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Introduction

This fourth paper is a continuation of a research program initiated in [START_REF] Kahouadji | Variations on two-parameter families of forecasting functions: seasonal/nonseasonal Models, comparison to the exponential smoothing and ARIMA models, and applications to stock market data[END_REF] in which we introduced twenty four two-parameter families of advanced time series forecasting functions, defined the concept of powering, derived nonseasonal and seasonal models with examples in education, sales, finance and economy, compared the performance of the latter models to both the Holt-Winters and ARIMA models, and applied and compared the performance of those twenty four models using five-year stock market data of 467 companies of the S&P500. We continue our research program with an application to university enrollment forecasting. Indeed, using eighteen university enrollment times series for the same university, from fall 2004 to summer 2022, we perform a series of seasonal forecasting using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models [START_REF] Kahouadji | Variations on two-parameter families of forecasting functions: seasonal/nonseasonal Models, comparison to the exponential smoothing and ARIMA models, and applications to stock market data[END_REF], and compare their performance to both Holt-Winters and ARIMA models, using the sum of absolute error, the number of closest forecasts, and the number of closest yearly forecasts as metrics.

Time series forecasting is an important, required and a common task in business to help inform future decision making and planning. There is a wide range of time series forecasting methods, often developed within specific disciplines for specific purposes, each of which has its own level of performance and cost. Exponential smoothing [START_REF] Brown | Statistical forecasting for inventory control[END_REF][START_REF] Holt | Forecasting seasonal and trends by exponentially weighted averages[END_REF][START_REF] Winters | Forecasting sales by exponentially weighted moving averages[END_REF] and ARIMA (Auto Regressive Integrated Moving Average) [START_REF] Box | Time Series Analysis, Forecasting and Control[END_REF] methods are the two most widely used approaches to time series forecasting, and provide complementary approaches to the problem. While exponential smoothing models are based on a description of the trend and seasonality in the data, ARIMA models aim to describe the autocorrelations in the data [START_REF] Hyndman | Forecasting: Principles and Practice[END_REF]. For seasonal time series forecasting, both the exponential smoothing and ARIMA models require a decomposition of the seasonal time series into a trend, seasonal and random components. In [START_REF] Kahouadji | Variations on two-parameter families of forecasting functions: seasonal/nonseasonal Models, comparison to the exponential smoothing and ARIMA models, and applications to stock market data[END_REF], we introduced a new and different approach/method to advanced time series forecasting: given a time series X and a time series Y of the same size n, we defined twenty four two-parameter functions that output the forecasted/predicted (n + 1) data entry. These functions are then used as building blocs for various models for both nonseasonal and seasonal time series. Our approach is nonparametric, i.e., assumes no particular probability distribution, and rely on the computations of estimates via three methods, and then choosing one of the estimate via a series of optimization processes using eight different optimization criteria. In section 2, we recall both the rate of interest and the rate of discount times series of a given time series Y , both of which are used to defineand -mean and median forecast estimates of a given order for a given time series X. We then recall eight optimization criteria κ = 1, . . . , 8, which allows us to choose a preferred maximum order and a preferred optimization length, both of which are used to forecast the next (unknown) observation for the time series X. Combining both the mean and median forecasts enables us to define the -and -forecasts, and then combining the and estimates enables us to define the -forecast, leading to twenty four new two-parameter families of forecasting functions. In Section 3, we recall the seasonal functionally balanced forecasting models, and recall the seasonal power time series mapping. We then recall the seasonal per-period sum of absolute error stochastic latest-optimized α-power model. In Section 4, we apply the seasonal per-period sum of absolute error stochastic latestoptimized α-power model to eighteen university enrollment (head counts and credit hours) time series (Examples 1-18) by computing the sequence of three-step-ahead forecasts for the last sixteen years (48 trimesters). We also compare our forecasts to both Holt-Winters and ARIMA Models. In particular, we compute the sum of absolute errors, and we count the number of times (out of 48 trimesterly forecasts) that each of the models lead to the best trimesterly and yearly forecasts. For all eighteen university enrollment time series, we find that each of our twenty four model variations outperform both Holt-Winters and ARIMA models.

Two-Parameter Families of Forecasting Functions

Let X = (x 1 , x 2 , . . . , x n ) and Y = (y 1 , y 2 , . . . , y n ) be two time series with n ≥ 2 observations each. We define the rate of interest time series R Y associated to Y as the time series R Y = (r 1 , r 2 , . . . , r n-1 ) of size n -1 defined by

r i := y i+1 -y i y i for i = 1, . . . , n -1 (1) 
We define also the rate of discount time series D Y associated to Y as the time series D Y = (d 1 , d 2 , . . . , d n-1 ) of size n -1 defined by

d i := y i+1 -y i y i+1 for i = 1, . . . , n -1 (2) 
Given the rate of interest time series R Y , we define the mean (resp., median) ith rate of interest r i,λ (resp., r i,λ ) of order λ as follows:

r i,λ = mean(r i-λ+1 , . . . , r i ) where i = 1, . . . , n -1 and λ = 1, . . . , i -1

r i,λ = median(r i-λ+1 , . . . , r i ) where i = 1, . . . , n -1 and λ = 1, . . . , i -1

