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2Laboratory of Cell Physics ISIS/IGBMC,

CNRS and Université de Strasbourg, Strasbourg, France

3Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
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Biological tissues change their shapes through collective interactions of cells. This coor-

dination sets length and time scales for dynamics where precision is essential, in particular

during morphogenetic events. However, how these scales emerge remains unclear. Here we

address this question using the pulsatile domains observed in confluent epithelial MDCK

monolayers where cells exhibit synchronous contraction and extension cycles of ≈ 5 hours

duration and ≈ 200 µm length scale. We report that the monolayer thickness changes gradu-

ally in space and time by more than two folds in order to counterbalance the contraction and

extension of the incompressible cytoplasm. We recapitulate these pulsatile dynamics using

a continuum model and show that incorporation of cell stiffness dependent height variations

is critical both for generating temporal pulsations and establishing the domain size. We pro-

pose that this feedback between height and mechanics could be important in coordinating

the length scales of tissue dynamics.
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I. INTRODUCTION

Cells as individual units display a variety of morphological changes during sensing [1], migra-

tion [2] and division [3] phenomena. When several individual cells are placed in close proximity

to each other, each cell exhibits a complex behavior that is often different from isolated condi-

tions [4]. This complexity further increases when hundreds to thousands of cells are organized in a

continuous tissue. The collective dynamics exhibited by tissue is distinct from specific characteris-

tics of individual cells [5]. Understanding the evolution of characteristics while transitioning from

one-to-many cells is a challenge. In order to characterize these emerging properties, a combina-

tion of experimental and theoretical approaches is important to show generic principles on simple

systems. In this context, spontaneous oscillations are attractive phenomena because of their clear

spatio-temporal characteristics [6].

Oscillations are critical for dynamic rearrangements during the development of several organ-

isms [7–10]. Length scales of oscillations span from molecular assemblies of proteins to group of

cells in tissues [11–15]. Similarly, the periods of oscillations scale from seconds to hours [16, 17].

Several studies using experiments and theory have explored the biological pathways and the under-

lying molecular actors [18–20]. Although different works propose various mechanisms that set the

length and time-scales associated with these pulsations, a thorough understanding of their origins

is still missing.

Spontaneous planar pulsations of cells are shown to occur in Madin-Darby Canine Kidney

(MDCK) monolayers [21–26]. We had previously showed [17] that pulsations appear randomly

on regular culture without any coating. We also reported that these pulsations can be controlled

by plating them on micro-patterns of controlled dimensions by matching pulsations sizes with grid

size. Using this setup, now we show that MDCK cells also undergo height variations that inversely

correlate with changes in area. We quantify the nature of these pulsations by using the power

spectrum of the velocity divergence field and observe the appearance of characteristic length and

time scales of ≈ 5 hours and ≈ 200 µm.

Several theoretical models, both discrete and continuum, have been developed to get insights

into different aspects of tissue pulsations and wave propagation [27–29]. The discrete descriptions

include active vertex [17, 26] and cellular phase field models [24], whereas the active continuum

frameworks use underlying viscous or elastic rheology of the tissue to model the phenomena [23, 28].
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The non-equilibrium activity is implemented in these models using cell polarity, motility, and active

stress [30]. These active components are generally coupled to tissue kinematics and sometimes also

with an additional chemical field such as myosin density [29]. In this paper, we developed a

simplest version of a 2−D continuum model in which the tissue deformation kinematics depend

on cell area and an active stress term. In such planar models, the tissue could be modeled to

either be compressible or incompressible in terms of area or volume. In the current work, we model

the tissue to be area compressible in 2D but incompressible in 3D along our observations of cell

deformation. On the basis of this assumption of 3D volume conservation with our estimate, we

also include a component to the planar tissue stress that we model to arise from spatial gradients

in the thickness of the epithelial monolayer. We find that this contribution to the stress provides

a part of the restoring force for pulsations and could play a critical role in setting the length scale

for the pulsations.

The paper is organised as follows. In Section 2, Materials and Methods, we detail the exper-

imental and analysis techniques used in the paper. In Section 3, Results, we present the main

experimental findings of this work regarding planar pulsations and height variations in the MDCK

monolayer. Here, we also develop a continuum model for tissue pulsations, and compare its find-

ings with the experimental outcomes. Finally, in Section 4, Discussion, we provide an overview

of our findings, more specifically the potential role of height variations in monolayer pulsations.

We also briefly compare our approach with other related works on monolayer pulsations. Detailed

derivations of the equations associated with the continuum model are provided in the Appendix.

II. MATERIALS AND METHODS

Cell culture: MDCK-E-Cadherin-GFP cells (Nelson lab., Stanford) were cultured in low glu-

cose Dulbecco’s Modified Eagle’s Medium (DMEM) (31885-049, Invitrogen) supplemented with

10% FBS (10309433, HyClone) and 1% antibiotics (Penicillin-Streptomycin; 11548876, Invitrogen)

at 5% CO2 in 37◦C. The culture was maintained by replating cells before they reached confluence.

