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VARIATIONS ON TWO-PARAMETER FAMILIES OF ADVANCED TIME
SERIES FORECASTING FUNCTIONS IV: SEASONAL MODELS AND
APPLICATION TO UNIVERSITY ENROLLMENT

NABIL KAHOUADJI

ABSTRACT. Using the twenty four two-parameter families of advanced time series forecasting
functions along with their associated seasonal models introduced in [6], we perform a series
of seasonal forecasts (sixteen years times 3 trimesters) on eighteen university enrollment time
series, and compare their performance to both Holt—Winters and ARIMA models. For each
of these eighteen university enrollment time series, we show that our twenty four seasonal
models outperform both the Holt—Winters and ARIMA models with respect to the sum of
absolute errors, the number of closest forecasts, and the number of closest yearly forecasts.

Keywords: Time series forecasting, seasonal models, enrollment forecasting.
MSC 2020: 90C10, 90C15, 62G99, 62P20, 62P99, 90C90, 60C99.

1. INTRODUCTION

This fourth paper is a continuation of a research program initiated in [6] in which we
introduced twenty four two-parameter families of advanced time series forecasting functions,
defined the concept of powering, derived nonseasonal and seasonal models with examples in
education, sales, finance and economy, compared the performance of the latter models to both
the Holt—Winters and ARIMA models, and applied and compared the performance of those
twenty four models using five-year stock market data of 467 companies of the S&P500. We
continue our research program with an application to university enrollment forecasting. Indeed,
using eighteen university enrollment times series for the same university, from fall 2004 to summer
2022, we perform a series of seasonal forecasting using the seasonal per-period SAE stochastic
latest-optimized a-power balanced forecasting models [6], and compare their performance to
both Holt—Winters and ARIMA models, using the sum of absolute error, the number of closest
forecasts, and the number of closest yearly forecasts as metrics.

Time series forecasting is an important, required and a common task in business to help inform
future decision making and planning. There is a wide range of time series forecasting methods,
often developed within specific disciplines for specific purposes, each of which has its own level of
performance and cost. Exponential smoothing [2, 4, 8] and ARIMA (Auto Regressive Integrated
Moving Average) [1] methods are the two most widely used approaches to time series forecasting,
and provide complementary approaches to the problem. While exponential smoothing models are
based on a description of the trend and seasonality in the data, ARIMA models aim to describe
the autocorrelations in the data [5]. For seasonal time series forecasting, both the exponential
smoothing and ARIMA models require a decomposition of the seasonal time series into a trend,
seasonal and random components. In [6], we introduced a new and different approach/method to
advanced time series forecasting: given a time series X and a time series Y of the same size n, we
defined twenty four two-parameter functions that output the forecasted/predicted (n + 1) data
entry. These functions are then used as building blocs for various models for both nonseasonal
and seasonal time series. Our approach is nonparametric, i.e., assumes no particular probability
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2 NABIL KAHOUADJI

distribution, and rely on the computations of estimates via three methods, and then choosing
one of the estimate via a series of optimization processes using eight different optimization
criteria. In section 2, we recall both the rate of interest and the rate of discount times series of
a given time series Y, both of which are used to define §— and b- mean and median forecast
estimates of a given order for a given time series X. We then recall eight optimization criteria
k=1,...,8, which allows us to choose a preferred maximum order and a preferred optimization
length, both of which are used to forecast the next (unknown) observation for the time series
X. Combining both the mean and median forecasts enables us to define the - and b-forecasts,
and then combining the § and b estimates enables us to define the p-forecast, leading to twenty
four new two-parameter families of forecasting functions. In Section 3, we recall the seasonal
functionally balanced forecasting models, and recall the seasonal power time series mapping. We
then recall the seasonal per-period sum of absolute error stochastic latest-optimized a-power
model. In Section 4, we apply the seasonal per-period sum of absolute error stochastic latest-
optimized a-power model to eighteen university enrollment (head counts and credit hours) time
series (Examples 1-18) by computing the sequence of three-step-ahead forecasts for the last
sixteen years (48 trimesters). We also compare our forecasts to both Holt~Winters and ARIMA
Models. In particular, we compute the sum of absolute errors, and we count the number of times
(out of 48 trimesterly forecasts) that each of the models lead to the best trimesterly and yearly
forecasts. For all eighteen university enrollment time series, we find that each of our twenty four
model variations outperform both Holt—Winters and ARIMA models.

2. TwO-PARAMETER FAMILIES OF FORECASTING FUNCTIONS

Let X = (z1,22,...,2,) and Y = (y1,¥2, ..., yn) be two time series with n > 2 observations
each. We define the rate of interest time series Ry associated to Y as the time series Ry =
(ri,r2,...,mn—1) of size n — 1 defined by
_ Y-y
B Yi
We define also the rate of discount time series Dy associated to Y as the time series Dy =
(dy,ds,...,dp—1) of size n — 1 defined by

T fori=1,...,n—1 (1)

dp =Y Y i1 =1 2)
Yi+1

Given the rate of interest time series Ry, we define the mean (resp., median) ith rate of interest
Tix (resp., 7;.1) of order X as follows:
Tix = mean(ri_xti,...,7;) wheret=1,....n—land A=1,...,i—1 (3)
Tia = median(r;_xt1,...,73) wherei=1,...,n—1land A=1,...,i—1 (4)
Similarly, given the rate of discount time series Dy, we define the mean (resp., median) ith rate
of discount d; » (resp., d; ) of order X as follows:

l

ix= mean(d;_xy1,...,d;) wherei=1,...,n—land A\=1,...,i—1 (5)
(Z,)\: median(d;—x41,-..,d;) wheret=1,...,.n—land A=1,...,i—1 (6)

Given a time series X and a rate of interest times series Ry, we define two types of forecast
estimates of order A for ;1. The f-mean (resp., f-median) forecast estimate of ;1 of order A,

denoted ﬁﬁc\m7 \ (resp., ufm’ ,), is defined as

~

gy =i (1+Ti_12) wherei=2,...,nand A=1,...,i (7)

~

ﬁxﬁv\:xr(lJrﬁ-_l,A) where i =2,...,nand A=1,...,i (8)
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Similarly, given a time series X and a rate of discount times series Dy, we define another two
types of forecast estimates of order A for x; 1. The b-mean (resp., b-median) forecast estimate of
x;41 of order A, denoted "Em,/\ (resp., bfmx)v is defined as

bﬁc\m,)\ =x;+(1—di—1,) wherei=2,...,nand A\=1,...,i (9)
"fﬂ_—i)\ :xi+(1—cﬂl;,17>\) where i =2,...,nand A=1,...,3 (10)

In what follows, the symbol % stands for either  or b. Given the x-mean (resp., x-median)
estimate forecasts */x\;/\ (resp., *9?;’)\) of order A for i =3,....,nand A =1,...,7 — 1, we define
eight optimization criteria of sum of x-mean (resp., x-median) estimate forecast errors to forecast
z; of length v, denoted *Z?)\,y (resp., *E?./\,V)’ wherev =1,...,n—1, \+v<nandk=1,...,8,
by :

i > 2 ) * 2
Tz, —x; Tx, —
2 : A J 2 : A J
*Z} = 1 = 9 *El.‘ = ]/\ ) (].1)
LA\, * P L\, ~

j=i—v+1 A j=i—v+1 x*j»
: *T x ‘ Ty — Xy
2 _ JsA J 2 _ JoA J
- W Z * P ’ *ZZ)\,V - Z * ’ (12)
j=i—v+1 JA j=i—v+1 I
g3 ("Z50 — 25) *§3 ~ (75, — 1)
I\ v = Z * ’ 3 = Z * ’ (13)
» 7 A 55
j=i—v+1 JsA j=i—v+1 JsA

>*
™M
RS
>
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<
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j=i—v+1 j=i—v+1
i * . i * S
*515 _ § : IR x5 _ § Tin — T (15)
i\, v T ’ i\, v T ’
i i i g
j=i—v+1 j=i—v+1
7 * 2 7 *N. 2
*y 6 L ( T3\ - ) “m6 . ( T3\ ;)
32 = EErEr— 32 = ) (16)
LA\, ‘l‘ | W2 Ix |
j=i—v+1 J j=i—v+1 J
i i
* 7 o * )2 *y\7 N *N. )2
XA = > (- 2w = Y. (Fy ) (17)
j=i—v41 j=i—v41
i i
*y18 . * *38 I *N. e
D) N E "5\ — @4l DN E "z5 )\ — . (18)
j=i—v+1 j=i—v+1
For a given optimization criteria k = 1,...,8, a chosen maximum allowed order Apa.x, and a
fixed length v such that Apax+v < n, the least sum of x-mean (resp., x-median) estimate forecast
errors *Z%,j\max,v (resp., *Eg:;mx’y), to forecast x,, of order Apnax and length v, are defined as
follows:
* VK, * _ . *\K *NIK, ¥ _ : *\VK
ey = 0L DY and Y ey =, min YE (19)
=1,...,Amax A=1, Amax
From the latter, and for a given optimization criteria k = 1,...,8, a chosen maximum order

Amax = 1,...,n — 1 and fixed length v = 1,...,n — 1 such that A\y.x + v < n, we extract the
optimal *-mean (resp., »-median) order *)\’;L , (resp., *)\’;/’f/ ) from 1 to Apax to forecast x,,

maxvy

for a given length v as follows:

£ :arg< min  *357 ) and AR :arg( min  *X5 ) (20)

Amax sV n;Axnax’V n;)\maxﬂ/

= max,V =

— 4y Amax — 45y Amax
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These latter four optimal orders AR and TaR , where x is either f or b, are then used

max;V max ¥

as preferred orders to forecast x, 1 from the n observations z1, ..., z, and either rate of interest
times series R(Y') or rate of discount time series D(Y). Finally, we propose the following thirty
two 2-parameter families of forecasting functions, that is for each of the four type of forecast
estimate (f-mean, §-median, b-mean, and b-median) with each one of the eight optimization
criteria k = 1,...,8.

Definition 1. Let X = (21,22,...,2Z,) and Y = (y1,92,...,Yn) be two time series with n > 2
observations. Let Ry be the rate of interest time series associated to Y. For each optimization

criteria kK = 1,...,8, a chosen mazimum order Apar = 1,...,n — 2, and a fized length v in
1,...,n — 2 such that e + v < n, the f-mean (resp., §-median) forecasting function ﬁllli .
(resp , ﬁ\Il ) of order Mgz and length v maps the time series X and the rate of interest Ry

AmazsV

to a f-mean (resp., f-median) forecast of w41,

ok .
zﬁ), as follows:

i R R (47 ) N
resp.,

ﬁf,rj;ﬁ - ﬁ\:I?)‘ma.a: V(X’ RY) = (1 + Tn 1 u)\n * ) (22)
where the g-mean (vesp., t-median) optimal order ]\ (resp., M’i/v ) is as in (20).

Definition 2. Let X = (z1,22,...,2,) and Y = (y1,Y2,...,Yn) be two time series with n > 2
observations. Let Dy be the rate of discount time series associated to Y. For each optimization
criteria k = 1,...,8, a chosen mazimum order Apez = 1,...,n — 2, and a fized length v in
1,...,n — 2 such that Apaz + v < m, the b-mean (resp., b-median) forecasting function b\I/';

macm”

(resp., b\Il;/v ) of order Apar and length v maps the time series X and the rate of discount Dy
1%

mazx;

to a b-mean (resp., b-median) forecast of x, 11, denoted "EZH

bk .
xﬂ-’i)’ as follows:

b/x\fb—i-l = b\II;mw)V(X’ DY) =Ty (1 — 3 1 b)\m * ) (23)
resp.,
b/x\z-i-l b\Ij)‘maac,l’()(’ DY) =T -~ (1 + dn 1 bAz * V) (24)

where the b-mean (resp., b-median) optimal order , (resp., b)\kfv ) is as in (20).

One can optimize within a pair of forecast estimates, that is, choosmg two forecast estimate
types among the four. There are six possible pairs, and thus one can define another forty eight
2-parameter families of forecasting functions. We propose in the following only two pairs (among
the six) leading to a f- (resp., b-) forecasting function, which combines the f-mean (resp., b-mean)
and f-median (resp., b-median) forecasting functions.

