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Abstract
Exponentially weighted moving average (EWMA) control charts for time-between-events (TBE) are commonly
suggested to monitor high-quality manufacturing processes for the early detection of process deteriorations. In
this study, an enhanced one-sided EWMA TBE control chart is developed for rapid detection of increases or
decreases in the process mean. The use of the truncation method helps to improve the sensitivity of the proposed
scheme in the process mean detection. Moreover, by taking the effects of parameter estimation into account, the
proposed scheme with estimated parameters is also investigated in this paper. Both the average run length (ARL)
and standard deviation of run length (SDRL) performances of the proposed scheme with known and estimated
parameters are studied using the Markov chain method, respectively. Furthermore, an optimal design procedure
is developed for the recommended one-sided EWMA TBE chart based on ARL. Numerical results show that the
proposed optimal one-sided EWMA TBE chart is more sensitive than the existing optimal one-sided exponential
EWMA chart in monitoring both upward and downward mean shifts. Meanwhile, it also performs better than the
existing comparative scheme in resisting the effect of the parameter estimation. Finally, two illustrative examples
are considered to show the implementation of the recommended one-sided EWMA TBE scheme for simulated
and real datasets. For the real dataset of F-16 aircraft, the accident occurrences of F-16 are very low, in which
case monitoring the time between two successive F-16 accidents is more efficient than the traditional monitoring
schemes. Moreover, the usage of the truncation method makes the proposed one-sided EWMA TBE chart more
appropriate for monitoring those two datasets with known shift directions, and the operation of the proposed
scheme is simple which does not need to predetermine the reflecting boundary of the existing comparative scheme.
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Control chart; EWMA; Time-between-events; Markov chain model; Parameter Estimation;

1. Introduction

Statistical process control (SPC) can significantly improve the quality of manufacturing processes. As one
of the most primary techniques of SPC, control charts have been extensively adopted in many modern
manufacturing industries for enhancing productivity, reducing defects or nonconformities, and detecting
deterioration in production process. For several recent studies on the application of control charts, readers
may be refer to [3, 18, 21, 36]. Nowadays, many kinds of control charts have been developed. The most
commonly used Shewhart-type charts are easy to implement and efficient in detecting large magnitude of
shifts in the process. Conversely, by taking both the current and past information into account, memory-type
charts (like, the exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts)
are considered as good alternatives to the Shewhart-type scheme in monitoring small to moderate shifts,
see [5, 13]. Although traditional control charts have received much attention in the literature, most of these
works were based on the assumption that the quality characteristic follows a normal distribution. In fact, this
assumption may be not valid in the case of high-quality manufacturing processes, where the occurrences of
defects or nonconformities are very low, like, parts per million (ppm). Additionally, there are many problems
when one implement a traditional control chart in high-quality manufacturing processes, for instance, high
false alarm probability, meaningless control limits and low detection efficiency, see [34]. One effective way to
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circumvent these problems is to design TBE (Time-Between-Events) type charts to monitor the time between
successive occurrences of a specific event. A common assumption for TBE type charts is that the occurrence
of events can be modeled as a homogeneous Poisson process, and the time between two successive events
follows an exponential distribution. Based on this assumption, numerous research works on TBE charts have
been developed over the years, see for instance [2, 12, 24, 27, 31, 33].

Since the inter-arrival times of defects (or nonconformities) in high-quality manufacturing processes
are assumed to be independent and identically distributed (i.i.d.) exponential random variables, some TBE
charts can also be named as the exponential control charts (see [9, 35]). Three different types of exponential
control charts have already been developed, namely, the exponential Shewhart charts (see [15, 35, 37]),
the exponential CUSUM charts (see [8, 24, 25]) and the exponential EWMA charts. Among them, the
exponential EWMA charts have received widespread attention due to its high sensitivity in detecting small
to moderate shifts. For instance, [9] developed a widely used one- and two-sided exponential EWMA charts
for monitoring TBE data. Based on the research in [9], Gan in [10] presented a program for determining the
exact average run length (ARL) values of the one- and two-sided exponential EWMA charts, [19] analyzed
the effects of parameter estimation on the performance of the one-sided exponential EWMA charts, and [23]
developed two optimal design procedures for the one-sided exponential EWMA charts based on median
run length (MRL) and expected median run length (EMRL), respectively. Furthermore, it is worth noting
that various approaches have been developed in the literature to transform the exponentially distributed
data into approximately normal ones, like, the double square root (SQRT) transformation proposed by
[16], the weighted standard deviations (WSD) method investigated by [7], and the transformed variable
T ∗ = T 1/3.6 employed in [4, 14]. Although attractive, data transformations should be considered with care
as an appropriate method for high-quality manufacturing processes monitoring, because it may lead to some
loss of useful information.

In real application, some situations are so critical that it is only necessary to monitor upward (or downward)
shifts of the process. For instance, information on the increase in infection rate of a particular disease (like,
the COVID-19) is very important for CDC ( Centers for Disease Control) and local governments to adjust
epidemic prevention and control measures, because this increase represents an increased risk to the public
health. In this context, one-sided type control charts are more appropriate for the processes if the direction of
potential mean shift can be anticipated. The one-sided generalized control chart with reflecting boundaries
was firstly introduced by [6]. So far, this methodology has been adopted by many researches. For example,
[38] proposed a one-sided EWMA chart with reflecting boundaries for monitoring the mean of censored
Weibull lifetimes, and [22] investigated the MRL properties of the one-sided exponential EWMA chart with
reflecting boundaries (hereafter denoted as the one-sided REWMA chart) when process parameters are
estimated. For the one-sided REWMA scheme, both the choice and the effects of using reflecting boundaries
on this scheme were investigated in [9]. Moreover, according to [20], the usage of reflecting boundary helps
to improve the sensitivity of the scheme for detecting process deteriorations, because the reflecting boundary
of the one-sided REWMA chart ensures that the control statistics are at most at a certain distance away
from the control limit. Based on these, the one-sided REWMA scheme was often suggested to detect either
upward or downward shifts in the case of high-quality manufacturing processes.

Different from the one-sided type scheme with reflecting boundaries, [29] proposed a new improved one-
sided EWMA chart using a truncation method for normally distributed data. The basic idea of the truncation
method is to accumulate positive (or negative) deviations from the target only, and to truncate negative (or
positive) deviations from the target to zero in the computation of the EWMA statistic at each timestep. Com-
parison results implied that the improved one-sided EWMA scheme performs better than the traditional one-
sided EWMA type schemes for monitoring mean shifts in the case of normally distributed processes. Based
on the truncation method, [28] proposed a new EWMA dispersion chart by truncating negative normalized
observations to zero in the traditional EWMA statistic. Moreover, [30] extended this new “resetting rule”
to Poisson processes by using a normalizing transformation, and [11] constructed new one-sided and two
one-sided multivariate EWMA schemes for detecting irregular changes in the mean vector of a multivariate
normal process. Motivated by the fact that the truncation method proposed by [29] can substantially improves
the performance of the one-sided EWMA control chart based on the normal assumption, the goal of this paper
is to investigate the efficiency of the truncation method on the one-sided EWMA control chart for TBE data.
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The key contributions of this paper can be summarized as follows:

• To propose an enhanced one-sided EWMA TBE control chart using the truncation method for detecting
increases or decreases of the process mean.

• To establish a dedicated Markov chain model for evaluating the average run length (ARL) and standard
deviation of run length (SDRL) performances of the recommended scheme with known and estimated
parameters.

• To develop an optimal design procedure of the proposed one-sided EWMA TBE chart based on ARL.

The outline of this paper is organized as follows: The one-sided EWMA TBE charts with known and es-
timated parameters are respectively introduced in Section 2. In Section 3, the corresponding Markov chain
models are established to investigate the run length (RL) properties (including the ARL and SDRL perfor-
mances) of the proposed one-sided EWMA TBE schemes with known and estimated parameters. Moreover,
an optimal design procedure of the proposed one-sided EWMA TBE chart is developed based on ARL. The
existing one-sided REWMA chart is introduced in Section 4 for the comparison with the proposed one-sided
EWMA TBE chart. Subsequently, numerical comparisons are performed with the one-sided REWMA charts
for both upward and downward shifts. Several guidelines for constructing the one-sided EWMA TBE scheme
are also provided. In Section 5, two examples are presented to demonstrate the usage of the proposed one-
sided EWMA TBE chart for simulated and real datasets. Finally, Section 6 concludes with some remarks and
directions for future researches.

2. Design of the proposed one-sided EWMA TBE chart

2.1. The proposed scheme with known parameters

Let us assume that the TBE random variable Xt used in this paper follows an exponential distribution with
scale parameter θ. The probability density function (p.d.f.) f(x) and the corresponding cumulative distribution
function (c.d.f.) F (x) of the TBE random variable Xt are f(x) = 1

θe
− x

θ and F (x) = 1 − e−
x

θ , respectively.
In order to simplify the design of the proposed one-sided EWMA TBE chart, the scaled TBE random variable
Yt = Xt/θ0 can be considered (see [19]), where θ0 is the known in-control scale parameter. Then, if we define
c = θ/θ0 and St = Xt/θ, the scaled TBE random variable Yt can be restated as,

Yt =
θ

θ0
· Xt

θ
= c · St, (1)

where c is a constant that represents the shift level in the in-control scale parameter θ0, and the random
variable St, which denotes the TBE observations Xt scaled with the scale parameter θ, is a standard
exponentially distributed random variable with mean 1. The situation where c > 1 (or 0 < c < 1) denotes
that an increase (a decrease) in the process parameter θ0 occurred, and the special case c = 1 corresponds to
the in-control state.

In this study, the upper-sided EWMA TBE scheme using a truncation method is suggested for quickly
detecting upward shifts in the process mean. The basic idea of the proposed truncation method is to truncate
the TBE observations Xt below the in-control scale parameter θ0 to the value of θ0, and to only accumulate
the TBE observations Xt above the in-control scale parameter θ0 in the computation of the EWMA recursion.
Without loss of generality, the truncation method used in the proposed upper-sided EWMA TBE chart can be
achieved by using the upper-truncated TBE random variable defined as follow, i.e.,

X+
t = max(θ0, Xt). (2)

For the scaled TBE random variable Yt, the upper-truncated TBE random variable can be restated as,

Y +
t = max(1, Yt). (3)

When the process is in-control (i.e., c = 1), the in-control mean and variance of Y +
t are 1+ e−1 and e−1(2−

e−1), respectively (see Appendix A for details). Furthermore, in order to simplify the design, the scaling of
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the upper-truncated TBE random variable Y +
t is considered as follow,

Z+
t =

Y +
t

1 + e−1
, (4)

and then the upper-sided EWMA statistic Q+
t can be defined as,

Q+
t = rZ+

t + (1− r)Q+
t−1, (5)

where r ∈ (0, 1] is a smoothing parameter, and the initial value Q+
0 = 1. The upper-sided EWMA TBE

scheme gives an out-of-control signal when Q+
t > H+, where H+ is the control limit of the proposed

upper-sided EWMA TBE chart.