For imaging, 1 million cells were added to 175 mm2 area of coverslips (CS) mounted on imaging

chambers, and allowed to settle. After 1 h, the non-attached cells were washed and the media was

changed to L-15 (11540556; Invitrogen) supplemented with 1% FBS. At this stage, the mean cell

density was about 1 cell per 1000 µm2. In the next 12-16 hours following seeding, cell proliferation
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leads to the formation of confluent monolayer without leaving any empty space. The pulsation

phase appears as soon as the monolayer is confluent and lasts about 10 hours. Later on as a

consequence of cell proliferation and when the cell density is high enough to prevent large-scale

movements (corresponding to a mean cell density of about 6.5 cells per 1000 µm2) , the monolayer

enters a jammed state consistent with [28, 31].

Micro-patterning: The grid with the required dimension was fabricated as SU-8 photoresist (Mi-

croChem) molds on silicon wafer using the standard photolithography procedure. Then stamps of

PolyDimethyl Siloxane (PDMS) (Sylgard 184; Dow Corning) made with a pre-polymer to crosslinker

ratio of 1 : 9 (V/V) were obtained by replica molding from the silicon wafer. The micro-patterning

was performed using standard soft lithography procedure as described in [17]. Briefly, coverslips

were treated with “Piranha” (3:7 parts of H2O2 (516813; Sigma) and 7% H2SO4 (258105; Sigma))

for 10 min, followed by careful washing and sonication in double distilled water for 5 min. The cov-

erslips were dried using N2 blower before functionalizing with (3-mercaptopropyl)trimethoxysilane

(S10475, Fluorochem), and stored in a dry and clean glass petri dish at 65◦C for 2 h. Meanwhile, a

drop of 10 µg/ml of TRITC labelled Fibronectin (FNR01; Cytoskeleton) was added to the plasma

treated PDMS stamps to allow the FN to settle on the stamp. After 1 h, the remaining liquid was

removed and the stamp was carefully dried using N2 blower. The stamp was then brought in contact

with the activated coverslip and left untouched for 30 minutes in order to transfer the FN to the

coverslip. Finally, the coverslip was incubated with 100 µg/ml solution of poly-L-Lysine-grafted-

PolyEthylene Glycol (pLL-g-PEG) (SuSoS) in 10 mM HEPES. After 20 minutes, the coverslip

was rinsed three times with Phosphate Buffered Saline (PBS) (11530486; Invitrogen) and stored

immersed in PBS in 4◦C for up to 5 h before seeding the cells.

Image acquisition: The fluorescent images for the height measurements were acquired using a

Leica SP8 X line scanning confocal system equipped with Z galvanometric stage, controlled by LAS

X interface and equipped with Oko lab stage top incubator. Using a 63x (1.4 NA, oil) or 40x (1.3

NA, oil) objective, a tile scan covering the size of a FN grid was performed with z steps of 0.5 µm.

To get a larger field of view for computing the power spectrum, the phase contrast acquisitions

were obtained using one of the microscopes with the corresponding objectives: inverted Olympus

CKX41 (4x, 0.13 NA Phase, Olympus); SANYO MCOK-5M incubator microscope (10x, 0.25 NA

Phase, Olympus). These microscopes are equipped with a CCD camera (Hamamatsu C4742-95 /
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C8484-03G02; Sentech XGA) and operated by Hamamatsu Wasabi / Micromanager and MTR-4000

softwares respectively. The interval between acquisitions were either 5 min, 10 min or 20 min and

all the imaging was performed at 37◦C for 48 h. To prevent evaporation of media during imaging,

either mineral oil (M8410, Sigma Aldrich) was added or the imaging chamber was covered with a

glass Petri dish.

Image processing: The images were analyzed using FIJI application [32] and the power spectra

were computed using Matlab software. The schemes were drawn using Inkscape and the plot

showing the difference in height were obtained using Graphpad Prism 7. The height variations in

the monolayer were obtained using a custom written FIJI plugin. The plugin allows visualization

of changes in height as variations in intensities by encoding the height as intensity value to the

corresponding pixel. In order to get the power spectrum of the pulsations, the velocity field was

obtained by Particle Image Velocimetry (PIV) using the Matlab based PIVlab application [33]. All

experiments were repeated a minimum of three times and the typical results are reported.

III. RESULTS

In this section, we present the main findings of the current work on (i) localisation of planar

pulsations on patterned substrates, (ii) the correlation of height variation in the monolayer with

planar contraction/expansion, (iii) quantification of the length and time scales associated with the

monolayer pulsations, and (iv) a continuum model that recapitulates experimental results.

A. Planar pulsations in MDCK monolayers are localised on a substrate patterned with

fibronectin and PEG

We prepared MDCK monolayers with controlled density on coverslips with patterns of fi-

bronectin (FN) (see Materials and Methods and fig. 1). These adhesive patterns were grids of

120 µm thickness surrounding a square gap of 150 µm, passivated by pLL-g-PEG (PEG) that

reduces adhesion of cells to the coverslips (fig. 1). This setup generates a region of low friction

connected to zones of high friction. As we previously reported [17], the FN grid led to spontaneous

pulsations of MDCK cells spanning 10-15 cells in diameter. To gain insight into cell shape changes

in 3D, we imaged the pulsating domain over 48 h using confocal microscopy (fig. 2a). This experi-
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FIG. 1. Visualizing a domain of MDCK monolayer. The first image shows the FN grid of width 120 µm and

gap of 150 µm. The second image shows the MDCK-E-Cadherin-GFP cells in green and the third image

shows the overlay of cells on FN grid. Scale bar, 100 µm.

ment allowed us to gain insight into the potential correlation between the change in cell height and

pulsations.