Similarly, given the rate of discount time series D Y , we define the mean (resp., median) ith rate of discount d i,λ (resp., d i,λ ) of order λ as follows:

d i,λ = mean(d i-λ+1 , . . . , d i )
where i = 1, . . . , n -1 and λ = 1, . . . , i -1

d i,λ = median(d i-λ+1 , . . . , d i ) where i = 1, . . . , n -1 and λ = 1, . . . , i -1

Given a time series X and a rate of interest times series R Y , we define two types of forecast estimates of order λ for x i+1 . The -mean (resp., -median) forecast estimate of x i+1 of order λ, denoted x i+1,λ (resp., x i+1,λ ), is defined as

x i+1,λ = x i • (1 + r i-1,λ ) where i = 2, . . . , n and λ = 1, . . . , i (7) 
x i+1,λ = x i • (1 + r i-1,λ ) where i = 2, . . . , n and λ = 1, . . . , i

Similarly, given a time series X and a rate of discount times series D Y , we define another two types of forecast estimates of order λ for x i+1 . The -mean (resp., -median) forecast estimate of x i+1 of order λ, denoted x i+1,λ (resp., x i+1,λ ), is defined as

x i+1,λ = x i ÷ (1 -d i-1,λ ) where i = 2, . . . , n and λ = 1, . . . , i (9) 
x i+1,λ = x i ÷ (1 -d i-1,λ
) where i = 2, . . . , n and λ = 1, . . . , i

In what follows, the symbol stands for either or . Given the -mean (resp., -median) estimate forecasts x i,λ (resp., x i,λ ) of order λ for i = 3, . . . , n and λ = 1, . . . , i -1, we define eight optimization criteria of sum of -mean (resp., -median) estimate forecast errors to forecast x i of length ν, denoted Σ κ i,λ,ν (resp., Σ κ i,λ,ν ), where ν = 1, . . . , n -1, λ + ν < n and κ = 1, . . . , 8, by :

Σ 1 i,λ,ν := i j=i-ν+1 x j,λ -x j x j,λ 2 , Σ 1 i,λ,ν := i j=i-ν+1 x j,λ -x j x j,λ 2 , (11) 
Σ 2 i,λ,ν := i j=i-ν+1 x j,λ -x j x j,λ , Σ 2 i,λ,ν := i j=i-ν+1 x j,λ -x j x j,λ , (12) 
Σ 3 i,λ,ν := i j=i-ν+1 ( x j,λ -x j ) 2 | x j,λ | , Σ 3 i,λ,ν := i j=i-ν+1 ( x j,λ -x j ) 2 | x j,λ | , (13) 
Σ 4 i,λ,ν := i j=i-ν+1 x j,λ -x j x j 2 , Σ 4 i,λ,ν := i j=i-ν+1 x j,λ -x j x j 2 , (14) 
Σ 5 i,λ,ν := i j=i-ν+1 x j,λ -x j x j , Σ 5 i,λ,ν := i j=i-ν+1 x j,λ -x j x j , (15) 
Σ 6 i,λ,ν := i j=i-ν+1 ( x j,λ -x j ) 2 |x j | , Σ 6 i,λ,ν := i j=i-ν+1 ( x j,λ -x j ) 2 |x j | , (16) 
Σ 7 i,λ,ν := i j=i-ν+1 ( x j,λ -x j ) 2 , Σ 7 i,λ,ν := i j=i-ν+1 ( x j,λ -x j ) 2 , (17) 
Σ 8 i,λ,ν := i j=i-ν+1 | x j,λ -x j |, Σ 8 i,λ,ν := i j=i-ν+1 | x j,λ -x j |. (18) 
For a given optimization criteria κ = 1, . . . , 8, a chosen maximum allowed order λ max , and a fixed length ν such that λ max +ν < n, the least sum of -mean (resp., -median) estimate forecast errors Σ κ, * n,λmax,ν (resp., Σ κ, * n,λmax,ν ), to forecast x n , of order λ max and length ν, are defined as follows:

Σ κ, * n,λmax,ν = min λ=1,...,λmax Σ κ n,λ,ν and Σ κ, * n,λmax,ν = min λ=1,...,λmax Σ κ n,λ,ν (19) 
From the latter, and for a given optimization criteria κ = 1, . . . , 8, a chosen maximum order λ max = 1, . . . , n -1 and fixed length ν = 1, . . . , n -1 such that λ max + ν < n, we extract the optimal -mean (resp., -median) order λ k, * λmax,ν (resp., λ k, * λmax,ν

