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Abstract Evaluating the characteristics of emerging SARS-CoV-2 variants of concern is essential 
to inform pandemic risk assessment. A variant may grow faster if it produces a larger number of 
secondary infections (“R advantage”) or if the timing of secondary infections (generation time) is 
better. So far, assessments have largely focused on deriving the R advantage assuming the gener-
ation time was unchanged. Yet, knowledge of both is needed to anticipate the impact. Here, we 
develop an analytical framework to investigate the contribution of both the R advantage and gener-
ation time to the growth advantage of a variant. It is known that selection on a variant with larger R 
increases with levels of transmission in the community. We additionally show that variants conferring 
earlier transmission are more strongly favored when the historical strains have fast epidemic growth, 
while variants conferring later transmission are more strongly favored when historical strains have 
slow or negative growth. We develop these conceptual insights into a new statistical framework 
to infer both the R advantage and generation time of a variant. On simulated data, our framework 
correctly estimates both parameters when it covers time periods characterized by different epide-
miological contexts. Applied to data for the Alpha and Delta variants in England and in Europe, we 
find that Alpha confers a+54% [95% CI, 45–63%] R advantage compared to previous strains, and 
Delta +140% [98–182%] compared to Alpha, and mean generation times are similar to historical 
strains for both variants. This work helps interpret variant frequency dynamics and will strengthen 
risk assessment for future variants of concern.

Editor's evaluation
This manuscript will be of broad interest to readers interested in understanding the characteristics 
of variants in ongoing epidemics that lead to faster (or slower) growth rates and will be of particular 
interest to those wishing to understand the factors leading to the selection of SARS–CoV–2 variants. 
The selective advantage of a novel strain of a pathogen depends not only on its relative transmissi-
bility but also on its generation time relative to other strains; the relation between transmissibility, 
transmission advantage and generation time changes across different phases of the epidemic. Key 
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innovations in this paper are a robust framework for using this relationship to make statistical infer-
ences about both the transmissibility advantage and generation time of an emerging variant and 
conceptual novelty in the general investigation of selection on infectivity profiles. The approach is 
supported by simulation studies and applied to the Alpha and Delta SARS–CoV–2 variants to show 
that selection was likely driven by changes in transmissibility rather than changes in the generation 
time.

Introduction
Human pathogens rapidly adapt to their hosts. During the short evolutionary history of SARS-CoV-2 
with humans, since the host shift in late 2019, several selected mutations and combinations of muta-
tions (variants) have emerged: for example, the D614G mutation in Spring 2020 (Volz et al., 2021a), 
the variant Alpha in Fall 2020 (B.1.1.7), and Delta in Spring 2020 (B.1.617.2). Variant Alpha, first 
detected in England in September 2020, rapidly rose in frequency in October 2020 in England and 
spread to multiple countries, causing important rebounds of the epidemic (Volz et al., 2021b; Davies 
et al., 2021; Borges et al., 2021; Washington et al., 2021; Gaymard et al., 2021). Later on, the 
Delta variant became dominant in many parts of the world, leading to new surges in infections and 
hospitalizations in 2021.

Each time a variant of concern emerges, it is essential to determine whether it has acquired a 
competitive advantage compared to circulating SARS-CoV-2 strains, in order to anticipate the poten-
tial effects on the epidemic trajectory and hospital admissions. The advantage can be caused by an 
increased capacity to transmit or to escape the immune response acquired by previous infection or 
vaccination. The transmission advantage, hereafter R advantage, of an emerging variant has been 
defined as the relative increase in the effective reproduction number R (average number of secondary 
cases). It has often been estimated by analysing the rise in the variant’s frequency, under the assump-
tion that all strains shared the same generation time distribution (i.e. delay between infection in the 
primary case and the people they infect). However, this has sometimes led to unstable estimates 
of the R advantage. For example, in the United Kingdom, the R advantage of the Alpha variant 
was estimated to decline from +89 to +54% from December to mid-January. Estimates of R advan-
tage of Alpha and Delta across countries also exhibit substantial variability (Campbell et al., 2021). 
The reasons why estimates of the R advantage would vary with the epidemiological context remain 
obscure. The instability this generates is problematic for planning since it affects medium and long-
term evaluations of the epidemic trajectory. It also suggests that methods currently used to ascertain 
the risks posed by emerging variants may miss important drivers of emergence.

The evolutionary fate of an emerging variant is ultimately determined by its exponential growth 
rate relative to that of the circulating strains. When evaluating the growth advantage of a variant, the 
focus has so far largely been on estimating differences in R. However, the growth rate of an emerging 
variant depends not only on the effective reproduction number but also on the generation time distri-
bution. Natural selection is therefore expected to act on the full infectivity profile, which combines 
both R and the generation time. Previous theoretical work has explored how selection acts on various 
pathogen life-history traits (Lenski and May, 1994; Day and Proulx, 2004; Day and Gandon, 2007; 
Day et al., 2020), with most often a focus on selection for transmissibility and virulence (disease-
induced mortality). Recent work on SARS-CoV-2 mentioned the possibility of selection on the time 
interval between infection and infectiousness, but did not characterize the sign and magnitude of this 
component of selection in detail (Day et al., 2020).

Here, we develop a mathematical model to investigate how the growth advantage may vary with 
the epidemiological context when variants have different generation times. We use the relation-
ship between infectivity profile and growth rate to explore conceptually how infectivity profiles are 
selected for. We find that the growth advantage of a variant generally depends on the epidemiological 
context, more precisely on whether the transmission is low (declining or slow epidemic) or high (fast 
epidemic). We call “transmission” the rate of infectious contacts in the community, which depends 
on the epidemiological context, for example, social distancing, mask-wearing, population immunity, 
seasonal effects, etc. We use the time-varying reproduction number of the historical strain (taken as 
a reference), denoted ‍RH

(
t
)
‍ , as a proxy for transmission. Our conceptual exploration suggests that 

it is possible to infer changes in infectivity profile associated with an emerging variant, and not only 

https://doi.org/10.7554/eLife.75791
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its growth rate, in settings where transmission changes over time. We thus develop an inference 
framework to estimate changes in infectivity profile associated with a variant and more precisely char-
acterize the R advantage of the variant and its dependency to the epidemiological context. We apply 
our approach to data on Alpha and Delta variants frequency over time in England in Fall 2020 and 
Spring 2021. On the methodological front, the originality of our work lies in the use of the Euler-Lotka 
equation to explore generally how infectivity profiles are selected for (in contrast to previous work 
using ordinary differential equation models), and in the development of an inference framework.

Results
General Principle
We consider a situation where a variant, or a set of strains with similar properties, has been circulating 
for some time (historical strains H) and is challenged by an emerging variant E. When investigating 
the rise of variant E relative to historical strains H, we typically only observe the exponential growth 
rates of H and E strains, which translates into a growth advantage (or disadvantage). More precisely, 
if the historical strains grow with an exponential rate ‍rH ‍ and the emerging variant grows with rate ‍rE‍ 
, the logit of the frequency of the emerging variant will grow linearly with slope ‍rE − rH ‍ . This slope is 
called the growth advantage or selection coefficient. The selection coefficient of the emerging variant 
relative to historical strains is obtained by a linear regression of the logit frequency of the variant over 
time. It is then typically assumed that both variant and historical strains share the same distribution 
of generation time. The effective reproduction number of the emerging variant relative to historical 
strains, called the R advantage (‍RE/RH − 1‍), can thus be deduced.

eLife digest Mutations in genes of the SARS-CoV-2 virus have generated new variants of concern, 
like Alpha, Delta, and more recently Omicron. These strains contain genetic modifications that help 
the virus spread more easily as well as altering the severity of the illness it causes. This has led to rising 
numbers of infections, known as epidemic waves, in many parts of the world.

Tracking new variants of concern is crucial to protecting the public. To do this, scientists monitor 
how many people one person with the virus can infect, also known as the number of secondary 
infections. They may also measure when in the course of the illness an individual may pass along the 
virus to others. Together, these metrics help determine how fast and large an outbreak caused by a 
new variant will grow. The more people the new variant infects and the quicker it spreads, the more 
likely it is to replace existing strains of the virus.

So far, most studies have assumed that the growth rate of a new variant solely depends on the 
number of secondary infections, and the timing of secondary infections is often not considered. To 
address this, Blanquart et al. built a mathematical model that combines both these parameters to 
determine the growth rate of new viral strains.