Similarly, the recommended lower-sided EWMA TBE scheme is used for quickly monitoring downward
shifts in the process mean. The lower-truncated TBE random variable Y −

t is defined as,

Y −
t = min(1, Yt). (6)

If c = 1, the in-control mean and variance of Y −
t are 1−e−1 and 1−e−1(2+e−1), respectively (see Appendix

A for details). Also, the scaling of the lower-truncated TBE random variable Y −
t is given as follow,

Z−
t =

Y −
t

1− e−1
. (7)

Then, the lower-sided EWMA statistic Q−
t is defined as,

Q−
t = rZ−

t + (1− r)Q−
t−1, (8)

where the initial value Q−
0 = 1. The proposed lower-sided EWMA TBE scheme triggers an out-of-control

signal when Q−
t < H−, where H− is the control limit of the proposed lower-sided EWMA TBE scheme.

2.2. The proposed scheme with estimated parameters

The one-sided EWMA TBE schemes introduced above are based on the assumption that the in-control scale
parameter θ0 of the exponential distribution is already known. However, process parameters are rarely known
in practice, and this fact means that it is necessary to estimate the in-control scale parameter θ0 using m
in-control TBE observations (denoted as X ′

1, X
′
2, · · · , X ′

m) collected in Phase I. The maximum likelihood
estimator of θ0 is defined as (see [39]),

θ̂0 =
1

m

m∑
l=1

X ′
l . (9)

According to [19], the estimated TBE random variable Ŷt can be obtained by replacing θ0 in Yt = Xt/θ0
with θ̂0 in (9), i.e.,

Ŷt =
Xt

θ̂0
. (10)

Furthermore, let K = θ0/θ̂0, c = θ/θ0 and St = Xt/θ, and then the estimated TBE random variable Ŷt in
(10) can be restated as,

Ŷt =
θ0

θ̂0
· θ

θ0
· Xt

θ
= K · c · St. (11)
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Note that the random variable K denotes the ratio of the in-control scale parameter θ0 to its estimator θ̂0.
It has been proven by [19] that the random variable K follows an inverse gamma distribution and the p.d.f.
fK(k|m) of the random variable K is given as follow,

fK(k|m) =
mm

(m− 1)!
k−m−1exp

(
−m

k

)
, (12)

where m is the number of in-control TBE observations collected in phase I.

Due to the estimation of the in-control scale parameter θ0, the corresponding upper- and lower-truncated
TBE random variables Ŷ +

t and Ŷ −
t can also be considered as estimates, say,

Ŷ +
t = max(1, Ŷt), (13)

Ŷ −
t = min(1, Ŷt). (14)

The in-control mean of Ŷ +
t and Ŷ −

t are 1 +Ke−
1

K and K −Ke−
1

K , respectively (see Appendix A for de-
tails). Let Ẑ+ = Ŷ +

t /(1 +Ke−
1

K ) and Ẑ− = Ŷ −
t /(K −Ke−

1

K ), and then the corresponding upper- and
lower-sided EWMA statistics Q̂+

t and Q̂−
t with estimated parameters are defined as follow,

Q̂+
t = rẐ+

t + (1− r)Q̂+
t−1, (15)

Q̂−
t = rẐ−

t + (1− r)Q̂−
t−1, (16)

where the initial value Q̂+
0 = Q̂−

0 = 1. For the detection of an upward (or a downward) shift of the process
mean, the suggested upper-sided (lower-sided) EWMA TBE scheme gives an out-of-control signal when
Q̂+

t > Ĥ+ (Q̂−
t < Ĥ−), where Ĥ+ (Ĥ−) is the control limit of the proposed upper-sided (lower-sided)

EWMA TBE scheme with estimated parameters.

3. Run length properties of the one-sided EWMA TBE chart

According to [11], the RL properties of a control chart can help practitioners to evaluate the sensitivity of the
scheme against shifts of various magnitudes. The average run length (ARL), median run length (MRL) and
standard deviation of run length (SDRL) are the three most commonly used RL characteristics for control
charts. Due to the space consideration, only the ARL and SDRL performances of the proposed one-sided
EWMA TBE chart are investigated in this paper. By definition, the ARL is the average number of TBE ob-
servations required for the proposed one-sided EWMA TBE scheme to give a signal. It is expected that the
suggested one-sided EWMA TBE scheme runs with a large in-control ARL (hereafter denoted as ARL0)
when the process is in-control (c = 1). Conversely, if the process is out-of-control (c ̸= 1), the proposed
one-sided EWMA TBE chart is expected to detect the mean shift quickly, say, a small out-of-control ARL
(hereafter denoted as ARL1) as possible. Besides, according to the definition, the SDRL quantifies the vari-
ability of the RL, and the smaller the SDRL, the better the RL performance of a control chart.

3.1. A Markov chain model for the proposed scheme

Generally, the RL properties of EWMA type control charts are evaluated using integral equations, Markov
chain methods or Monte Carlo simulations. In this paper, a Markov chain model is established to evaluate
the ARL and SDRL performances of the proposed one-sided EWMA TBE charts with known and estimated
parameters. Without loss of generality, every states of the Markov chain are defined by partitioning the in-
control region into M subintervals (labeled as i = 1, 2, · · · ,M ). The midpoint value within each sub-interval
is suggested to approximate the value of the corresponding one-sided EWMA statistic. For the known pa-
rameter case, the RL of the one-sided EWMA TBE chart is a Discrete Phase-type (DPH) random variable of
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parameters (Q,p), where the transition probability matrix Q is

Q =


q1,1 q1,2 · · · q1,M
q2,1 q2,2 · · · q2,M

...
...

. . .
...

qM,1 qM,2 · · · qM,M

 , (17)

and p is the initial probabilities associated with the M transient states, say, p = (p1, p2, · · · , pM )T.

Taking the proposed upper-sided EWMA TBE chart with known parameters as an example, the mean
and variance of the variable Y +

t = max(1, Yt) are 1 + e−1 and e−1(2 − e−1), respectively. Because of
(4), it is easy to obtain that the upper-sided EWMA statistic Q+

t = rZ+
t + (1 − r)Q+

t−1 > 1
1+e−1 , and

then divide the in-control region [ 1
1+e−1 ,H+] into M subintervals of width w+ = H+−1/(1+e−1)

M to obtain a
discretized Markov chain model. The charting statistic Q+

t is considered to be in transient state i, at time t, if
L+
i − w+

2 < Q+
t 6 L+

i + w+

2 , where L+
i = 1

1+e−1 + (i− 0.5)w+ is the midpoint value of the ith subinterval.
If we define the element qi,j to be the transition probability of statistic Q+

t from state i to state j. Then,

qi,j = Pr
(
Q+

t ∈ state j | Q+
t−1 ∈ state i

)
= Pr

(
L+
j − w+

2
< Q+

t 6 L+
j +

w+

2
| Q+

t−1 = L+
i

)
(18)

After some algebraic operations, the element qi,j is equal to,

qi,j = Pr

(
1

1 + e−1
+

[j − 1− (1− r)(i− 0.5)]w+

r

< Z+
t 6 1

1 + e−1
+

[j − (1− r)(i− 0.5)]w+

r

)
= Pr

(
1 +

(1 + e−1) [j − 1− (1− r)(i− 0.5)]w+

r

< Y +
t 6 1 +

(1 + e−1) [j − (1− r)(i− 0.5)]w+

r

)
(19)

Furthermore, let us define,

A1 = 1 +
(1 + e−1) [j − 1− (1− r)(i− 0.5)]w+

r
, (20)

A2 = 1 +
(1 + e−1) [j − (1− r)(i− 0.5)]w+

r
. (21)

Then, the entire qi,j in the transition probability matrix Q can be computed as follow,

qi,j =



0, if A2 < 1

FS

(
A2

c

)
, if A2 > 1 and A1 < 1

FS

(
A2

c

)
− FS

(
A1

c

)
, if A2 > 1 and A1 > 1

(22)

where FS(s) = 1 − e−s is the c.d.f. of the standard exponentially distributed random variable St defined in

6



(1). In addition, the elements pj of vector p are,

pj =

 1, L+
j − w+

2
< Q+

0 < L+
j +

w+

2
0, otherwise

(23)

where Q+
0 = 1. Finally, the ARL and SDRL values of the proposed one-sided EWMA TBE chart with known

parameters can be computed as follow,

ARL = pT(I−Q)−11, (24)

SDRL =
√

2pT(I−Q)−2Q 1− (ARL)2 +ARL, (25)

where 1 is a (M, 1) vector of 1’s, and I is the (M,M) identity matrix. For more details about the Markov
chain model of the lower-sided EWMA TBE chart and their corresponding estimated parameter counterparts,
please see Appendix B.

3.2. Optimal design procedure of the proposed scheme

For the suggested one-sided EWMA TBE scheme, once the number M of the subintervals, and the smoothing
parameter r of the scheme are fixed, an approximated value of H can be easily obtained by imposing the
constraint that the acceptable ARL0 should attain the pre-specified target. In this paper, the number M = 500
of the subintervals are selected, and the corresponding steps for searching H of the upper-sided EWMA TBE
scheme are given as follow:

Step 1: Set the values of ARL0, M , r, and c = 1;
Step 2: Let H have the initial value of 1/(1 + e−1);
Step 3: Compute the ARL0 value using (24);
Step 4: If ARL0 > 200.1 (or ARL0 6 199.9) , let H = H − 0.0001 (H = H + 0.0001), and then go to

Step 3. Otherwise, when ARL0 ∈ [199.9, 200.1], control flow moves to the next step.
Step 5: Stop searching and the current value of H is recorded.

The optimal design of the one-sided EWMA TBE scheme aims at finding the proposed one-sided EWMA
TBE chart having the minimum ARL1 (denoted as ARLopt) value for the specified mean shift copt, among the
schemes with the desired ARL0 value. In view of this, the optimal procedure can be modeled as a nonlinear
minimization problem. Due to the space limitation, only the optimal procedure of the proposed one-sided
EWMA TBE scheme with known parameters is given for illustration, i.e.,

(r∗,H∗) = argmin
(r,H)

ARL1(r,H, copt). (26)

Subject to

ARL(r∗, H∗, copt = 1) = ARL0, (27)

where r and H represent the smoothing parameter and the control limit of the proposed one-sided EWMA
TBE chart, respectively. Meanwhile, (r∗, H∗) is the optimal parameter combination of the proposed
one-sided EWMA TBE scheme with known parameters for a fixed mean shift copt.

The optimal parameter combination (r∗, H∗) of the proposed one-sided EWMA TBE chart can be obtained
using (26) and (27) when ARL0 and copt are specified. Without loss of generality, the optimal procedure is
summarized as follow:

Step 1: Set the values of the desired ARL0 and the mean shift copt;
Step 2: Initialize the smoothing parameter r = 0.01;
Step 3: With the constraint on the desired ARL0 specified in Step 1, find the control limit H for the corre-

sponding r;
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Step 4: Compute the ARL1 value for the corresponding combination (r,H) determined in Step 3 and the
mean shift copt specified in Step 1.

Step 5: Repeat Steps 3 and 4 for all values of r varying from 0.01 to 0.99 with a step size 0.0001.
Step 6: The combination (r,H) that produces the ARLopt value for the specified copt is recorded as the

optimal parameter combination (r∗, H∗) of the proposed one-sided EWMA TBE chart.

Similar to [17] and [26], the steps for searching the optimal parameter combination (r̂∗, Ĥ∗) of the proposed
one-sided EWMA TBE chart with estimated parameters are similar to the case with known parameters, except
that the number m of in-control TBE observations collected in phase I should be fixed first. After that, for a
specified copt, adjust the control limit Ĥ of the scheme with the optimal smoothing parameter r∗ determined
in known parameter case so that the control chart can produce the desired ÂRL0. Then, the optimal parameter
combination (r̂∗, Ĥ∗) and ÂRLopt (i.e., the minimum ÂRL1 value of the proposed one-sided EWMA TBE
chart with estimated parameters) for copt can be obtained.

