf. 3

[54] Dimitrios M. Thilikos. Graph minors and parameterized algorithm design. In The Multivariate
Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion
of His 60th Birthday, volume 7370 of LNCS, pages 228–256. Springer, 2012. doi:10.1007/
978-3-642-30891-8_13. 16

[55] Andrew Thomason. The extremal function for complete minors. Journal of Combinatorial
Theory, Series B, 81(2):318–338, 2001. doi:10.1006/jctb.2000.2013. 6

37

http://arxiv.org/abs/2103.00882
http://arxiv.org/abs/2103.00882
http://www.cs.tau.ac.il/thesis/thesis/Roded-Sharan-phd.pdf
https://doi.org/10.1007/978-3-642-30891-8_13
https://doi.org/10.1007/978-3-642-30891-8_13
https://doi.org/10.1006/jctb.2000.2013

	1 Introduction
	2 Definitions and preliminary results
	2.1 Restating the problem
	2.2 Preliminaries

	3 Flat walls
	3.1 Walls and subwalls
	3.2 Paintings and renditions
	3.3 Flatness pairs
	3.4 Homogeneous walls

	4 Auxiliary algorithmic and combinatorial results
	4.1 Finding an irrelevant vertex
	4.2 Combinatorial results for branching

	5 The general algorithm
	5.1 Iterative compression
	5.2 The algorithm

	6 The apex-minor free case
	6.1 Finding an apex graph as a minor
	6.2 Quickly finding a wall
	6.3 The algorithm
	6.4 Correctness of the algorithm

	7 Algorithms for variants of Vertex Deletion to G
	7.1 The general framework
	7.2 Variants of Vertex Deletion to G

	8 Discussion and concluding remarks