The model showed that variants which rapidly cause secondary infections have a larger growth 
advantage over existing strains when the virus is more easily transmitted between individuals and the 
epidemic spreads rapidly. But when there is less transmission and the epidemic is declining, variants 
that generate secondary infections after a longer time have an advantage. For example, when control 
measures like mask wearing or social distancing are in place, delayed secondary infections may be 
more advantageous.

Blanquart et al. then applied their model to data from the Alpha and Delta variant outbreaks in the 
United Kingdom. They found that Alpha and Delta did not change the timing of secondary infections 
compared to previously circulating strains. But the Alpha variant had a 54% transmission advantage 
over previous strains and the Delta variant had a 140% transmission advantage over Alpha.

Taken together, these findings suggest that the timing of secondary infections and transmission 
rates both play an important role in how quickly a virus spreads. The new mathematical model created 
by Blanquart et al. may help epidemiologists better predict the trajectory of new SARS-CoV-2 variants 
and determine how to best control their spread.

https://doi.org/10.7554/eLife.75791
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Yet natural selection acts on the full infectivity profile of a strain, not only on the effective reproduc-
tion number. The infectivity profile is a function ‍β

(
τ
)

= R w
(
τ
)
‍ of the time since infection ‍τ ‍, where ‍R‍ 

is the effective reproduction number, while ‍w
(
τ
)
‍ characterizes the distribution of generation time and 

satisfies ‍
´∞
τ=0 w

(
τ
)

dτ = 1‍.

Selection for Infectivity Profiles in Slow and Fast Epidemics
We first examine how the selection coefficient ‍rE − rH ‍ varies with transmission for various infectivity 
profiles of the variant compared to historical strains (Figure  1). To do so, we use the Euler-Lotka 
equation, relating the growth rate to the effective reproduction number and the distribution of the 
generation time (Methods). This equation assumes that each variant grows or declines exponentially 
and that the distribution of the time since infection is at any time at its equilibrium value: an expo-
nential distribution with rate equal to the exponential growth rate (Wallinga and Lipsitch, 2007). This 
equilibrium distribution naturally follows from the assumption of exponential growth, which implies 
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Figure 1. Variation of the selection coefficient as a function of transmission, for several infectivity profiles of emerging variants. The Panels A and B show 
several variant infectivity profiles with the same effective reproduction number as historical strains (A) or an effective reproduction number increased by 
+10% (B). For variants with shorter or longer mean generation time, the relative mean generation time is –15 or +15% compared to historical strains. 
For variants with shorter or longer standard deviation (sd) in generation time, the relative sd in generation time is –40 or +40% compared to historical 
strains. The Panels C and D show the selection coefficient of these variants as a function of the proxy for transmission (effective reproduction number of 
the historical strains). The gray lines show the selection coefficient if the variant had the same infectivity profile as historical strains, with the infectivity 
profile increased uniformly by a constant as commonly assumed.

https://doi.org/10.7554/eLife.75791
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that individuals infected ‍t + ∆t‍ days ago are ‍er ∆t‍ less numerous than individuals infected ‍t‍ days ago, 
with ‍r‍ the exponential growth rate.

We first note that even for variants with an R advantage but not affecting the distribution of gener-
ation time, the selection coefficient increases with transmission (Day and Proulx, 2004; Day and 
Gandon, 2007; Day et al., 2020). This relationship is shown in Figure 1 as gray lines for a series of 
variants conferring a R advantage of +10 −+50% but not affecting the gamma-distributed generation 
time.

Several more general infectivity profiles of the emerging variant are now considered. We first 
consider variants with the same effective reproduction number as historical strains, which can be 
selected for if secondary infections occur at different timings (Figure 1A and C). A variant with a 
shorter mean generation time is selected for in a growing epidemic because it produces the same 
number of secondary infections in a shorter time, while the same variant is counter-selected in a 
declining epidemic (Figure 1C). The opposite holds for variants with a longer mean generation time. 
A variant with a larger standard deviation (sd) in generation time is always selected for because it 
enjoys both an excess of early secondary infections and late secondary infections compared to histor-
ical strains. The opposite holds for a variant with smaller sd in generation time. Generally, in a growing 
epidemic, more individuals have been infected recently and there is a greater advantage to early 
transmission, while in a declining epidemic, more individuals have late time since infection and there-
fore strains that transmit at later times have a greater advantage. Again, this is a direct demographic 
consequence of growth or decline of the epidemic. Selected variants could thus enjoy a more favor-
able timing of secondary infections, even in the absence of R advantage (Park et al., 2021).

Additionally, an advantage in the timing of secondary infections can of course be combined with a 
R advantage. We, therefore, consider hypothetical emerging variants with a range of generation time 
distributions and a+10% R advantage (Figure 1B and D). These variants generally have a stronger 
growth advantage, but the variation in selection coefficient with the transmission is similar to that of 
the analogous variants without the R advantage (Figure 1C and D).

Notably, in both cases, there is a level of transmission (expressed in terms of the effective repro-
duction number of the historical strain ‍RH ‍) at which all variants perform similarly regardless of their 
distribution of generation time. This level of transmission is precisely where the size of the variant 
epidemic is constant in time (variant growth rate is 0). For example, this level of transmission is ‍RH = 1‍ 
for a variant not affecting R (Figure 1C). For a 10% R advantage, this level is ‍RH = 1/1.1‍ (Figure 1D). 
Generally, for a variant conferring a R advantage ‍δ1‍ , the level of transmission is ‍RH = 1/

(
1 + δ1

)
‍. At 

this level of transmission, the distribution of time since infection is uniform—all ages of infection are 
equally represented—and therefore the infectivity profile does not matter for the selection of the 
variant.

While these results assume that the time since infection is fixed at its equilibrium distribution, it 
is not necessarily the case in a realistic scenario where transmission changes over time. We applied 
these analytical results to simulations where the time since infection structure emerges from the 
model dynamics. The epidemiological dynamics are simulated with discrete-time renewal equations 
including time-varying transmission, the build-up of population immunity (assumed to be identical 
for historical strains and emerging variants), and detection and isolation of cases (Methods). In the 
context of progressive decline of levels of transmission, variants with the same reproduction number 
but distinct generation time distributions can exhibit a variety of epidemiological and frequency 
dynamics (Figure 2A and C). The epidemiological dynamics, that is the daily number of variant cases, 
are also strongly affected by the generation time distribution of the variant (Figure 2A). Frequency 
trajectories can be non-monotonous: a variant with shorter mean generation time could be selected, 
increase in frequency, but then decline in frequency as transmission declines (Figure 2C). Several vari-
ants all sharing the same 10% R advantage exhibit a range of frequency trajectories in the simulations: 
the trajectory of one of them initially resembles that of a variant with a+30% advantage and same 
generation time distribution as historical strains (Figure 2D, light blue line compared to +30% curve), 
while others stagnate at low frequency (Figure 2D, blue and green lines).

Inference of the Infectivity Profiles of Variants
The variety of variant trajectories shown in Figure 2 suggests that it may be possible to infer the 
changes in infectivity profiles of variants by analyzing their growth advantage as a function of 

https://doi.org/10.7554/eLife.75791
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transmission when we have accumulated sufficient data documenting growth rates in different epide-
miological situations. We first tested this idea on simulated data, in scenarios of emergence and 
progressive decline in transmission.

Our inference framework is based on the relationship between growth rates of historical strains (‍rH ‍) 
and of the emerging variant (‍rE‍). Our aim is to infer three parameters ‍δ1‍ , ‍δ2‍ , ‍δ3‍ , characterizing respec-
tively the R advantage, the mean generation time and the sd of generation time of the emerging 
strain relative to that of historical strains. The relationship can be used to infer properties of the variant 
infectivity profile, but not with a classical linear regression because both ‍rH ‍ and ‍rE‍ are measured with 
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Figure 2. Epidemiological and evolutionary trajectories of several types of emerging variants competing with historical strains. The Panels A and B 
show epidemiological dynamics (daily cases number of historical strains in black, of variants in colours). Historical strains display several slightly different 
curves when competing with each of the variants because of the weak competition brought about by the build-up of population immunity. The Panels C 
and D show evolutionary trajectories, with daily variant frequency as colored lines. The light gray curves show the frequency dynamics of variants with a 
+10 to +50%R advantage, with the same generation time as historical strains. The inset shows the transmission through time in these simulations, given 
by the basic reproduction number of historical strains (see details of simulation model in Methods).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The relationship between estimated growth rate of the variant and historical strains across time in the simulation study, in the 
scenario of progressive decline of ‍R0,H

(
t
)
‍ from 1.5 to 0.5.

https://doi.org/10.7554/eLife.75791
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errors with a complex covariance structure. Furthermore, large errors can blur the subtle distinction 
between different profiles (Figure 2—figure supplement 1). The error variance is inversely related to 
the number of cases and the size of the sample used to assay variant frequency (“sample size”). When 
the total number of cases and the sample size are both large, the joint distribution of the time series 
of estimated ‍rH ‍ and ‍rE‍ is approximately multivariate normal (Methods). The mean vector of the multi-
variate normal depends on the parameters ‍RH(t)‍ (the time series of effective reproduction number), 
on the mean and sd of the historical strains’ generation time (fixed to 6.5 and 4 days respectively), 
and on the parameters of interest ‍δ1‍ , ‍δ2‍ , ‍δ3‍ . The variance-covariance structure of the multivariate 
normal distribution is fixed and depends on the daily total number of cases and the sample size. It is 
also possible to derive the multivariate normal distribution of ‍rH ‍ and ‍rE‍ across different independent 
regions instead of over time (Methods).