4. Comparative studies

4.1. The existing one-sided exponential EWMA chart

The one-sided exponential EWMA chart with reflecting boundaries (also named as the one-sided REWMA
chart) was firstly introduced by [9] for detecting either increases or decreases in the process mean. In the case
of high-quality manufacturing processes, the existing upper-sided REWMA chart is considered when only
the upward mean shifts need to be detected. The charting statistic Qt of the upper-sided REWMA chart can
be written as follow:

Qt = max{A, λQYt + (1− λQ)Qt−1}, (28)

where A is a reflecting boundary of the existing upper-sided REWMA chart. As suggested by [9], the
reflecting boundary A is commonly set as 1 to improve the worst-case RL properties. Besides, the initial
value Q0 = 1, and λQ ∈ (0, 1] is a smoothing parameter of the existing upper-sided REWMA scheme. An
out-of-control signal is generated when Qt exceeds the control limit hQ of the existing upper-sided REWMA
scheme.

Similarly, the charting statistic qt of the existing lower-sided REWMA scheme is defined as follow:

qt = min{B, λqYt + (1− λq)qt−1}, (29)

where B is a lower-sided reflecting boundary and λq ∈ (0, 1] is a smoothing parameter of the existing
lower-sided REWMA chart. It is also recommended by [9] that B = 1 can be used for improving worst-case
RL properties of the lower-sided REWMA scheme. In this paper, the initial value q0 = 1, and the existing
lower-sided REWMA scheme signals if qt is smaller than the control limit hq of the existing lower-sided
REWMA scheme.

Although the corresponding integral equations have been derived by [9] for computing the ARL value of
the existing one-sided REWMA chart, the Markov chain model is also popular and used in this paper for eval-
uating the RL properties of the existing one-sided REWMA chart so as to keep consistency with the proposed
one-sided EWMA TBE scheme. For more details about the Markov chain method of the existing one-sided
REWMA chart, readers can refer to [23]. Furthermore, the existing one-sided REWMA chart is compared
with the proposed one-sided EWMA TBE chart in both the known and the estimated parameter cases. With
the same ARL0, the control chart, which produces a smaller out-of-control ARL value, is considered to be
more sensitive for the fixed mean shift c.

4.2. Comparison under upward shifts

As mentioned in [32], an event in a process can be classified into two categories: the negative or the positive.
A negative event may be a quality problem, a natural disaster or an epidemic outbreak in real applications.
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On the contrary, the purchase order of a product, the success of an activity, the profit in a business, etc.,
may be considered positive events. For a high-quality process, the upward shift detection is very important
when the events we are interested in are positive ones. For example, a store manager should pay attention to
monitor a downward shift in the purchase order, because the decrease in the purchase order of a particular
product means that this product may be overstocked in the future.

In order to evaluate the ARL and SDRL performances of the proposed upper-sided EWMA TBE scheme
for upward mean shifts, the control limits H+ and Ĥ+ of the proposed upper-sided EWMA TBE schemes
with known and estimated parameters are respectively listed in Table 1, for different desired ARL0 ∈
{200, 370, 500} and different values of m ∈ {10, 50, 200,+∞} when the smoothing parameter r ranges
from 0.03 to 0.90. It is noted that m = +∞ corresponds to the known parameter case. Additionally, with
the same settings, the control limits hQ and ĥQ of the existing upper-sided REWMA schemes for the known
and estimated parameter cases are also presented in Table 1, respectively. It can be seen from Table 1 that,
for a specified r and ARL0, the Ĥ+ value of the proposed upper-sided EWMA TBE chart with estimated
parameters tends to be closer to its known parameter counterpart H+, as m increases. This means that the
effect of estimated parameters on the performance of the proposed scheme is large when the number of Phase
I TBE observations m is small.

(Please insert Table 1 here)

The ARL (ÂRL) and SDRL (ŜDRL) values of the proposed upper-sided EWMA TBE chart with known
(estimated) parameters can be obtained using the Markov chain model provided in Section 3.1. Owing to
space limitation, for the known parameter case, only the ARL1 and SDRL1 values with the constraint on the
desired ARL0 = 500 are presented in Table 2. For instance, when the smoothing parameter r = 0.05 and
the upward mean shift c = 1.3, the ARL1 and SDRL1 of the proposed upper-sided EWMA TBE scheme are
53.81 and 46.07, respectively. Meanwhile, the corresponding ARL1 and SDRL1 of the existing upper-sided
REWMA chart are 58.65 and 49.14, respectively. In addition, for the parameter estimation case, the ÂRL1

and ŜDRL1 values of the proposed and existing upper-sided EWMA type schemes are respectively presented
in Table 3, based on the Phase I TBE observations m = 200 and ÂRL0 = 500. For example, when the upward
mean shift c = 2 and the smoothing parameter r = 0.3, the ÂRL1 and ŜDRL1 of the proposed upper-sided
EWMA TBE scheme are 14.93 and 13.48, respectively. Meanwhile, the corresponding ÂRL1 and ŜDRL1 of
the existing upper-sided REWMA chart are 15.00 and 13.39, respectively.

(Please insert Tables 2 and 3 here)

Several conclusions can be drawn from Tables 2 and 3 that,

• For the same smoothing parameters (i.e., r = λQ), the suggested upper-sided EWMA TBE scheme with
known parameters is uniformly more sensitive than the corresponding upper-sided REWMA scheme
in detecting the whole upward shift domain. On the other hand, for the estimated parameter case (i.e.,
m = 200), the proposed upper-sided EWMA TBE scheme is superior to the upper-sided REWMA
scheme, when only a small smoothing parameters (say, r < 0.5) is selected.

• For a fixed upward mean shift c, the ARL1 and SDRL1 performances of the proposed upper-sided
EWMA TBE scheme and the existing upper-sided REWMA scheme tend to be similar as the smoothing
parameter r increases. For instance, when upward mean shift c = 1.1 and r = 0.05, the (ARL1,
SDRL1) values of the upper-sided EWMA TBE chart and the upper-sided REWMA chart are (178.36,
170.61) and (191.67, 180.90), respectively. Meanwhile, with the same c = 1.1, the corresponding
(ARL1, SDRL1) values of these two schemes for r = 0.8 are (279.67, 279.13) and (279.96, 279.36),
respectively.

• Compared with the upper-sided REWMA scheme, the effect of the parameter estimation on the recom-
mended upper-sided EWMA TBE scheme is relatively small. It can be observed that there is a small
difference between the (ARL1, SDRL1) and (ÂRL1, ŜDRL1) values of the proposed upper-sided
EWMA TBE chart. Conversely, the corresponding difference between (ARL1, SDRL1) and (ÂRL1,
ŜDRL1) values of the existing upper-sided REWMA chart is clear, especially for a small smoothing
parameter. This fact implies that the proposed upper-sided EWMA TBE chart is more effective than the
upper-sided REWMA chart in resisting the effect of parameter estimation.
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The optimal parameter combinations (r∗,H+∗) and (λ∗
Q, h∗Q) of the proposed upper-sided EWMA TBE

chart and the upper-sided REWMA chart for different upward mean shifts copt are respectively given in Table
4. Meanwhile, the corresponding ARLopt and ARL′

opt of these two charts are also provided, respectively. For
instance, when the upward mean shift copt = 2, the optimal parameter combination (r∗,H+∗) and ARLopt

of the recommended upper-sided EWMA TBE scheme are (0.06, 1.2922) and 12.1483, respectively, and the
corresponding optimal parameter combination (λ∗

Q, h
∗
Q) and ARL′

opt of the existing upper-sided REWMA
chart are (0.0872, 1.7077) and 13.1082, respectively. It can be made from Table 4 that, for a specified ARL0,
the optimal smoothing parameter r∗ of the recommended upper-sided EWMA TBE scheme increases, as the
upward mean shift copt increases. Moreover, it can be observed that the optimal upper-sided EWMA TBE
chart is superior to the optimal upper-sided REWMA chart in the whole upward shift domain, especially for
small upward mean shifts copt. In order to make a quantitative assessment of the ARLopt values, the average
of the ratio (AR) of ARLopt to ARL′

opt is defined as,

AR =
1

N

∑N

J=1

ARLopt(copt,J)

ARL′
opt(copt,J)

, (30)

where N is the number of mean shift copt used in the comparison, ARLopt(copt,J) is the minimum
ARL1 value produced by the recommended one-sided EWMA TBE chart at the J th mean shift copt,J , and
ARL′

opt(copt,J) is the minimum ARL′
1 value of the existing one-sided REWMA chart at the same mean shift

level. Obviously, if the AR value is smaller than one, the optimal upper-sided (lower-sided) EWMA TBE
chart is considered to perform better than the optimal upper-sided (lower-sided) REWMA chart for the pre-
specified upward (downward) shift domain and vice versa. As it can be computed in Table 4, the AR value
of the proposed optimal upper-sided EWMA TBE scheme with known parameters is 0.9253 for the upward
mean shift domain copt ∈ {1.05, 1.2, 1.4, 1.6, 1.8, 2, 3, 4, 5, 6, 7, 8}.

(Please insert Table 4 here)

To sum up, irrespective of the known or the estimated parameter case, the proposed upper-sided EWMA
TBE scheme with a small smoothing parameter outperforms the corresponding upper-sided REWMA chart
for detecting upward shifts in the process mean. Moreover, the proposed upper-sided EWMA TBE chart is
more effective than the upper-sided REWMA chart in resisting the effect of parameter estimation.

4.3. Comparison under downward shifts

The downward shift detection is critical when the events we are interested in are negative ones. For example,
a decrease in the time between two quality problems of a product indicates that the quality of this product
has declined. With the same settings as in the upward shift detection case, the control limits H− and Ĥ−

of the proposed lower-sided EWMA TBE schemes with known and estimated parameters are presented in
Table 5, respectively. Similar to the upward shift detection case, for a specified r and ARL0, the Ĥ− value
of the proposed lower-sided EWMA TBE scheme with estimated parameters tends to be closer to its known
parameter counterpart H−, as m increases. This also means that the effect of estimated parameter on the
in-control ARL performance is large when a small number of Phase I TBE observation m is considered.

(Please insert Table 5 here)

The ARL (ÂRL) and SDRL (ŜDRL) performances of the proposed lower-sided EWMA TBE chart with
known (estimated) parameters can be obtained using the Markov chain model provided in Appendix B. For
comparison, the ARL1 and SDRL1 values of the proposed lower-sided EWMA TBE and the existing lower-
sided REWMA charts with known parameters are respectively presented in Table 6. For instance, when the
smoothing parameter r = 0.2 and the downward mean shift c = 0.3, the ARL1 and SDRL1 of the proposed
lower-sided EWMA TBE chart are 9.61 and 4.68, respectively. Meanwhile, the corresponding ARL1 and
SDRL1 of the existing lower-sided REWMA chart are 10.49 and 3.71, respectively. In addition, for the
parameter estimated case, the ÂRL1 and ŜDRL1 values of the lower-sided EWMA TBE and the lower-sided
REWMA charts are presented in Table 7, respectively. For instance, when the smoothing parameter r = 0.4

and the downward mean shift c = 0.2, the ÂRL1 and ŜDRL1 values of the proposed lower-sided EWMA
TBE chart are 6.91 and 3.46, respectively. And the corresponding ÂRL1 and ŜDRL1 values of the existing
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lower-sided REWMA chart are 7.43 and 3.06, respectively.