) from 1 to λ max to forecast x n for a given length ν as follows:

λ k, * λmax,ν = arg min λ=1,...,λmax Σ κ, * n,λmax,ν and λ k, * λmax,ν = arg min λ=1,...,λmax Σ κ, * n,λmax,ν (20) 
These latter four optimal orders λ k, * λmax,ν and λ k, * λmax,ν

, where is either or , are then used as preferred orders to forecast x n+1 from the n observations x 1 , . . . , x n and either rate of interest times series R(Y ) or rate of discount time series D(Y ). Finally, we propose the following thirty two 2-parameter families of forecasting functions, that is for each of the four type of forecast estimate ( -mean, -median, -mean, and -median) with each one of the eight optimization criteria κ = 1, . . . , 8. Definition 1. Let X = (x 1 , x 2 , . . . , x n ) and Y = (y 1 , y 2 , . . . , y n ) be two time series with n ≥ 2 observations. Let R Y be the rate of interest time series associated to Y . For each optimization criteria κ = 1, . . . , 8, a chosen maximum order λ max = 1, . . . , n -2, and a fixed length ν in 1, . . . , n -2 such that λ max + ν < n, the -mean (resp., -median) forecasting function

Ψ κ λmax,ν (resp., Ψ κ λmax,ν
) of order λ max and length ν maps the time series X and the rate of interest R Y to a -mean (resp., -median) forecast of x n+1 , denoted x κ n+1 (resp., x κ n+1

), as follows:

x κ n+1 = Ψ κ λmax,ν (X, R Y ) := x n • 1 + r n-1, λ κ, * λmax,ν (21) 
resp.,

x κ n+1 = Ψ κ λmax,ν (X, R Y ) := x n • 1 + r n-1, λ κ, * λmax ,ν (22) 
where the -mean (resp., -median) optimal order λ k, * λmax,ν (resp., λ k, * λmax,ν

) is as in (20).

Definition 2. Let X = (x 1 , x 2 , . . . , x n ) and Y = (y 1 , y 2 , . . . , y n ) be two time series with n ≥ 2 observations. Let D Y be the rate of discount time series associated to Y . For each optimization criteria κ = 1, . . . , 8, a chosen maximum order λ max = 1, . . . , n -2, and a fixed length ν in 1, . . . , n -2 such that λ max + ν < n, the -mean (resp., -median) forecasting function

Ψ κ λmax,ν (resp., Ψ κ λmax,ν
) of order λ max and length ν maps the time series X and the rate of discount D Y to a -mean (resp., -median) forecast of x n+1 , denoted x κ n+1 (resp., x κ n+1

), as follows:

x κ n+1 = Ψ κ λmax,ν (X, D Y ) := x n ÷ 1 -d n-1, λ κ, * λmax ,ν (23) 
resp.,

x κ n+1 = Ψ κ λmax,ν (X, D Y ) := x n ÷ 1 + d n-1, λ κ, * λmax ,ν (24) 
where the -mean (resp., -median) optimal order λ k, * λmax,ν (resp., λ k, * λmax,ν

) is as in (20).

One can optimize within a pair of forecast estimates, that is, choosing two forecast estimate types among the four. There are six possible pairs, and thus one can define another forty eight 2-parameter families of forecasting functions. We propose in the following only two pairs (among the six) leading to a -(resp., -) forecasting function, which combines the -mean (resp., -mean) and -median (resp., -median) forecasting functions. Definition 3. Let X = (x 1 , x 2 , . . . , x n ) and Y = (y 1 , y 2 , . . . , y n ) be two time series with n ≥ 2 observations. Let R Y (resp., D Y ) be the rate of interest (resp., discount) time series associated to Y . For each optimization criteria κ = 1, . . . , 8, a chosen maximum order λ max = 1, . . . , n -2, and a fixed length ν in 1, . . . , n -2 such that λ max + ν < n, the -(resp., -) forecasting function Ψ κ λmax,ν (resp., Ψ κ λmax,ν ) of order λ max and length ν maps the time series X and the rate of interest (resp., discount) R Y (resp., D Y ) to a -(resp., -) forecast of x n+1 , denoted x κ n+1 (resp., x κ n+1 ), as follows:

x κ n+1 = Ψ κ λmax,ν (X, R Y ) := x κ n+1 if Σ κ, * n,λmax,ν ≤ Σ κ, * n,λmax,ν x κ n+1 if Σ κ, * n,λmax,ν > Σ κ, * n,λmax,ν (25) 
resp.,

x κ n+1 = Ψ κ λmax,ν (X, D Y ) := x κ n+1 if Σ κ, * n,λmax,ν ≤ Σ κ, * n,λmax,ν x κ n+1 if Σ κ, * n,λmax,ν > Σ κ, * n,λmax,ν (26) 
where the least sum of -(resp., -) mean estimate forecast error Σ κ, * n,λmax,ν (resp., Σ κ, * n,λmax,ν ) and the least sum of -(resp., ) median estimate forecast error Σ κ, * n,λmax,ν (resp., Σ κ, * n,λmax,ν ) are as in (19).