B. Pulsations in MDCK monolayers correlate with variations in cell height

During the pulsations, we found that the height of cells in the monolayer underwent fluctuations.

This was confirmed by checking the appearance of apical side of cells at different axial planes over

time (fig. 2a). During the contraction phase, cells were visible already at z-plane 8 µm, while in the

extended phase cells were visible only at the z-plane 2.5 µm (fig. 2c). The maximum height reached

by cells in the monolayer was about 10 µm (fig. 2a). In addition, to quantify the height profiles, we

encoded the cell height as intensity values (fig. 2b and 2c and (movie 1)). The results confirmed

our visual observation and the mean height profile of cells measured over a region of interest across

time, showed variations in mean cell height (fig. 2b and 2c). Specifically, the height profiles

between the contraction and extended phases were more than two-fold different (fig. 2d). This

confirmed that pulsations are correlated to cell flattening with reduced height during the extension

phase followed by cell squeezing with increase in height during the compression phase. The Cell

volume was estimated to be roughly constant, at around 400 µm3.
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FIG. 2. MDCK cells imaged at different heights (confocal z-planes). (a) The two rows of images correspond

to the extension and contraction phases. Images are arranged from left-to-right indicating the appearance

of cells at increasing heights. The FN grid on the coverslip surface is taken as the reference and therefore

is denoted as 0 µm. Majority of the cells are visible at higher Z planes only in the contraction phase. (b) -

(d) Analysis of height fluctuations. (b) Snapshots of images showing the height of cells encoded as intensity,

corresponding to the domain shown in (a). The first image (08:20) shows the extension phase and the last

image (15:20) shows the contraction phase. Time is in hh:mm. (c) The first and second rows represent

the extension and contraction phases of the domain shown in (a). The first two columns correspond to

different heights (2.5 µm and 8 µm) to show the differences in the appearance of cells during the extension

and contraction phases. The last column shows the images of cells where the height is encoded as intensity

values with higher intensities representing higher z-planes. These images are the same as shown in (b) at

08:20 and 15:20 respectively. (d) Plot showing the mean height of cells corresponding to the dotted rectangle

in the images of last column in (c). The mean intensity values are obtained by taking the plot profile of

the rectangle, where the intensity is represented as one (averaged) value for every column along the length

of the rectangle. The rectangle length is denoted as distance in the x axis and the mean height of cells are

denoted by the y axis. In (a) and (c) the MDCK-E-Cadherin cells are shown in green and the FN grid is

shown in magenta. Scale bar, 100 µm. Color bar in (b) and (c) indicates the corresponding height values.

Also see Movie 1.
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C. Planar pulsations in MDCK monolayers have characteristic time and length scales

As described earlier, the pulsations observed in the epithelial monolayer corresponded to the

periodic formation of contracting and expanding domains within the monolayer. To quantify the

pulsations, we first used particle image velocimetry (PIV) to obtain velocity field v(x, y, t) of the

cells at grid points xi, yj at time-frame tk. We then numerically obtained the planar divergence

d(x, y, t) = ∇ · v since it is the relevant measure of contraction/expansion in the monolayer due to

the velocity field. Representative divergence fields in space at a particular time and at a given space

point as a function of time are shown in figs. 3a and 3b, respectively. In order to extract the spatio-

temporal characteristics of divergence, we numerically obtained its power-spectrum Sd(qx, qy, ω)

through discrete Fourier transform where qx and qy are the wave-numbers, respectively, along

x and y, and ω is the frequency component of the power spectrum. To quantify the temporal

behavior of d, we then calculated Sd(ω) by summing Sd(qx, qy, ω) over all qx and qy. The spatial

characteristics of d are quantified via Sd(q) by summing Sd(qx, qy, ω) over all ω and also over qx and

qy such that q2x + q2y = q2. Note that for convenience, we keep the same notation Sd, irrespective

of the associated argument. The power-spectra Sd(ω) and Sd(q) are plotted in figs. 3c and 3e,

respectively. The blue line and the surrounding gray region correspond, respectively, to the average

and the standard deviation of Sd(ω) and Sd(q) over three separate experimental repeats. It can be

seen that Sd(ω) has a peak at ω/2π ≈ 0.2 h−1 that corresponds to a pulsation period of ≈ 5 h.

The peak corresponding to Sd(q) is not as sharp and also shows some variation with respect to the

experimental repeats. However, Sd(q) peaks at q/2π ≈ 0.005 µm−1 which corresponds to a periodic

pattern in divergence with a length-scale of ≈ 200 µm.

Thus, we observe from the experiments that MDCK monolayers undergo planar pulsations with

characteristic time and length scales. We also found that the planar pulsations were accompanied

with modifications in the monolayer thickness that was both space and time dependent. Moreover,

it was also shown in our earlier work that gradients in myosin concentration were involved in mono-

layer pulsations [17]. Hence, in order to get a better understanding of how planar deformations,

thickness modifications and contractile mechanisms together contribute to the observed spatio-

temporal pulsatory patterns in epithelial monolayers, we developed a continuum model based on a

previous work [34].
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D. Continuum model for spontaneous pulsations in MDCK monolayer