(Please insert Tables 6 and 7 here)

It can be concluded from Tables 6 and 7 that,

• Irrespective of the known or the estimated parameter case, the proposed lower-sided EWMA TBE
scheme with a small smoothing parameter is superior to the corresponding lower-sided REWMA
scheme in monitoring moderate-to-large downward mean shifts.

• For a specified downward mean shift c, the lower-sided EWMA TBE chart and the lower-sided
REWMA chart tend to be similar in the ARL1 and SDRL1 performances with the increase of the
smoothing parameter r, especially in the estimated parameter case.

• Similar to the upward shift detection case, the proposed lower-sided EWMA TBE scheme is also per-
forms better than the lower-sided REWMA chart in resisting the effect of parameter estimation.

In order to obtain the ARLopt and ARL′
opt values of the proposed lower-sided EWMA TBE chart and the

existing lower-sided REWMA chart for different downward mean shifts copt, the optimal parameter combi-
nations (r∗,H−∗) and (λ∗

q , h∗q) of these two schemes are provided in Table 8, respectively. Based on the
ARLopt and ARL′

opt values presented in Table 8, the AR value of the proposed lower-sided EWMA TBE
chart is 0.9377 for the downward mean shift domain copt ∈ {0.95, 0.92, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2,0.1,
0.05}.

(Please insert Table 8 here)

It can also be found in Table 8 that, for a specified ARL0, the optimal smoothing parameter r∗ of the
proposed lower-sided EWMA TBE chart increases, as the downward mean shift copt decreases. Additionally,
the optimal lower-sided EWMA TBE chart is uniformly more effective than the optimal lower-sided REWMA
chart in the whole downward shift domain, especially for detecting small downward mean shifts copt.

5. Examples

To explain the implementation of the recommended one-sided EWMA TBE scheme in monitoring mean
shifts of the high-quality processes, a common practice is to consider either a simulated or a real dataset.
In this section, two examples are introduced, one with simulated data and the other one with real data from
the Hellenic Air Force (HAF) as reported in [1], and then the proposed one-sided EWMA TBE schemes are
implemented using these two datasets.

5.1. Example 1

For a high-quality manufacturing process, assume that the time between two successive events follows an
exponential distribution with scale parameter θ = 10, i.e., the in-control mean θ0 of the process is 10. In
this example, we generate 30 TBE observations with the parameter θ1 = 18, see Column 2 in Table 9.
The simulated dataset can be viewed as TBE observations from an out-of-control process where the shift
is c = θ1/θ0 = 1.8. In order to monitor the upward mean shift more effectively, the proposed upper-sided
EWMA TBE scheme is implemented. According to the truncation method given in Section 2.1, all 30 TBE
observations Xt were divided by θ0 = 10 to obtain the scaled TBE observations Yt. Furthermore, trans-
forming these 30 scaled TBE observations Yt to the upper-truncated TBE observations Y +

t using (3), and
then the corresponding upper-sided EWMA statistic Q+

t can be obtained, see Column 4 in Table 9. When
the upper-sided EWMA statistic Q+

t exceeds H+, the proposed upper-sided EWMA TBE chart triggers an
out-of-control signal, and then the potential assignable causes should be found and removed.

(Please insert Table 9 and Figure 1 here)

To provide a fair comparison with the existing upper-sided REWMA chart, the same smoothing parameter,
say, r = λQ = 0.1, is specified in the proposed upper-sided EWMA TBE scheme. Then, with the constraint
on ARL0 = 200, the control limits H+ and hQ of the upper-sided EWMA TBE chart and the upper-sided
REWMA chart are 1.8406 and 1.6460, respectively. The monitoring procedures of these two charts are shown
in Figure 1, respectively. Note that the suggested upper-sided EWMA TBE scheme gives an out-of-control
signal at the 11th TBE observation, while the existing upper-sided REWMA chart signals at the 16th TBE
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observation (both of these two charting statistics are bolded in Table 9). In this example, this represents that
the suggested upper-sided EWMA TBE scheme is superior to the existing upper-sided REWMA scheme for
monitoring an upward shift.

5.2. Example 2

The real dataset employed in this subsection is related to F-16 aircraft accidents of the Hellenic Air Force
(HAF), which was firstly introduced by [1]. The time between two accidents of F-16 aircraft can be regarded
as an important quality characteristic for reliability monitoring. In this real dataset, 16 time intervals between
consecutive accidents of F-16 aircraft are included, see Column 2 in Table 10. According to [1], it has been
proved that the time between accidents of F-16 aircraft from 1 December 1988 to 31 December 2017 fits the
gamma distribution with shape parameter γ = 1 and scale parameter θ = 615 (days). Since the exponential
distribution with mean θ is the special case of the gamma distribution with the shape parameter 1 and the
scale parameter θ, this means that the time between two successive accidents of F-16 aircraft follows an
exponential distribution with scale parameter θ1 = 615 (days). Furthermore, it is assumed that the in-control
value of θ0 is 1460 (days), i.e., the process is acceptable if an accident occurs every four years. Then, the
proposed one-sided EWMA TBE chart can be implemented to monitor those 16 Phase II observations.

(Please insert Table 10 and Figure 2 here)

In order to monitor the process, the same smoothing parameters, say, r = λq = 0.03, are selected. Then,
with the constraint on the desired ARL0 = 370, the control limits H− and hq of the lower-sided EWMA
TBE scheme and the lower-sided REWMA scheme are 0.5462 and 0.7539, respectively. Based on these
design parameters, the charting statistics Q−

t and qt of these two charts can be obtained, respectively (see
Columns 4 and 6 in Table 10). The monitoring procedures of these two charts for the time intervals between
consecutive accidents of F-16 aircraft are presented in Figure 2, respectively. As shown in Figure 2, the
proposed lower-sided EWMA TBE chart gives an out-of-control signal at the 16th TBE observation, while
the existing lower-sided REWMA chart cannot detect the shift at all. This means that the suggested lower-
sided EWMA TBE scheme in this example works better than the existing lower-sided REWMA scheme in
monitoring a downward shift.

6. Conclusion

This paper investigates a one-sided EWMA TBE scheme using the truncation method for detecting either
upward or downward mean shifts. The basic idea of the truncation method is to truncate the TBE observations
below (or above) the scale parameter θ to the value of θ , and to accumulate the TBE observations above
(or below) the scale parameter θ only. A dedicated Markov chain method has been established to analyze
the ARL and SDRL performances of the proposed one-sided EWMA TBE chart with known and estimated
parameters. In addition, the optimal design of the proposed one-sided EWMA TBE chart is also provided
in this paper. Comparison results demonstrate that the optimal one-sided EWMA TBE chart always outper-
forms the optimal one-sided REWMA chart in terms of the overall detection effectiveness. Meanwhile, the
one-sided EWMA TBE chart performs better than the one-sided REWMA chart in resisting the influence of
parameter estimation. More importantly, the operation of the recommended one-sided EWMA TBE scheme
is not only as simple as that of the existing one-sided REWMA chart, but also does not need to predetermine
the value of reflecting boundary. This means the esay-to-implement one-sided EWMA TBE chart may be a
good alternative to the one-sided REWMA chart in monitoring the exponentially distributed data.

In real applications, the steady-state and the worst-case scenarios of a control chart are more informa-
tive than its zero-state counterpart. A possible future extension of the current study is to investigate the RL
properties (including the ARL, MRL and SDRL) of the proposed one-sided EWMA TBE chart in both the
steady-state and the worst-case scenarios. Besides, using a one-sided type chart with the truncation method
to monitor the other suitable distributed data (like, Poisson and gamma) for high-quality manufacturing pro-
cesses could also be considered.
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Appendix A

Let Yt be an exponential random variable with scale parameter θ = 1. The p.d.f. and c.d.f. of Yt are fYt
(y) =

e−y and FYt
(y) = 1− e−y, respectively. Let us define Y +

t = max(1, Yt). The p.d.f. fY +
t
(y) of Y +

t is defined
on [1,∞) and it is equal to

fY +
t
(y) = FYt

(1)× Iy=1 + fYt
(y)× Iy>1,

= (1− e−1)× Iy=1 + e−y × Iy>1, (A.1)

where I is the indicator function. Therefore, the expectation E(Y +
t ) of Y +

t is

E(Y +
t ) = 1− e−1 +

∫ ∞

1
ye−ydy︸ ︷︷ ︸
2e−1

. (A.2)

14



It is not difficult to prove that the integral above is equal to 2e−1 and we have

E(Y +
t ) = 1 + e−1. (A.3)

Similarly, the expectation of (Y +
t )2 is equal to

E
(
(Y +

t )2
)
= 1− e−1 +

∫ ∞

1
y2e−ydy︸ ︷︷ ︸
5e−1

, (A.4)

and since the integral reduces to 5e−1, we have

E
(
(Y +

t )2
)
= 1 + 4e−1. (A.5)

Finally, the variance V (Y +
t ) of Y +

t can be obtained using

V (Y +
t ) = 1 + 4e−1 − (1 + e−1)2 = 2e−1 − e−2

= e−1(2− e−1). (A.6)

Now, let us define Y −
t = min(1, Yt). The p.d.f. fY −

t
(y) of Y −

t is defined on [0, 1] and it is equal to

fY −
t
(y) = fYt

(y)× I06y<1 + (1− FYt
(1))× Iy=1,

= e−y × I06y<1 + e−1 × Iy=1. (A.7)

Therefore, the expectation E(Y −
t ) of Y −

t is equal to

E(Y −
t ) =

∫ 1

0
ye−ydy︸ ︷︷ ︸

1−2e−1

+e−1. (A.8)

Since the integral above reduces to 1− 2e−1, we have

E(Y −
t ) = 1− e−1. (A.9)

Note that the expectation of (Y −
t )2 is equal to

E
(
(Y −

t )2
)
=

∫ 1

0
y2e−ydy︸ ︷︷ ︸
2−5e−1

+e−1, (A.10)

which reduces to

E
(
(Y −

t )2
)
= 2− 4e−1. (A.11)

Finally, the variance V (Y −
t ) of Y −

t can be obtained using

V (Y −
t ) = 2− 4e−1 − (1− e−1)2 = 1− 2e−1 − e−2

= 1− e−1(2 + e−1). (A.12)

Similar to the known parameter case above, the mean E(Ŷ +
t ) and E(Ŷ −

t ) of the estimated upper- and
lower-truncated TBE random variables Ŷ +

t = max(1, Ŷt) and Ŷ −
t = min(1, Ŷt) can also be computed,
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respectively, say,

E(Ŷ +
t ) = 1 +Ke−

1

K , (A.13)

E(Ŷ −
t ) = K −Ke−

1

K , (A.14)

where K is defined in (11) as the ratio of the in-control scale parameter θ0 to its estimator θ̂0.

