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Abstract
There is growing concern about the dire socio-ecological consequences of abrupt
transitions between alternative ecosystem states in response to environmental
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changes. At the same time environmental change can trigger evolutionary
responses that could stabilize or destabilize ecosystem dynamics. However, we
know little about how coupled ecological and evolutionary processes a�ect the
risk of transition between alternative ecosystem states. Using shallow lakes as
a model ecosystem, we investigate how trait evolution of a key species a�ects
ecosystem resilience under environmental stress. We find that adaptive evolution
of macrophytes can increase ecosystem resilience by shifting the critical threshold,
which marks the transition from a clear-water to a turbid-water state, to a higher
level of environmental stress. However, following the transition, adaptation to the
turbid-water state can delay the ecosystem recovery back to the clear-water state.
This implies that restoration could be more e�ective when implemented early
enough after a transition occurs and before organisms adapt to the alternative
state. Our findings provide new insights into how to prevent and mitigate the
occurrence of regime shifts in ecosystems and highlight the need to understand
ecosystem responses to environmental change in the context of coupled ecological
and evolutionary processes.

Introduction
Ecosystem resilience is the ability of an ecosystem to absorb disturbances without
shifting to an alternative, and often undesirable, state (Folke et al. 2004;
May 1976; Sche�er et al. 2001). Ecological theory predicts that ecosystems
can respond abruptly to gradual environmental change if they cross a critical
threshold (i.e. tipping point) and shift to an alternative stable state (ASS)(Folke
et al. 2004; Sche�er and Carpenter 2003; Schroder, Persson, and De Roos
2005). The presence of ASSs causes hysteresis, which is the lack of reversibility
of an ecosystem, hindering the recovery of the ecosystem once it shifts to an
alternative state. Such abrupt transitions, also known as regime shifts, can
have large impacts on society by a�ecting the functioning of ecosystems and
the services they provide (Carpenter et al. 2009; Levin and Lubchenco 2008).
Existing theory has investigated the ecological processes involved in ecosystem
tipping points and developed methods to predict regime shifts in response to
environmental change (Sche�er et al. 2009; Guttal and Jayaprakash 2008;
Carpenter et al. 2014). However, this theoretical framework still neglects
evolutionary processes (Dakos et al. 2019).

Environmental change can trigger both ecological and evolutionary responses
(Singer, Thomas, and Parmesan 1993; Allendorf and Hard 2009; Olsen et al.
2004; Palumbi and Mu 2001; Parmesan 2006; Walther 2010). Evolutionary
responses can rescue populations from extinction in degrading environmental
conditions (Bell and Gonzalez 2009) and mediate both community and ecosystem
responses to environmental change (Fussmann, Loreau, and Abrams 2007). Some
progress has been made in integrating ecological and evolutionary processes into
predictive models of ecosystems (Palkovacs et al. 2012; Norberg et al. 2012;
Bolchoun, Drossel, and Allho� 2017; Urban et al. 2012). However, we know little
about how coupled ecological and evolutionary processes can a�ect tipping point
responses in natural ecosystems (Dakos et al. 2019), particularly those associated
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with population adaptation to gradual environmental change (Singer, Thomas,
and Parmesan 1993; Allendorf and Hard 2009; Olsen et al. 2004; Palumbi and
Mu 2001; Parmesan 2006; Walther 2010).

Of the many examples of regime shifts in natural ecosystems (Rocha et al. 2018;
Biggs, Peterson, and Rocha 2018), the regime shift in shallow lakes, between
clear-water and turbid states, is the most studied (Sche�er et al. 1993; Sche�er
2009). The clear-water state dominated by macrophytes is typically preferred by
society (Thomaz and Cunha 2010; Carpenter et al. 2009; Levin and Lubchenco
2008), but can shift to a turbid-state dominated by algae when there is excessive
nutrient loading (Sche�er 2009). In shallow lake ecosystems, the competitive
interaction between macrophytes and algae - mediated through strong positive
feedbacks – sets up the potential for ASSs (Sche�er 2009). Therefore, changes
in traits underlying competition and a�ecting the positive feedbacks between
macrophytes and algae have the potential to influence the occurrence of tipping
points, and the dynamics of shallow lake ecosystems under environmental stress.