With this statistical framework at hand, we conducted a simulation study to infer jointly the R 
advantage of the variants and their relative mean generation time (Figure 3). In these simulations, 
we systematically varied the infectivity profile of the emerging strain: R advantage (‍δ1‍) from +0  to 
+50% and relative mean generation time (‍δ2‍) from –40 to +40%. We assumed the emerging strain had 
the same sd of generation time as historical strains (‍δ3 = 0‍). We jointly inferred the two parameters 

‍δ1‍ and ‍δ2‍ for different sample sizes (sample size, N=1000, 3000, 10,000 per day) and for different 
scenarios of variability in epidemiological context, from a strong to a weak decline. In the explicit 
simulations, the parameter that we tune is the basic reproductive number ‍R0,H

(
t
)
‍ assumed to decline 

from 1.5 to 0.5, 1.3 to 0.7, and 1.1 to 0.9 over 80 days in the three scenarios, and the inferred param-
eters represent the effective reproductive number after accounting for population immunity and case 
detection and isolation (Figure 3—figure supplement 1).

The R advantage was almost always precisely inferred even with small sample size and small vari-
ability in effective reproduction number (Figure 3, left panels). In contrast, the relative mean genera-
tion time was well inferred only for a large sample size and large variability in effective reproduction 
number (Figure 3, right panel). This was because the large error on ‍rE‍ and ‍rH ‍ due to the limited 
sample size, in conjunction with the small variability in ‍R0,H

(
t
)
‍, makes precise inference of the relation-

ship between ‍rE‍ and ‍rH ‍ difficult. For such small sample sizes, grouping data by week (instead of by 
days, for the same duration) improves inference (Figure 3, green points).

We tested the robustness of the inference framework in several ways. First, we investigated whether 
temporal lag between infections and recorded cases impacted inference, considering the additional 
scenario where the mean time from symptom onset to case detection was 6 days instead of 2.2 days 
(Figure 3—figure supplement 2). The lag does not affect the accuracy of inference (compare with 
Figure 3), as expected since the time series of number of detected cases and variant frequency share 
the same lag with infections. Second, we applied our framework to additional simulations where the 
true generation time is not gamma-distributed as in our baseline model: we assumed that transmis-
sion is not possible during the first two days; this is followed by a shifted gamma-distributed timing 
of secondary infections. This mismatch between modeling assumption and the true generation time 
distribution led to a small overestimation of the relative mean generation time (Figure  3—figure 
supplement 2). Lastly, we inferred parameters when there is a sharp decline in ‍RH

(
t
)
‍ from 1.5 to 0.5 

at a fixed date, instead of a progressive decline. In this scenario, the distribution of time since infection 
may not immediately stabilize after the sharp decline, temporarily breaking the key assumption of our 
analytical approach. Parameters were correctly inferred when the time series after the decline was 
long enough. With only 10 days of data after the decline, the inferred relative mean generation time 
was accurately inferred if enough cases were assayed to measure the variant frequency (Figure 3—
figure supplement 3). Interestingly, accuracy was better for variants with a shorter generation time 
than the historical strains (negative relative mean generation time). This is probably because their 
distribution of time since infection stabilizes faster after the sharp decline.

Application to the Variants Alpha and Delta in England
We used this framework to infer the R advantage and mean generation time of Alpha (B.1.1.7) in 
England. We used public data from Public Health England on weekly cases numbers and the frequency 
of the Alpha variant (dataset 1). In England, the frequency of the Alpha variant could be quickly 
inferred because some of the PCR tests for SARS-CoV-2 detection presented a “S gene target failure” 
(SGTF) caused by the spike 69/70 deletion characteristic of Alpha (Public Health England, 2021b). 

https://doi.org/10.7554/eLife.75791
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Figure 3. Inference of the R advantage and relative mean generation time in the simulation study. The plots show the correlation between inferred 
and true quantities. The three colors show different sample sizes used to infer variant frequency: 1000 daily, 10,000 daily, and 1000 daily grouped by 
week (7000 weekly). The left panels show the R advantage, the right panels the mean generation time (mgt). Top, middle, and bottom panels show 
inference for large, medium, and small variability in R0,H(t). The simulations are initialized with ‍IH

(
0, 0

)
= 4000‍ and ‍IE

(
0, 0

)
= 80‍. For the inference 

of the R advantage, we used a variant relative mean generation time of ‍δ2 = +0%‍ (also inferred by the model), while for the inference of relative mean 
generation time we used the following combinations: ‍

{
δ1 = 0.3, δ2 = −0.4

}
‍; ‍
{
δ1 = 0.3, δ2 = −0.2

}
‍; ‍
{
δ1 = 0.3, δ2 = 0

}
;
{
δ1 = 0.45, δ2 = +0.2

}
‍ 

; ‍
{
δ1 = 0.3, δ2 = +0.4

}
.‍ We used a greater R advantage when the mean generation time is unchanged or longer to ensure the emerging variant 

Figure 3 continued on next page
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The variant Alpha swept through from 0% to almost 100% frequency over 25 weeks; data were of 
very good quality for the whole period (Figure 4). Using our framework, we found that Alpha had 
a R advantage equal to ‍δ1 = 54%

[
45, 63%

]
‍, and the same mean generation time as previous strains, 

‍δ2 = 0.058
[
−0.095, 0.21

]
‍ (Figure 5).

Week number

Fr
eq

ue
nc

y 
va

ria
nt

35 40 45 50 55 60

0.0

0.2

0.4

0.6

0.8

1.0

0

1e+05

2e+05

3e+05

4e+05

W
ee

kl
y 

ca
se

s 
nu

m
be

r

Alpha frequency
Cases number
Sample size

Week number

Fr
eq

ue
nc

y 
D

el
ta

 v
ar

ia
nt

60 65 70 75 80

0.0

0.2

0.4

0.6

0.8

1.0

0

20000

40000

60000

80000

W
ee

kl
y 

ca
se

s 
nu

m
be

r

Delta frequency
Cases number
Sample size

Week number

Fr
eq

ue
nc

y 
D

el
ta

 v
ar

ia
nt

70 75 80 85

0.0

0.2

0.4

0.6

0.8

1.0
Austria
Belgium
Denmark
France
Germany
Greece
Ireland
Italy
Netherlands
Norway
Sweden

A B

C

Figure 4. Data used for inference. A and B: Dynamics of the Alpha variant frequency in England (A) and of the Delta variant frequency in England (B), 
estimated through SGTF. These frequencies are shown together with the dynamics of weekly cases numbers, over weeks 35 (week starting September 
08, 2020)–60 (week starting March 02, 2021) for Alpha, and weeks 63 (starting March 23, 2021)–75 (starting June 15, 2021) for Delta. (C) the dynamics of 
the Delta variant frequency in 11 chosen European countries. For each country, we used the growth rate of historical strains and emerging Delta variant 
when the frequency passes 50%, highlighted with larger points and thicker line on the figure.

reaches a significant frequency over the 80 days time period considered. For each parameter combination, 10 replicate simulations were drawn with the 
same parameters, hence the same deterministic epidemiological dynamics, but with different random error on data (Poisson error on cases number and 
binomial error on frequencies).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The daily basic reproduction number of the historical strains and variant (‍R0,H
(
t
)
‍ and ‍R0,E

(
t
)
‍ , identical thick lines), together 

with the effective reproduction number inferred from daily case and frequency data (thin lines), in the example simulation shown on Figure 2B for an 
emerging variant with +10% effective reproduction number and same distribution of generation time.

Figure supplement 2. Inference of the R advantage and relative mean generation time in two additional simulation studies: (i) where the lag between 
symptom onset and case detection is longer (mean 6days instead of 2.2days) shown as points (“longer lag”), (ii) where the distribution of generation 
time is different from the assumptions of the model shown as open squares (“different gtd”).