Definition 3. Let X = (z1,22,...,2,) and Y = (y1,Y2,...,Yn) be two time series with n > 2
observations. Let Ry (resp., Dy ) be the rate of interest (resp., discount) time series associated
to Y. For each optimization criteria k = 1,...,8, a chosen maximum order Ay = 1,...,n— 2,
and a fixed length v in 1,... ,n—2 such that Apar + v < n, the §- (resp., b-) forecasting function
ﬁ\Ilimwy (resp.,b\llimmy) of order Apmae and length v maps the time series X and the rate of
interest (resp., discount) Ry (resp., Dy) to a 4- (resp., b-) forecast of xni+1, denoted *Zt%,
(resp., b’x\,ﬁﬂ), as follows:
finr ; fyk,* < fyrox

B =P (X Ry) = { N j: ; N éﬁ:“w’” (25)

1

T, Amaz;V 7, AmazsV
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resp.,

"Zr ="V (X,Dy):=

max,

n+1 maz;V 7, Amaz,V 2
T gf onet < byl (26)

mazsV N, Amaz,V

{W if  Pue < by
n+1

where the least sum of §- (resp., b-) mean estimate forecast error ﬁE%’imm , (resp., "Z%”;\

)

and the least sum of §- (resp., b) median estimate forecast error ﬁE%iimwy (resp., bE%’,immy) are
as in (19).

maz,V

Similarly, one can optimize within a triple of forecast estimates. There are four possible triples,
and thus one can add another thirty two 2-parameter families of forecasting functions. Lastly,
one can optimize across the four forecast estimates, and thus add another eight 2-parameter
families of forecasting functions, as shown in the following proposition.

Definition 4. Let X = (z1,2,...,2,) and Y = (y1,Y2,...,Yn) be two time series with n > 2
observations. Let Ry (resp., Dy ) be the rate of interest (resp., discount) times series associated
to Y. For each optimization criteria k = 1,...,8, a chosen mazximum order Apez = 1,...,n— 2,
and fized length v in 1,...,n — 2 such that \pee + v < n, the forecasting function hkllimwy of
order Apmqaz and length v maps the time series X, the rate of interest Ry , and the rate of discount
Dy to a forecast of 11, denoted %gﬂ, as follows:

ﬁ/\,.; - ﬁ Kk by K, *
bpe  — ogh X.Ryv.Dv) := Tpt1 if Zn)\maz,u < Zna)\ma:ml’ 27
Tpnt1 = Amm,u( VY Y) T bk if g S by ( )
n+1 1, Amag,V ", Amaz,V
where the least §-estimate forecast error ﬁEfL”;\ L s
fyr,* c— min (3R fyr,*
DA many = MIN(EEN RN ) (28)
and the least b-estimate forecast error bE';;‘; L s
o =min(CEel e ) (29)
Ny Amaz,V T T, Amaz, V) 7, Amaz,V

Note that given a times series X, one can use its associated rate of interest Rx and/or rate of
discount Dy, i.e., set Y = X in for forecasting functions. Note also that one can define a total of
one hundred twenty forecasting functions. However, we focus our attention on only twenty four
of them, i.e., #¥* "W" and 80" for k =1,...,8.

3. SEASONAL FUNCTIONALLY BALANCED FORECASTING MODELS

Let X be a time series with a frequency f and size nf, i.e.,

X = (;vl,...,xf,fo...,ng,...7x(n_1)f+1,...,xnf) (30)

We denote by X, the sub time series of size n defined as follows:

Xg/p= (xs,xf+s,$2f+s7...,x(n_l)f+s>, where s=1,...,f (31)

For instance, if X is a monthly time series starting in January, then the frequency is f = 12
and X1 is the January sub time series, X715 is the July sub time series, and X515 is the
December sub time series. Similarly, if X is a quarterly time series starting in the first quarter of
the year (from January 15¢ to March 31%), then the frequency is f = 4, X; /4 is the first quarter
sub time series, X3/4 is the second quarter sub time series, X34 is the third quarter sub time
series and Xy /4 is the last quarter sub time series.
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Proposition 1 (Seasonal functionally balanced forecasting models). Let X = (z1,...,2,f) and
Y = (y1,...,yns) be two time series with frequency f and with nf observations, where n > 2.
For each optimization criteria k = 1,...,8, the §- (resp., b-, §-) functionally balanced forecasting
Sfunction ﬁ\I/? (resp.,"\I/”, h\II?) maps the seasonal time series X and the rate of interest (resp.,
discount) time series Rg(yy (resp., Docyy) to a §- (resp., b-, §-) balanced forecast of xys,

denoted ﬁi’\Zers (resp., (bf’;;f+s, h52f+s), where s = 1,..., f, and ® is a function that maps Y
to a time series of the same size, as follows:
ﬁ“:”\fszrs - ﬁlp?(X’ Ro(v)) = ﬁ‘I’F"T—l],L"T—lJ (Xs/s5 R<1>(Y)s/f) (32)
B = "UH(X, Do yy) = b‘I’Fanl]’Lanlj (Xs/5: Dayy,,,;) (33)

hfb\z;"#»s = hqj?(X,RCD(Y)ach(Y)) = h\IﬂFanl]yLanlj(Xs/faR'fD(Y)s/va{)(Y)s/f) (34)

Therefore, given a seasonal time series of size nf, one can forecast the next f values of the

time series, i.e., 'a?zf“,’a?ﬁfﬁ, .. .,’E'(‘“nﬂ)f, where o is either #,b or . In order to compare
these seasonal functionally balanced forecasting functions for a given seasonal time series X =
(x1,...,2nf) with frequency f, where n > 2, let’s compute the sequence of forecasts of xof41,
XTof42, -+, Tng. Fors=1,...,f,and i =2,...,n—1, the sequence of f-step-ahead forecasts for
X are then
ok — T ) .
( xz’f+s)iys = ( \P(%LL%J(X[lilf]s/fvR‘I’(Y[mf])s/f))i’s (35)
b~k L bk
( :”f+) . ( M43 (X[Mfls/f’Dq’(Yu:iﬂ)s/f))i,s (36)
hok — NG ) .
( xif+s)i,s = ( \P(%]yL%J(X[lilf]s/f7Rq’(ﬁl:if])s/f’Dq’(Y[l:z‘f])j/f)>iws (37)

To compare these balanced forecasting functions, one may use two types of sum of absolute
errors, or the sum of square errors: per period and global. Indeed, for each optimization criteria
k=1,...,8, the - (resp., b-, §-) sum of absolute errors for the i*" period and the #- (resp., b, §-)

sum of square errors for the i'" period, where i = 3,...,n, are defined as follows:
! f )
”SAE;‘”" = Z ﬁi@—l)ﬂs — T(i—1)f+s and ﬁSSE? = Z (uﬂ?@—l)ﬂj - JU(z‘71)f+s> (38)
s=1 5=3
! f )
AR = 3 PTGy — @ npes| and SSEfi= 3 ("B gy~ 2 onpes) (39)
s=1 s=3
! f )
hSAE? = Z hfc\l({i—l)f+s —Z(i-1)f+s| and hSSEf = Z (h£@—1)f+j - l’(z‘—l)f+s) (40)
s=1 s=3

and the #- (resp., b-, f-) sum of absolute errors and the §- (resp., b, §-) sum of square errors are
defined as follows:

|SAE":=) *SAE]  and  SSE":=) ’SSE; (41)
i=3 1=3

"SAE":=Y ’SAE;  and  "SSE":= ) "SSE; (42)
i=3 =3

K

“SAE":= ) SAE, and “SSE":= ) "*SSE, (43)
=3 1=3
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The model that minimizes either the sum of absolute errors or the sum of square errors
(depending on the forecaster’s interests) is said to be optimal for X. One can also count the
number of optimal per-period sum of absolute or square errors. We illustrate the latter in the
following two examples using one seasonal monthly time series and one seasonal quarterly time
series using the following function ®.

Definition 5 (Seasonal power time series mapping). Let Y = (y1,...,yny) be a time series with
frequency f and with nf observations, where n > 2. Let o = (a1,...,a5) be an f-tuple where
as € (0,1 for s = 1,..., f. The seasonal power times series mapping ® maps Y and «a to a
seasonal time series ®(Y') of the same size and frequency such that for each s =1,..., f,

L yva @ o af_s+t1 Qf_st2 Qf_s43 L af
OV )s/p =Yy T Yy gt H Yy Y A Y A Y e (44)

In Example 6 in [6], we used three fixed o power to compute the seasonally balanced forecasts.
While the sum of absolute errors of our f—,b— and g-forecasts were consistently lower than both
Holt-Winters and ARIMA models, the number of best monthly and/or yearly forecasts were
fairly higher. Therefore, we introduced in [6] an optimized and dynamic method to select the
a-powers for the seasonally balanced forecasts. The latter leads to a substantially improved
forecasts for seasonal time series.

Definition 6 (Seasonal per-period SAE latest-optimized a-power). Let X = (z1,...,2n5) and

Y = (y1,...,Yny) be two time series with frequency f and with nf observations, where n > 2. For
each optimization criteria K =1,...,8, the seasonal § (resp., b, i) SAE latest-optimized a-power
for the period i = 3,...,n, denoted ﬁaf (resp., baf, h04?), are defined as the f-tuples
faff ="af =50 = (1,1,...,1) (45)
and
faf = (fak fatt = ar min "SAE" or i=4,...,n 46
( 1,40 ’ f,z) g Bryoo, re[0,1] i—1 f ) ) ( )
b Kk b Kk b Kk . b K .
af =("ay;,..., a%;) = ar min SAEY or 1=4,...,n 47
i ( 1,2 f,z) g (517- Brel0,1] 7 1) f ( )
ol = (fak., .. %% ) = ar min “SAE" or 1=4,....n 48
i ( 1,20 ) f,z) g Bi,Brel0,1] i—1 f ) ) ( )

where *SAEY " SAE? and *SAEY are as in (38), (39) and (40), and ®(Y) as in (44).

We define the sequence of seasonal per-period SSE latest-optimized a-power in a similar
way. While an analytic derivation of the sequence of these seasonal per-period SAE latest-
optimized a-powers can be (in practice) tedious, we introduce in the following stochastic (and
more pragmatic) method to obtain an approximate of the sequence of these seasonal per-period
SAE latest-optimized a-powers, which we use for the forecasting.

Definition 7 (Seasonal per-period SAE stochastic latest-optimized a-power). Let X =
(@1,.. . 2nf) andY = (Y1,.. ., Yny) be two time series with frequency f and with nf observations,
where n > 2. For each optimization criteria kK = 1,...,8, the random § (resp., b, 1) SAE 3-power
for the period i = 3,...,n, denoted gS//TEj is the sum of absolute error for the ith period where
the power 8 = (p1,...,B85) in ®(Y) are such that each of the B; are drawn from a uniform
distribution on the interval [0,1]. Thus, for each optimization criteria k = 1,...,8, the seasonal
t (resp., b, 1) SAE stochastic latest-optimized c-power for the period i = 3,...,n, denoted *af
(resp., "o, Fak ), are defined as the f-tuples

i i
ban ="ay ="fas = (1,1,...,1) (49)
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and
fap = (ay,,...tag) = agg g, (j_rﬁ;;ﬁ@ﬁf_& for i=4,...,n (50
b~k _ (b~k b~k o . bg_A_./ER i — 4 51
af = ( QT gy af’i) = argg . g, j=r{1?{1N5 i1 for i=4,...,n (51)
-~ -~ -~ . 5K .
haf = (ha’f)i,...,ha;,i) = argg, . g, <j_rlnlnN%SAEi1) for i=4,....n (52)

where N is a large number (for instance, N = 1000).