The experimentally observed pulsations in epithelial monolayers could be quantified in terms

of the velocity divergence of the tissue flow that captures the dynamics of area expansion and

contraction of tissue domains. It was also observed earlier [17] that myosin contractility was asso-

ciated with these collective deformation modes of the monolayer. Hence, we now develop a simple

continuum model with cell area a, contractile matter ζ, and velocity field v as three variables that

are functions of x, y, and t. The mass conservation equation can be written as

1

a

(
∂a

∂t
+ v · ∇a

)
= ∇ · v, (1)

by neglecting the contributions from cell division and death. The stress σij within the tissue should

satisfy the momentum balance equation that is given by

∂jσij = αvi. (2)

Here, we assume that the imbalance in the internal tissue stress is countered by the passive fluid

friction between the tissue and the substrate. Cell-substrate interaction could also produce active

substrate traction, possibly arising from cell motility. However, for simplicity, in our model we do

not include this potential contribution. In the above equation as well as the ones below, we use

indicial notation for vectors and tensors with the indices i, j representing x, y coordinates. Since

we are concerned only with the contractile and expansive movements of the tissue, the stress is

modeled as an isotropic quantity

σij = δij

[
K

(
a− a0
a0

)
+Kh∇2

(
a− a0
a0

)
+ ζ + µ∇ · v

]
. (3)

Here, a0 is the homeostatic area of the cells, K is the monolayer area modulus, Kh is the gradient

elasticity modulus that energetically penalizes the height variations in the monolayer (also see

Appendix C), and ζ is the myosin dependent contractile active stress in the tissue. Finally, we

discuss the dynamics of the contractile material c(x, y, t). For simplicity, we model the active stress

ζ = Bc, where B is a proportionality constant. Consequently, to prevent the introduction of a new

field variable c(x, y, t), we simply replace c with ζ without losing generality. Hence the dynamics

of the active stress ζ in the tissue is given by

∂ζ

∂t
+∇ · ζv = −ζ − ζ0

τ
− β

a− a0
a0

+ βcξc. (4)
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Note that the use of ζ instead of c would involve a simple linear scaling of the parameters β and

βc with the factor B. Here, τ is the time-scale for ζ to reach its homeostatic value ζ0, β > 0 is the

coupling term that modulates ζ depending on deviation of cell area from a0, and ξc is the chemical

noise with strength βc.

We then combine the above equations and linearize them for small perturbations δa = a − a0

and δζ = ζ − ζ0. We then replace
[

β
βc

δa
a0

]
→ a and

[
β
βc

δζ
ζ0

]
→ ζ, and non-dimensionalise length and

time with ℓ =
√

Kζ0
αβ and τ̄ = ζ0/β, respectively. Finally, we get the following non-dimensionalised

equations (see Appendix A for details)

(1− µ∆)∂ta = (∆−Kh∆∆)a+
1

K
∆ζ, (5)

∂tζ = −1

τ
ζ − a+ ξc, (6)

Here, the non-dimensionalisation resulted from the following substitutions of parameters in

terms of the original parameters.

µ → µβ

Kζ0
,Kh → Khαβ

ζ0K2
,
1

K
→ ζ0

K
, τ → τβ

ζ0
, τc →

τcβ

ζ0
. (7)

Without the noise term ξc, the above set of equations are satisfied for a = 0 and ζ = 0, and

result in vi = 0. However, for non-zero noise, the system is perturbed and the feedback between a

and ζ results in persistent fluctuations having dominant length and time scales that, as we show

below, depend on the tissue parameters. Thus in our model, the noise plays an essential role in

sustaining the pulsatory movements. By modeling ξc to be correlated in time and uncorrelated in

space (see Appendix A), and doing Fourier analysis of these set of equations, the power-spectrum

Sd(qx, qy, ω) of velocity divergence can be obtained exactly. Further, Sd(q, ω) = 2πqSd(qx, qy, ω),

where q =
√
q2x + q2y , from which

Sd(q, ω) =
q5τ2ω2

D
, (8)

and the denominator

D =
β2

2πβ2
c

(1 + τ2c ω
2)(q4τ2 − 2Kq2τ [q2 +Khq

4 − (1 + q2µ)τω2]

+K2[1 + τ2ω2][q4(1 +Khq
2)2 + ω2(1 + q2µ)2]). (9)
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FIG. 3. Representative divergence field obtained from velocity field of one experimental sample in (a) space at

a given instance in time and (b) with respect to time at a fixed space point. The regular pattern in space and

time is visible and systematically quantified using Power spectrum density Sd as a function of wave number

ω (c) and frequency q (e) obtained from the combined experimental data. The blue lines and the gray shaded

region correspond to the mean and standard deviation over three separate experimental repeats. The red

lines correspond to the location of the peak values of the spectrum. The equivalent theoretical calculation for

Sd(ω) (d) and Sd(q) (f), in non-dimensionalized units, are also shown. The red lines in the theoretical plots

correspond to the rough estimate of the peak location ωm from Eq. A29 and qm from Eq. A26. The non-

dimensional parameters (eq. 7) used for the theoretical curves areK = 0.1,Kh = 40, τ = 0.1, µ = 2, τc = 0.02.
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The noise term ξc can have its origin, for example, in the modulation in myosin levels at cell-cell

contacts that are known to cause junctional fluctuations [35, 36].