Appendix B

For the proposed lower-sided EWMA TBE scheme with known parameters, the mean and variance of the
variable Y −

t = min(1, Yt) are 1 − e−1 and 1 − e−1(2 + e−1), respectively. Since the lower-sided EWMA
statistic Q−

t = rZ−
t + (1 − r)Q−

t−1 6 1
1−e−1 , the in-control region is defined as [H−, 1

1−e−1 ], and then the

width of each subinterval w− = 1/(1−e−1)−H−

M can be obtained. The midpoint value of the ith subinterval
is L−

i = 1
1−e−1 − (i − 0.5)w−, where i = 1, 2, · · · ,M . Based on that, the transition probability qi,j of the

charting statistic Q−
t from state i to state j is given as follow,

qi,j = Pr
(
Q−

t ∈ state j | Q−
t−1 ∈ state i

)
= Pr

(
1− (1− e−1) [j − (1− r)(i− 0.5)]w−

r
< Y −

t

6 1− (1− e−1) [j − 1− (1− r)(i− 0.5)]w−

r

)
.

(B.1)

Similarly, let us define

A3 = 1− (1− e−1) [j − (1− r)(i− 0.5)]w−

r
, (B.2)

A4 = 1− (1− e−1) [j − 1− (1− r)(i− 0.5)]w−

r
. (B.3)

Then, the elements qi,j can be obtained using,

qi,j =



0, if A3 > 1

1− FS

(
A3

c

)
, if A3 6 1 and A4 > 1

FS

(
A4

c

)
− FS

(
A3

c

)
, if A3 6 1 and A4 6 1

(B.4)

Meanwhile, the elements pj of vector p are,

pj =

 1, L−
j − w−

2
< Q−

0 < L−
j +

w−

2
0, otherwise

(B.5)

where Q−
0 = 1. By using (24) and (25), one can easily compute the ARL and SDRL values of the proposed

lower-sided EWMA TBE chart with known parameters, respectively.

For the parameter estimation case, we characterize the conditional ÂRL and ŜDRL as functions of the
mean shift c and conditional on the fixed value of k, i.e., ÂRL(c|k) and ŜDRL(c|k), respectively (see [19]).
Based on this, the unconditional ÂRL value of the proposed one-sided EWMA TBE chart can be computed
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by integrating the conditional ÂRL(c|k) value with respect to k, say,

ÂRL =

∫ +∞

0
ÂRL(c|k) fK(k|m) dk

=

∫ +∞

0
p̂T(I− Q̂)−11 fK(k|m) dk. (B.6)

Also, the corresponding unconditional ŜDRL value can be obtained using,

ŜDRL =

∫ +∞

0
ŜDRL(c|k) fK(k|m) dk

=

∫ +∞

0

√
2p̂T(I− Q̂)−2Q̂ 1− (ÂRL)2 + ÂRL

× fK(k|m) dk, (B.7)

where fK(k|m) is defined in (12). Moreover, the conditional transition probability matrix Q̂ = [q̂i,j ]M×M

can be computed as follow:

• Because the mean E(Ŷ +
t ) of the estimated variable Ŷ +

t = max(1, Ŷt) is equal to 1 +Ke−
1

K , and
the scaling of the estimated variable Ŷ +

t is defined as Ẑ+ = Ŷ +
t /(1 +Ke−

1

K ). Similar to the known
parameter case, the elements q̂i,j can be obtained as follow,

q̂i,j = Pr
(
Q̂+

t ∈ state j | Q̂+
t−1 ∈ state i

)
= Pr

(
1 +

(1 + ke−
1

k ) [j − 1− (1− r)(i− 0.5)] ŵ+

r

< Ŷ +
t 6 1 +

(1 + ke−
1

k ) [j − (1− r)(i− 0.5)] ŵ+

r

)
.

(B.8)

where ŵ+ = 1
M

(
Ĥ+ − 1/(1 + ke−

1

k )
)

, and Ĥ+ is the control limit of the proposed upper-sided
EWMA TBE chart with estimated parameters. Then, let us define

Â1 = 1 +
(1 + ke−

1

k ) [j − 1− (1− r)(i− 0.5)] ŵ+

r
, (B.9)

Â2 = 1 +
(1 + ke−

1

k ) [j − (1− r)(i− 0.5)] ŵ+

r
. (B.10)

The entire q̂i,j can be obtained as follow,

q̂i,j =



0, if Â2 < 1

FS

(
Â2

kc

)
, if Â2 > 1 and Â1 < 1

FS

(
Â2

kc

)
− FS

(
Â1

kc

)
, if Â2 > 1 and Â1 > 1

(B.11)

Meanwhile, the elements p̂j of vector p̂ are,

p̂j =

 1, L̂+
j − ŵ+

2
< Q̂+

0 < L̂+
j +

ŵ+

2
0, otherwise

(B.12)
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where L̂+
j = 1/(1 + ke−

1

k ) + (j − 0.5)ŵ+, and Q̂+
0 = 1.

• For the proposed lower-sided EWMA TBE scheme with estimated parameters, the corresponding tran-
sient probabilities q̂i,j can be obtained using Ẑ− = Ŷ −

t /(K −Ke−
1

K ), i.e.,

q̂i,j = Pr
(
Q̂−

t ∈ state j | Q̂−
t−1 ∈ state i

)
= Pr

(
1− (k − ke−

1

k ) [j − (1− r)(i− 0.5)] ŵ−

r
< Ŷ −

t

6 1− (k − ke−
1

k ) [j − 1− (1− r)(i− 0.5)] ŵ−

r

)
.

(B.13)

where ŵ− = 1
M

(
1/(k − ke−

1

k )− Ĥ−
)

, and Ĥ− is the control limit of the suggested lower-sided
EWMA TBE chart with estimated parameters. Let

Â3 = 1− (k − ke−
1

k ) [j − (1− r)(i− 0.5)] ŵ−

r
, (B.14)

Â4 = 1− (k − ke−
1

k ) [j − 1− (1− r)(i− 0.5)] ŵ−

r
. (B.15)

Then, the elements q̂i,j are,

q̂i,j =



0, if Â3 > 1

1− FS

(
Â3

kc

)
, if Â3 6 1 and Â4 > 1

FS

(
Â4

kc

)
− FS

(
Â3

kc

)
, if Â3 6 1 and Â4 6 1

(B.16)

Also, the elements p̂j of vector p̂ can be obtained using,

p̂j =

 1, L̂−
j − ŵ−

2
< Q̂−

0 < L̂−
j +

ŵ−

2
0, otherwise

(B.17)

where Q̂−
0 = 1 and L̂−

j = 1/(k − ke−
1

k )− (j − 0.5)ŵ−.

In this paper, the Gauss-Legendre quadrature can be used to overcome the computational difficulties caused
by (B.6) and (B.7) so as to obtain an approximation of these integrals.
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Table 1.: Control limits of the upper-sided EWMA TBE and upper-sided REWMA charts for
ARL0 ∈ {200, 370, 500}, r(λQ) ∈ {0.03, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and

m ∈ {50, 200, 1000,+∞}.

ARL0 Charts m
r(λQ)

0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

200

Proposed

10 1.0986 1.1576 1.2133 1.2935 1.5486 1.7975 2.0444 2.2915 2.5396 2.7893 3.0406 3.2938
50 1.1122 1.1814 1.2457 1.3370 1.6209 1.8943 2.1646 2.4348 2.7063 2.9802 3.2565 3.5354

200 1.1142 1.1848 1.2505 1.3436 1.6322 1.9097 2.1836 2.4575 2.7328 3.0105 3.2907 3.5737
+∞ 1.1148 1.1860 1.2521 1.3456 1.6359 1.9147 2.1897 2.4648 2.7413 3.0202 3.3017 3.5861

Existing

10 1.1109 1.1824 1.2522 1.3546 1.6820 1.9970 2.3056 2.6106 2.9135 3.2153 3.5164 3.8171
50 1.1982 1.3096 1.4122 1.5557 1.9878 2.3873 2.7731 3.1523 3.5285 3.9034 4.2780 4.6526

200 1.2387 1.3601 1.4697 1.6210 2.0716 2.4862 2.8863 3.2797 3.6701 4.0596 4.4490 4.8387
+∞ 1.2565 1.3809 1.4924 1.6460 2.1020 2.5214 2.9262 3.3243 3.7195 4.1138 4.5082 4.9031

370

Proposed

10 1.1205 1.1869 1.2499 1.3409 1.6312 1.9153 2.1972 2.4798 2.7635 3.0491 3.3364 3.6257
50 1.1446 1.2239 1.2974 1.4015 1.7260 2.0395 2.3500 2.6610 2.9738 3.2896 3.6080 3.9295

200 1.1477 1.2291 1.3042 1.4104 1.7406 2.0587 2.3736 2.6891 3.0064 3.3268 3.6501 3.9766
+∞ 1.1487 1.2307 1.3064 1.4133 1.7452 2.0649 2.3812 2.6981 3.0169 3.3387 3.6636 3.9916

Existing

10 1.1215 1.1998 1.2765 1.3890 1.7506 2.1002 2.4438 2.7843 3.1231 3.4610 3.7984 4.1355
50 1.2251 1.3503 1.4654 1.6263 2.1119 2.5633 3.0010 3.4326 3.8618 4.2902 4.7189 5.1479

200 1.2784 1.4150 1.5379 1.7076 2.2145 2.6840 3.1393 3.5886 4.0357 4.4825 4.9299 5.3781
+∞ 1.3032 1.4426 1.5673 1.7391 2.2521 2.7273 3.1883 3.6434 4.0966 4.5495 5.0033 5.4580

500

Proposed

10 1.1293 1.1992 1.2657 1.3620 1.6693 1.9704 2.2694 2.5691 2.8701 3.1730 3.4778 3.7845
50 1.1595 1.2436 1.3213 1.4316 1.7760 2.1091 2.4395 2.7706 3.1038 3.4402 3.7794 4.1219

200 1.1633 1.2496 1.3292 1.4418 1.7922 2.1304 2.4655 2.8015 3.1397 3.4811 3.8256 4.1735
+∞ 1.1645 1.2515 1.3317 1.4450 1.7973 2.1371 2.4739 2.8114 3.1511 3.4942 3.8404 4.1901

Existing

10 1.1263 1.2078 1.2876 1.4049 1.7823 2.1482 2.5084 2.8656 3.2213 3.5762 3.9307 4.2850
50 1.2373 1.3689 1.4898 1.6590 2.1705 2.6471 3.1102 3.5675 4.0227 4.4773 4.9323 5.3879

200 1.2967 1.4405 1.5697 1.7482 2.2825 2.7790 3.2614 3.7383 4.2133 4.6884 5.1643 5.6413
+∞ 1.3251 1.4714 1.6024 1.7831 2.3238 2.8264 3.3151 3.7985 4.2802 4.7622 5.2452 5.7294

Table 2.: (ARL1, SDRL1) profiles of the upper-sided EWMA TBE and upper-sided REWMA charts when
ARL0 = 500.

c Charts
r(λQ) 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H+ 1.1645 1.2515 1.3317 1.4450 1.7973 2.1371 2.4739 2.8114 3.1511 3.4942 3.8404 4.1900
hQ 1.3251 1.4714 1.6024 1.7831 2.3238 2.8264 3.3151 3.7985 4.2802 4.7622 5.2452 5.7294

1.05 Proposed (267.60, 258.83) (283.83, 277.27) (295.34, 290.32) (307.83, 304.19) (331.97, 330.25) (344.95, 343.84) (353.39, 352.56) (359.12, 358.45) (363.29, 362.70) (366.44, 365.89) (368.79, 368.27) (370.55, 370.04)
Existing (285.41, 269.18) (297.51, 286.73) (306.83, 298.82) (317.15, 311.45) (337.21, 334.45) (348.28, 346.54) (355.44, 354.19) (360.49, 359.52) (364.12, 363.33) (366.90, 366.22) (369.00, 368.40) (370.62, 370.07)