Similarly, one can optimize within a triple of forecast estimates. There are four possible triples, and thus one can add another thirty two 2-parameter families of forecasting functions. Lastly, one can optimize across the four forecast estimates, and thus add another eight 2-parameter families of forecasting functions, as shown in the following proposition. Definition 4. Let X = (x 1 , x 2 , . . . , x n ) and Y = (y 1 , y 2 , . . . , y n ) be two time series with n ≥ 2 observations. Let R Y (resp., D Y ) be the rate of interest (resp., discount) times series associated to Y . For each optimization criteria κ = 1, . . . , 8, a chosen maximum order λ max = 1, . . . , n -2, and fixed length ν in 1, . . . , n -2 such that λ max + ν < n, the forecasting function Ψ κ λmax,ν of order λ max and length ν maps the time series X, the rate of interest R Y , and the rate of discount D Y to a forecast of x n+1 , denoted x κ n+1 , as follows:

x κ n+1 = Ψ κ λmax,ν (X, R Y , D Y ) := x κ n+1 if Σ κ, * n,λmax,ν ≤ Σ κ, * n,λmax,ν x κ n+1 if Σ κ, * n,λmax,ν > Σ κ, * n,λmax,ν (27) 
where the least -estimate forecast error Σ κ, * n,λmax,ν is

Σ κ, * n,λmax,ν := min( Σ κ, * n,λmax,ν , Σ κ, * n,λmax,ν ), (28) 
and the least -estimate forecast error Σ κ, * n,λmax,ν is

Σ κ, * n,λmax,ν := min( Σ κ, * n,λmax,ν , Σ κ, * n,λmax,ν ) (29) 
Note that given a times series X, one can use its associated rate of interest R X and/or rate of discount D X , i.e., set Y = X in for forecasting functions. Note also that one can define a total of one hundred twenty forecasting functions. However, we focus our attention on only twenty four of them, i.e., Ψ κ , Ψ κ and Ψ κ for κ = 1, . . . , 8.

Seasonal Functionally Balanced Forecasting Models

Let X be a time series with a frequency f and size nf , i.e.,

X = x 1 , . . . , x f , x f +1 . . . , x 2f , . . . , x (n-1)f +1 , . . . , x nf (30) 
We denote by X s/f the sub time series of size n defined as follows:

X s/f = x s , x f +s , x 2f +s , . . . , x (n-1)f +s , where s = 1, . . . , f (31) 
For instance, if X is a monthly time series starting in January, then the frequency is f = 12 and X 1/12 is the January sub time series, X 7/12 is the July sub time series, and X 12/12 is the December sub time series. Similarly, if X is a quarterly time series starting in the first quarter of the year (from January 1 st to March 31 st ), then the frequency is f = 4, X 1/4 is the first quarter sub time series, X 2/4 is the second quarter sub time series, X 3/4 is the third quarter sub time series and X 4/4 is the last quarter sub time series.

Proposition 1 (Seasonal functionally balanced forecasting models). Let X = (x 1 , . . . , x nf ) and Y = (y 1 , . . . , y nf ) be two time series with frequency f and with nf observations, where n ≥ 2. For each optimization criteria κ = 1, . . . , 8, the -(resp., -, -) functionally balanced forecasting function Ψ κ f (resp., Ψ κ f , Ψ κ f ) maps the seasonal time series X and the rate of interest (resp., discount) time series R Φ(Y ) (resp., D Φ(Y ) ) to a -(resp., -, -) balanced forecast of x nf +s , denoted x κ nf +s (resp., ( x κ nf +s , x κ nf +s ), where s = 1, . . . , f , and Φ is a function that maps Y to a time series of the same size, as follows:

x κ nf +s = Ψ κ f (X, R Φ(Y ) ) := Ψ κ n-1 2 , n-1 2 (X s/f , R Φ(Y ) s/f ) (32) 
x κ nf +s = Ψ κ f (X, D Φ(Y ) ) := Ψ κ n-1 2 , n-1 2 (X s/f , D Φ(Y ) s/f ) (33) 
x κ nf +s = Ψ κ f (X, R Φ(Y ) , D Φ(Y ) ) := Ψ κ n-1 2 , n-1 2 (X s/f , R Φ(Y ) s/f , D Φ(Y ) s/f ) (34) 
Therefore, given a seasonal time series of size nf , one can forecast the next f values of the time series, i.e.,