The theoretical estimates of Sd(ω) and Sd(q) are presented in figs. 3d and 3f, respectively and

show qualitative similarity with their experimental counterparts that include the presence of peak

in Sd(ω) and Sd(q), thus providing characteristic time and length scales for the pulsatory cellular

movements. Moreover, as is experimentally observed, both Sd(q) and Sd(ω) decay to zero for larger

values of q and ω, respectively. However, unlike for the experimental data in which Sd(ω = 0) ̸= 0

(fig. 3c), the theoretically estimated value is zero (fig. 3d). By performing simple asymptotic

analysis on Sd, the dominant length (l0), in terms of the original parameters, can be calculated as

l0 ≈ 2π
8

√
K2

hττc
α2

. (10)

giving the approximate location of the peak for Sd(q) in fig. 3f (see Eqs. 7 and A26). We obtain l0 of

about 100 µm, by taking typical values reported or estimated for the four parameters (see Appendix

D). It can be seen that for a pulsating length scale to emerge in the monolayer, Kh, the gradient

modulus that is associated with spatial height variation is necessary as per our model. Similarly,

the other important quantities for the emergence of pulsation length scale are the turnover time-

scale τ for myosin and the time-scale τc for the chemical noise. It can be seen that if any of these

quantities tend to zero, then the peak of Sd(q) is pushed towards higher values of q and eventually

disappears. Moreover, when τc → 0, i.e., the chemical noise is uncorrelated or white, the decay

in Sd(q) and Sd(ω) is much slower than is experimentally observed. Thus the qualitative behavior

of the spatiotemporal patterns exhibited by the tissue in our model depends on a combination

of tissue mechanical properties and characteristics of the chemical noise. We point out that the

amplitude of the tissue response would be proportional to the noise amplitude βc. However, since

we plot only the normalized values of power-spectra, the noise amplitude does not explicitly show

up in figs. 3d and 3f. The details of this calculation and other estimates for the power-spectrum

including the experimental comparison are provided in Appendix A. Based on these estimates

and additional numerical exploration, we find that the qualitative behavior of Sd(q) and Sd(ω)

(figs. 3d and 3f) is similar to their experimental counterparts (figs. 3c and 3e) for a wide range

of parameters. We chose the typical parameters that showed this trend (fig. 3 caption). We note

that although the experimental data (figs. 3c and 3e) are obtained for the monolayer patterned

substrate as shown in fig. 1, the theoretical model does not account for the variations in substrate
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frictions that are expected to be inherent in the experiments. Hence, we also calculated Sd(ω) and

Sd(q) from our previous data on non-patterned substrate [17]. We find that the differences between

Sd(ω) and Sd(q), especially with respect to the location of maxima in q and ω, are not significant

(see Appendix B).

IV. DISCUSSION

We show that coordinated cell height variations with the planar contraction and extension cycles

is potentially important in determining the size of pulsatile domains in monolayer tissues. Shape

fluctuations in biological systems range from cell membrane [37] and organelles [38] to single [13]

and collection of cells in embryos [15]. During developmental phenomena in which motions of

cell collections can be synchronized, such movements underlie crucial morphodynamic events that

exhibit outstanding spatial precision [39]. In this context, our experimental findings suggest that

variations in cell height are associated with changes in cell area in a nearly incompressible vis-

coelastic cytoplasm, and are consistent with one of our model assumptions. The coupling between

the contractile machinery and the cell area, highlighted by β in Eq. 4, indicates that due to the

chemical noise βc (Eq. 4), the concentration of the contractile material ζ can change on a cell

by cell basis leading to varying levels of tension and therefore inhomogeneous height distributions

across the pulsatile domains. The variations in height profiles of cells indicate that the height of

cell-cell junctions is shortened and extended, respectively, during the extension and contraction

phases. Therefore, the contractile stress of the cells combined with cell-cell junction height dimin-

ishes away from the pulsation centre. In this specific context, the link between junction height

and the contractile molecules is an interesting question to be explored, since the accumulation of

myosin could be due to intercellular flows [40] or due to transcriptional activity [41]. Finally, it

would be interesting to analyse the height variations with varying cell density at plating, since cell

density was reported to have direct effects on cell velocities [28] and cell extrusion [31].

In our model, the relaxation of the contractile stress, dictated by the turnover time τ (Eq. 4),

correlation time of chemical noise τc, height gradient stiffness modulus Kh (Eq. 3), and substrate

friction α are crucial in dictating the inherent size l0 of the pulsating domain of the monolayer

(Eq. 9). Interestingly, although l0 does not depend on the contractile activity ζ0 in the tissue, the

frequency of pulsation depends on a combination of the active stress and mechanical properties of
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the tissue (Eq. 10). All these quantities can be experimentally measured for the monolayer under

the given experimental conditions. For example, the turnover time can be measured by Fluorescence

Recovery After Photobleaching (FRAP) of myosin in cells at different positions on the pulsating

domain. The model can be further extended to explicitly include the role of signalling pathways that

regulate contractility and deformation dynamics in tissues [36]. In addition, although we ignored

the role of cell division and apoptosis on tissue area fluctuations, myosin accumulation that is

involved in these process could be important in regulating the dynamics of pulsatile domains in the

monolayer [42]. Indeed, not accounting for some of these important quantities and coupling could

potentially explain the discrepancy between the experimental values and theoretical predictions

(Appendices A and B, figs. 3-5).