Figure supplement 3. Inference of the R advantage and relative mean generation time (mgt) in the additional simulation study where the level of 
transmission is assumed to sharply decline from ‍R0,H

(
t
)

= 1.5‍ to ‍R0,H
(
t
)

= 0.5‍.

Figure 3 continued

https://doi.org/10.7554/eLife.75791
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Figure 5. Inference of the infectivity profiles of the Alpha and Delta variants. (A) Geometric intuition for how the ‍
(
rH, rE

)
‍ relationship depends on the 

mean generation time for hypothetical variants with R advantage ‍δ1 = 0.1‍ and relative mean generation time of ‍δ2 = −0.15‍ and ‍δ2 = +0.15‍ (as in 
Figures 1 and 2). The parameter cvH denotes the coefficient of variation of the historical strains distribution of generation time, equal to the standard 
deviation (sd) divided by the mean of the distribution. (B) The correlation between estimated growth rates of historical strains and variants in England. 
For Alpha (dataset 1) this is a temporal correlation in England over weeks starting September 08, 2020 to March 16, 2021. For Delta (dataset 3),this is 
a spatial correlation across European countries. The curves with confidence intervals are the model fits for each variant and show that the selection 
coefficient (the vertical distance to the bisector) is roughly constant across epidemiological conditions, indicative that the mean generation time is not 
altered in these variants. (C) The inferred infectivity profile of each variant with confidence intervals, together with the infectivity profile of historical 
strains circulating before the rise of the Alpha variant (black curve). This inference assumes a gamma-distributed generation time.

Figure 5 continued on next page
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The information on the relative mean generation time of a variant mainly lies in the slope of the 
relationship between ‍rE‍ and ‍rH.‍ In fact, the slope is approximately ‍1 + cv2

H δ1 − δ2‍ for variants not 
too different from historical strains, where ‍cvH ‍ is the coefficient of variation of the distribution of 
generation time of historical strains (Materials and methods). A variant with an R advantage but not 
changing the mean generation time (‍δ1 > 0, δ2 = 0‍) would present a slope slightly greater than 1. 
This geometric intuition is just a different way to interpret the increasing selection coefficient on 
variants conferring an R advantage as levels of transmission increase (Figure 1C and D, gray lines). A 
variant shortening the mean generation time would present a steeper slope. A variant prolonging the 
mean generation time would present a flatter slope (Figure 5A, Figure 2—figure supplement 1). For 
the Alpha variant, the decline in selection coefficient expected as levels of transmission declined in 
England is seen in our data as in previous studies (Volz et al., 2021b; Otto et al., 2021). It is apparent 
in Figure 4 (the frequency trajectory slows down at around 70%) and we highlight it more clearly in 
Figure 5—figure supplement 1.

We next evaluated the growth of Delta (B.1.617.2) in England. As Delta does not have the spike 
69/70 deletion, the growth of Delta and eventual replacement of Alpha in April and May 2021 was 
evidenced by the decline of SGTF (Public Health England, 2021c) (dataset 2). However, we found 
that with this temporal data, we could not reliably disentangle the R advantage from the mean 
generation time. The confidence intervals were very wide, with an estimated R advantage equal to 

‍δ1 = 229%
[
7, 451%

]
‍ and a relative mean generation time estimated at ‍δ2 = 1

[
−0.31, 2.3

]
‍. This was 

linked to the small temporal variations in epidemic conditions in this short period of time compared to 
the previous period when we investigated Alpha (Figure 5—figure supplement 2).

In an attempt to gain more power to disentangle the R advantage from the mean generation time 
for the Delta variant, we used spatial variation in growth rates across European countries. We used 
data from the European Surveillance System (TESSy) on the growth rate of “historical” strains circu-
lating at the time when Delta emerged (mainly Alpha variant), and the emerging Delta variant across 
11 European countries with sufficient genomic data (Austria, Belgium, Denmark, France, Germany, 
Greece, Ireland, Italy, Netherlands, Norway, Sweden: dataset 3). With these data, we inferred a R 
advantage equal to ‍δ1 = 140%

[
98, 182%

]
‍ compared to Alpha, and a mean generation time similar to 

the Alpha variant with ‍δ2 = 0.033
[
−0.18, 0.25

]
‍.

In conclusion, we found that the Alpha variant had a R advantage of +54% compared to historical 
strains, and the Delta variant had a further R advantage of +140% relative to Alpha, assuming a mean 
generation time of 6.5 days. There was no evidence of an altered mean generation time for these two 
variants.

Discussion
We investigated how emerging variants with distinct infectivity profiles may be selected. Our main 
finding is that levels of transmission reflected in the reproduction number R(t), which depend on 
human behavior and interventions, change selection on different types of variants. It was known that 
selection on variants with an R advantage but not affecting the mean generation time is stronger when 
the transmission is high. We extend previous work by investigating selection on both R and the timing 
of secondary infections. In a context of high transmission and high growth rate (“fast” epidemic), 
most infections will be recent and it is more advantageous to transmit early. Conversely, in a context 
of low transmission (“slow” or declining epidemic), infections will be older and it is more advanta-
geous to transmit late. The selection coefficient on variants may thus increase or decrease with the 
transmission, and it can even be a non-monotonous function of transmission. A second important 
finding is that the variation of the selection coefficient with transmission provides insight on both the 

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The relationship between the selection coefficient and level of transmission RH(t) for the Alpha variant spreading in England.

Figure supplement 2. The effective reproduction number of historical strains RH(t) estimated on the English data, for the period when the Alpha variant 
emerged and replaced historical strains, then the period when the Delta variant emerged and replaced the Alpha variant and other strains.

Figure supplement 3. Negative log-likelihood of the fully optimized model as a function of overdispersion in number of cases and in emerging variant 
frequency.

Figure 5 continued
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R advantage and the infectivity profile. We used this understanding to infer variant infectivity profiles 
from the variation in growth rates in contexts of changing transmission.

We found that Alpha variant enjoy a R advantage of +54% [45, 63] relative to historical strains, and 
Delta variants a+140% [98, 182] additional advantage relative to Alpha. Both variants have a mean 
generation time similar to that of historical strains (here assumed to be 6.5 days). This complements 
previous findings: the possibility of a shorter generation time was investigated to explain the growth 
advantage of Alpha, but previous studies found it was difficult to distinguish a variant with larger R 
from one with a shorter generation time (Volz et al., 2021b; Davies et al., 2021). Some (but not 
all) studies of within-host viral load dynamics suggested that individuals infected by variant Alpha 
could shed virus for a longer time, which may result in a longer generation time (Kissler et al., 2021; 
Cosentino et al., 2022; Elie et al., 2021). Conflicting results exist for Delta. A cluster of Delta variant 
infections in China suggested a smaller mean generation time (2.9 days) and more pre-symptomatic 
transmission for Delta than early SARS-CoV-2 strains, but without good control (Zhang et al., 2021); 
more controlled studies found on the contrary a similar generation time (Pung et al., 2021; Ryu et al., 
2021). If the distribution of generation time is similar in Delta as we infer, the observed growth rates 
imply it is +140% more transmissible than Alpha, in line with the +70 to +200% estimated elsewhere 
(Alizon et al., 2021; Blanquart et al., 2021). If the generation time of Delta had instead been inferred 
1 or 2 days shorter than the baseline (6.5 days), the observed growth rate would imply the estimated R 
advantage drops to +106 or +77%. The large R advantage of Delta with similar mean generation time 
makes it more difficult to control with interventions reducing transmission (such as social distancing) 
than if it had a smaller R advantage associated with a shorter mean generation time.

Our conceptual results may be useful to interpret the dynamics of variant frequency dynamics. 
Frequency dynamics are determined by the selection coefficient, which is the difference in growth 
rates between the variant and historical strains. Several papers have reported a varying selection coef-
ficient across time (Roquebert et al., 2021b) or across countries (Campbell et al., 2021). One possible 
explanation for this variability is that the selection coefficient changes with transmission because of 
differences in generation time distributions, which may explain non-monotonous frequency trajecto-
ries (Figure 2C).

Evolution influences epidemiological dynamics: at a given level of transmission, stronger selection 
on a variant also implies a larger incidence of the variant and therefore a larger burden on healthcare 
systems (Figure 2A). However, we emphasize that measures to reduce transmission, although possibly 
increasing the selection coefficient, always result in reduced variant absolute growth rate and better 
control of the variant. The selection coefficient (i.e. the difference in growth rates) can increase if 
reducing transmission reduces the growth rate of historical strains more strongly than the growth rate 
of the variant (e.g. variant conferring longer mean generation time, Figure 1D). It remains true that a 
variant epidemic growth rate is an increasing function of transmission, and a variant is growing if and 
only if ‍RE > 1‍ (Equation 3).