• x κ nf +1 , • x κ nf +2 , . . . , • x κ (n+1)f
, where • is either , or . In order to compare these seasonal functionally balanced forecasting functions for a given seasonal time series X = (x 1 , . . . , x nf ) with frequency f , where n ≥ 2, let's compute the sequence of forecasts of x 2f +1 , x 2f +2 , . . . , x nf . For s = 1, . . . , f , and i = 2, . . . , n -1, the sequence of f -step-ahead forecasts for X are then

x κ if +s i,s := Ψ κ i-1 2 , i-1 2 (X [1:if ] s/f , R Φ(Y [1:if ] ) s/f ) i,s (35) 
x κ if +s i,s

:= Ψ κ i-1 2 , i-1 2 (X [1:if ] s/f , D Φ(Y [1:if ] ) s/f ) i,s (36) 
x κ if +s i,s

:= Ψ κ i-1 2 , i-1 2 (X [1:if ] s/f , R Φ(Y [1:if ] ) s/f , D Φ(Y [1:if ] ) j/f ) i,s (37) 
To compare these balanced forecasting functions, one may use two types of sum of absolute errors, or the sum of square errors: per period and global. Indeed, for each optimization criteria κ = 1, . . . , 8, the -(resp., -, -) sum of absolute errors for the i th period and the -(resp., , -) sum of square errors for the i th period, where i = 3, . . . , n, are defined as follows:

SAE κ i := f s=1 x κ (i-1)f +s -x (i-1)f +s and SSE κ i := f s=3 x κ (i-1)f +j -x (i-1)f +s 2 (38) SAE κ i := f s=1 x κ (i-1)f +s -x (i-1)f +s and SSE κ i := f s=3 x κ (i-1)f +j -x (i-1)f +s 2 (39) SAE κ i := f s=1 x κ (i-1)f +s -x (i-1)f +s and SSE κ i := f s=3 x κ (i-1)f +j -x (i-1)f +s 2 (40) 
and the -(resp., -, -) sum of absolute errors and the -(resp., , -) sum of square errors are defined as follows:

SAE κ := n i=3 SAE κ i and SSE κ := n i=3 SSE κ i (41) SAE κ := n i=3 SAE κ i and SSE κ := n i=3 SSE κ i (42) SAE κ := n i=3 SAE κ i and SSE κ := n i=3 SSE κ i (43) 
The model that minimizes either the sum of absolute errors or the sum of square errors (depending on the forecaster's interests) is said to be optimal for X. One can also count the number of optimal per-period sum of absolute or square errors. We illustrate the latter in the following two examples using one seasonal monthly time series and one seasonal quarterly time series using the following function Φ. Definition 5 (Seasonal power time series mapping). Let Y = (y 1 , . . . , y nf ) be a time series with frequency f and with nf observations, where n ≥ 2. Let α = (α 1 , . . . , α f ) be an f -tuple where α s ∈ [0, 1] for s = 1, . . . , f . The seasonal power times series mapping Φ maps Y and α to a seasonal time series Φ(Y ) of the same size and frequency such that for each s = 1, . . . , f ,

Φ(Y ) s/f := Y α1 s/f + Y α2 (s+1)/f + • • • + Y α f -s+1 f /f + Y α f -s+2 1/f + Y α f -s+3 2/f + • • • + Y α f (s-1)/f . (44) 
In Example 6 in [START_REF] Kahouadji | Variations on two-parameter families of forecasting functions: seasonal/nonseasonal Models, comparison to the exponential smoothing and ARIMA models, and applications to stock market data[END_REF], we used three fixed α power to compute the seasonally balanced forecasts. While the sum of absolute errors of our -, -and -forecasts were consistently lower than both Holt-Winters and ARIMA models, the number of best monthly and/or yearly forecasts were fairly higher. Therefore, we introduced in [START_REF] Kahouadji | Variations on two-parameter families of forecasting functions: seasonal/nonseasonal Models, comparison to the exponential smoothing and ARIMA models, and applications to stock market data[END_REF] an optimized and dynamic method to select the α-powers for the seasonally balanced forecasts. The latter leads to a substantially improved forecasts for seasonal time series.

Definition 6 (Seasonal per-period SAE latest-optimized α-power). Let X = (x 1 , . . . , x nf ) and Y = (y 1 , . . . , y nf ) be two time series with frequency f and with nf observations, where n ≥ 2. For each optimization criteria κ = 1, . . . , 8, the seasonal (resp., , ) SAE latest-optimized α-power for the period i = 3, . . . , n, denoted α κ i (resp., α κ i , α κ i ), are defined as the f -tuples

α κ 3 = α κ 3 = α κ 3 = (1, 1, . . . , 1) (45) 
and

α κ i = ( α κ 1,i , . . . , α κ f,i ) := arg min β1,...,β f ∈[0,1] SAE κ i-1 for i = 4, . . . , n (46) 
α κ i = ( α κ 1,i , . . . , α κ f,i ) := arg min β1,...,β f ∈[0,1] SAE κ i-1 for i = 4, . . . , n (47) 
α κ i = ( α κ 1,i , . . . , α κ f,i ) := arg min β1,...,β f ∈[0,1] SAE κ i-1 for i = 4, . . . , n (48) 
where SAE κ i , SAE κ i and SAE κ i are as in (38), ( 39) and (40), and Φ(Y ) as in (44). We define the sequence of seasonal per-period SSE latest-optimized α-power in a similar way. While an analytic derivation of the sequence of these seasonal per-period SAE latestoptimized α-powers can be (in practice) tedious, we introduce in the following stochastic (and more pragmatic) method to obtain an approximate of the sequence of these seasonal per-period SAE latest-optimized α-powers, which we use for the forecasting.