Interestingly, other studies report the origin of pulsations to osmotic pressure from water flux

where MDCK cells do not change significantly in height during pulsations [21]. Similarly, in single

cell zebrafish embryos, bleb formation which is primarily due to contractility is also regulated

by water flow through aquaporins [43]. In vivo, during dorsal closure by amnioserosa cells in

Drosophila, the force required for contraction has been shown to arise from both contractile acto-

myosin cable and cell volume change regulated by potassium channels [44]. Along this line, our

study can be further extended to volume measurements (from apical-basal area and cell height) to

determine the respective contributions of contractility and osmotic pressure in pulsations in MDCK

monolayers. Such precise measurements can be used to refine the hydrodynamic descriptions for

tissue dynamics with different sources of stresses and material flux [45]. Together, this will lead to

detailed insights on the role of mechanics in tissue dynamics and organisation at different scales.
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Appendix A: Derivation of equations for the continuum model and analytical estimates

Here, we systematically develop the continuum model described in the main paper, and also

provide detailed derivations of the relevant equations.

The theory has 2D cell area a, velocity field of the cells vi, internal stress σij , and the contractile

matter ζ as the field variables [34]. The relevant equations are

1

a

(
∂a

∂t
+ vk∂ka

)
= ∂ivi, (A1)

∂jσij = αvi, (A2)

σij =

[
K

a− a0
a0

−Kh∆
a− a0
a0

+ ζ + µ∂kvk

]
δij , (A3)

∂ζ

∂t
+ ∂kvkζ = −1

τ
(ζ − ζ0)− β

a− a0
a0

+ βcξc. (A4)

In the above equations, α is the friction coefficient between the monolayer and the substrate, K

is the linear area modulus of the cells, Kh is the height modulus of the tissue that is modeled to

depend on the area gradient in the tissue (see Appendix C). In Eq. A4, τ is the time required for

myosin to reach its homeostatic value ζ0, β is the coupling coefficient that relates cellular area with

ζ modulation, and ξc is time correlated noise satisfying

⟨ξc⟩ = 0, (A5)

⟨ξc(x, y, t)ξc(x′, y′, t′)⟩ =
1

2τc
exp

(
−|t− t′|

τc

)
δ(x− x′)δ(y − y′). (A6)

In the limit when the correlation time τc → 0 the noise becomes uncorrelated or white noise. The

parameters in the continuum equations and their units in SI are summarized in Table 1 - see also

below in Appendix D.
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TABLE I. SI units of variables and parameters associated with the model

Quantity SI unit

a m2

ζ N/m

ζ0 N/m

v m/s

K N/m

Kh N ·m

µ N · s/m

α N · s/m3

τ s

τc s

β N ·m−1 · s−1

βc N ·m−1 · s−1

For small perturbations, δa = a − a0 and δζ = ζ − ζ0, eliminating the velocity term, and

linearizing in δa and δζ we get

(α− µ∆)∂t
δa

a0
= (K∆−Kh∆∆)

δa

a0
+∆δζ, (A7)

∂t
δζ

ζ0
= −1

τ

δζ

ζ0
− β

ζ0

δa

a0
. (A8)

Here, we neglect the advection term of the form ζ0∂kvk for conceptual simplicity in the weak

advection limit. Choosing, τ̄ = ζ0
β as a reference time scale and ℓ =

√
Kζ0
βα as the length-scale, we

get the following non-dimensionalized dynamical equations.

(1− µ∆) ∂t
δa

a0
= (∆−Kh∆∆)

δa

a0
+

1

K
∆

ζ

ζ0
, (A9)

∂t
δζ

ζ0
= − ζ0

τβ

δζ

a0
− δa

a0
+

βc
β
ξc. (A10)

We can further re-write these equations to give

(1− µ∆) ∂t

[
β

βc

δa

a0

]
= (∆−Kh∆∆)

[
β

βc

δa

a0

]
+

1

K
∆

[
β

βc

ζ

ζ0

]
, (A11)

∂t

[
β

βc

δζ

ζ0

]
= − ζ0

τβ

[
β

βc

δζ

ζ0

]
−
[
β

βc

δa

a0

]
+ ξc. (A12)
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Finally, we present the governing equations as

(1− µ∆)∂ta = (∆−Kh∆∆)a+
1

K
∆ζ, (A13)

∂tζ = −1

τ
ζ − a+ ξc, (A14)

where the non-dimensional dynamical variables are written as a ≡
[

β
βc

δa
a0

]
and ζ ≡

[
β
βc

δζ
ζ0

]
. The

four, free, non-dimensional parameters in these equations are µ ≡ µ
αℓ2

= µβ
Kζ0

, Kh ≡ Khτ̄
αKℓ4

= Khαβ
ζ0K2 ,

1
K ≡ ζ0

K , and τ ≡ τβ
ζ0
, in terms of the original dimensional parameters. The correlation time of the

colored noise ξc is written as τc ≡ τcβ
ζ0

.

Taking Fourier transform of the two coupled equations in space (x → qx and y → qy) and time

(t → ω), we get −iω(1 + µq2) + q2 +Khq
4 q2

K

1 −iω + 1
τ


︸ ︷︷ ︸

C

ã
ζ̃

 =

 0

ξ̃c

 , (A15)

where ã and ζ̃ are the space-time Fourier transforms, respectively, of a and ζ, and q2 = q2x + q2y .