Proposition 2 (Seasonal per-period SAE stochastic latest-optimized a&-power balanced
forecasting models). Let X = (x1,...,2n5) and Y = (y1,...,Yns) be two time series with
frequency f and with nf observations, where n > 2. For each optimization criteria k = 1,...,8,
the #- (resp., b-, B-) seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting function jj\I/'J? (resp.,b\I/’;’, h‘l/’}) maps the seasonal time series X and the rate of interest

(resp., discount) time series Rg(y) (resp., D%(Y)) to a - (resp., b-, §-) balanced forecast of Ty 45,

denoted “E’;HS (resp., (bf’;fﬂ, hfzf+s), where s =1,...,f, and ® is as in (44) with the §-power
EQ" (resp., "a”, far) is as in (50) (resp., (51, (52)), as follows:
Tipee= UK Ry =y e (X Ry, ) (53)
bk _ b . by~
Tnfts = \II'}(X, D&;(y)) = \I/"%]7L"T*1J(X5/f7DE>(Y)S/f) (54)

Thpes = VX By Day)) =Wy ) Koy By, Dagyy.,,) - (59)

Thus, for s=1,..., f,and i = 2,...,n — 1, the sequence of f-step-ahead forecasts for X are

then
(u"%ff*s)i,s - (ﬁ‘IIF%H%J(X[l’if]s/f’RE’(Y[l:if])s/f)L,s (56)
(baff“)@s - (b ?%H%J (X[Lif]s/ﬁDE’(Y[lrif])s/f))i75 (57)
(h%ff+s)i7s - (hlp?%LL%J(X[Mf]s/WR‘AI"(Y[lrif])s/.f’D‘f(’/[l:if])j/f))i,s (58)

4. APPLICATION TO UNIVERSITY ENROLLMENT

Let’s consider eighteen Northeastern Illinois University time series of enrollment and credit
hours from fall 2004 to summer 2022. Table 1 contains eight of these times series. The remaining
ten time series are derived by addition of such time series.

e X; (resp., Xi0) represent the time series of total undergraduate enrollment (resp., credit
hours), and is defined as X; = X5 + X3 (resp., X190 = X11 + X12)-

e X, (resp., X11) represent the time series of continuing undergraduate enrollment (resp.,
credit hours).

e Xj (resp., X12) represent the time series of new undergraduate enrollment (resp., credit
hours).

o X, (resp., X13) represent the time series of total graduate enrollment (resp., credit hours),
and is defined as X4 = X5 + X6 (resp., X13 = X14 + X15).

e X5 (resp., X14) represent the time series of continuing graduate enrollment (resp., credit
hours).

e X; (resp., Xi5) represent the time series of new graduate enrollment (resp., credit hours).

e X7 (resp., X16) represent the time series of total undergraduate + graduate enrollment
(resp., credit hours), and is defined as X7 = X7 + X4 (resp., X156 = X10 + X13).
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e Xg (resp., Xi7) represent the time series of continuing undergraduate + graduate
enrollment (resp., credit hours), and is defined as Xg = Xo+ X5 (resp., X17 = X11+X14).
e X (resp., Xig) represent the time series of new undergraduate + graduate enrollment

(resp., credit hours), and is defined as X9 = X5 + Xg (resp., X1s = X12 + Xi5).

Term X2 X3 X5 | Xe X11 Xi2 X4 Xis

Fall 2004 6723 2582 2174 685 66952 27802 10970 3665
Spring 2005 7791 853 2392 368 79796 8080.5 12345 1847.5
Summer 2005 3742 601 1889 412 21773 3207 8812 1813
Fall 2005 6812 2606 2065 744 68614.5 27934.5 10485.5 4242
Spring 2006 7890 801 2402 435 80561 7499 12785.5 2262.5
Summer 2006 3757 568 1839 303 21708 2994 8956 1303
Fall 2006 6710 2547 2148 651 66656.5 27819 11121 3710.5
Spring 2007 7787 831 2353 296 78701 7840.5 12420 1472
Summer 2007 3682 527 1716 230 21528.5 2820 8002 1014.5
Fall 2007 6635 2480 2015 514 66213.5 26682 10221 2767
Spring 2008 7658 748 2133 267 TT788 7103 11022 1402
Summer 2008 3667 444 1501 261 22097 2474 7020.5 1106.5
Fall 2008 6537 2450 1652 554 65679.5 26822 8649 2933.5
Spring 2009 7654 682 1810 441 79042.5 6536 9464 2367
Summer 2009 3549 573 1411 403 21155 3218 6970 1920
Fall 2009 6422 2769 1816 624 65681 30651 9445 3609
Spring 2010 7852 908 1830 476 82308 8950.5 9845.5 2687
Summer 2010 3580 581 1342 350 21866 3292 6483 1664
Fall 2010 6757 2741 1533 715 70106 30859 7964 4358
Spring 2011 8038 902 1767 459 84263.5 8671 9401.5 2753
Summer 2011 3607 458 1281 292 22395 2717 6274.5 1421
Fall 2011 6819 2602 1501 658 70515 29115 7876 4158
Spring 2012 7964 792 1630 415 82889.5 7566 9004 2463.5
Summer 2012 3147 594 1087 244 18303 3241 5123.5 1257
Fall 2012 6516 2624 1342 667 67272 29258.5 7196.5 4007
Spring 2013 7648 790 1465 | 373 79634 7758.5 7942 2182
Summer 2013 3036 553 1009 173 17427 2949 4694 813
Fall 2013 6478 2472 1304 567 65500 26139.5 6940 3298
Spring 2014 7235 722 1478 268 74053.5 6517 8058 1558
Summer 2014 2888 548 988 165 16219 2938 4750 800
Fall 2014 6086 2326 1299 564 61502.5 24647 6870.5 3447
Spring 2015 6847 680 1497 219 69983 6360 8360 1305
Summer 2015 2830 526 1023 197 15695 2902 4954 1008
Fall 2015 5776 2319 1191 605 58270 24562 6518 3607
Spring 2016 6520 751 1494 325 66691 7061 8389 1624
Summer 2016 2637 511 1116 132 14943 2742 5717 606
Fall 2016 5345 2331 1266 596 53850.5 24524.5 6750 3761
Spring 2017 6139 717 1567 273 62371.5 6595 8600 1435
Summer 2017 2395 426 1149 205 13661 2824 5664 1195
Fall 2017 4842 2276 1263 603 49268 24287 6820 3658
Spring 2018 5697 595 1517 | 242 59103.5 5599 8662 1278.5
Summer 2018 2297 350 1102 176 13304 2250 5551 925
Fall 2018 4646 1754 1168 535 47271 18472 6340 3474
Spring 2019 5115 490 1373 248 52945.5 4643 8208 1428
Summer 2019 2189 315 977 174 12621 1839 5006 880
Fall 2019 4037 1664 1113 609 41859.5 17758 6360 4049
Spring 2020 4556 482 1333 392 48376 4507 8184 2362
Summer 2020 2224 275 1014 263 14185 1626 5170 1463
Fall 2020 3745 1475 1287 612 39523.5 15432 8023.5 4071
Spring 2021 4251 468 1579 319 44765 4421 10096 1815
Summer 2021 1901 265 1178 212 11978 1512 5859 1075
Fall 2021 3311 1297 1303 529 34305.5 13687 7787 3681
Spring 2022 3637 413 1467 245 38621 3765 9147.5 1573.5
Summer 2022 1511 220 962 151 8734 1081 4577 776

TABLE 1. Northeastern Illinois University Enrollment and Credit Hours

Ezample 1. Let’s consider undergraduate total enrollment (fall, spring and summer) over 18 years
(fall 2004 to summer 2022). Thus, f = 3 and X = (x1,...,254). For s = 1,...,3 (trimesters),
and i = 2,...,17 (years), we compute the sequence of three-step-ahead forecasts for X using both

Holt-Winters and ARIMA models. The sum of absolute errors for each model are

54
SAETW =%~ ‘a;{w - xj‘ — 6,329 and SAEARIMA _

=7

54
3 ‘/x\?RIMA — ;| =12,556  (59)
=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 28 times as opposed



10 NABIL KAHOUADJI

to 20 times for the ARIMA model, i.e., HW/AR = 28/20. Moreover, if one compares the sum
of absolute error per year, the Holt—Winters model lead to a better yearly forecast nine times
as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and f forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with V = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 2.

ex || SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW / K. | AR / K.
AL || 4,936 12 /927 17 / 31 13 / 35 1/2/10 5/ 11 1/ 12
12 || 4,952 13 /12 / 23 18 / 30 16 / 32 4/2/10 5/ 11 4/12
#3 || 4,921 13 /9 /26 18 / 30 13 / 35 5/2/9 6/ 10 4/12
44 || 4,868 13 /9 /26 18 / 30 13 / 35 4/2/10 5/ 11 4/12
85 || 4,882 13 /10 / 25 18 / 30 14 / 34 4/2/10 5/ 11 4/12
46 || 4,915 13 /10 /25 18 / 30 14 / 34 4/2/10 5/ 11 4/12
47 || 4,900 12 /9 /27 17 / 31 13 / 35 5/2/9 6/ 10 4/12
48 || 4,917 11 /11 /26 16 / 32 15 / 33 4/2/10 5/ 11 4/ 12
b1 || 4,984 12 / 10 / 26 17 / 31 14 / 34 1/2/10 5/ 11 /12
b2 || 4,926 12 / 10 / 26 17 / 31 14 / 34 4/2/10 5/ 11 4/12
b3 || 4,960 11 /11 / 26 16 / 32 15 / 33 4/2/10 5/ 11 4/12
b4 || 4,961 13 /11 /24 18 / 30 16 / 32 4/2/10 5/ 11 4/12
b5 || 4,886 13 /12 / 23 18 / 30 16 / 32 4/2/10 5/ 11 4/12
b6 || 4,944 12 /11 /25 17 / 31 15 / 33 4/2/10 5/ 11 4/12
b7 || 4,945 11 /10 / 27 16 / 32 15 / 33 4/2/10 5/ 11 4/12
b8 || 4,964 12 /9 /27 17 / 31 12 / 36 4/2/10 5/ 11 4/ 12
BT || 4,891 13 / 10 / 25 18 / 30 15 / 33 1/2/10 5 /11 1712
B2 || 4,932 12 /10 / 26 17 / 31 14 / 34 4/2/10 5/ 11 4/12
53 || 4,979 10 / 11/ 27 16 / 32 14 / 34 4/2/10 5/ 11 4/12
B4 || 4,905 12 /12 /24 17 / 31 16 / 32 4/2/10 5/ 11 4/12
85 || 4,849 12 /10 / 26 17 / 31 14 / 34 4/2/10 5/ 11 4/12
56 || 4,902 12 /11 /25 18 / 30 15 / 33 4/2/10 5/ 11 4/12
87 || 4,944 13 /10 / 25 18 / 30 14 / 34 4/2/10 5/ 11 4/12
58 || 4,945 12 /10 / 26 17 / 31 14 / 34 4/2/10 5/ 11 4/ 12

TABLE 2. Undergraduate Total Enrollment: Comparison of the seasonal per-
period SAE stochastic latest-optimized a-power balanced forecasting models to
the seasonal Holt—Winters and ARIMA models

Ezample 2. Let’s consider undergraduate continuing enrollment (fall, spring and summer) over
18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x1,...,%51). For s = 1,...,3
(trimesters), and ¢ = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for
X using both Holt—Winters and ARIMA models. The sum of absolute errors for each model are

54 54
SAE™W =12V — 2| = 6,115 and SAEAMA =N 7 ZARMA _ gl — 11,884 (60)
j=7 J=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 30 times as opposed
to 18 times for the ARIMA model, i.e., HW/AR = 30/18. Moreover, if one compares the sum
of absolute error per year, the Holt—Winters model lead to a better yearly forecast twelve times
as opposed to four times for ARIMA, i.e., HW/AR = 12/4.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and b forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
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FiGURE 1. Undergraduate Total Enrollment: Forecasts, residuals, absolute
residuals and yearly sum of absolute errors

we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 3.

e || SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K.
AT || 4,408 13 /6 /29 16 / 32 8/ 40 6/0/10 6/ 10 2/ 14
12 || 4,476 13 /8 /27 16 / 32 10 / 38 5/0/11 5/ 11 2/ 14
#3 || 4,380 11 /6 /31 15 / 33 8 / 40 6/0/10 6/ 10 2/ 14
14 || 4,425 12/7/29 16 / 32 9/ 39 6/0/10 6/ 10 2/ 14
#5 || 4,475 13 /8 /27 18 / 30 11 /37 5/0/11 5/ 11 2/ 14
46 || 4,416 12/9/27 17 / 31 11 / 37 6/0/10 6 /10 2/ 14
47 || 4,362 11/7/30 15 / 33 9 /39 6/0/10 6 /10 1/15
8 || 4,521 12 /9 /27 16 / 32 12 /36 5/0/11 5/ 11 2/ 14
b1 || 4,325 11 /6 /31 15 / 33 8 /40 6/0/10 6 /10 2 /14
b2 || 4,461 12/8/28 16 / 32 11 /37 5/0/11 5/ 11 2/ 14
b3 || 4,381 11/7/30 15 / 33 9 /39 6/0/10 6/ 10 2/ 14
b4 || 4,382 11/9/26 16 / 32 11/ 37 6/0/10 6/ 10 2/ 14
b5 || 4,425 12 /8 /28 17 / 31 10 / 38 5/0/11 5/ 11 2/ 14
b6 || 4,417 12 /8 /28 17 / 31 10 / 38 6/0/10 6 /10 1/15
b7 || 4,420 11/7/30 15 / 33 9 /39 6/0/10 6 /10 2/ 14
b8 || 4,468 12 /8 /28 16 / 32 10 / 38 5/0 /11 5/ 11 2/ 14
BT || 4,331 12 /8 /28 16 / 32 10 / 38 6/0/10 6 /10 2 /14
52 || 4,505 13 /8 /27 18 / 30 10 / 38 5/0/11 5/ 11 2/ 14
83 || 4,438 11/7/30 17 / 31 10 / 38 6/0/10 6/ 10 2/ 14
B4 || 4,445 12/7/29 16 / 32 9 /39 6/0/10 6 /10 2/ 14
55 || 4,412 13 /8 /27 17 / 31 10 / 38 5/0/10 5/ 11 2/ 14
86 || 4,426 12/9 /27 17 / 31 11 /37 6/0/10 6 /10 2/ 14
57 || 4,499 12 /8 /28 16 / 32 11 /37 6/0/10 6/ 10 2/ 14
58 || 4,515 12 /8 /28 17 / 31 11 /37 5/0/11 5/ 11 2/ 14

TABLE 3. Undergraduate Continuing Enrollment: Comparison of the seasonal
per-period SAE stochastic latest-optimized a-power balanced forecasting models
to the seasonal Holt—Winters and ARIMA models

Ezample 3. Let’s consider undergraduate new enrollment (fall, spring and summer) over 18 years
(fall 2004 to summer 2022). Thus, f = 3 and X = (z1,...,x54). For s = 1,...,3 (trimesters),
and i = 2,..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both
Holt—Winters and ARIMA models. The sum of absolute errors for each model are
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54 54
SAE™Y =% ]@HW = xj‘ = 3,719 and SAEARIMA =% \E?RIMA —xj|=6,280  (61)
J=7 Jj=T

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 32 times as opposed
to 16 times for the ARIMA model, i.e., HW/AR = 32/16. Moreover, if one compares the sum
of absolute error per year, the Holt—Winters model lead to a better yearly forecast nine times
as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and f forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with V = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 4..