Definition 7 (Seasonal per-period SAE stochastic latest-optimized α-power). Let X = (x 1 , . . . , x nf ) and Y = (y 1 , . . . , y nf ) be two time series with frequency f and with nf observations, where n ≥ 2. For each optimization criteria κ = 1, . . . , 8, the random (resp., , ) SAE β-power for the period i = 3, . . . , n, denoted β SAE κ i is the sum of absolute error for the ith period where the power β = (β 1 , . . . , β f ) in Φ(Y ) are such that each of the β i are drawn from a uniform distribution on the interval [0, 1]. Thus, for each optimization criteria κ = 1, . . . , 8, the seasonal (resp., , ) SAE stochastic latest-optimized α-power for the period i = 3, . . . , n, denoted α κ i (resp., α κ i , α κ i ), are defined as the f -tuples

α κ 3 = α κ 3 = α κ 3 = (1, 1, . . . , 1) (49) 
and

α κ i = ( α κ 1,i , . . . , α κ f,i ) := arg β1,...,β f min j=1,...,N β SAE κ i-1 for i = 4, . . . , n (50) α κ i = ( α κ 1,i , . . . , α κ f,i ) := arg β1,...,β f min j=1,...,N β SAE κ i-1 for i = 4, . . . , n (51) 
α κ i = ( α κ 1,i , . . . , α κ f,i ) := arg β1,...,β f min j=1,...,N β SAE κ i-1 for i = 4, . . . , n (52)
where N is a large number (for instance, N = 1000).

Proposition 2 (Seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models). Let X = (x 1 , . . . , x nf ) and Y = (y 1 , . . . , y nf ) be two time series with frequency f and with nf observations, where n ≥ 2. For each optimization criteria κ = 1, . . . , 8, the -(resp., -, -) seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting function Ψ κ f (resp., Ψ κ f , Ψ κ f ) maps the seasonal time series X and the rate of interest (resp., discount) time series R Φ(Y ) (resp., D Φ(Y ) ) to a -(resp., -, -) balanced forecast of x nf +s , denoted x κ nf +s (resp., ( x κ nf +s , x κ nf +s ), where s = 1, . . . , f , and Φ is as in (44) with the -power α κ (resp., α κ , α κ ) is as in (50) (resp., (51, (52)), as follows:

x κ nf +s = Ψ κ f (X, R Φ(Y ) ) := Ψ κ n-1 2 , n-1 2 (X s/f , R Φ(Y ) s/f ) (53) 
x κ nf +s = Ψ κ f (X, D Φ(Y ) ) := Ψ κ n-1 2 , n-1 2 (X s/f , D Φ(Y ) s/f ) (54) x κ nf +s = Ψ κ f (X, R Φ(Y ) , D Φ(Y ) ) := Ψ κ n-1 2 , n-1 2 (X s/f , R Φ(Y ) s/f , D Φ(Y ) s/f ) (55) 
Thus, for s = 1, . . . , f , and i = 2, . . . , n -1, the sequence of f -step-ahead forecasts for X are then

x κ if +s i,s := Ψ κ i-1 2 , i-1 2 (X [1:if ] s/f , R Φ(Y [1:if ] ) s/f ) i,s (56) 
x κ if +s i,s

:= Ψ κ i-1 2 , i-1 2 (X [1:if ] s/f , D Φ(Y [1:if ] ) s/f ) i,s (57) 
x κ if +s i,s

:= Ψ κ i-1 2 , i-1 2 (X [1:if ] s/f , R Φ(Y [1:if ] ) s/f , D Φ(Y [1:if ] ) j/f ) i,s (58) 

Application to University Enrollment

Let's consider eighteen Northeastern Illinois University time series of enrollment and credit hours from fall 2004 to summer 2022. Table 1 contains eight of these times series. The remaining ten time series are derived by addition of such time series.