Inverting the C matrix, we get ã
ζ̃

 = C−1

 0

ξ̃c

 (A16)

The power spectrum from ã and ζ̃ then becomes

Sa(qx, qy, ω) = |ã|2, (A17)

Sζ(qx, qy, ω) = |ζ̃|2. (A18)

We note that since q =
√
q2x + q2y , the power spectrum only in terms of q can now be obtained as

Sa(q, ω) = 2πq × Sa(qx, qy, ω). Since the linearized mass balance equation Eq. A1 in terms of the

non-dimensionalised variables and parameters is

∂ta =
β

βc
∇ · v,

the power spectrum for velocity divergence becomes, Sd(q, ω) =
β2
c

β2ω
2Sa(q, ω). Since we have taken

ξc to be correlated noise (Eq. A4), its power-spectrum |ξ̃c|2 = 1/(1 + τ2c ω
2). Hence, the effective

power spectrum for the velocity divergence is given as

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.17.492239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492239
http://creativecommons.org/licenses/by/4.0/


Sd(q, ω) =
q5τ2ω2

D
, (A19)

where

D =
β2

2πβ2
c

(1 + τ2c ω
2)(q4τ2 − 2Kq2τ [q2 +Khq

4 − (1 + q2µ)τω2]

+K2[1 + τ2ω2][q4(1 +Khq
2)2 + ω2(1 + q2µ)2]). (A20)

We can perform a scaling near q → ∞

Sd(q → ∞, ω) =
2πτ2ω2

K2K2
hq

3(1 + τ2ω2)(1 + τ2c ω
2)
. (A21)

Upon integrating the ω terms out we get

Sd(q → ∞) =
π2τ

K2K2
hq

3τc(τ + τc)
. (A22)

and near q → 0 we get

Sd(q → 0, ω) =
2πq5τ2

K2(1 + τ2ω2)(1 + τ2c ω
2)
, (A23)

upon integrating the ω terms we get

Sd(q → 0) =
π2q5τ2

K2(τ + τc)
. (A24)

As derived above, the series expansion for Sd(q) is increasing and decreasing in q for small and

large values, respectively, of q. Hence, we could expect the location qm of the maxima of Sd(q) to

approximately be at the intersection of these two curves. Hence, we equate them

Sd(q → ∞) = Sd(q → 0), (A25)

to give

qm =

(
1

K2
hττc

)1/8

. (A26)

The wavelength associated with this pattern will be given by l0 = 2π/qm.
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Following the same procedure as for q, we now check for the asymptotic behavior for Sd(q, ω)

in terms of ω.

Sd(q, ω → 0) =
2πqτ2ω2

(K +KKhq2 − τ)2
. (A27)

Similarly

Sd(q, ω → ∞) =
2πq5

K2(1 + q2µ)2τ2c ω
4
. (A28)

We find that the location of maxima for Sd(ω) is obtained quite well when we equate S(q, ω → 0)

and S(q, ω → ∞) corresponding q = qm as obtained in Eq. A26. From that we get that the maxima

for Sd(ω) occurs at

ωm =

(
1

ττc

) 5
12

(
[K − τ ](ττc)

1
4 +K

√
Kh

K(K2
hττc)

1
4 +Kµ

) 1
3

. (A29)

Based on Eqs. A21-A29, we can get some insights into the role the non-dimensionalised param-

eters K,Kh, µ, τ , and τc on the behavior of power spectra Sd(ω) and Sd(q). From Eq. A26, we find

that, as per our model, the three terms Kh, τ , τc are important for the observation of maxima in

Sd(q) as is observed experimentally (fig. 3e). Hence, the term corresponding to gradients in area in

tissue stress (Eqs. 3 and A3), the active stress homeostatic term (Eqs. 6 and A14), and the time-

correlation component of the noise (Eq. A6) play key role in setting the length scale of pulsations

in the tissue within our model framework. Additionally, from Eqs. A22 and A24, we see that the

rate at which Sd(q) grows and decays for small and large values, respectively, of q is governed by

the parameters τ,K, and Kh. From Eq. A28 it can be seen that although the parameter µ does

not play an essential role in governing the qualitative nature of Sd(q) and Sd(ω), it modulates the

decay behavior of Sd(ω) for larger values of ω.

In fig. 3, we plot the normalized power spectrum in terms of the wavenumber q and ω by defining

the following.

Sd(q) =
1

Stot

∫ ∞

−∞
Sd(q, ω)dω, (A30)

Sd(ω) =
1

Stot

∫ ∞

0
Sd(q, ω)dq, (A31)

Stot =

∫ ∞

−∞

∫ ∞

0
Sd(q, ω)dqdω. (A32)
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FIG. 4. Log-log plot for (a) Sd(ω) and (b) Sd(q) presented earlier in Figs. 3c and 3e, respectively. The

behavior of the power-spectrum at small and large values of ω and q, respectively, are shown as blue lines in

(a) and (b). (a) For small values of ω, Sd(ω) ∼ ω1.4 and for larger values of Sd(ω) ∼ ω−1.7. The theoretical

values of these exponents, 2 (Eq. A27) and −4 (Eq. A28), are not the same as those experimentally observed.

(b) For small values of q, Sd(q) ∼ q1.5 and for large values of q, Sd(q) ∼ q−4.8. The theoretical values of these

exponents, 5 (Eq. A24) and −3 (Eq. A22) are different than their experimentally obtained counterparts.

Note that for notational simplicity, we use the same symbol Sd for the different variants of the

power-spectrum.