A first limitation of our framework is that we only consider the impact of changing transmission on 
selection for variants. We do not consider the impact of interventions shortening the distribution of 
generation time such as isolation of positive cases and contact tracing, which also potentially change 
over time (Kraemer et al., 2021). These interventions would alter the selection coefficient differently, 
in particular would favor earlier transmission (shorter mean generation time). A second important 
factor that could change selection for variants and is not considered in our framework is vaccination. 
Vaccination reduces host susceptibility. If a variant partially escapes vaccine immunity, rapid vaccina-
tion of the population will change the selection coefficient of the variant over time. For example, if a 
temporal reduction in transmission is solely caused by the deployment of vaccines, the growth rate 
of historical strains will be strongly reduced as the vaccination campaign progresses, but the growth 
rate of the variant will be less reduced. This could flatten the relationship between ‍rE‍ and ‍rH ‍ . The 
effects of the R advantage, a different generation time and vaccine escape on changing selection 
could in principle be disentangled with data on vaccine efficacy and the vaccination status of the host 
population over time. These considerations could analogously apply to the comparison across coun-
tries with different levels of vaccination. This might affect the analyses of the infectivity profile of the 
Delta variant that possibly confers immune escape. A third limitation, linked to the comparison across 
countries, is that we assume that the variability in growth rates across countries is solely explained 
by changing transmission. The R advantage and distribution of generation time are assumed to be 

https://doi.org/10.7554/eLife.75791
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the same in all countries. Relaxing this assumption would greatly impede the possibility of inference 
of variant infectivity profiles using data sampled across countries. Fourthly, we consider only one 
emerging variant. Our inference framework could readily be extended without additional technical 
complications to the frequency dynamics of several variants. Lastly, our framework requires precise 
measure of variant frequency and varying levels of transmission over the timespan considered. Infec-
tivity profiles can sometimes be inferred with as little as a 10 days time series after a sharp decline in 
transmission (Figure 3—figure supplement 3).

In spite of these limitations, our simple framework makes minimal assumptions (exponential growth 
rate and stable age-of-infection structure) that proved robust when tested against a simulation model 
including more complicated features (build-up of immunity, isolation of positive cases, explicit epide-
miological dynamics in the context of changing transmission). We additionally verified the robustness 
of our framework when the lag between infection and cases is different, the true generation time is 
not gamma-distributed, and the decline in the transmission is very sharp (Figure 3—figure supple-
ments 2 and 3).

In conclusion, we developed a conceptual framework to study selection on variants modifying the 
transmission of an infectious pathogen. We decoupled selection on R (number of secondary infec-
tions) and selection on the distribution of generation time (timing of secondary infections). While 
selection on the number of secondary infections is stronger with increased transmission (e.g. contact 
rates) in the community, selection on the generation time varies with levels of transmission in the 
community. This can lead to non-monotonous variant frequency trajectories. The ensuing variation 
in the selection coefficient in contexts of changing transmission can be used to infer not only the R 
advantage of variants, but also the change in mean generation time. This inference method could 
be used in conjunction with other type of data, for example, data on variant viral load trajectories 
(Cosentino et al., 2022; Roquebert et al., 2021a), or comparison of secondary attack rates of variant 
vs. historical strains informing on the R advantage (Public Health England, 2021a). We find that the 
patterns of growth of the Alpha and Delta variants in England and Europe are compatible with mean 
generation times similar to historical strains. This work will help understand variant dynamics at a time 
when several variants of concern are circulating and new ones may evolve, and genomic and PCR-
based surveillance programs allow fine monitoring of their dynamics.

Materials and methods
The Model
Relationship Between Growth Rate and Effective Reproduction Number
We describe the exponential growth of an epidemic within a simple framework. We assume that trans-
mission changes over time because of varying social distancing measures. We assume that changes 
are sufficiently slow compared to the mean generation time that the distribution of time since infection 
is always at equilibrium. It is known that when the number of infected individuals grows exponentially 
at a constant rate r, the distribution of time since infection equilibrates to an exponential distribution 
with parameter r (Wallinga and Lipsitch, 2007). Here, we assume that the number of infected indi-
viduals grows exponentially with rate ‍r

(
t
)
‍ and that the distribution of the time since infection is expo-

nential with parameter ‍r
(
t
)
‍ (i.e., the distribution equilibrates instantaneously when ‍r

(
t
)
‍ changes). The 

unit of time is days. The timing of infections is defined by the probability density ‍w
(
τ
)
‍ . Under these 

assumptions, the effective reproduction number ‍R
(
t
)
‍ reflecting transmission and the growth rate ‍r

(
t
)
‍ 

are linked through (Wallinga and Lipsitch, 2007):

	﻿‍

r(t) =
ˆ ∞

0
r(t)e−r(t)τ
︸ ︷︷ ︸
stable age

structure

w(τ )R(t)︸ ︷︷ ︸
new infections

from individuals

of age τ

dτ .

‍�

(1a)

The growth rate is the integral over all possible times since infection of the probability that an indi-
vidual has this age (the exponential distribution), times the number of new infections produced by an 
individual this age, giving the relation (1 a). This equation simplifies to:

https://doi.org/10.7554/eLife.75791
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	﻿‍
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τ
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(1b)

For a gamma-distributed generation time (with shape and scale parameters ‍α‍ and ‍β‍), this integral 
has an explicit solution:

	﻿‍ R
(
t
)

=
(
1 + β r

(
t
))α

‍� (2)

Conversely, the growth rate is:

	﻿‍
r
(
t
)

=
(

R
(
t
) 1

α − 1
)

/ β
‍�

(3)

The epidemic grows when ‍R
(
t
)

> 1‍ and declines when ‍R
(
t
)

< 1‍. Reparameterizing in terms of the 
mean and sd of the gamma distribution, ‍µ = α β‍ and ‍σ =

√
α β‍, yields:

	﻿‍
r
(
t
)

=
(

R
(
t
)σ2/µ2

− 1
)(

µ/σ2
)
‍
.
�

(4)

Relationship Between Growth Rates of Historical Strains and Emerging 
Variant Across Epidemiological Conditions
This equation can separately describe the growth of historical strains and variants characterized by 
their own parameters: ‍RH

(
t
)

,‍‍µH ‍ and ‍σH ‍ for historical strains, ‍RE
(
t
)

,‍‍µE‍, and ‍σE‍ for the emerging 
variant. We may recast the variant parameters in terms of how they are altered compared to historical 
strains:

	﻿‍

RE
(
t
)

= RH
(
t
) (

1 + δ1
)

,

µE = µH
(
1 + δ2

)
,

σE = σH
(
1 + δ3

)
. ‍�

(5)

We assume that changes in behavior and in interventions cause temporal variability in the trans-
mission, measured by the effective reproduction number of historical strains taken as the reference, 

‍RH
(
t
)
‍ , and only in this parameter. This assumption is valid for interventions that reduce transmission 

(social distancing, vaccines) but not for interventions that change the distribution of generation time 
(contact tracing, case isolation). Temporal variability in ‍RH

(
t
)
‍ will affect both ‍rH

(
t
)
‍ and ‍rE

(
t
)
‍ through 

the relationship (Borges et al., 2021):

	﻿‍
rH

(
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RH

(
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H
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(6)
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The temporal variation in ‍RH
(
t
)
‍ thus defines a parametric relationship between ‍rH

(
RH

(
t
))

‍ and 

‍rE
(
RH

(
t
))

‍ that can be used to infer ‍δ1‍ , ‍δ2‍ and ‍δ3‍ . The variation of the selection coefficient with ‍RH
(
t
)
‍ 

is simply given by ‍rE
(
t
)
− rH

(
t
)
‍ .