1.1 Proposed (163.89, 153.20) (178.36, 170.61) (189.60, 183.72) (202.81, 198.58) (230.82, 228.85) (247.24, 246.00) (258.31, 257.40) (266.11, 265.39) (271.90, 271.28) (276.31, 275.75) (279.67, 279.13) (282.21, 281.70)
Existing (179.96, 164.03) (191.67, 180.90) (201.36, 193.29) (212.83, 207.05) (237.09, 234.27) (251.41, 249.63) (261.02, 259.74) (267.93, 266.95) (273.03, 272.23) (276.95, 276.27) (279.96, 279.36) (282.31, 281.76)

1.3 Proposed (50.31, 40.41) (53.81, 46.07) (57.34, 51.10) (62.45, 57.70) (76.74, 74.32) (87.49, 85.96) (95.75, 94.66) (102.18, 101.33) (107.27, 106.57) (111.33, 110.72) (114.57, 114.01) (117.13, 116.61)
Existing (56.07, 43.06) (58.65, 49.14) (61.87, 54.41) (66.71, 61.11) (80.20, 77.31) (90.17, 88.31) (97.72, 96.38) (103.60, 102.57) (108.22, 107.38) (111.91, 111.20) (114.85, 114.24) (117.22, 116.67)

1.5 Proposed (27.26, 19.73) (28.05, 21.82) (29.11, 23.84) (30.96, 26.71) (37.26, 34.85) (42.85, 41.25) (47.57, 46.41) (51.49, 50.59) (54.75, 54.01) (57.47, 56.83) (59.70, 59.13) (61.52, 60.99)
Existing (30.51, 20.45) (30.49, 22.70) (31.26, 24.89) (32.90, 27.91) (38.93, 36.15) (44.25, 42.40) (48.67, 47.33) (52.33, 51.29) (55.35, 54.50) (57.84, 57.13) (59.90, 59.28) (61.59, 61.03)

1.7 Proposed (18.43, 12.56) (18.50, 13.50) (18.81, 14.46) (19.54, 15.90) (22.60, 20.34) (25.68, 24.11) (28.48, 27.30) (30.91, 29.99) (33.02, 32.26) (34.83, 34.18) (36.36, 35.78) (37.64, 37.10)
Existing (20.83, 12.85) (20.19, 13.81) (20.21, 14.84) (20.73, 16.38) (23.55, 20.96) (26.49, 24.71) (29.14, 27.81) (31.44, 30.40) (33.40, 32.56) (35.08, 34.36) (36.50, 35.87) (37.68, 37.13)

2 Proposed (12.41, 8.06) (12.20, 8.41) (12.17, 8.81) (12.35, 9.44) (13.55, 11.57) (15.00, 13.54) (16.42, 15.28) (17.73, 16.82) (18.92, 18.15) (19.97, 19.31) (20.90, 20.30) (21.69, 21.15)
Existing (14.23, 8.22) (13.44, 8.52) (13.16, 8.93) (13.13, 9.59) (14.09, 11.81) (15.44, 13.79) (16.78, 15.52) (18.03, 17.02) (19.14, 18.30) (20.13, 19.41) (20.98, 20.36) (21.72, 21.16)

3 Proposed (6.17, 3.83) (5.93, 3.84) (5.80, 3.88) (5.71, 3.97) (5.76, 4.40) (5.99, 4.87) (6.29, 5.33) (6.59, 5.76) (6.90, 6.17) (7.19, 6.53) (7.46, 6.87) (7.71, 7.16)
Existing (7.25, 3.98) (6.68, 3.92) (6.39, 3.94) (6.16, 4.01) (6.01, 4.43) (6.17, 4.91) (6.42, 5.37) (6.70, 5.80) (6.98, 6.20) (7.25, 6.56) (7.50, 6.88) (7.73, 7.17)

5 Proposed (3.42, 2.09) (3.28, 2.05) (3.19, 2.04) (3.11, 2.03) (3.03, 2.09) (3.04, 2.19) (3.08, 2.30) (3.14, 2.42) (3.20, 2.53) (3.27, 2.64) (3.34, 2.74) (3.40, 2.84)
Existing (4.04, 2.24) (3.72, 2.15) (3.54, 2.11) (3.38, 2.09) (3.18, 2.12) (3.14, 2.21) (3.15, 2.32) (3.19, 2.43) (3.24, 2.54) (3.29, 2.65) (3.35, 2.75) (3.41, 2.84)

8 Proposed (2.34, 1.39) (2.25, 1.35) (2.20, 1.33) (2.15, 1.31) (2.08, 1.31) (2.06, 1.33) (2.06, 1.36) (2.08, 1.40) (2.09, 1.44) (2.11, 1.48) (2.13, 1.52) (2.15, 1.56)
Existing (2.72, 1.52) (2.52, 1.45) (2.42, 1.40) (2.32, 1.37) (2.17, 1.34) (2.12, 1.35) (2.11, 1.38) (2.11, 1.41) (2.11, 1.45) (2.13, 1.49) (2.14, 1.53) (2.16, 1.56)
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Table 3.: (ÂRL1, ŜDRL1) profiles of the upper-sided EWMA TBE and upper-sided REWMA charts when
m = 200 and ÂRL0 = 500.

c Charts
r(λQ) 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ĥ+ 1.1633 1.2496 1.3292 1.4418 1.7922 2.1304 2.4655 2.8015 3.1397 3.4811 3.8256 4.1735
ĥQ 1.2967 1.4405 1.5697 1.7482 2.2825 2.7790 3.2614 3.7383 4.2133 4.6884 5.1643 5.6413

1.05 Proposed (267.10, 258.64) (283.27, 276.99) (294.78, 289.96) (307.43, 303.94) (331.42, 329.73) (344.77, 343.67) (353.01, 352.20) (358.80, 358.13) (362.97, 362.38) (366.10, 365.55) (368.43, 367.91) (370.20, 369.70)
Existing (280.18, 266.56) (293.69, 284.10) (303.50, 296.17) (314.29, 308.93) (334.95, 332.27) (346.36, 344.64) (353.62, 352.38) (358.72, 357.76) (362.38, 361.59) (365.19, 364.51) (367.31, 366.71) (368.98, 368.43)

1.1 Proposed (163.38, 152.95) (177.78, 170.27) (189.03, 183.33) (202.34, 198.24) (230.27, 228.33) (246.93, 245.71) (257.86, 256.97) (265.69, 264.97) (271.47, 270.85) (275.86, 275.29) (279.18, 278.65) (281.73, 281.22)
Existing (173.73, 160.40) (186.96, 177.44) (197.28, 189.93) (209.28, 203.87) (234.21, 231.48) (248.85, 247.09) (258.57, 257.30) (265.54, 264.56) (270.67, 269.87) (274.61, 273.93) (277.64, 277.04) (280.03, 279.48)

1.3 Proposed (50.04, 40.29) (53.49, 45.9) (57.02, 50.90) (62.14, 57.48) (76.41, 74.02) (87.21, 85.70) (95.41, 94.33) (101.83, 100.99) (106.90, 106.20) (110.95, 110.33) (114.16, 113.60) (116.70, 116.18)
Existing (51.96, 40.94) (55.50, 47.09) (59.15, 52.37) (64.30, 59.11) (78.13, 75.35) (88.19, 86.37) (95.76, 94.44) (101.62, 100.60) (106.23, 105.40) (109.90, 109.20) (112.83, 112.22) (115.20, 114.65)

1.5 Proposed (27.09, 19.66) (27.86, 21.73) (28.92, 23.74) (30.77, 26.59) (37.07, 34.68) (42.67, 41.09) (47.36, 46.21) (51.27, 50.37) (54.52, 53.78) (57.22, 56.58) (59.43, 58.86) (61.24, 60.71)
Existing (27.99, 19.30) (28.58, 21.62) (29.63, 23.81) (31.48, 26.84) (37.71, 35.04) (43.05, 41.26) (47.46, 46.14) (51.10, 50.07) (54.09, 53.24) (56.56, 55.84) (58.59, 57.97) (60.26, 59.71)

1.7 Proposed (18.32, 12.51) (18.37, 13.44) (18.68, 14.40) (19.42, 15.83) (22.48, 20.24) (25.57, 24.01) (28.34, 27.18) (30.77, 29.85) (32.87, 32.11) (34.67, 34.01) (36.18, 35.60) (37.45, 36.91)
Existing (19.09, 12.11) (18.90, 13.14) (19.13, 14.20) (19.79, 15.74) (22.77, 20.28) (25.73, 24.00) (28.36, 27.06) (30.64, 29.61) (32.58, 31.74) (34.24, 33.52) (35.63, 35.01) (36.80, 36.25)

2 Proposed (12.33, 8.03) (12.11, 8.38) (12.09, 8.77) (12.27, 9.40) (13.48, 11.51) (14.93, 13.48) (16.34, 15.21) (17.65, 16.74) (18.83, 18.06) (19.88, 19.21) (20.79, 20.20) (21.58, 21.04)
Existing (13.07, 7.76) (12.61, 8.13) (12.48, 8.55) (12.56, 9.23) (13.63, 11.43) (15.00, 13.39) (16.34, 15.09) (17.57, 16.57) (18.66, 17.83) (19.63, 18.92) (20.47, 19.85) (21.20, 20.64)

3 Proposed (6.13, 3.81) (5.89, 3.82) (5.76, 3.86) (5.67, 3.96) (5.73, 4.38) (5.97, 4.85) (6.26, 5.31) (6.56, 5.74) (6.87, 6.14) (7.16, 6.50) (7.43, 6.83) (7.68, 7.13)
Existing (6.72, 3.78) (6.32, 3.76) (6.10, 3.80) (5.92, 3.89) (5.85, 4.31) (6.02, 4.79) (6.28, 5.24) (6.55, 5.67) (6.83, 6.06) (7.09, 6.41) (7.34, 6.72) (7.56, 7.00)

5 Proposed (3.40, 2.08) (3.26, 2.04) (3.17, 2.03) (3.10, 2.02) (3.02, 2.08) (3.03, 2.18) (3.07, 2.29) (3.13, 2.41) (3.19, 2.52) (3.26, 2.63) (3.33, 2.73) (3.39, 2.82)
Existing (3.79, 2.14) (3.55, 2.08) (3.41, 2.05) (3.28, 2.03) (3.11, 2.07) (3.08, 2.17) (3.10, 2.27) (3.14, 2.38) (3.19, 2.49) (3.24, 2.60) (3.30, 2.69) (3.36, 2.79)

8 Proposed (2.33, 1.38) (2.24, 1.34) (2.19, 1.32) (2.14, 1.31) (2.07, 1.30) (2.06, 1.33) (2.06, 1.36) (2.07, 1.40) (2.09, 1.44) (2.11, 1.48) (2.13, 1.52) (2.15, 1.56)
Existing (2.58, 1.45) (2.43, 1.40) (2.34, 1.36) (2.26, 1.34) (2.14, 1.31) (2.10, 1.33) (2.08, 1.36) (2.08, 1.39) (2.09, 1.43) (2.10, 1.47) (2.12, 1.50) (2.14, 1.54)

Table 4.: Optimal parameter combinations of the upper-sided EWMA TBE and upper-sided REWMA charts
for different copt when ARL0 = 500 .

copt
Upper-sided EWMA TBE Upper-sided REWMA

r∗ H+∗ ARLopt λ∗
Q h∗Q ARL′

opt

1.05 0.0100 1.0617 237.6649 0.0100 1.1426 267.8039
1.2 0.0102 1.0627 71.4525 0.0128 1.1725 86.8376
1.4 0.0102 1.0627 33.7660 0.0299 1.3243 39.6957
1.6 0.0402 1.2100 22.0878 0.0488 1.4632 24.3116
1.8 0.0471 1.2394 15.7261 0.0680 1.5899 17.1405
2 0.0600 1.2922 12.1483 0.0872 1.7077 13.1082
3 0.1271 1.5432 5.6794 0.1752 2.1949 6.0030
4 0.1784 1.7233 3.8516 0.2491 2.5733 4.0262
5 0.2408 1.9369 3.0242 0.3117 2.8841 3.1357
6 0.2759 2.0558 2.5591 0.3658 3.1491 2.6382
7 0.2962 2.1243 2.2639 0.4135 3.3807 2.3230
8 0.3388 2.2678 2.0606 0.4562 3.5871 2.1066

Table 5.: Control limits of the lower-sided EWMA TBE and lower-sided REWMA charts for ARL0 ∈ {200,
370, 500}, r(λq) ∈ {0.03, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and

m ∈ {50, 200, 1000,+∞}.