In order to quantitatively obtain the low and high q and ω behavior of Sd(q) and Sd(ω), respec-

tively, we show in fig. 4 log-log plot of the data presented in figs. 3a and 3c. Since, as opposed

to the theoretical calculation, Sd(ω = 0) ̸= 0 for the experimental data, we fit a power-law of the

form ωm while neglecting a few data points at the beginning (fig. 4a). The exponent m ≈ 1.4 and

m ≈ −1.7 (fig. 4a) is not the same as m ≈ 2 (Eq. A27) and m ≈ −4 (Eq. A28), respectively, as

is predicted by the model. Similarly, the exponent m ≈ 1.5 and m ≈ −4.8 (fig. 4b) for Sd(q) also

does not match with the theoretical estimate of m = 5 (Eq. A24) and m = −3 (Eq. A22).

Appendix B: Power spectrum for cellular pulsations on non-patterned surface

In our previous work [17], we had studied pulsations on epithelial monolayers. Here, similar

to the power spectrum Sd(ω) and Sd(q) for the divergence of pulsatory cellular movements on

patterned surfaces discussed in Section 3.3 and plotted in figs. 3c and 3e, respectively, we do the

equivalent for the non-patterned surfaces in figs. 5a and 5c. As shown in fig. 5, the blue curves and
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FIG. 5. Power spectra (a) Sd(ω), (c) Sd(q) and the corresponding log-log plots (b) and (d) for pulsatory

cellular movements in MDCK epithelial monolayers on non-patterned surfaces. The nature of the power

spectra is similar to that obtained for patterned surfaces in figs. 3c and 3e. The blue lines and the grey

shaded region in (a) and (c) correspond to the mean and standard deviation, respectively, of Sd(ω) and Sd(q)

obtained over five separate experimental repeats. The power-law fits for low and high values of(b) ω and (d)

q are represented with the blue lines and the corresponding exponents are indicated.

the gray shaded region correspond to the mean and standard deviation of the quantities over five

experimental repeats. The peak for Sd(ω) happens at ω/2π ≈ 0.15 h−1 corresponding to oscillation

period of approximately 6.5 h. Although the peak is not as well defined for Sd(q), its maxima occurs

at around q/2π ≈ 0.004 µm−1 corresponding to a periodic pattern of approximately 250 µm. The

values are not significantly different from that obtained for the patterned surface. We also check the

values of the power spectra at larger and smaller values of ω (fig. 5b) and q (fig. 5d) and obtain the

power-law exponents as was done in fig. 4 for patterned substrates. Although the qualitative rise

and decay in q and ω for the power-spectra is similar for the patterned and non-patterned surfaces,
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the power-law exponents are not the same for these two conditions. However, the exponents for

Sd(q) do exhibit a better match with each other. As for the patterned surface, the exponents also

do not match the values predicted by the model.

Appendix C: Reasoning behind the term involving Kh in tissue stress

We provide an intuitive reasoning for including the term Kh∇2
(
a−a0
a0

)
in tissue stress σij in

Eq. 3. We first note that a cell has at least two modes of deformation. First is the in-plane

area change δa = a − a0 without any gradients in tissue height h. For an incompressible tissue,

ah = a0h0 due to which δa/a0 = −δh/h0. For the area deformation mode, the energy density of

the tissue is k1(a − a0)
2. The other mode of deformation in which there is no change in cell area,

would necessary involve cell height gradients, and the energy density, to the lowest order, can be

be written as k2|∇h|2. Thus the total energy of the tissue due to these two modes of deformation

is

U =

∫
Ω
[k1(a− a0)

2 + k2|∇h|2]dxdy, (C1)

over the total region Ω of the tissue. We note that the apical and basal layers of the epithelium

can have distinct mechanical properties [46]. Since spatial variation in tissue height h can lead to

different deformations of the apical and basal layers, the difference in mechanical properties can

further contribute to the tissue energy via the |∇h|2 term in Eq. C1. For small deformation of the

tissue, the isotropic stress σ in the tissue will be obtained by taking the functional derivative of the

tissue σ = δU/δa. After noting that ∇h = −h0/a0∇a, and renormalizing the values of the material

coefficients k1 and k2 we get

σ = K

(
a− a0
a0

)
−Kh∇2

(
a− a0
a0

)
, (C2)

as written in Eq. 3. We note that in the absence of volume incompressibility of the monolayer, we

cannot rigorously replace the ∇h term with ∇a as described above. Although, in such a case, we

do not expect major qualitative changes in our model except for re-scaling of Kh, the use of ∇a

term is, strictly speaking, a model approximation.
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Appendix D: Estimate for pattern length scale l0

We estimate the typical length l0 given in Eq. 10 by proposing the following experimental values

for the parameters : substrate friction η ≈ 30 N · s ·m−1 between the cells and the surface [47, 48],

cell stiffness Y ≈ 100 pN · µm−2 in terms of the typical force per unit area for cell-cell contacts [49],

myosin homeostasis time τ ≈ 60 min [23], and myosin fluctuation correlation time along cell-cell

junctions τc ≈ 2 min [35]. Taking for cell area a0 ≈ 100 µm2 and for cell height h0 ≈ 10 µm, we

can express α ≈ η × a0 and Kh ≈ Y × ao × h0. Using these numbers we obtain an approximate

length scale associated with the pulsating pattern l0 ≈ 100 µm, which is consistent with the typical

length scales measured experimentally.
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