• X 1 (resp., X 10 ) represent the time series of total undergraduate enrollment (resp., credit hours), and is defined as X 1 = X 2 + X 3 (resp., X 10 = X 11 + X 12 ). • X 2 (resp., X 11 ) represent the time series of continuing undergraduate enrollment (resp., credit hours). • X 3 (resp., X 12 ) represent the time series of new undergraduate enrollment (resp., credit hours). • X 4 (resp., X 13 ) represent the time series of total graduate enrollment (resp., credit hours), and is defined as X 4 = X 5 + X 6 (resp., X 13 = X 14 + X 15 ). • X 5 (resp., X 14 ) represent the time series of continuing graduate enrollment (resp., credit hours). • X 6 (resp., X 15 ) represent the time series of new graduate enrollment (resp., credit hours). • X 7 (resp., X 16 ) represent the time series of total undergraduate + graduate enrollment (resp., credit hours), and is defined as X 7 = X 1 + X 4 (resp., X 16 = X 10 + X 13 ).

• X 8 (resp., X 17 ) represent the time series of continuing undergraduate + graduate enrollment (resp., credit hours), and is defined as X 8 = X 2 +X 5 (resp., X 17 = X 11 +X 14 ). • X 9 (resp., X 18 ) represent the time series of new undergraduate + graduate enrollment (resp., credit hours), and is defined as 

X 9 = X 3 + X 6 (resp., X 18 = X 12 + X 15 ). Term X 2 X 3 X 5 X 6 X
Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 28 times as opposed to 20 times for the ARIMA model, i.e., HW/AR = 28/20. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast nine times as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), ( 57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 30 times as opposed to 18 times for the ARIMA model, i.e., HW/AR = 30/18. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast twelve times as opposed to four times for ARIMA, i.e., HW/AR = 12/4.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 32 times as opposed to 16 times for the ARIMA model, i.e., HW/AR = 32/16. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast nine times as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 4.. 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 32 times as opposed to 16 times for the ARIMA model, i.e., HW/AR = 32/16. Moreover, if one compares the sum of For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 5 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 34 times as opposed to 14 times for the ARIMA model, i.e., HW/AR = 34/14. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast fourthee times as opposed to two times for ARIMA, i.e., HW/AR = 14/2.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), ( 57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 6.. For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), ( 57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 7. . Example 7. Let's consider student (undergraduate + graduate) total enrollment (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for each model are

SAE HW = 54 j=7 x HW j -x j = 9, 653 and SAE ARIMA = 54 j=7 x ARIMA j -x j = 17, 491 (65) 
Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 31 times as opposed to 17 times for the ARIMA model, i.e., HW/AR = 31/17. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast eleven times as opposed to five times for ARIMA, i.e., HW/AR = 11/5.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), ( 57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced Table 7. Graduate New Enrollment:Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 8..

Example 8. Let's consider student (undergraduate + graduate) continuing enrollment (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 34 times as opposed to 14 times for the ARIMA model, i.e., HW/AR = 34/14. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast twelve times as opposed to four times for ARIMA, i.e., HW/AR = 12/4.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), ( 57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, Example 10. Let's consider undergraduate total credit hours (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 32 times as opposed to 16 times for the ARIMA model, i.e., HW/AR = 32/16. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast nine times as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 11.. Example 11. Let's consider undergraduate continuing credit hours (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for each model are

SAE HW = 54 j=7 x HW j -x j = 89, 007 and SAE ARIMA = 54 j=7 x ARIMA j -x j = 147, 859 (69) 
Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 28 times as opposed to 20 times for the ARIMA model, i.e., HW/AR = 28/20. Moreover, if one compares the sum For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, Table 12. Undergraduate Continuing Credit Hours: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 32 times as opposed to 16 times for the ARIMA model, i.e., HW/AR = 32/16. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast ten times as opposed to six times for ARIMA, i.e., HW/AR = 10/6.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in ( 56), ( 57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 13.. Table 13. Undergraduate New Credit Hours: Comparison of the seasonal perperiod SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models Example 13. Let's consider graduate total credit hours (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for each model are For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), ( 57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 14.. Example 14. Let's consider graduate continuing credit hours (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for each model are 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 26 times as opposed to 22 times for the ARIMA model, i.e., HW/AR = 26/22. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast twelce times as opposed to four times for ARIMA, i.e., HW/AR = 12/4.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to slightly worse trimesterly forecast (smallest absolute residual) 23 times as opposed to 25 times for the ARIMA model, i.e., HW/AR = 23/25. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast nine times as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 16.. Table 16. Graduate New Credit Hours: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models Example 16. Let's consider student (undergraduate + graduate) total credit hours (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for each model are 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 29 times as opposed to 19 times for the ARIMA model, i.e., HW/AR = 29/19. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast nine times as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 28 times as opposed to 20 times for the ARIMA model, i.e., HW/AR = 28/20. Moreover, if one compares the sum of absolute error per year, the Holt-Winters model lead to a better yearly forecast eleven times as opposed to five times for ARIMA, i.e., HW/AR = 11/5.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 18.. Example 18. Let's consider student (undergraduate + graduate) new credit hours (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for each model are 

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holtwinters model lead to better trimesterly forecast (smallest absolute residual) 29 times as opposed For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, In light of Examples 2-19, several conclusions can be formed. First, for all eighteen times series, each of our twenty four seasonal per-period SAE stochastic latest-optimized α-power balanced
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 4 Let's consider graduate total enrollment (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for each model are SAE HW = 54 j=7 x HW j -x j = 5, 013 and SAE ARIMA = 54 j=7 x ARIMA j -x j = 6, 572
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  x j = 105, 985 and SAE ARIMA = 54 j=7 x ARIMA j -x j = 199, 672
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Table 1 .