Ezample 4. Let’s consider graduate total enrollment (fall, spring and summer) over 18 years (fall
2004 to summer 2022). Thus, f = 3 and X = (x1,...,254). For s = 1,...,3 (trimesters), and
i = 2,..,17 (years), we compute the sequence of three-step-ahead forecasts for X using both
Holt—Winters and ARIMA models. The sum of absolute errors for each model are

54 54
SAEMY =3 [FHW — ;| = 5,013 and SAEARIMA 3 TIGARMA _ g 6572 (62)
=7 J=T

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 32 times as opposed
to 16 times for the ARIMA model, i.e., HW/AR = 32/16. Moreover, if one compares the sum of
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e || SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K.
A1 || 2,276 10 /8 /30 10 / 38 10 / 38 2/0/14 2/ 14 0/ 16
12 || 2,274 10 / 6/ 32 10 / 38 8 / 40 3/0/13 3/13 0/ 16
43 || 2,207 11/9 /28 13 / 35 11 /37 2/0/14 2/ 14 0/ 16
44 || 2,186 8/9/31 9 /39 10 / 38 1/0/15 1/15 0/ 16
45 || 2,213 9/7/32 9/ 39 8 / 40 2/0/14 2/ 14 0/ 16
6 || 2,162 8 /8 /32 9 /39 9 /39 1/0/15 1/15 0/ 16
47 || 2,146 9/7/32 12 / 36 8 / 40 2/0/14 2/ 14 0/ 16
48 || 2,205 9/6/33 9 /39 6 / 42 3/0/13 3/13 0/ 16
b1 || 2,219 11 /5 / 32 11/ 37 8/ 40 1/0/15 1/15 0/ 16
b2 || 2,260 11/ 7/ 30 12 / 36 10 / 38 0/0/16 0/16 0/ 16
b3 || 2,213 10 /8 /30 11 / 37 9/ 39 1/0/15 1/15 0/16
ba || 2,175 9/8/31 10 / 38 9 /39 1/0/15 1/15 0/ 16
b5 || 2,212 11 /7 /30 13 / 35 8 / 40 1/0/15 1/15 0/ 16
b6 || 2,158 10/9/29 11 /37 10 / 38 1/0/15 1/15 0/ 16
b7 || 2,176 8 /8 /32 8 / 40 9 /39 0/0/16 0/16 0/ 16
b8 || 2,171 8 /6 /34 9 /39 6 / 42 1/0/15 1/ 15 0/ 16
BT || 2,282 13 /9 /26 13 / 35 11 / 37 1/0/15 1/15 0/ 16
52 || 2,305 11 /7 /30 12 / 36 10 / 38 2/0/14 2/ 14 0/ 16
53 || 2,211 11 /7 /30 12 / 36 9 /39 1/0/15 1/15 0/ 16
g4 || 2,197 10 /8 /30 10 / 38 9 /39 1/0/15 1/15 0/ 16
55 || 2,245 11 /6 /31 11 /37 7/ 41 2/0/14 2/ 14 0/16
56 || 2,296 10 /8 /30 10 / 38 9 /39 2/0/14 2/ 14 0/ 16
57 || 2,201 9/8/31 9 /39 9 /39 1/0/15 1/15 0/ 16
58 || 2,190 9/5 )34 10 / 38 5/ 43 2/0/14 2/ 14 0/16

TABLE 4. Undergraduate New Enrollment: Comparison of the seasonal per-
period SAE stochastic latest-optimized a-power balanced forecasting models to
the seasonal Holt—Winters and ARIMA models
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FIGURE 3. Undergraduate New Enrollment: Forecasts, residuals, absolute
residuals and yearly sum of absolute errors

absolute error per year, the Holt—Winters model lead to a better yearly forecast thirteen times
as opposed to three times for ARIMA, i.e., HW/AR = 13/3.

For s = 1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and f forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
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we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 5..

ex || SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K
A1 || 3,602 11 /3 / 34 14 / 34 4/ 44 1/1/14 1/15 1/ 15
g2 || 3,525 10/5/33 13 / 35 6/ 42 1/1/14 1/15 1/ 15
43 || 3,619 11 /3 /34 14 / 34 4/ 44 1/1/14 1/15 1/ 15
44 || 3,657 12 /4 /32 14 / 34 5/ 43 2/1/13 2/ 14 2/ 14
5 || 3,545 11 /5 /32 13 / 35 6/ 42 1/1/14 1/15 1/ 15
6 || 3,640 11 /5 /32 13 / 35 6/ 42 2/1/13 2/ 14 2/ 14
47 || 3,637 13 /4 /31 16 / 32 5/ 43 2/1/13 2/ 14 1/15
48 || 3,559 11 /5 /32 14 / 34 6 / 42 1/1/14 1/15 1/15
b1 || 3,618 12 /432 15 / 33 5 /43 T/0/15 1/15 0/ 16
b2 || 3,537 9/7/32 11 /37 8 / 40 1/1/14 1/15 1/15
b3 || 3,622 11 /5 /32 14 / 34 6/ 42 1/1/14 1/15 1/15
b4 || 3,680 11 /6 /31 14 / 34 7/ 41 2/1/13 2/ 14 1/15
b5 || 3,563 12 /4 /32 14 / 34 5/ 43 1/1/14 1/15 1/15
b6 || 3,707 12 /5 /31 15 / 33 7/ 41 2/1/13 2/ 14 2/ 14
b7 || 3,655 14 /5 /29 17 / 31 6 / 42 2/1/13 2/ 14 1/15
b8 || 3,567 12 /4 /32 14 / 34 5 /43 1/1/14 1/15 1/15
BT || 3,605 12 /4 /32 15 / 33 5 /43 T/0/15 1/15 0/ 16
B2 || 3,512 11 /5 /32 14 / 34 6/ 42 1/1/14 1/15 1/15
53 || 3,809 11 /5 /32 14 / 34 7/ 41 1/1/14 1/15 1/15
54 || 3,636 12 /4 /32 13 / 35 6 / 42 2/0/ 14 2/ 14 0/ 16
85 || 3,523 12 /5 /31 14 / 34 6 / 42 1/1/14 1/15 1/15
86 || 3,654 14 /5 /29 16 / 32 7 /41 2/1/13 2/ 14 2/ 14
87 || 3,687 13 /4 /31 15 / 33 5/ 43 2/1/13 2/ 14 1/15
58 || 3,552 12 /5 /31 14 / 34 6/ 42 1/1/14 1/15 1/15

TABLE 5. Graduate Total Enrollment: Comparison of the seasonal per-period
SAE stochastic latest-optimized a-power balanced forecasting models to the
seasonal Holt—Winters and ARIMA models
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FIGURE 4. Graduate Total Enrollment: Forecasts, residuals, absolute residuals
and yearly sum of absolute errors

Ezample 5. Let’s consider graduate continuing enrollment (fall, spring and summer) over 18 years
(fall 2004 to summer 2022). Thus, f = 3 and X = (x1,...,254). For s = 1,...,3 (trimesters),
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and i = 2,...,17 (years), we compute the sequence of three-step-ahead forecasts for X using both
Holt—Winters and ARIMA models. The sum of absolute errors for each model are

54 54
SAETW =} ]@{W . x]—‘ = 4,288 and SAEARMA _3° ‘ffRIMA — 2, = 5,781 (63)
§=7 j=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 34 times as opposed
to 14 times for the ARIMA model, i.e., HW/AR = 34/14. Moreover, if one compares the sum of
absolute error per year, the Holt—Winters model lead to a better yearly forecast fourthee times
as opposed to two times for ARIMA, i.e., HW/AR = 14/2.

For s = 1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and p forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 6..

e || SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K.
AT || 3,327 13 /4 /31 15 / 33 8/ 40 /1,711 5/ 11 1/15
42 || 3,286 14 /4 /30 17 / 31 7/ 41 4/1/11 5/ 11 1/15
3 || 3,317 13 /5 /30 15 / 33 9/ 39 4/1/11 5/ 11 1/15
44 || 3,310 14 /5 /29 17 / 31 10 / 38 5/1/10 6 /10 1/15
5 || 3,317 14 /4 /30 16 / 32 8 / 40 5/1/10 6 /10 1/15
6 || 3,344 12/5 /31 15 / 33 9/ 39 5/1/10 6 /10 1/15
47 || 3,319 16 /5 /27 18 / 30 10 / 38 5/1/10 6 /10 1/15
8 || 3,308 14 /3 /31 16 / 32 7/ 41 4/1/11 5/ 11 1/15
b1 || 3,327 13 /4 /31 15 / 33 8 /40 5/1/10 6 /10 1/ 15
b2 || 3,299 12 /5 /31 15 / 33 8 / 40 3/1/12 4/12 1/15
b3 || 3,287 14 /3 /31 16 / 32 7/ 41 4/1/11 5/ 11 1/15
b4 || 3,254 14 /4 /30 16 / 32 9/ 39 4/1/11 5/ 11 1/15
b5 || 3,300 13 /3 /32 15 / 33 7/ 41 471711 5/ 11 1/15
b6 || 3,307 14 /6 /28 17 / 31 9/ 39 4/1/11 5/ 11 1/15
b7 || 3,310 14 /6 /28 15 / 33 11 /37 3/1/12 4/12 1/15
b8 || 3,307 13/4/31 14 / 34 8 / 40 4/1/11 5/ 11 1/15
BT || 3,309 T4 /4 /30 17 / 31 7/ 4l I/1/11 5 /11 1/ 15
52 || 3,310 15 /3 /30 17 / 31 7/ 41 5/1/10 6 /10 1/15
83 || 3,443 15 /6 /27 18 / 30 10 / 38 5/1/10 6 /10 2/ 14
54 || 3,322 13 /5 /30 15 / 33 10 / 38 5/1/10 6 /10 1/15
55 || 3,323 14 /4 /30 16 / 32 8 / 40 4/1/11 5/ 11 1/15
56 || 3,341 12 /6 /30 15 / 33 9/ 39 5/1/10 6/ 10 1/15
57 || 3,318 13 /4 /31 14 / 34 9/ 39 5/1/10 6 /10 1/15
58 || 3,309 15 /4 /29 17 / 31 8 / 40 5/1/10 6 /10 1/15

TABLE 6. Graduate Continuing Enrollment: Comparison of the seasonal per-
period SAE stochastic latest-optimized a-power balanced forecasting models to
the seasonal Holt—Winters and ARIMA models

Ezample 6. Let’s consider graduate new enrollment (fall, spring and summer) over 18 years (fall
2004 to summer 2022). Thus, f = 3 and X = (z1,...,254). For s = 1,...,3 (trimesters), and
i = 2,..,17 (years), we compute the sequence of three-step-ahead forecasts for X using both
Holt-Winters and ARIMA models. The sum of absolute errors for each model are

54 54
SAEMY =% ’@IW - xj‘ = 3,219 and SAEARMA %™ ‘@“RIMA —x;| =3,2T4  (64)
j=7 Jj=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to slightly worse trimesterly forecast (smallest absolute residual) 23 times as
opposed to 25 times for the ARIMA model, i.e., HW/AR = 23/25. Moreover, if one compares
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FiGURE 5. Graduate Continuing Enrollment: Forecasts, residuals, absolute
residuals and yearly sum of absolute errors

the sum of absolute error per year, the Holt—Winters model lead to the same number of best
yearly forecast as ARIMA, i.e., HW/AR = 8/8.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and f forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with IV = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 7. .