ARL0 Charts m
r(λq)

0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

200

Proposed

10 0.8968 0.8424 0.7960 0.7354 0.5770 0.4561 0.3592 0.2799 0.2135 0.1553 0.1052 0.0632
50 0.8914 0.8336 0.7844 0.7209 0.5582 0.4378 0.3430 0.2660 0.2027 0.1484 0.1001 0.0594

200 0.8904 0.8321 0.7825 0.7184 0.5551 0.4347 0.3403 0.2638 0.2009 0.1473 0.0993 0.0588
+∞ 0.8901 0.8316 0.7818 0.7176 0.5541 0.4338 0.3395 0.2630 0.2003 0.1469 0.0991 0.0586

Existing

10 0.8872 0.8226 0.7648 0.6888 0.4997 0.3731 0.2799 0.2101 0.1573 0.1118 0.0735 0.0432
50 0.8208 0.7400 0.6753 0.5976 0.4251 0.3167 0.2400 0.1811 0.1351 0.0984 0.0654 0.0382

200 0.7945 0.7135 0.6503 0.5754 0.4105 0.3067 0.2329 0.1762 0.1316 0.0961 0.0640 0.0374
+∞ 0.7839 0.7035 0.6413 0.5677 0.4056 0.3034 0.2306 0.1746 0.1305 0.0953 0.0636 0.0372

370

Proposed

10 0.8737 0.8156 0.7664 0.7029 0.5389 0.4169 0.3214 0.2449 0.1830 0.1311 0.0856 0.0482
50 0.8657 0.8034 0.7514 0.6848 0.5177 0.3973 0.3050 0.2315 0.1723 0.1240 0.0816 0.0454

200 0.8643 0.8015 0.7489 0.6818 0.5142 0.3941 0.3023 0.2294 0.1705 0.1228 0.0809 0.0449
+∞ 0.8640 0.8008 0.7481 0.6808 0.5131 0.3931 0.3014 0.2287 0.1700 0.1223 0.0807 0.0448

Existing

10 0.8780 0.8087 0.7472 0.6671 0.4713 0.3433 0.2529 0.1849 0.1342 0.0953 0.0603 0.0330
50 0.8007 0.7143 0.6465 0.5662 0.3925 0.2865 0.2126 0.1578 0.1148 0.0815 0.0534 0.0293

200 0.7677 0.6827 0.6176 0.5415 0.3772 0.2764 0.2057 0.1531 0.1117 0.0793 0.0522 0.0287
+∞ 0.7539 0.6706 0.6072 0.5329 0.3722 0.2731 0.2035 0.1516 0.1107 0.0786 0.0518 0.0285

500

Proposed

10 0.8636 0.8040 0.7537 0.6887 0.5222 0.3998 0.3052 0.2301 0.1700 0.1209 0.0780 0.0425
50 0.8541 0.7901 0.7368 0.6688 0.4999 0.3798 0.2887 0.2171 0.1596 0.1136 0.0742 0.0401

200 0.8526 0.7879 0.7340 0.6656 0.4963 0.3766 0.2860 0.2150 0.1580 0.1123 0.0736 0.0397
+∞ 0.8521 0.7872 0.7331 0.6646 0.4952 0.3755 0.2852 0.2144 0.1575 0.1119 0.0734 0.0396

Existing

10 0.8740 0.8026 0.7394 0.6573 0.4589 0.3301 0.2413 0.1745 0.1248 0.0875 0.0552 0.0292
50 0.7918 0.7030 0.6338 0.5525 0.3784 0.2735 0.2010 0.1479 0.1065 0.0745 0.0486 0.0259

200 0.7558 0.6691 0.6033 0.5266 0.3629 0.2634 0.1943 0.1434 0.1036 0.0725 0.0475 0.0253
+∞ 0.7405 0.6562 0.5922 0.5177 0.3577 0.2601 0.1921 0.1419 0.1026 0.0719 0.0471 0.0251

20



Table 6.: (ARL1, SDRL1) profiles of the lower-sided EWMA TBE and lower-sided REWMA charts when
ARL0 = 500.

c Charts
r(λq) 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H− 0.8521 0.7872 0.7331 0.6646 0.4952 0.3755 0.2852 0.2144 0.1575 0.1119 0.0734 0.0396
hq 0.7405 0.6562 0.5922 0.5177 0.3577 0.2601 0.1921 0.1419 0.1026 0.0719 0.0471 0.02515

0.8 Proposed (90.26, 72.45) (99.60, 85.43) (108.58, 96.87) (120.92, 111.50) (154.48, 148.66) (180.87, 176.46) (202.87, 199.31) (222.80, 219.80) (242.58, 239.90) (260.63, 258.34) (279.77, 277.95) (309.12, 307.56)
Existing (84.65, 58.31) (91.42, 71.00) (99.23, 82.31) (110.81, 97.17) (145.16, 136.54) (173.26, 166.83) (197.57, 192.45) (218.73, 214.48) (240.00, 236.47) (258.75, 255.76) (278.19, 275.62) (309.08, 307.19)

0.6 Proposed (30.97, 17.19) (31.64, 19.79) (32.92, 22.50) (35.53, 26.62) (46.46, 40.39) (58.79, 54.10) (71.71, 67.88) (85.49, 82.27) (100.95, 98.12) (116.89, 114.47) (136.08, 134.13) (168.38, 166.76)
Existing (32.43, 12.29) (31.12, 14.41) (31.28, 16.73) (32.76, 20.42) (42.12, 33.72) (54.22, 47.81) (67.77, 62.60) (82.05, 77.75) (98.45, 94.85) (115.45, 112.42) (134.59, 132.00) (168.14, 166.21)

0.5 Proposed (20.94, 9.40) (20.57, 10.43) (20.69, 11.57) (21.45, 13.41) (26.16, 20.31) (32.74, 28.06) (40.48, 36.61) (49.53, 46.25) (60.43, 57.55) (72.51, 70.03) (88.09, 86.08) (115.71, 114.06)
Existing (24.10, 6.65) (22.11, 7.44) (21.32, 8.37) (21.15, 9.95) (24.35, 16.34) (30.32, 24.04) (38.10, 32.98) (47.25, 42.96) (58.62, 55.02) (71.47, 68.43) (86.95, 84.34) (115.48, 113.53)

0.4 Proposed (14.97, 5.30) (14.26, 5.67) (13.93, 6.10) (13.90, 6.85) (15.39, 9.94) (18.33, 13.81) (22.30, 18.46) (27.41, 24.11) (34.08, 31.16) (42.08, 39.56) (53.22, 51.15) (74.17, 72.48)
Existing (19.08, 3.78) (16.97, 4.06) (15.88, 4.41) (15.07, 5.04) (15.29, 7.85) (17.59, 11.59) (21.32, 16.33) (26.30, 22.08) (33.08, 29.50) (41.50, 38.46) (52.52, 49.91) (74.01, 72.04)

0.3 Proposed (11.13, 2.93) (10.37, 3.05) (9.91, 3.19) (9.58, 3.46) (9.61, 4.68) (10.60, 6.35) (12.23, 8.53) (14.61, 11.36) (18.04, 15.13) (22.52, 19.99) (29.33, 27.22) (43.06, 41.34)
Existing (15.75, 2.15) (13.71, 2.23) (12.56, 2.36) (11.55, 2.60) (10.49, 3.71) (10.91, 5.32) (12.25, 7.50) (14.43, 10.33) (17.76, 14.25) (22.38, 19.37) (29.08, 26.48) (43.02, 41.03)

0.25 Proposed (9.73, 2.12) (8.98, 2.18) (8.51, 2.26) (8.11, 2.41) (7.79, 3.13) (8.23, 4.15) (9.13, 5.54) (10.59, 7.41) (12.84, 9.96) (15.93, 13.39) (20.82, 18.70) (31.14, 29.4)
Existing (14.48, 1.59) (12.50, 1.63) (11.36, 1.70) (10.31, 1.84) (8.96, 2.51) (8.87, 3.50) (9.48, 4.89) (10.74, 6.74) (12.84, 9.38) (15.95, 12.97) (20.78, 18.19) (31.16, 29.18)

0.2 Proposed (8.58, 1.48) (7.86, 1.51) (7.39, 1.55) (6.97, 1.63) (6.42, 2.03) (6.51, 2.61) (6.92, 3.45) (7.71, 4.60) (9.05, 6.22) (11.00, 8.48) (14.25, 12.13) (21.47, 19.72)
Existing (13.40, 1.15) (11.48, 1.17) (10.36, 1.20) (9.31, 1.28) (7.78, 1.66) (7.36, 2.24) (7.48, 3.07) (8.09, 4.21) (9.26, 5.88) (11.16, 8.23) (14.37, 11.80) (21.55, 19.57)

0.15 Proposed (7.64, 0.98) (6.96, 0.98) (6.50, 1.01) (6.07, 1.04) (5.40, 1.26) (5.27, 1.55) (5.34, 2.03) (5.67, 2.67) (6.37, 3.59) (7.44, 4.96) (9.34, 7.24) (13.88, 12.14)
Existing (12.47, 0.80) (10.63, 0.80) (9.53, 0.82) (8.49, 0.86) (6.86, 1.05) (6.24, 1.36) (6.03, 1.83) (6.20, 2.45) (6.69, 3.43) (7.69, 4.82) (9.59, 7.04) (14.02, 12.05)

0.1 Proposed (6.87, 0.63) (6.25, 0.57) (5.77, 0.65) (5.38, 0.59) (4.62, 0.73) (4.38, 0.84) (4.21, 1.1) (4.25, 1.39) (4.52, 1.82) (4.96, 2.54) (5.82, 3.76) (8.20, 6.47)
Existing (11.65, 0.57) (9.90, 0.54) (8.83, 0.56) (7.79, 0.59) (6.16, 0.61) (5.41, 0.74) (4.97, 1.01) (4.88, 1.27) (4.90, 1.78) (5.26, 2.48) (6.16, 3.65) (8.37, 6.44)