Approximation of the Parametric Relationship
To gain further intuition on the parametric relationship between ‍rH

(
RH

(
t
))

‍ and ‍rE
(
RH

(
t
))

‍ as ‍RH
(
t
)
‍ 

varies, we compute the tangent of the curve at the value ‍RH
(
t
)

= 1‍ (where ‍rH ‍ is 0). The parameters 
of this tangent will of course be most informative when values of ‍RH

(
t
)
‍ are not too far from one. The 

intercept is:

	﻿‍
intercept = rE

(
1
)

=

((
1 + δ1

) σ2
E

µ2
E − 1

)(
µE/σ2

E

)

‍�
(7)
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Where ‍µE‍ and ‍σ
2
E‍ can be reparameterized with Equation 5. This intercept is approximately ‍δ1/µH ‍ 

for a variant of small effect (‍δ1‍ , ‍δ2‍, and ‍δ3‍ are all small). The equation for the slope of the tangent is 
complicated, but again assuming small-effect variant it can be approximated as:

	﻿‍ slope ≈ 1 + δ1 cv2
H − δ2‍� (8)

with the square coefficient of variation of the generation time distribution, ‍cv2
H = σ2

H/µ2
H ‍ . Here it 

is assumed to be equal to ‍42/6.52 = 0.38‍. Thus, the slope of the ‍
(
rH, rE

)
‍ relationship is close to one, 

increased by the R advantage (weighted by ‍cv2
H ‍), decreased by the change in mean generation time, 

and unaffected to the first order by the difference in sd ‍δ3‍ . The selection coefficient is ‍rE − rH ‍ , the 
vertical distance between the (‍rH ‍ , ‍rE‍) relationship and the bisector.

Likelihood
We now formulate the likelihood for the estimated growth rates across time and across regions, 
denoted by ‍̂rH ‍ and ‍̂rE‍ . We derive an approximation for the distribution of ‍̂rH ‍ and ‍̂rE‍ as a function of 
their true values ‍rH ‍ and ‍rE‍ and the error variances, under the assumption that these errors are normally 
distributed and small. The historical strains and emerging variant growth rates are estimated from 
daily cases and variant frequency time series, by decomposing the cases into historical and emerging 
variant cases. We will formalize below how the estimated growth rates are affected by the error on 
variant frequency which depends on ‍1/N ‍, where ‍N ‍ is sample size, and on the error on cases number.

Between two consecutive days, denoted for simplicity days 0 and 1, the observed variables are the 
total number of cases denoted ‍̂I0‍ and ‍̂I1‍ and the frequency of variant ‍̂p0‍ and ‍̂p1‍ . The time is now noted 
as an index for clarity. The observed total number of cases is:

	﻿‍

�I0 = I0
(
1 + ϵI,0

)

�I1 = I1
(
1 + ϵI,1

)
‍�

(9)

We assume that the number of cases is Poisson distributed. When the number of cases is large, 
the error denoted ‍ϵI,0‍ (for day 0) is approximately normally distributed with mean 0 and variance ‍1/I0‍ 
(and analogously for day 1). If we now assume that the number of cases is distributed as a negative 
binomial (over-dispersed compared to the Poisson): when the parameter r (number of failures) of the 
negative binomial is large, the normal approximation is accurate by the central limit theorem and 
the variance of ‍ϵI,0‍ will be ‍1/

[
I0

(
1 − π

)]
‍ where ‍π‍ is the success probability of the negative binomial. 

Indeed, we have 
‍
V
[̂
I0

]
= I2

0 V
[
ϵI,0

]
= I0/

(
1 − π

)
‍
. The second equality comes from the fact that the 

variance of a negative binomial distribution is the mean (here ‍I0‍) divided by ‍1 − π‍. In other words, the 
cases number can be reduced to a smaller effective cases number to account for such overdispersion.

The observed logit-frequency of the variant is:

	﻿‍

l̂p0 = lp0 + ϵlp,0

l̂p1 = lp1 + ϵlp,1‍�
(10)

where ‍lp‍ is a shorthand for the logit of the frequency of the variant. In the data, the frequency of 
the variant was estimated by running a specific PCR on a fraction on all cases and is given by a bino-
mial frequency distribution. If the sample size is large, the error on the logit frequency ‍ϵlp,0‍ is approx-
imately normally distributed within mean 0 and variance ‍1/

(
N0 p0

(
1 − p0

))
‍ where ‍N0‍ is the sample 

size at day 0 (and similarly for day 1, variance ‍1/
(
N1 p1

(
1 − p1

))
‍). Indeed, for a binomial distribution 

of variant cases, the error on the frequency is approximately normal and has variance ‍p0
(
1 − p0

)
/N0‍ 

. By application of the delta method, the error on the logit frequency has variance ‍1/
(
N0 p0

(
1 − p0

))
‍. 

Here again, it is possible to account for overdispersion compared to the binomial distribution. The 
beta-binomial distribution can be used to reflect such overdispersion, as it is a compound distribu-
tion emerging when the frequency parameter of the binomial is itself distributed according to a beta 
distribution. The beta-binomial distribution is close to a normal distribution when the two parameters 
of the underlying beta (‍α‍ and ‍β‍) are large. The variance of the frequency for a beta-binomial distri-
bution of variant cases is inflated by a factor ‍

(
α + β + N0

)
/
(
α + β + 1

)
‍ compared to a binomial, while 

https://doi.org/10.7554/eLife.75791


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health | Evolutionary Biology

Blanquart et al. eLife 2022;11:e75791. DOI: https://doi.org/10.7554/eLife.75791 � 16 of 22

the mean is ‍p0 = α/
(
α + β

)
‍. Thus, overdispersion can be modeled by reducing the sample size to a 

smaller effective number.
The observed growth rates are linked with the observed variables through the relations:

	﻿‍

r̂H,1 = log[̂IH,1 /̂IH,0 ] = log[̂I1 (1 − p̂1 )/(̂I0 (1 − p̂0))]

r̂E,1 = log[̂IE,1 /̂IE,0 ] = log[̂I1p̂1 /(̂I0 p̂0)] ‍�
(11)

Small Error Approximation
Replacing the observed number of cases and frequencies with the expressions above, and approxi-
mating with a first order Taylor series in the error terms, yields:

	﻿‍

r̂H,1 =rH,1 + ϵI,1 − ϵI,0︸ ︷︷ ︸
error on case

incidence

+ p0ϵlp,0 − p1ϵlp,1︸ ︷︷ ︸
error on

frequency ‍�

(12)

	﻿‍ r̂E,1 = rE,1 + ϵI,1 − ϵI,0 −
(
1 − p0

)
ϵlp,0 +

(
1 − p1

)
ϵlp,1‍�

The first two error terms are common to both growth rates and simply express the fact that both 
growth rates will be inflated if the number of cases is by chance larger at time 1 than at time 0 
(‍ϵI,1 > ϵI,0‍). The two last terms express the fact that estimated growth rates will be modified by the 
error on the estimation of the frequency. For example, the growth rate of the historical strain will be 
inflated if by chance the error term on frequency at day 0 is greater than that at day 1 (‍p1ϵlp,1‍ < ‍p0 ϵlp,0‍). 
These terms are modulated by the true frequencies ‍p0‍ and ‍p1‍ .

Under the assumption that the errors on the logit frequencies and number of cases are indepen-
dent and that they are also independent between day 0 and 1, the distribution of ‍(̂rH,1, r̂E,1)‍ is bivar-
iate normal. The mean vector is:

‍
(
rH,1, rE,1

)
‍.

The variances (diagonal of the variance-covariance matrix) are:

	﻿‍

V
[
r̂H,1

]
= V

[
ϵI,1

]
+ V

[
ϵI,0

]
+ p2

0V
[
ϵlp,0

]
+ p2

1 V
[
ϵlp,1

]
= 1/I1 + 1/I0 + p0/

(
N0

(
1 − p0

))
+

p1/
(
N1

(
1 − p1

))
‍�

	﻿‍ V
[
r̂E,1

]
= 1/I1 + 1/I0 + (1 − p0)/(N0 p0) + (1 − p1)/(N1 p1)‍.�

The covariances are:

	﻿‍ cov
[
r̂H,1, r̂E,1

]
=
(
1/I1 + 1/I0

)
−

(
1/N0 + 1/N1

)
‍.�

The covariance between the estimated growth rates of historical and emerging strains is expected 
to be negative, because only a fraction of cases are assayed for the presence of the variant (‍N0 < I0‍). 
Indeed, the first positive term (‍1/I1 + 1/I0‍) expresses the fact that positive covariance will be created 
by error in cases number (for example, larger cases number will translate into higher growth rate of 
both historical strains and variants). The second negative term expresses the fact that the error in 
estimation of variant frequency will impact ‍̂rH,1‍ and ‍̂rE,1‍ in opposite ways. This second negative effect 
will be dominant.