Ezample 7. Let’s consider student (undergraduate -+ graduate) total enrollment (fall, spring and
summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (z1,...,%54). For
s =1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-step-ahead
forecasts for X using both Holt—Winters and ARIMA models. The sum of absolute errors for
each model are

54 54

SAEMYW =3 |71V — ;| = 9,653 and SAEARMA N7 GARMA _ gl 17,491 (65)
J=7 j=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—

winters model lead to better trimesterly forecast (smallest absolute residual) 31 times as opposed

to 17 times for the ARIMA model, i.e., HW/AR = 31/17. Moreover, if one compares the sum

of absolute error per year, the Holt—Winters model lead to a better yearly forecast eleven times
as opposed to five times for ARIMA, i.e., HW/AR = 11/5.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and b forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
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ex || SAE || HW /AR /K. | HW / K. | AR / K. W /AR /K. | HW /K. | AR/ K.
B || 2,215 11 /15 / 22 16 / 32 21 / 27 2/3 /11 1712 1/ 12
42 || 2,161 10 /13 / 25 13 / 35 18 / 30 2/2/12 4/12 3 /13
43 || 2,177 11 /13 /24 14 /34 | 20/ 28 2/3/11 4/12 4/12
g4 || 2,122 10 / 12 / 26 15 / 33 17 / 31 3/2/11 4/12 3/ 13
#5 || 2,190 11 /13 /24 15 / 33 18 / 30 2/2/12 4/12 3 /13
46 || 2089 10 / 12 / 26 15 / 33 18 / 30 2/2/12 3/13 3/ 13
47 || 2,149 11 /13 /24 15 / 33 17 / 31 3/2/11 5/ 11 3/ 13
48 || 2,139 11 /13 /24 15 / 33 19 / 29 2/2/12 4/ 12 3 /13
b1 || 2,174 11 /14 / 23 16 / 32 17 / 31 3/2 /11 1/ 12 3/ 13
b2 || 2,174 10 /13 / 25 15 / 33 16 / 32 2/2/12 4/12 3 /13
b3 || 2,187 11 /11 /26 16 / 32 16 / 32 2/2/12 3/13 3 /13
ba || 2,172 10 /14 / 24 14 / 34 19 / 29 3/2/11 4/12 4/12
b5 || 2,152 11 /14 / 23 16 / 32 19 / 29 2/2/12 4/12 3/ 13
b6 || 2,134 10 /14 / 24 16 / 32 19 / 29 1/2/13 2/ 14 3/13
b7 || 2,156 10 /12 / 26 14 / 34 17 / 31 2/2/12 3/13 3/13
b8 || 2,176 12 /14 / 22 17 / 31 19 / 29 2/2/12 4/ 12 3 /13
BT || 2,190 10 /14 / 24 15 / 33 19 / 29 2/2 /12 1/ 12 3/13
g2 || 2,161 9/14 /25 14 / 34 18 / 30 2/2/12 4/12 3/13
53 || 2,156 11 /12 /25 15 / 33 18 / 30 3/3/10 4/12 5/ 11
g4 || 2,156 9 /13 /26 14 / 34 16 / 32 2/2/12 3/13 3/13
85 || 2,176 9/14 /25 15 / 33 18 / 30 2/2/12 4/12 3/ 13
g6 || 2,131 9/12 /27 14 / 34 17 / 31 2/2/12 3/13 3/13
57 || 2,157 10 /12 /26 14 / 34 16 / 32 2/2/12 4/12 3/13
58 || 2,159 10 /14 / 24 15 / 33 18 / 30 2/2/12 4/12 3/13

TABLE 7. Graduate New Enrollment:Comparison of the seasonal per-period
SAE stochastic latest-optimized a-power balanced forecasting models to the
seasonal Holt—~Winters and ARIMA models
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FIGURE 6. Graduate New Enrollment:
and yearly sum of absolute errors

Forecasts, residuals, absolute residuals

forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 8..

Ezample 8. Let’s consider student (undergraduate + graduate) continuing enrollment (fall, spring
and summer) over 18 years (fall 2004 to summer 2022). Thus, f =3 and X = (z1,...,x54). For
s =1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-step-ahead
forecasts for X using both Holt—Winters and ARIMA models. The sum of absolute errors for
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o || SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K.
AT || 7,487 4/9/25 18 / 30 13 / 35 3/2 /11 3/13 3/13
42 || 7,387 13 /8 /27 15 / 33 12 /36 4/1/11 5/ 11 2/ 14
43 || 7,469 13 /728 15 / 33 11 /37 3/2/11 4/12 3/13
g4 || 7,410 14 /7727 16 / 32 11 /37 3/2/11 3/13 3/13
45 || 7,540 13 /8 /27 17 / 31 12 /36 4/2/10 4/12 4/12
g6 || 7,500 14/9/25 16 / 32 13 / 35 3/2/11 4/12 3 /13
87 || 7,623 15 /9 /24 18 / 30 15 / 33 3/2/11 5/ 11 3 /13
18 || 7,336 13 /7/28 15 / 33 11 /37 4/2/10 4/ 12 3/13
b1 || 7,567 6 /9 /23 18 / 30 14 / 34 3/2 /11 3 /13 3 /13
b2 || 7,396 13 /8 /27 15 / 33 12 /36 4/1/11 4/12 2/ 14
b3 || 7,562 15 /9 /24 18 / 30 15 / 33 3/3/10 4/12 4/12
ba || 7,513 13 /10 / 25 16 / 32 15 / 33 3/2/11 4/12 3 /13
b5 || 7,546 12 /10 / 26 16 / 32 15 / 33 4/2/10 5/ 11 4/12
b6 || 7,523 14/9/25 16 / 32 14 / 34 3/3/10 5/ 11 4/12
b7 || 7,579 16 /9 /23 18 / 30 15 / 33 3/3/10 4/12 4/12
b8 || 7,268 14 /8 /26 17 / 31 12 / 36 4/2/10 5/ 11 3 /13
BT || 7,540 13 /8 /27 17 / 31 12 / 36 3 /3 /10 3 /13 1/12
B2 || 7,434 12 /7 /29 15 / 33 11 /37 4/2/10 4/12 4/12
83 || 7,742 15 /9 /24 20 / 28 14 / 34 4/3/9 5/ 11 4/12
B4 || 7,432 15 /8 /25 18 / 30 12 / 36 3/2/11 3 /13 3/13
85 || 7,631 13/9/26 18 / 30 13 / 35 4/2/10 4/12 4/12
86 || 7,519 14/9/25 16 / 32 13 / 35 3/3/10 5/ 11 4/12
87 || 7,640 16 /8 /24 20 / 28 14 / 34 3/2/11 5/ 11 3 /13
58 || 7,381 13 /728 16 / 32 11 /37 4/2/10 4/12 3/13
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TABLE 8. Undergraduate + Graduate Total Enrollment: Comparison of
the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models to the seasonal Holt—Winters and ARIMA models
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FiGURE 7. Undergraduate + Graduate Total Enrollment: Forecasts, residuals,
absolute residuals and yearly sum of absolute errors

each model are

SAEFW =Z

54

~HW

Jj=T

54
= 7,843 and SAEARIMA 37 [GARDA _ ;| 14,796
J=T7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 32 times as opposed
to 16 times for the ARIMA model, i.e., HW/AR = 32/16. Moreover, if one compares the sum
of absolute error per year, the Holt—Winters model lead to a better yearly forecast twelve times
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as opposed to four times for ARIMA, i.e., HW/AR = 12/4.

For s = 1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and p forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 9..

e || SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K
AT || 5,484 13/7/28 18 / 30 9/ 39 2/1/13 2/ 14 1/15
42 || 5,418 11/6 /31 15 / 33 8 / 40 2/1/13 2/ 14 1/ 15
#3 || 5,483 12/7/29 16 / 32 9/ 39 2/1/13 2/ 14 1/ 15
44 || 5,472 13 /6 /29 16 / 32 7/ 41 2/1/13 2/ 14 1/15
5 || 5,356 14/7/27 18 / 30 8 / 40 3/1/12 3/13 1/15
6 || 5,430 12/7/29 16 / 32 8 / 40 2/1/13 2/ 14 1/15
47 || 5,504 13 /728 17 / 31 9/ 39 2/1/13 2/ 14 1/15
48 || 5,384 12/7/29 16 / 32 8 / 40 3/1/12 3/13 1/15
b1 || 5,487 13/7/ 28 17 / 31 9 /39 2/1/13 2 /14 1/15
b2 || 5,487 13 /728 17 / 31 9/ 39 2/1/13 2/ 14 1/15
b3 || 5,478 13 /728 18 / 30 9/ 39 2/1/13 2/ 14 1/15
ba || 5,452 12 /6 /30 16 / 32 8 / 40 2/1/13 2/ 14 1/15
b5 || 5,422 13 /728 18 / 30 8 / 40 3/1/12 3/13 1/ 15
b6 || 5,435 13 /5 /30 16 / 32 6/ 42 2/1/13 2/ 14 1/ 15
b7 || 5,513 12/7/29 17 / 31 8 / 40 2/1/13 2/ 14 1/15
b8 || 5,391 14 /6 /28 18 / 30 7/ 41 3/1/12 3 /13 1/15
BT || 5,532 17 /728 18 / 30 8 /40 2/1/13 3/13 1/15
B2 || 5,487 14 /727 19 / 29 9/ 39 2/1/13 2/ 14 1/15
83 || 5,462 13 /6 /29 18 / 30 7/ 41 3/1/12 3/13 1/15
14 || 5,508 13 /6 /29 17 / 31 8 / 40 2/1/13 2/ 14 1/15
85 || 5,452 15/ 7/ 26 19 / 29 8 / 40 3/17/12 3/13 1/15
56 || 5,478 13/7/28 16 / 32 8 / 40 3/1/12 3/13 1/15
57 || 5,444 12 /7 /29 16 / 32 9 /39 2/1/13 2/ 14 1/15
58 || 5,449 15/ 7/ 26 19 / 29 8 / 40 3/1/12 3/13 1/ 15

TABLE 9. Undergraduate + Graduate Continuing Enrollment: Comparison
of the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models to the seasonal Holt—Winters and ARIMA models

Ezample 9. Let’s consider student (undergraduate + graduate) new enrollment (fall, spring and
summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (z1,...,254). For
s =1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-step-ahead
forecasts for X using both Holt—Winters and ARIMA models. The sum of absolute errors for
each model are

54 54
SAEMW =3 |3HW ) = 4,784 and SAEATMA N GARIMA _ 51— g 938 (67)
=7 =7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 34 times as opposed
to 14 times for the ARIMA model, i.e., HW/AR = 34/14. Moreover, if one compares the sum
of absolute error per year, the Holt—Winters model lead to a better yearly forecast twelve times
as opposed to four times for ARIMA, i.e., HW/AR = 12/4.