Table 7.: (ÂRL1, ŜDRL1) profiles of the lower-sided EWMA TBE and lower-sided REWMA charts when
m = 200 and ÂRL0 = 500.

c Charts
r(λq) 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ĥ− 0.8526 0.7879 0.7340 0.6656 0.4963 0.3766 0.2860 0.2150 0.1580 0.1123 0.0736 0.03971
ĥq 0.7558 0.6691 0.6033 0.5266 0.3629 0.2634 0.1943 0.1434 0.1036 0.0725 0.0475 0.02532

0.8 Proposed (90.39, 72.69) (99.77, 85.75) (108.76, 97.18) (121.21, 111.93) (154.96, 149.18) (181.09, 176.72) (203.43, 199.90) (223.44, 220.45) (242.98, 240.31) (260.82, 258.53) (280.09, 278.29) (309.51, 307.95)
Existing (81.96, 58.52) (90.30, 71.45) (98.71, 82.78) (110.96, 97.87) (145.49, 137.04) (173.69, 167.34) (197.90, 192.83) (218.97, 214.75) (240.05, 236.53) (259.52, 256.55) (278.01, 275.45) (310.03, 308.15)

0.6 Proposed (30.97, 17.25) (31.62, 19.86) (32.92, 22.58) (35.56, 26.73) (46.61, 40.57) (58.93, 54.26) (71.97, 68.16) (85.82, 82.61) (101.21, 98.39) (117.05, 114.63) (136.38, 134.43) (168.67, 167.05)
Existing (30.33, 11.93) (29.83, 14.16) (30.37, 16.54) (32.20, 20.33) (41.97, 33.74) (54.26, 47.93) (67.88, 62.76) (82.17, 77.90) (98.56, 94.98) (115.82, 112.80) (134.62, 132.04) (168.73, 166.81)

0.5 Proposed (20.93, 9.43) (20.53, 10.46) (20.66, 11.60) (21.43, 13.46) (26.23, 20.40) (32.81, 28.16) (40.62, 36.77) (49.73, 46.45) (60.60, 57.72) (72.62, 70.15) (88.32, 86.31) (115.94, 114.29)
Existing (22.47, 6.40) (21.09, 7.25) (20.59, 8.21) (20.66, 9.83) (24.15, 16.29) (30.25, 24.05) (38.10, 33.03) (47.29, 43.03) (58.68, 55.09) (71.68, 68.65) (86.98, 84.38) (115.90, 113.95)

0.4 Proposed (14.95, 5.31) (14.22, 5.68) (13.90, 6.12) (13.87, 6.87) (15.41, 9.98) (18.36, 13.86) (22.36, 18.54) (27.50, 24.21) (34.17, 31.26) (42.14, 39.63) (53.36, 51.30) (74.33, 72.64)
Existing (17.78, 3.63) (16.18, 3.94) (15.31, 4.31) (14.69, 4.96) (15.11, 7.79) (17.49, 11.56) (21.27, 16.32) (26.28, 22.08) (33.09, 29.52) (41.59, 38.56) (52.53, 49.93) (74.27, 72.30)

0.3 Proposed (11.11, 2.94) (10.33, 3.05) (9.88, 3.20) (9.54, 3.47) (9.60, 4.69) (10.59, 6.37) (12.24, 8.56) (14.65, 11.41) (18.07, 15.18) (22.55, 20.02) (29.40, 27.30) (43.15, 41.43)
Existing (14.69, 2.06) (13.08, 2.17) (12.11, 2.30) (11.24, 2.55) (10.35, 3.67) (10.82, 5.29) (12.19, 7.47) (14.39, 10.32) (17.74, 14.24) (22.40, 19.40) (29.07, 26.48) (43.15, 41.17)

0.25 Proposed (9.70, 2.13) (8.94, 2.18) (8.48, 2.26) (8.08, 2.41) (7.78, 3.14) (8.22, 4.16) (9.14, 5.56) (10.61, 7.43) (12.86, 9.99) (15.94, 13.41) (20.87, 18.76) (31.20, 29.47)
Existing (13.51, 1.53) (11.93, 1.59) (10.96, 1.67) (10.04, 1.81) (8.83, 2.48) (8.79, 3.48) (9.42, 4.87) (10.70, 6.73) (12.81, 9.37) (15.96, 12.99) (20.76, 18.18) (31.25, 29.27)

0.2 Proposed (8.55, 1.49) (7.82, 1.51) (7.36, 1.55) (6.94, 1.63) (6.41, 2.03) (6.50, 2.62) (6.91, 3.46) (7.72, 4.61) (9.06, 6.23) (11.00, 8.50) (14.28, 12.16) (21.51, 19.76)
Existing (12.51, 1.11) (10.96, 1.14) (10.00, 1.18) (9.07, 1.26) (7.67, 1.64) (7.29, 2.22) (7.43, 3.06) (8.05, 4.19) (9.23, 5.86) (11.15, 8.23) (14.35, 11.79) (21.60, 19.62)

0.15 Proposed (7.61, 0.99) (6.92, 0.98) (6.46, 1.02) (6.04, 1.04) (5.39, 1.26) (5.26, 1.56) (5.33, 2.03) (5.67, 2.67) (6.37, 3.60) (7.44, 4.96) (9.35, 7.25) (13.90, 12.16)
Existing (11.65, 0.77) (10.14, 0.79) (9.20, 0.81) (8.27, 0.86) (6.77, 1.04) (6.18, 1.35) (5.99, 1.82) (6.17, 2.44) (6.67, 3.42) (7.68, 4.82) (9.57, 7.03) (14.04, 12.07)

0.1 Proposed (6.84, 0.64) (6.22, 0.57) (5.74, 0.65) (5.35, 0.58) (4.61, 0.73) (4.37, 0.84) (4.20, 1.10) (4.25, 1.39) (4.52, 1.82) (4.95, 2.54) (5.82, 3.76) (8.21, 6.48)
Existing (10.92, 0.52) (9.42, 0.53) (8.49, 0.56) (7.57, 0.59) (6.07, 0.63) (5.37, 0.74) (4.94, 1.00) (4.86, 1.27) (4.88, 1.78) (5.25, 2.47) (6.14, 3.65) (8.38, 6.44)

Table 8.: Optimal parameter combinations of the lower-sided EWMA TBE and lower-sided REWMA charts
for different copt when ARL0 = 500.

copt
Lower-sided EWMA TBE Lower-sided REWMA

r∗ H−∗ ARLopt λ∗
q h∗q ARL′

opt

0.95 0.0111 0.9320 270.8644 0.0100 0.8710 275.8783
0.92 0.0111 0.9320 198.6027 0.0100 0.8710 203.0130
0.9 0.0107 0.9370 164.8806 0.0100 0.8710 168.9698
0.8 0.0105 0.9392 77.5419 0.0169 0.8169 82.4571
0.7 0.0105 0.9392 45.3131 0.0330 0.7259 48.2903
0.6 0.0104 0.9403 30.1638 0.0564 0.6340 31.0683
0.5 0.0610 0.7564 20.6203 0.0900 0.5404 21.1115
0.4 0.0843 0.6989 13.8507 0.1385 0.4445 14.7948
0.3 0.1488 0.5733 9.4471 0.2098 0.3462 10.4867
0.2 0.2327 0.4519 6.4155 0.3228 0.2426 7.3477
0.1 0.4299 0.2623 4.2043 0.5485 0.1217 4.8588

0.05 0.5028 0.2126 3.2979 0.6467 0.0873 3.6078
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Table 9.: The simulated dataset for Example 1
(θ0 = 10, θ1 = 18 and c = 1.8).

t Xt

EWMA TBE REWMA

Y +
t Q+

t Yt Qt

1 20.8057 2.0806 1.4391 2.0806 1.1081
2 5.7453 1.0000 1.3952 0.5745 1.0547
3 11.9176 1.1918 1.3749 1.1918 1.0684
4 4.2283 1.0000 1.3374 0.4228 1.0039
5 28.5700 2.8570 1.4894 2.8570 1.1892
6 6.9921 1.0000 1.4404 0.6992 1.1402
7 53.0499 5.3050 1.8269 5.3050 1.5567
8 3.9902 1.0000 1.7442 0.3990 1.4409
9 6.9799 1.0000 1.6698 0.6980 1.3666

10 0.9991 1.0000 1.6028 0.0999 1.2399
11 43.0341 4.3034 1.8729 4.3034 1.5463
12 1.7285 1.0000 1.7856 0.1729 1.4089
13 12.1219 1.2122 1.7282 1.2122 1.3893
14 8.7532 1.0000 1.6554 0.8753 1.3379
15 20.7322 2.0732 1.6972 2.0732 1.4114
16 46.0375 4.6037 1.9878 4.6037 1.7306
17 2.9123 1.0000 1.8891 0.2912 1.5867
18 34.8172 3.4817 2.0483 3.4817 1.7762
19 17.8729 1.7873 2.0222 1.7873 1.7773
20 8.5353 1.0000 1.9200 0.8535 1.6849
21 0.0441 1.0000 1.8280 0.0044 1.5169
22 11.8628 1.1863 1.7638 1.1863 1.4838
23 0.1716 1.0000 1.6874 0.0172 1.3372
24 26.7274 2.6727 1.7860 2.6727 1.4707
25 16.5832 1.6583 1.7732 1.6583 1.4895
26 6.5086 1.0000 1.6959 0.6509 1.4056
27 49.3004 4.9300 2.0193 4.9300 1.7581
28 5.2345 1.0000 1.9174 0.5234 1.6346
29 15.5979 1.5598 1.8816 1.5598 1.6271
30 3.7637 1.0000 1.7935 0.3764 1.5020

Table 10.: Time between consecutive accidents of F-16 aircraft
(θ0 = 1460, θ1 = 615 and c = 0.4212).

t Xt

EWMA TBE REWMA

Y −
t Q−

t Yt qt

1 1456 0.9973 0.6431 0.9973 0.9999
2 231 0.1582 0.6285 0.1582 0.9747
3 691 0.4733 0.6239 0.4733 0.9596
4 122 0.0836 0.6077 0.0836 0.9333
5 718 0.4918 0.6042 0.4918 0.9201
6 1147 0.7856 0.6096 0.7856 0.9161
7 225 0.1541 0.5960 0.1541 0.8932
8 706 0.4836 0.5926 0.4836 0.8809
9 499 0.3418 0.5851 0.3418 0.8647

10 587 0.4021 0.5796 0.4021 0.8509
11 561 0.3842 0.5737 0.3842 0.8369
12 547 0.3747 0.5677 0.3747 0.8230
13 448 0.3068 0.5599 0.3068 0.8075
14 1561 1.0000 0.5731 1.0692 0.8154
15 53 0.0363 0.5570 0.0363 0.7920
16 280 0.1918 0.5461 0.1918 0.7740

22



0 5 10 15 20 25 30

0.5

1.5

2.5

3.5

0 5 10 15 20 25 30

0.5

1.5

2.5

3.5

Figure 1.: The (a) upper-sided EWMA TBE chart and (b) upper-sided REWMA chart for the data in Table 9
(r = 0.1, H+ = 1.8406, hQ = 1.6460).
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Figure 2.: The (a) lower-sided EWMA TBE chart and (b) lower-sided REWMA chart for the data in Table
10 (r = 0.03, H− = 0.5462, hq = 0.7539).
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