Definition of the Likelihood
Likelihood for Temporal Dynamics
We now formulate more generally the likelihood of observed growth rates at all days t, ‍̂rH,t, r̂E,t‍ with 

‍t ∈
[
1, tmax

]
‍. Across consecutive timepoints, successive estimates of ‍̂rH,1, r̂E,1‍ will also be correlated 

because they share the same error terms. These cross-time covariances will be:

	﻿‍

cov
[
r̂H,t, r̂H,t+1

]
= cov

[
ϵI,t − ptϵlp,t, − ϵI,t + pt ϵlp,t

]

= − V
[
ϵI,t

]
− p2

t V
[
ϵlp,t

]

= − 1/It − pt/
(
Nt

(
1 − pt

))
‍�
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	﻿‍ cov
[
r̂E,t, r̂E,t+1

]
= −1/It −

(
1 − pt

)
/
(
Nt pt

)
‍�

	﻿‍ cov
[
r̂E,t, r̂H,t+1

]
= −1/It + 1/Nt‍�

	﻿‍ cov
[
r̂H,t, r̂E,t+1

]
= −1/It + 1/Nt‍�

Finally, the likelihood for the estimated growth rates of historical strain and mutant within a region 
at all days is given by the density of the multivariate normal distribution:

	﻿‍ P
(
r̂H,1, r̂E,1, . . . , r̂H,tmax , r̂E,tmax | RH,1, . . . , RH,tmax , δ1, δ2, δ3

)
‍�

	﻿‍ = fm,Σ
(
r̂H,1, r̂E,1, . . . , r̂H,tmax , r̂E,tmax

)
‍� (13)

where ‍fm,Σ‍ is the density of the multivariate normal distribution. The mean vector ‍m‍ is composed 
of the true growth rates, which depend in turn on the temporal series of true R of historical strains 

‍RH,1, . . . , RH,tmax‍ , the temporal series of true R of the variant ‍RH,1
(
1 + δ1

)
, . . . , RH,tmax

(
1 + δ1

)
‍, and 

the distribution of the generation time of the variant characterized by ‍δ2, δ3‍ . The distribution of 
the generation time of historical strains is assumed to be known. The covariance matrix ‍Σ‍ is block-
diagonal with non-zero covariances between mutant and historical strains at the same time and at 
consecutive time-points, as given above. The true number of cases ‍It‍ , sample size ‍Nt‍ , and the true 
variant frequencies ‍pt‍ , intervene in the expressions for the variances and covariances. In practice, we 
approximate the true number of cases and variant frequencies by their estimations, ‍̂It‍ and ‍̂pt‍ .

Likelihood for Spatial Variation
The likelihood of a series of growth rates ‍̂rH,i, r̂E,i‍ collected in different regions or countries indexed 
by i is different from that for a temporal series of ‍̂rH,t, r̂E,t‍ , as we assume there are no correlations 
between growth rates measured in different countries (in contrast to temporal correlations). For such 
data representing spatial variation in growth rates, the mean vector is composed of the true growth 
rates, which depend on the series of R in different countries, ‍RH,i‍ . The covariance matrix has diagonal 
given by the variances:

	﻿‍ V
[
r̂H,i

]
= 1/I1,i + 1/I0,i + p0,i/

(
N0,i

(
1 − p0,i

))
+ p1,i/

(
N1,i

(
1 − p1,i

))
‍�

	﻿‍ V
[
r̂E,i

]
= 1/I1,i + 1/I0,i + (1 − p0,i)/

(
N0,i p0,i) +

(
1 − p1,i

)
/
(
N1,i p1,i

)
‍.�

Where 0 and 1 are the consecutive timepoints at which the growth rates are measured, and the 
index i denotes the country. Furthermore, the covariances between growth rates of historical strains 
and emerging variants are:

	﻿‍ cov
[
r̂H,i, r̂E,i

]
= 1/I1,i + 1/I0,i − 1/N0,i − 1/N1,i‍.�

All other covariances (between quantities measured in different countries) are 0.

Simulation Study
Our approach relies on several approximations. First, we assume that the age-of-infection structure 
of the population is always at equilibrium with the current growth rate ‍r

(
t
)
‍ even though transmission 

‍R
(
t
)
‍ changes over time. Second, we assume that errors around cases number and frequencies are 

small and normally distributed. We conducted a simulation study to test our ability to infer the param-
eters of the variant infectivity profile in spite of these approximations.

Description of the Simulation Model
The simulation model is as in a previous study (Belloir and Blanquart, 2021) and includes time-
varying transmission, arbitrary infectivity profiles, the build-up of population immunity, and detection 
and isolation of cases. To model transmission dynamics, we use a discretized version of the renewal 
equation (see also Flaxman et al., 2020) extended to two strains, historical strains and the variant. 
We follow the dynamics of the number of individuals infected at day t who were infected ‍τ ‍ days ago, 
and have not yet been detected and isolated, called ‍IH

(
t, τ

)
‍ and ‍IE

(
t, τ

)
‍ . The transmission dynamics 

are given by the system of recurrence equations:

https://doi.org/10.7554/eLife.75791
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	﻿‍

IH
(
t + 1, 0

)
= R0,H(t) (1 − Itot

t /S0)� �� �
non immune

fraction

Σ∞
τ=0wH(τ )IH(t, τ )� �� �

infectivity

profile ‍�

(14)

	﻿‍ IE
(
t + 1, 0

)
= R0,E

(
t
) (

1 − Itot
t /S0

) ∑∞
τ=0 wE

(
τ
)

IE
(
t, τ

)
‍�

	﻿‍

IH
(
t + 1, τ

)
= IH(t, τ − 1) (1 − cy(τ − 1))� �� �

case detection

and isolation

∀τ ≥ 1

‍�

	﻿‍ IE
(
t + 1, τ

)
= IE(t, τ − 1)(1 − cy(τ − 1))∀τ ≥ 1‍�

The first two equations are analogous and represent transmission to new susceptible individuals 
giving rise to infected individuals with time since infection 0. The parameter ‍R0,H

(
t
)
‍ reflects the trans-

mission of historical strains, and is the basic reproduction number (in the absence of interventions, 
and when the population is fully susceptible (i.e. ‍Itot

t = 0‍)). The factor ‍wH
(
τ
)
‍ is the fraction of trans-

mission that occurs at time since infection ‍τ ‍, where ‍
∑∞

τ=0 wH
(
τ
)

= 1‍. Thus ‍wH
(
τ
)
‍ represents the 

distribution of the generation time of the virus. In practice, we use a discretized version of the gamma 
distribution. The infectivity profile of the virus is the product of R and the generation time distribu-
tion ‍R0,H

(
t
)

wH
(
τ
)
‍ . Transmission is reduced by a factor ‍1 − Itot

t /S0‍ by population immunity, where 

‍S0‍ is the initial number of susceptible individuals in the region. Population immunity is assumed to 
be the same for both variants (perfect cross-protection). The variable ‍I

tot
t =

∑t
i=1

(
IH

(
i, 0

)
+ IE

(
i, 0

))
‍ 

is the total number of individuals already infected and assumed to be fully immune at time ‍t‍. The 
instantaneous reproduction number that accounts for population immunity but not for case isolation 
is ‍RH

(
t
)

= R0,H
(
t
) (

1 − Itot
t /S0

)
‍ .

The third and fourth equations are analogous and represent the dynamics of individuals infected in 
the past. Individuals infected ‍τ − 1‍ days ago now have time since infection ‍τ ‍, provided they were not 
detected and isolated. An infected individual is detected with probability ‍c,‍ and the probability that an 
individual is detected at age ‍τ ‍ (when it is detected) is given by ‍y

(
τ
)
‍, with ‍

∑∞
τ=1 y

(
τ
)

= 1‍. The distri-
bution ‍y

(
τ
)
‍ represents the lag between infection and case detection. An individual who is detected 

is removed from the pool of individuals that contribute to further transmission of the disease. The 
number of cases detected at day ‍t‍ is thus:

	﻿‍ CH
(
t
)

= c
∑∞

τ=0 y
(
τ
)

IH
(
t, τ

)
‍� (15)

	﻿‍ CE
(
t
)

= c
∑∞

τ=0 y
(
τ
)

IE
(
t, τ

)
‍�

And the number of detected individuals who were infected ‍τ ‍ days ago changes as:

	﻿‍ C(t + 1, 0) = 0 (when τ = 0)‍� (16)

	﻿‍ C(t + 1, τ ) = C(t, τ − 1) + c I(t, τ − 1) y(τ − 1) ∀ τ ≥ 1‍�

Parameterization of the Simulation Model
We simulate the epidemiological dynamics of historical strains and variant virus. We assume that 
historical strains initially grow slowly, while the emerging variant initially increases in incidence faster 
thanks to its R advantage. Transmission progressively declines. This could be due for example to the 
progressive strengthening of control measures, leading to control of historical strains and then the 
variant. Over the period considered, the variant initially increases in frequency.