For s = 1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and p forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
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FIGURE 8. Undergraduate + Graduate Continuing Enrollment: Forecasts,
residuals, absolute residuals and yearly sum of absolute errors

we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 10..

er || SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW / K. | AR / K
BT || 3,146 7/8/33 12 / 36 10 / 38 T/1/14 1/15 1/ 15
42 || 3,062 9/6/33 13 / 35 7/ 41 2/17/13 2/ 14 1/15
43 || 3,114 11/8 /29 17 / 31 10 / 38 2/17/13 2/ 14 1/ 15
44 || 3,112 8 /10 /30 14 /34 | 12 /36 2/27/12 2/ 14 2/ 14
45 || 3,096 10/7/31 15 / 33 9/ 39 1/1/14 1/15 1/15
46 || 3,090 8/9/31 13 /35 | 11/ 37 2/2/12 2/ 14 2/ 14
47 || 3,044 8/8 /32 13 /35 | 10/ 38 1/0/15 1/15 0/16
48 || 3,106 11/8 /29 15 /33 | 10 /38 1/1/ 14 1/15 1/15
b1 || 3,179 9 /8 /31 14 / 34 9/ 39 371712 3 /13 1/15
b2 || 3,069 10/ 8/ 30 16 /32 | 10/ 38 2/17/13 2/ 14 1/15
b3 || 3,128 9/7/32 15 / 33 8 / 40 2/17/13 2/ 14 1/15
ba || 3,054 9/8/31 15 /33 | 10/ 38 3/17/12 3/13 1/15
b5 || 3,065 11/ 7/ 30 15 / 33 9/ 39 1/1/14 1/15 1/15
b6 || 3,107 9/8/31 15 /33 | 10/ 38 2/17/13 2/ 14 1/15
b7 || 3,039 9/10/ 29 14/34 | 12/ 36 2/0/14 2/ 14 0/16
b8 || 3,04 10 / 6 /32 14 / 34 8 / 40 1/1/14 1/15 1/15
BT || 3,130 9/9 /30 15 /33 | 10/ 38 2/1/13 3 /14 1/ 15
82 || 3,103 9/10/ 29 13 /35 | 12 /36 1/2/13 1/15 2/ 14
83 || 3,342 9/ 7/ 32 15 / 33 8 / 40 3/1/12 3/13 1/15
b4 || 3,043 9/9/30 15 /33 | 10/ 38 1/1/ 14 1/15 1/15
5 || 3,073 11/ 7/ 30 15 / 33 9 /39 1/1/14 1/15 1/15
b6 || 3,087 9/9/30 14734 | 117/ 37 270/ 14 2/ 14 0/ 16
b7 || 3,052 1177/ 30 15733 | 9/ 39 1/1/14 1/15 1/15
B || 3,052 1177730 15733 | 9739 1/1/14 1/15 1/15
TABLE 10. Undergraduate + Graduate New Enrollment: Comparison of

the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models to the seasonal Holt—Winters and ARIMA models

Ezample 10. Let’s consider undergraduate total credit hours (fall, spring and summer) over 18

years (fall 2004 to summer 2022). Thus, f = 3 and X = (=, ..

., T54). For s = 1, ..., 3 (trimesters),

and i = 2,...,17 (years), we compute the sequence of three-step-ahead forecasts for X using both
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Holt—Winters and ARIMA models. The sum of absolute errors for each model are

54 54
SAEMY =3 [FHW — ;| — 03,088 and SAEARMA =%
=T =T

FARIMA _ 20l =171,033  (68)

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 32 times as opposed
to 16 times for the ARIMA model, i.e., HW/AR = 32/16. Moreover, if one compares the sum
of absolute error per year, the Holt—Winters model lead to a better yearly forecast nine times
as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and B forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with NV = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 11..

Ezample 11. Let’s consider undergraduate continuing credit hours (fall, spring and summer)
over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (z1,...,254). For s = 1,...,3
(trimesters), and ¢ = 2, ..., 17 (years), we compute the sequence of three-step-ahead forecasts for
X using both Holt—Winters and ARIMA models. The sum of absolute errors for each model are

54 54
SAE™Y =3 "2V — xj‘ = 89,007 and SAEAMMA =N IZARIMA _ g — 147,859 (69)
§=7 §=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 28 times as opposed
to 20 times for the ARIMA model, i.e., HW/AR = 28/20. Moreover, if one compares the sum
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o SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K
A1 || 55,490 16 /7/25 19/29 | 10/ 38 /2710 6/ 10 2/ 14
42 || 54,052 14 /6 /28 16 / 32 9 /39 4/2/10 6/ 10 27/ 14
43 || 55,601 18 /7 /23 10 / 29 9 /39 3/2/11 5/ 11 27/ 14
44 || 55,949 16/7/25 18 /30 | 10/ 38 4/2/10 6/ 10 2/ 14
45 || 54,621 14 /727 17 / 31 10 / 38 4/2/10 6/ 10 27/ 14
46 || 56,656 17 )7/ 24 19 /29 | 10/ 38 4/2/10 6/ 10 2/ 14
47 || 56,264 14/7/27 15 / 33 9 /39 5/2/9 7/9 2 /14
48 || 53,830 15 /7/26 16 /32 | 11 /37 4/2/10 6/ 10 2/ 14
b1 || 55,714 6 /7/25 17 /31 11 / 37 /2 /10 6 /10 2 /14
b2 || 54,597 15/7/26 17 / 31 11 / 37 4/2/10 6/ 10 2/ 14
b3 || 56,149 17 /6 /25 19 / 29 9 /39 4/2/10 6/ 10 2/ 14
b4 || 55,733 14 /7 /27 16 / 32 9 /39 4/2/10 6/ 10 27/ 14
b5 || 54,500 14 /6 /28 16 /32 | 10/ 38 4/2/10 6/ 10 27/ 14
b6 || 56,058 16/7/25 18 / 30 9 /39 3/2/11 5/ 11 27/ 14
b7 || 55,918 15 /7 /26 17 / 31 9 /39 5/2/9 7/9 27/ 14
b8 || 54,360 14 /7/27 17 / 31 10 / 38 4/2/10 6/ 10 2/ 14
Bl || 56,484 15 /6 / 27 17 / 31 9 /39 /2 /10 6 /10 2 /14
2 || 53,906 14 /6 /28 17 / 31 9 /39 4/2/10 6/ 10 2/ 14
13 || 55,252 16 /6 /26 18 / 30 9 /39 4/2/10 6/ 10 27/ 14
h4 || 56,108 16/7/25 19/29 | 10/ 38 4/2/10 6/ 10 27/ 14
n5 || 54,387 13 /6 /29 15 /33 | 10 /38 4/2/10 6/ 10 27/ 14
n6 || 56,531 15/7/29 16 / 32 9 /39 4/2/10 6/ 10 27/ 14
17 || 56,770 15/ 7/ 26 17 / 31 9 /39 5/2/9 7/9 27/ 14
b8 || 54,332 14 /6 /28 15 / 33 10 / 38 4/2/10 6/ 10 27/ 14
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TABLE 11. Undergraduate Total Credit Hours: Comparison of the seasonal per-
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F1GURE 10. Undergraduate Total Credit Hours: Forecasts, residuals, absolute
residuals and yearly sum of absolute errors

of absolute error per year, the Holt—Winters model lead to a better yearly forecast nine times
as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and b forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
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we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 12..

Credit Hours

Abs Residuals

20404 4e+04 Ge+D4 Be+04 1e+05

2000 4000 6000 8000

0

ok SAE HW /AR /K. | HW /K. | AR / K W /AR /K. | HW /K. | AR/ K.
A1 || 46,307 9,/6 /33 10 / 38 9 /39 2/1/13 2/ 14 1/15
#2 || 45,926 9/8/31 12 / 36 11 / 37 1/1/14 1/15 1/ 15
43 || 46,317 8/9 /31 9 /39 12 / 36 2/1/13 2/ 14 1/15
#4 45,977 8/7)/33 10 / 38 9 /39 2/1/13 2/ 14 1/15
45 || 45,678 8 /8 /32 11 /37 10 / 38 1/1/14 1/15 1/15
46 || 46,389 7/7 )34 9 /39 8 /40 2/1/13 2/ 14 1/ 15
47 || 46,323 10 /6 /32 11 /37 7/ 41 2/1/13 2/ 14 1/15
48 || 46,229 8 /8 /32 11 / 37 11 /37 1/1/14 1/15 1/15
b1 || 46,694 9 /8 /31 12 / 36 10 / 38 2/1/13 2 /14 1/15
b2 || 45,117 6/8 /34 9 /39 9 /39 1/1/14 1/ 15 1/15
b3 || 45,663 9/8 /31 11 /37 10 / 38 2/1/13 2/ 14 1/ 15
ba || 45,736 9/8 /31 10 / 38 10 / 38 2/1/13 2/ 14 1/15
b5 || 45,927 7/9/32 11 /37 11 /37 1/1/14 1/ 15 1/15
b6 || 46,173 7/8 /33 10 / 38 9 /39 2/1/13 2/ 14 1/ 15
b7 || 46,161 7/9/32 8 /40 11 /37 2/1/13 2/ 14 1/ 15
b8 || 45,662 779 /32 11 /37 11 / 37 1/1/14 1/15 1/ 15
R1 || 46,610 8/ 10 / 30 10 / 38 13 / 35 2/1/13 2 /14 1/15
h2 || 45,659 8 /7 /33 12 / 36 8 / 40 1/1/14 1/15 1/ 15
13 || 46,403 9/8 /31 12 / 36 10 / 38 2/1/13 2/ 14 1/15
ha || 45,971 8/9 /31 11 /37 11 /37 2/1/13 2/ 14 1/ 15
n5 || 45,730 8 /8 /32 12 / 36 11 /37 1/1/14 1/15 1/ 15
e || 45,865 8/9 /31 10 / 38 10 / 38 2/1/13 2/ 14 1/ 15
7 || 45,799 6/8 /34 8 / 40 10 / 38 2/1/13 2/ 14 1/15
88 || 45,506 8/8/32 12/36 | 9/39 1/1/14 1/15 1/15
TABLE 12. Undergraduate Continuing Credit Hours: Comparison of the
seasonal per-period SAE stochastic latest-optimized a-power balanced

forecasting models to the seasonal Holt—Winters and ARIMA models
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Ezample 12. Let’s consider undergraduate new credit hours (fall, spring and summer) over 18

years (fall 2004 to summer 2022). Thus, f = 3 and X = (xq, ..

., Z54). For s = 1, ..., 3 (trimesters),
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and i = 2,...,17 (years), we compute the sequence of three-step-ahead forecasts for X using both
Holt—Winters and ARIMA models. The sum of absolute errors for each model are

54 54
SAEMY =37 [FHW 5[ = 34,265 and SABARIMA 3 IGARMA _ g 67,620 (70)
Jj=7 J=T

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 32 times as opposed
to 16 times for the ARIMA model, i.e., HW/AR = 32/16. Moreover, if one compares the sum

of absolute error per year, the Holt—Winters model lead to a better yearly forecast ten times as
opposed to six times for ARIMA, i.e., HW/AR = 10/6.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and b forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 13..

o SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K
AT || 22,391 13/6/29 14/ 34 11 /37 1/0/15 1/15 0/16
42 || 22,958 14 /6 /28 16 / 32 10 / 38 2/0/14 2/ 14 0/16
43 || 22,093 13/6/29 16 / 32 9 /39 1/0/15 1/15 0/16
44 || 21,986 13/6/29 15 / 33 9 /39 1/0/15 1/15 0/ 16
45 || 22,551 14/7/27 17 / 31 11/ 37 3/0/13 3/13 0/16
46 || 22,319 13 /5 /30 14 / 34 9 /39 2/0/14 2/ 14 0/16
47 || 22,507 12/8/28 13/35 | 12/ 36 1/0/15 1/15 0/16
18 || 22,204 12/9 /27 13 /35 | 12/ 36 2/0/14 2/ 14 0/16
b1 || 21,708 14 /4 /30 15 / 33 8 / 40 0/0/16 0/16 0/16
b2 || 23,246 14 /6 /28 16 /32 | 11 /37 2/0/14 2/ 14 0/16
b3 || 22,004 12/7/29 13/35 | 11 /37 1/0/15 1/ 15 0/16
ba || 22,265 12/8 /28 13/35 | 11 /37 2/0/14 2/ 14 0/16
b5 || 22,945 12/7/29 14/34 | 10/ 38 2/0/14 2/ 14 0/16
b6 || 22,206 14 /727 15 /33 | 11 /37 2/0/14 2/ 14 0/16
b7 || 22,145 14 /5 /29 16 / 32 8 / 40 2/0/14 2/ 14 0/ 16
b8 || 22,537 11 /7 /30 13 /35 | 11 /37 3/0/13 3/13 0/16
Bl || 21,412 13/7/28 15 /33 | 11/ 37 0/0/16 0/16 0/16
2 || 23,530 14 /727 16/32 | 12 /36 2/0/14 2/ 14 0/16
B3 || 21,654 11/7/30 13/35 | 10/ 38 0/0/16 0/ 16 0/16
ha || 22,104 14/5/29 14 / 34 9 /39 2/0/14 2/ 14 0/ 16
5 || 22,657 11/8/29 12 /36 | 11 /37 3/0/13 3/13 0/16
e || 22,311 13 /7 /28 14 /34 | 10/ 38 2/0/14 2/ 14 0/ 16
7 || 22,058 15/ 7/ 26 17 / 31 9 /39 2/0/14 2/ 14 0/ 16
8 || 22,373 12 /8 /28 14 /34 | 12/ 36 3/0/13 3/13 0/16

TABLE 13. Undergraduate New Credit Hours: Comparison of the seasonal per-
period SAE stochastic latest-optimized a-power balanced forecasting models to
the seasonal Holt—Winters and ARIMA models

Ezample 13. Let’s consider graduate total credit hours (fall, spring and summer) over 18 years
(fall 2004 to summer 2022). Thus, f = 3 and X = (21,...,254). For s = 1,...,3 (trimesters),
and i = 2,...,17 (years), we compute the sequence of three-step-ahead forecasts for X using both
Holt-Winters and ARIMA models. The sum of absolute errors for each model are

54 54

SAEMY =3 [FHW — 5] = 33,070 and SAEARIMA 3 7IGARMA _ g 37,629 (71)
§=7 §=17

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—

winters model lead to better trimesterly forecast (smallest absolute residual) 26 times as opposed
to 22 times for the ARIMA model, i.e., HW/AR = 26/22. Moreover, if one compares the sum of
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FiGURE 12. Undergraduate New Credit Hours: Forecasts, residuals, absolute
residuals and yearly sum of absolute errors

absolute error per year, the Holt—Winters model lead to the same number of best yearly forecast
as ARIMA, i.e., HW/AR = 8/8.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and f forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with IV = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 14..