 1 Northeastern

	11	X 12	X 14	X 15

Illinois University Enrollment and Credit Hours

Example 1. Let's consider undergraduate total enrollment (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for each model are SAE HW =

Table 2 .

 2 

	•κ	SAE	HW / AR / K.	HW / K.	AR / K.	HW / AR / K.	HW / K.	AR / K.
	1	4,936						

Table 2 .

 2 Undergraduate

	54	54
	x HW	x ARIMA
	j=7	j=7

Total Enrollment: Comparison of the seasonal perperiod SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models Example 2. Let's consider undergraduate continuing enrollment (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both Holt-Winters and ARIMA models. The sum of absolute errors for each model are SAE HW = j -x j = 6, 115 and SAE ARIMA = j -x j = 11, 884
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	•κ	SAE	HW / AR / K.	HW / K.	AR / K.	HW / AR / K.	HW / K.	AR / K.
	1	4,408						
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 3 Undergraduate Continuing Enrollment: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models
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 4 Undergraduate New Enrollment: Comparison of the seasonal perperiod SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models
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 5 .. Graduate Total Enrollment: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models

	•κ	SAE	HW / AR / K.	HW / K.	AR / K.	HW / AR / K.	HW / K.	AR / K.
	1	3,602	11 / 3 / 34	14 / 34	4 / 44	1/ 1 / 14	1 /	1/ 15
	2	3,525	10 / 5 / 33	13 / 35	6 / 42	1 / 1 / 14	1 /	1/ 15
	3	3,619	11 / 3 / 34	14 / 34	4 / 44	1 / 1 / 14	1 /	1/ 15
	4	3,657						
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 6 Graduate

	•κ	SAE	HW / AR / K.	HW / K.	AR / K.	HW / AR / K.	HW / K.	AR / K.
	1	3,327						

Continuing Enrollment: Comparison of the seasonal perperiod SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models Example 6. Let's consider graduate new enrollment (fall, spring and summer) over
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 8 Undergraduate + Graduate Total Enrollment: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models

  Table 10..

	•κ	SAE	HW / AR / K.	HW / K.	AR / K.	HW / AR / K.	HW / K.	AR / K.
	1	3,146						

Table 10 .

 10 Undergraduate + Graduate New Enrollment: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models
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 11 Undergraduate Total Credit Hours: Comparison of the seasonal perperiod SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models

	•κ	SAE	HW / AR / K.	HW / K.	AR / K.	HW / AR / K.	HW / K.	AR / K.
	1	55,490						

Table 14 .

 14 Graduate Total Credit Hours: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models Figure13. Graduate Total Credit Hours: Forecasts, residuals, absolute residuals and yearly sum of absolute errors we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table15.. Example 15. Let's consider graduate new credit hours (fall, spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x 1 , . . . , x 54 ). For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both
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			Trimesters			Years	
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 15 Graduate Continuing Credit Hours: Comparison of the seasonal perperiod SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models

Table 17 . . Table 17 .

 17.17 Undergraduate + Graduate Total Credit Hours: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models Example 17. Let's consider student (undergraduate + graduate) continuing credit hours (fall, spring and summer) over

Table 18 .

 18 Undergraduate + Graduate Continuing Credit Hours: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models

Table 19 .

 19 Undergraduate + Graduate New Credit Hours: Comparison of the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models to the seasonal Holt-Winters and ARIMA models

as opposed to four times for ARIMA, i.e., HW/AR = 12/4.

For s = 1, ..., 3 (trimesters), and i = 2, ..., 17 (years), we compute the sequence of threestep-ahead , and forecasts for X as in (56), (57) and (58) for each optimization criteria κ = 1, . . . , 8 using the seasonal per-period SAE stochastic latest-optimized α-power balanced forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover, we compute the (global) sum of absolute error, and we compare our forecasts to both Holt-Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The results are summarized in Table 9 [START_REF] Kahouadji | Variations on two-parameter families of forecasting functions: seasonal/nonseasonal Models, comparison to the exponential smoothing and ARIMA models, and applications to stock market data[END_REF] and in Example 2-19, ARIMA models leads to horrible first year forecast, that is, given the first two periods, (x 1 , . . . , x f , x f +1 , . . . , x 2f ), the forecasted values x 2f +1 , . . . , x 3f using the ARIMA models lead to a substantially larger absolute residual than Holt-Winters and our models. Thus, using ARIMA to predict the third sound of period using the the first two periods is not reliable.