We ran the simulation for 80 days. We first ran a simulation where we assumed the basic repro-
duction number ‍R0,H

(
t
)
‍ changed as a Brownian motion with mean 1.5 and autocorrelation 0.05, and 

selected a trajectory such that the mean ‍R0,t‍ over the 20 first days exceeded 1.1 and the mean over 
the 20 last days was below 0.9 (Figure 2). For systematic simulations designed to test the inference 
algorithm, we chose three scenarios for the temporal variation in ‍R0,H

(
t
)
‍: linear decline from 1.5 to 

0.5, from 1.3 to 0.7, and from 1.1 to 0.9. We assumed about 9 M individuals are initially susceptible 
(corresponding to a large European region), and an initial number of detected cases of 4000 histor-
ical strains infections per day and 80 variant infections per day. We assumed 50% of all infection are 
detected (probability of detection ‍c = 0.5‍). The time to detection has mean 7.3 days. It is the sum of 

https://doi.org/10.7554/eLife.75791
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time from infection to symptom onset with mean 5.1 days (distributed as log-normal with parame-
ters 1.518, 0.472 [Lauer et al., 2020]), and the time from symptom to detection with mean 2.2 days 
(distributed as gamma with shape 0.69, rate 0.31 [Belloir and Blanquart, 2021; Lauer et al., 2020]). 
For the alternative simulations with a longer lag (mean 6 days), we assumed a gamma distribution with 
shape 0.69, rate 0.115. This ensures a mean of 6 days and the same coefficient of variation as for the 
main parameter set.

We assumed the generation time of historical strains was gamma distributed with mean 6.5 days 
and sd 4 days (Volz et al., 2021b). For the alternative simulations where we assume that there is zero 
transmission the first two days.

Inference
For inference, we tested combinations of the ‍δ1‍ , ‍δ2‍ parameters describing how the variant differs from 
the historical strains in its R and mean generation time. In the terms of the simulation model param-
eters, ‍R0,E

(
t
)

= R0,H
(
t
) (

1 + δ1
)
‍. The parameter ‍δ2‍ affects the parameters of the gamma distribution 

describing ‍wE
(
τ
)
‍ , while ‍wH

(
τ
)
‍ is gamma-distributed with mean 6.5days and sd 4days. We assumed 

the variant had the same sd of generation time, ‍δ3 = 0‍. Indeed, variants affecting the sd of generation 
time distribution have a very small selection coefficient which makes inference of this parameter diffi-
cult. This is seen by initial exploration of the relationship between growth rates of historical strains and 
variant, ‍̂rH ‍ and ‍̂rE‍ (Figure 2—figure supplement 1).

We systematically tested our ability to infer the ‍δ1‍ and ‍δ2‍ parameters. We ran the simulation model 
for all combinations of ‍δ1‍ from 0 to 0.5 in steps of 0.1 (R advantage increased from +0 to +100%), and 
of ‍δ2‍ from –0.4 to 0.4 in steps of 0.2. We inferred the parameters ‍δ1‍ and ‍δ2‍ by maximum likelihood 
using the expression for the likelihood in Equation 13.

Heuristic for the Simulation Study
In principle we need to infer jointly the parameters of interest ‍

{
δ1, δ2

}
‍, together with the other unknown 

parameters ‍
{

RH,1, . . . , RH,tmax

}
‍, which can be many. We used a simplified heuristic whereby we first 

set the parameters ‍
{

RH,1, . . . , RH,tmax

}
‍ to plausible values given ‍

{
δ1, δ2

}
‍, then infer the maximum 

likelihood parameters ‍
{
δ1, δ2

}
‍ given ‍

{
RH,1, . . . , RH,tmax

}
‍, and so on. We inferred maximum likelihood 

parameters ‍
{
δ1, δ2

}
‍ using the “BFGS” (Broyden, Fletcher, Goldfarb, and Shanno) method imple-

mented in the optim function in the software R (R Development Core Team, 2018). In the simulation 
study, we iterate this procedure five times with five different starting points for ‍

{
δ1, δ2

}
‍ and select the 

final maximum likelihood parameter set ‍
{
δ1, δ2, RH,1, . . . , RH,tmax

}
‍.

To set ‍
{

RH,1, . . . , RH,tmax

}
‍ to plausible values, we used the measured growth rates with a simplified 

likelihood function. The simplified likelihood does not consider the full covariance structure of the 
multivariate normal distribution but instead only use the variances of the distribution ‍V[̂rH,i]‍ and ‍V[̂rE,i]‍ 
expressed above. Given ‍

{
δ1, δ2

}
‍ , we set the historical strains transmissibilities to:

	﻿‍
RH,i =

[
1

V
[̂
rH,i

]
(

1 + σ2

µ r̂H,i
)µ2/σ2

+ 1
V
[̂
rE,i

] 1
1+δ1

(
1 + σ2

µ
(

1+δ2
) r̂E,i

)µ2(1+δ2
)2/σ2

](
1

V
[̂
rH,i

] + 1
V
[̂
rE,i

]
)−1

‍�
(17)

This equation stems from Equation 3 linking growth rates with effective reproduction number. It 
is reparameterized in terms of µ and ‍σ‍, the mean and sd of the distribution of the generation time of 
the historical strains. It is a weighted sum of the effective reproduction number as estimated from the 
historical strains growth rate ‍̂rH,i‍ , and the effective reproduction number as estimated from the variant 
growth rate ‍̂rE,i‍ . For the latter, the mean generation time is altered by ‍

(
1 + δ2

)
‍ , and the R is altered 

by ‍
(
1 + δ1

)
‍. The weights are the inverse variance of each of the estimated growth rates, ‍1/V[̂rH,i]‍ and 

‍1/V[̂rE,i]‍ .
The estimated growth rate of the historical strains and variants at time i are given by Equation 11 

applied to each time-point:

	﻿‍

r̂H,i = log[̂Ii+1(1 − p̂i+1)/(Îi(1 − p̂i))]

r̂E,i = log[(̂Ii+1 p̂i+1) / (̂Ii p̂i)] ‍�
(18)

https://doi.org/10.7554/eLife.75791


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health | Evolutionary Biology

Blanquart et al. eLife 2022;11:e75791. DOI: https://doi.org/10.7554/eLife.75791 � 20 of 22

We systematically verified in the simulations that this heuristic converged to a set of ‍RH,i‍ close to 
the true effective reproduction number.

Full Inference for Analysis of English and European Data
We ran inference on three datasets, two based on temporal variation in growth rates in England, and 
the third based on spatial variation across European countries:

1.	 Data on the growth of the Alpha variant in England from September 8, 2020 to March 16, 2021. 
The frequency of the Alpha variant is estimated from “S-gene target failures” which reflect the 
deletion 69–70 in the gene S typical of Alpha.

2.	 Data on the growth of the Delta variant in England from March 23, 2021 to June 15, 2021. The 
frequency of the Delta variant is again estimated from “S-gene target failures,” where this time 
the “historical strains” is the Alpha variant and the Delta variant which does not have the dele-
tion 69–70 in gene S emerges.

3.	 TESSy data from the European Centre for Disease Prevention and Control (European Centre 
for Disease Prevention and Control, 2021), on the growth of the Delta variant based on viral 
isolates sequenced in 11 European countries: Austria, Belgium, Denmark, France, Germany, 
Greece, Ireland, Italy, Netherlands, Norway, Sweden. We selected countries with sufficient data 
(based on visual inspection of the frequency trajectory of Delta), and used for each country the 
growth rates between the two weeks when the frequency of the Delta variant passed 50%.

As these datasets present a limited number of weeks or countries, it was possible to directly 
infer jointly the complete parameter set, ‍

{
δ1, δ2, RH,1, . . . , RH,tmax

}
‍ for temporal datasets, 

‍
{
δ1, δ2, RH,1, . . . , RH,nc

}
‍ for the spatial dataset where ‍nc = 11‍ is the number of countries. Further-

more, we ran optimizations for several effective number of cases and sample sizes, to select the 
best amount of overdispersion (Figure  5—figure supplement 2). Each optimization is conducted 
with 30 iterations of the BFGS algorithm with 30 random initial parameter values, and selecting the 
final best optimization. The 95% confidence intervals on the parameters were computed assuming 
multivariate normality of the likelihood function, and estimating the Hessian matrix of this multivar-
iate normal at the optimum. All codes are shared on GitHub (Blanquart, 2022; copy archived at 
swh:1:rev:a242a18349393e2e98d353a879ef9e66e99f21c1).
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