Ezample 14. Let’s consider graduate continuing credit hours (fall, spring and summer) over 18
years (fall 2004 to summer 2022). Thus, f = 3 and X = (x1,...,x54). For s = 1,..., 3 (trimesters),
and i = 2,..., 17 (years), we compute the sequence of three-step-ahead forecasts for X using both
Holt—Winters and ARIMA models. The sum of absolute errors for each model are

54 54

SAEMW %" ‘f?w - xj( — 26,863 and SAEARIMA _}° ‘aﬁRIMA —z| =362 (72)
J=7 j=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—

winters model lead to better trimesterly forecast (smallest absolute residual) 26 times as opposed

to 22 times for the ARIMA model, i.e., HW/AR = 26/22. Moreover, if one compares the sum

of absolute error per year, the Holt—Winters model lead to a better yearly forecast twelce times
as opposed to four times for ARIMA, i.e., HW/AR = 12/4.

For s = 1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and f forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
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o SAE || HW /AR /K. | HW /K. | AR / K. W /AR /K. | HW /K. | AR / K
A1 || 22,292 7/8 /33 10 /38 | 11 /37 2/1/13 2/ 14 1/ 15
42 || 22,853 8 /10 / 30 10/38 | 14/ 34 2/1/13 2/ 14 1/15
43 || 22,591 9/8/31 12/36 | 11 /37 2/1/13 27/ 14 1/ 15
44 || 22,617 8/ 7/ 33 10/38 | 10/ 38 2/1/13 2/ 14 1/ 15
45 || 22,498 8 /8 /32 11/37 | 12/ 36 2/1/13 2/ 14 1/ 15
46 || 22,957 9/9/30 12 /36 | 12/ 36 2/1/13 2/ 14 1/15
47 || 22,613 9/8/31 12 /36 | 11 /37 2/1/13 2/ 14 1/ 15
48 || 22,577 9/9/30 11,/37 | 13/35 2/1/13 2/ 14 1/ 15
b1 || 22,603 9/9/30 12/36 | 13/ 35 2/1/13 2 /14 1/15
b2 || 22,739 9/10 /29 11/37 | 14/ 34 2/1/13 2/ 14 1/ 15
b3 || 22,433 8/9 /31 10/38 | 13/35 2/1/13 27/ 14 1/ 15
ba || 22,750 8 /11 /29 10 /38 | 15/ 22 2/1/13 2/ 14 1/15
b5 || 22,441 7/8/33 9 /39 11 /37 2/1/13 2/ 14 1/ 15
b6 || 22,999 9/10 /29 12 /36 | 14 /34 2/1/13 2/ 14 1/ 15
b7 || 22,714 8 /8 /32 11 /37 | 11 /37 2/1/13 2/ 14 1/15
b8 || 22,594 7/10 /31 9 /39 12 / 36 2/1/13 2/ 14 1/15
Bt || 22,435 779 /32 10 /38 | 12 /36 2/1/13 2 /14 /15
h2 || 22,801 7 /10 /31 9 /39 14 / 34 2/1/13 2/ 14 1/15
h3 || 23,498 9/9/30 11/37 | 13/35 2/1/13 2/ 14 1/ 15
4 || 22,758 8/9 /31 10 /38 | 12 /36 2/1/13 2/ 14 1/ 15
85 || 22,631 8/ 8/ 32 10 /38 | 12 /36 2/1/13 2 /14 1/ 15
g6 || 22,710 9/10 /29 12 /36 | 13 /35 2/1/13 2/ 14 1/ 15
7 || 22,796 8/ 8/ 32 11/37 | 11 /37 2/1/13 2/ 14 1/15
B8 || 22,913 8/9/31 11 /37 | 13 /35 2/1/13 2/ 14 1/15

TABLE 14. Graduate Total Credit Hours: Comparison of the seasonal per-period
SAE stochastic latest-optimized a-power balanced forecasting models to the
seasonal Holt—Winters and ARIMA models
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FIGURE 13. Graduate Total Credit Hours: Forecasts, residuals, absolute
residuals and yearly sum of absolute errors

we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 15..

Ezample 15. Let’s consider graduate new credit hours (fall, spring and summer) over 18 years
(fall 2004 to summer 2022). Thus, f = 3 and X = (x1,...,254). For s = 1,...,3 (trimesters),
and i = 2,...,17 (years), we compute the sequence of three-step-ahead forecasts for X using both
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o SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR/ K
A1 |[ 19,752 9/ 10/ 29 15 / 33 11 /37 3/1/12 I/12 2/ 14
42 || 19,770 11 /11 /26 18 / 30 12/ 36 3/1/12 4/12 2/ 14
3 || 19,759 10 / 10 / 28 16 / 32 11/ 37 3/1/12 4/12 27/ 14
4 || 20,002 9/10 /29 15 / 33 11/ 37 4/1/11 5 /11 2/ 14
45 || 19,732 12 /11 /25 19 / 29 12 / 36 4/1/11 5 /11 2/ 14
46 || 20,173 11 /10 / 27 18 / 30 11 /37 5/2/9 6/ 10 3/13
47 || 19,942 12/9 /27 19 / 29 10 / 38 4/1/11 5/ 11 2 /14
48 || 19,702 11 /11 / 26 18 / 30 12 / 36 4/1/11 5 /11 2 /14
b1 || 19,679 10 /9 /29 16 / 32 10 / 38 3/1/12 /12 2/ 14
b2 || 19,744 10 / 10 / 28 17 / 31 11/ 37 4/1/11 5 /11 2/ 14
b3 || 19,571 10 /8 /30 16 / 32 9 /39 3/1/12 4/12 2/ 14
b4 || 19,991 10/9/29 17 / 31 10 / 38 4/1/11 5/ 11 2/ 14
b5 || 19,790 11 /10 / 27 18 / 30 11 /37 4/1/11 5 /11 2/ 14
b6 || 20,094 10 /11 / 27 17 / 31 12 / 36 4/1/11 5/ 11 2/ 14
b7 || 19,753 10 / 10 / 28 17 / 31 11 /37 3/1/12 4/12 2/ 14
b8 || 19,762 11 /10 / 27 18 / 30 11 /37 4/1/11 5 /11 2/ 14
Al || 19,829 9 /10 / 29 15 / 33 11 /37 3/1/12 1/12 2 /14
2 || 19,699 11 /11 / 26 18 / 30 12 / 36 3/1/12 4/12 2/ 14
83 || 20,202 10 / 10 / 28 18 / 30 12 / 36 3/1/12 4/12 2 /14
h4 || 20,146 12 /11 / 25 18 / 30 13 / 35 4/2/10 5/ 11 3/13
85 || 19,758 10 /11 / 27 17 / 31 12 / 36 4/1/11 5/ 11 2/ 14
16 || 20,083 12/9/27 19 / 29 10 / 38 4/1/11 5/ 11 2/ 14
7 || 19,776 10 / 10 / 28 17 / 31 11 /37 3/1/12 4/12 2/ 14
h8 || 19,819 9 /11 /28 16 / 32 12 / 36 4/1/11 5/ 11 27/ 14

TABLE 15. Graduate Continuing Credit Hours: Comparison of the seasonal per-
period SAE stochastic latest-optimized a-power balanced forecasting models to
the seasonal Holt—Winters and ARIMA models
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FiGURE 14. Graduate Continuing Credit Hours: Forecasts, residuals, absolute
residuals and yearly sum of absolute errors

Holt—Winters and ARIMA models. The sum of absolute errors for each model are

54 54
SAEMW =37 7V — 45| = 20,138 and SAEARMA 37 GARMA _ g — 19258 (73)
J=7 J=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to slightly worse trimesterly forecast (smallest absolute residual) 23 times as
opposed to 25 times for the ARIMA model, i.e., HW/AR = 23/25. Moreover, if one compares
the sum of absolute error per year, the Holt—Winters model lead to a better yearly forecast nine
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times as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and b forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 16..

o SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K
AT || 12,829 12 /12 / 24 13/ 35 16 / 32 /2710 i/12 3/13
42 || 12,950 12 /12 / 24 13/ 35 16 / 32 4/1/11 4/12 27/ 14
43 || 12,820 11 /13 / 24 12/36 | 16 /32 4/2/10 4/12 3/13
44 || 12,316 9 /12 /27 9 /39 15 / 33 4/1/11 4/12 27/ 14
5 || 12,606 9/13 /26 10/38 | 15/ 33 4/1/11 4/12 27/ 14
46 || 12,639 12/ 13 / 23 13/35 | 18 /30 4/2/10 4/12 3/13
47 || 12,779 12 /14 / 22 13 /35 | 17 /31 4/2/10 4/12 3 /13
48 || 12,779 10 /14 / 24 11 /37 | 18 /30 4/1/11 4/12 2/ 14
b1 || 12,550 13 /11 / 24 14/34 | 15/ 33 2/1/13 2 /14 2 /14
b2 || 12,605 12 /11 /25 12/36 | 17 /31 3/1/12 3/13 27/ 14
b3 || 12,834 13 /12 / 23 14/34 | 15/ 33 4/1/11 4/12 27/ 14
ba || 12,560 12 /11 /25 12/36 | 15 /33 3/1/12 3/13 2/ 14
b5 || 12,346 11 /12 /25 12 /36 | 17 /31 3/1/12 3 /13 2/ 14
b6 || 12,733 12 /12 /24 12 /36 | 15/ 33 4/1/11 4/12 27/ 14
b7 || 12,883 14 /13 / 21 15 /33 | 18 /30 4/2/10 4/12 3 /13
b8 || 12,607 13 /13 / 22 14 /34 | 17 /31 3/1/12 3 /13 2/ 14
BT || 12,751 12 /12 / 24 13 /35 | 16/ 32 /2 /10 i/12 3 /13
2 || 12,895 11 /12 /25 12/36 | 16 /32 4/1/11 4/12 27/ 14
83 || 12,492 13 /12 / 23 13 /35 | 15/ 33 3/2/11 3/13 3/13
4 || 12,350 10 /13 / 25 10 /38 | 17 /31 4/1/11 4/12 27/ 14
85 || 12,565 11 /13 /24 12 /36 | 17 /31 4/1/11 4/12 27/ 14
e || 12,719 12 /11 /25 12 /36 | 14 /34 4/1/11 4/12 27/ 14
h7 || 12,817 12 /12 /24 13 /35 | 16 /32 4/2/10 4/ 12 3 /13
8 || 12,834 11 /13 /24 12 /36 | 16 /32 3/1/12 3 /13 2 /14

TABLE 16. Graduate New Credit Hours: Comparison of the seasonal per-period
SAE stochastic latest-optimized a-power balanced forecasting models to the
seasonal Holt—Winters and ARIMA models

Ezample 16. Let’s consider student (undergraduate + graduate) total credit hours (fall, spring
and summer) over 18 years (fall 2004 to summer 2022). Thus, f =3 and X = (z1,...,x54). For
s =1,...,3 (trimesters), and 7 = 2,...,17 (years), we compute the sequence of three-step-ahead
forecasts for X using both Holt—Winters and ARIMA models. The sum of absolute errors for
each model are

54 54
SAEMYW =3 |71 — ;| = 105,985 and SAEARMA 37 [FARMA _ g — 199,672 (74)
J=7 §=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—
winters model lead to better trimesterly forecast (smallest absolute residual) 29 times as opposed
to 19 times for the ARIMA model, i.e., HW/AR = 29/19. Moreover, if one compares the sum
of absolute error per year, the Holt—Winters model lead to a better yearly forecast nine times
as opposed to seven times for ARIMA, i.e., HW/AR = 9/7.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and b forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
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FIGURE 15. Graduate New Credit Hours: Forecasts, residuals, absolute
residuals and yearly sum of absolute errors

we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 17..

o SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K
AT |[ 67,807 8/ 8/ 32 10 / 38 11 /37 3/1/12 712 2/ 14
12 || 68,195 9/8/ 31 11 /37 | 11 /37 3/1/12 4/12 2/ 14
3 || 68,629 10/7/31 12 / 36 11 /37 3/1/12 4712 27/ 14
44 || 68,035 8 /6 /34 10 / 38 9 /39 3/1/12 4/12 2/ 14
5 || 68,152 9/7/32 11/37 | 10/ 38 3/1/12 4/12 2/ 14
46 || 69,908 10/7/31 12 / 36 11 /37 3/1/12 4/12 2/ 14
47 || 69,003 10 /6 /32 12 / 36 10 / 38 3/1/12 4/12 2/ 14
8 || 67,842 8/ 7/33 10 / 38 11/ 37 3/0/13 3/13 1/ 15
b1 || 66,854 9 /732 11 /37 | 10/ 38 3/1/12 /12 2 /14
b2 || 67,568 10 /8 /30 12 / 36 11 /37 3/1/12 4712 2/ 14
b3 || 67,605 9/7/32 11 /37 | 11 /37 3/1/12 4/12 2/ 14
b4 || 66,966 9/7/32 11/37 | 10/ 38 3/1/12 4/12 2/ 14
b5 || 67,480 11/8/29 13 /35 11/ 37 3/1/12 4/12 2/ 14
b6 || 68,033 10 /7 /31 12 /36 11/ 37 3/1/12 4/12 2/ 14
b7 || 68,211 9/7/32 11/37 | 11/37 3/1/12 4/12 2/ 14
b8 || 67,202 10 /8 /30 12 / 36 11 /37 3/1/12 4/12 2/ 14
B || 68,272 9 /7 /32 11 /37 | 10/ 38 3/1/12 I/12 2 /14
2 || 67,838 9/8/31 11/37 | 12/ 36 3/1/12 4/12 2/ 14
13 || 69,186 10 /6 /32 12 / 36 11 /37 3/1/12 4/12 2/ 14
ha || 67,559 9/6/33 11/37 | 10/ 38 3/1/12 4712 2/ 14
5 || 67,925 8 /8 /32 10 / 38 11/ 37 3/1/12 4/12 2/ 14
h6 || 68,603 10 /6 /32 12 / 36 10 / 38 3/1/12 4/12 2/ 14
7 || 68,570 10 /7 /31 12 / 36 11/ 37 3/1/12 4/12 2/ 14
n8 || 67,446 9/8/31 11 /37 | 11/37 3/1/12 3 /13 2/ 14

TABLE 17. Undergraduate + Graduate Total Credit Hours: Comparison of
the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models to the seasonal Holt—Winters and ARIMA models

Ezample 17. Let’s consider student (undergraduate 4 graduate) continuing credit hours (fall,
spring and summer) over 18 years (fall 2004 to summer 2022). Thus, f = 3 and X = (x1,...,Z54).
For s = 1,...,3 (trimesters), and 7 = 2,...,17 (years), we compute the sequence of three-step-
ahead forecasts for X using both Holt—Winters and ARIMA models. The sum of absolute errors
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FIGURE 16. Undergraduate + Graduate Total Credit Hours: Forecasts,
residuals, absolute residuals and yearly sum of absolute errors

for each model are

54 54

SAEMY =3 [FHW — ;| — 02,711 and SAEARMA 3 [GARDA _ g5 156,508 (75)
§=7 §=7

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—

winters model lead to better trimesterly forecast (smallest absolute residual) 28 times as opposed

to 20 times for the ARIMA model, i.e., HW/AR = 28/20. Moreover, if one compares the sum

of absolute error per year, the Holt—Winters model lead to a better yearly forecast eleven times
as opposed to five times for ARIMA, i.e., HW/AR = 11/5.

For s = 1,...,3 (trimesters), and ¢ = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and f forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with V = 1000 to find the optimal latest-optimized alpha power). Moreover,
we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The
results are summarized in Table 18..

Ezample 18. Let’s consider student (undergraduate + graduate) new credit hours (fall, spring
and summer) over 18 years (fall 2004 to summer 2022). Thus, f =3 and X = (z1,...,%54). For
s =1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-step-ahead
forecasts for X using both Holt—Winters and ARIMA models. The sum of absolute errors for
each model are

54 54

SAEMY =3 [FHW — ;| = 56,764 and SAEARIMA Z37IGARMA _ g 84,466 (76)
§=7 §=17

Comparing these 16 years times 3 trimesters forecasts, i.e., 48 trimester forecasts, the Holt—

winters model lead to better trimesterly forecast (smallest absolute residual) 29 times as opposed
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ok SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K
A1 | 51,659 9/ 10/ 29 11 /37 | 11 /37 2/1/13 2/ 14 1/15
42 || 51,644 7/10 /31 12 /36 11/ 37 1/1/14 1/15 1/15
3 || 52,501 10/9/29 12 /36 10 / 38 2/1/13 2/ 14 1/15
4 || 51,888 10 / 10 / 28 13 /35 11/ 37 2/1/13 2/ 14 1/15
45 || 50,919 7 /10 /31 11/37 | 11/37 1/1/ 14 1/ 15 1/15
46 || 52,325 10/9/29 12 / 36 11 /37 2/1/13 2/ 14 1/15
47 || 53,028 10 / 10 / 28 12 / 36 12 / 36 2/1/13 2/ 14 1/15
48 || 51,262 9/8 /31 11 /37 0 /39 1/1/14 1/15 1/15
b1 || 52,007 9 /10 / 29 12 / 36 12 / 36 2/0/14 2/ 14 0/16
b2 || 51,214 6 /10 / 32 10 / 38 11/ 37 1/1/14 1/15 1/15
b3 || 52,543 10/9/29 12 / 36 11/ 37 2/1/13 2/ 14 1/15
b4 || 52,097 10 / 10 / 28 13 / 35 12 / 36 2/1/13 2/ 14 1/15
b5 || 50,952 6 /10 / 32 11 /37 | 11/37 1/1/14 1/15 1/15
b6 || 52,142 10 / 10 / 28 12 / 36 12 / 36 2/1/13 2/ 14 1/15
b7 || 52,575 9/9/30 11 /37 | 10/38 2/1/13 2/ 14 1/15
b8 || 50,263 6 /10 / 32 10 / 38 11 /37 1/0/15 1/15 0/ 16
hl || 52,284 11 /10 / 27 13 / 35 12 / 36 2/1/13 2 /14 1/15
h2 || 51,2903 7 /10 /31 11 /37 | 11/37 1/1/14 1/15 1/15
83 || 51,545 8 /10 / 30 9 /39 11 /37 2/0/14 2/ 14 0/ 16
h4 || 52,308 11/9 /28 13/ 35 11 /37 2/1/13 2/ 14 1/15
15 || 51,587 8 /10 / 30 13 / 35 11 /37 1/1/14 1/15 1/15
e || 53,126 11 /10 / 27 14 / 34 12 / 36 2/1/13 2/ 14 1/15
17 || 53,635 10 /8 /30 12 / 36 9 /39 2/1/13 2/ 14 1/15
18 || 50,883 6 /10 / 32 11 /37 | 11 /37 1/1/14 1/15 1/15

TABLE 18. Undergraduate + Graduate Continuing Credit Hours: Comparison
of the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models to the seasonal Holt—Winters and ARIMA models
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FiGURE 17. Undergraduate + Graduate Continuing Credit Hours: Forecasts,
residuals, absolute residuals and yearly sum of absolute errors

to 19 times for the ARIMA model, i.e., HW/AR = 29/19. Moreover, if one compares the sum
of absolute error per year, the Holt—Winters model lead to a better yearly forecast ten times as
opposed to six times for ARIMA, i.e., HW/AR = 10/6.

For s = 1,...,3 (trimesters), and i = 2,...,17 (years), we compute the sequence of three-
step-ahead f,b and f forecasts for X as in (56), (57) and (58) for each optimization criteria
k = 1,...,8 using the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models (with N = 1000 to find the optimal latest-optimized alpha power). Moreover,
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we compute the (global) sum of absolute error, and we compare our forecasts to both Holt—
Winters and ARIMA models by counting the number of best monthly and yearly forecasts. The

results are summarized in Table 19..

e || SAE || HW /AR /K. | HW /K. | AR /K. || HW /AR /K. | HW /K. | AR / K
71 | 24,360 11 /3 / 34 13/ 35 7/ 41 3/0/13 3713 0/16
42 || 23,022 11 /5 /32 14 /34 | 10/ 38 2/1/13 27/ 14 1/15
43 || 24,359 13 /4 /31 16 / 32 9/ 39 2/0/14 27/ 14 0/16
44 || 24,585 14 /4 /30 16 /32 | 11 /37 2/1/13 2714 1/15
45 || 24,777 12 /4 /32 15 /33 | 11 /37 3/0/13 3713 0/16
46 || 24,034 14 /3 /31 17 /31 | 10/ 38 3/0/13 3713 0/16
47 || 24,076 12 /4 /32 14 / 34 9 /39 2/1/13 2/ 14 1/15
48 || 24,289 11 /4 /33 14 /34 | 11 /37 2/1/13 2/ 14 1/ 15
b1 || 24,066 13 /4 /31 16 /32 | 11 /37 2/0/14 2 /14 0/16
b2 || 24,146 12 /4 /32 16 / 32 9/ 39 2/0/14 2714 0/16
b3 || 24,245 14 /4 /30 16 /32 | 11 /37 2/0/14 27/ 14 0/16
ba || 24,198 13 /4 /31 15 /33 | 11 /37 3/0/13 3713 0/16
b5 || 24,423 12 /4 /32 15 / 33 11 /37 3/0/13 3/ 13 0/ 16
b6 || 24,341 15 /3 /30 17731 | 10/ 38 3/07/13 3713 0/ 16
b7 || 24,239 13 /5 /30 15/33 | 12/ 36 3/1/12 3713 1/15
b8 || 24,335 12 /4 /32 15 /33 | 11 /37 2/1/13 2/ 14 1/ 15
B || 24,286 12 /4 /32 14 /34 9/ 39 2/1/13 2 /14 /15
h2 || 24,371 12 /5 /31 16 /32 | 10/ 38 3/0/13 3713 0/16
3 || 24,580 12 /5 /31 16 / 32 10 / 38 2/0/14 2/ 14 0/ 16
ha || 24,938 14 /4 /30 16 /32 | 11 /37 3/1/12 3/13 1/15
5 || 24,882 12 /4/ 32 15 / 33 11 / 37 2/0/14 2/ 14 0/ 16
e || 24,472 b13 /4 /31 16 / 32 11 / 37 3/0/13 3/ 13 0/ 16
7 || 23,965 12 /5 /31 15 /33 | 11 /37 2/1/13 27/ 14 1/ 15
h8 || 24,651 12 /3 /33 15 / 33 10 / 38 2/0/14 2/ 14 0/ 16
TABLE 19. Undergraduate + Graduate New Credit Hours: Comparison of

the seasonal per-period SAE stochastic latest-optimized a-power balanced
forecasting models to the seasonal Holt—Winters and ARIMA models
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absolute residuals and yearly sum of absolute errors

In light of Examples 219, several conclusions can be formed. First, for all eighteen times series,
each of our twenty four seasonal per-period SAE stochastic latest-optimized a-power balanced

5. DISCUSSION

2020

Undergraduate + Graduate New Credit Hours: Forecasts, residuals,
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forecasting models outperformed both Holt—Winters and ARIMA models with respect to the sum
of absolute error, the number of closest trimesterly forecasts, and the number of closest yearly
forecasts. Second, Holt-Winters model performed better than the ARIMA model for sixteen out
of the eighteen time series. Indeed, for the new graduate enrollment time series, ARIMA had
two more closest trimesterly forecast, i.e., HW /AR = 23/25, but had the same number of closest
yearly forecasts, i.e., HW/AR = 8/8. For the new graduate credit hours, ARIMA also had two
more closest trimesterly forecast, i.e., HW/AR = 23/25, but the Holt-Winters model had two
more closest yearly forecasts, i.e., HW/AR = 9/7. Third, for almost all considered seasonal time
series in [6] and in Example 2-19, ARIMA models leads to horrible first year forecast, that is,
given the first two periods, (z1,...,2¢,Zf+1,...,22y), the forecasted values Zof11,..., T35 using
the ARIMA models lead to a substantially larger absolute residual than Holt—Winters and our
models. Thus, using ARIMA to predict the third sound of period using the the first two periods
is not reliable.
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