Here, we extend an ecological model of the shallow lake system (Sche�er 2009;
Dakos et al. 2019) to include evolutionary dynamics of macrophytes under
environmental stress using quantitative genetics. Building on the framework
proposed by Dakos et al. (2019), our eco-evolutionary model incorporates gradual
evolution of a macrophyte trait, notably shading tolerance, which is a key trait
a�ecting macrophyte competitive ability. This trait can therefore evolve in
response to increased turbidity produced by the algae population. In short, we
model how changes in turbidity can change the fitness landscape of macrophytes,
and thereby drive evolution in traits governing the competitive interactions
between macrophytes and algae. As such, macrophyte evolution in this model
ecosystem has the potential to alter the population dynamics of algae, which
feeds back to a�ect selection pressures on macrophytes. Our modelling approach
therefore enables exploring the feedback loops between ecological and evolutionary
processes in the shallow lake ecosystem. We investigate the transient dynamics of
the system besides its asymptotic behavior to understand the system responses
to temporal changes in environmental stress. Since mechanisms analogous to
those causing regime shifts in shallow lakes operate in other ecosystems (Sche�er
2009), our modelling approach is general enough for investigating the interaction
between ecological and evolutionary processes in a wide range of ecosystems
with tipping points under environmental stress.

Model description and analysis
Ecological model - The basis of our eco-evolutionary model is a shallow lake
ecological model that has been used to describe the ecological dynamics that
cause transitions between the clear-water (macrophyte-dominated) and the
turbid-water (algae-dominated) alternative states (Sche�er et al. 1993; Sche�er
2009). The main mechanism underlying the existence of ASSs in shallow lakes is
that macrophytes reduce turbidity by limiting algae (i.e., phytoplankton) growth,
whereas turbidity (mostly driven by algae density) decreases macrophyte growth
due to shading. The densities of the algae A and the macrophyte M are given
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as follows (Sche�er 2004):

dM
dt = rM M

A
1 ≠ M

KM

hA
P + AP

hA
P

B

(eq. 1)

dA
dt = rAA
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1 ≠ A

T0

hM + M

hM

4
.

(eq. 2)

In this model, rA and rM are the maximum growth rates of the algae and
macrophytes, respectively. T0 is the nutrient loading and defines the carrying
capacity of algae. KM is the carrying capacity of the macrophyte population.
Algae limit macrophyte growth due to shading according to a Hill function
whose steepness is defined by P and with half saturation hA. hA is the level
of algae density where shading has half of its maximum e�ect on macrophyte
growth. In turn, macrophytes negatively a�ect the growth of algae by limiting
nutrient availability that defines algae carrying capacity following an inverse
Monod function with half saturation hM .

The half-saturation parameters, hA and hM determine the e�ect of algae on
macrophytes and vice versa, therefore they can be influenced by traits a�ecting
the interspecific competitive ability of algae and macrophytes. Here, we extend
previous ecological models, which treat these parameters as fixed, to explore
how the evolution of macrophytes a�ects the system dynamics.

Eco-evolutionary model - To model evolution in the macrophyte population, we
assume a quantitative trait x that a�ects the response of macrophytes to algae
hA. The quantitative trait might correspond to, for example, photopigment
synthesis that enhances shading tolerance (Henley and Ramus 1989). Following
Dakos et al. (2019), we assume that

hA(x) = hA0ex,

where hA0 is the background half saturation and ⁄ (> 0) is an exponential factor
that determines how hA increases as function of the trait x.

We define x as a quantitative macrophyte trait that is normally distributed
with mean x and phenotypic variance ‡2; therefore, its density function is
p(x, x) = 1/

!
‡

Ô
2fi

"
exp

Ë
≠ (x ≠ x)2 /

!
2‡2"È

. Following quantitative genetics,
the phenotypic variance ‡2 has genetic ‡G and environmental ‡E components,
‡2 = ‡G

2 + ‡E
2. Trait heritability is determined by the ratio of genetic variance

to total trait variance (‡G
2/ ‡2).
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Due to resource allocation tradeo�s, any trait change that increases competitive
ability will be associated with a metabolic cost that a�ects macrophyte perfor-
mance (Rien 1999). In our case, a resource tradeo� between light harvesting
(enhancing shade-tolerance) and carboxylation capacities causes a reduction in
growth (i.e. biomass yield per unit absorbed light) with increasing photopigment
synthesis (Henley and Ramus 1989). To include this tradeo� in the model, we
consider an optimal trait value ◊ when turbidity is low, and thus the trait value
(e.g. photopigment synthesis) is low. However, when the trait value increases
the increased cost of macrophyte competitive ability translates into a reduction
in macrophyte carrying capacity KM . Hence, KM is maximal when x = ◊
and decreases in a Gaussian manner as x moves away from ◊ (similar to the
trait-based approach of (Lande 2009)).

KM (x) = Ke
≠(x≠◊)2

2·2

In this expression, K is the macrophytes carrying capacity under low turbidity
conditions and · determines the width of the Gaussian function. Notice that no
evolution is possible when the trait value x is fixed at the optimum (x = ◊ = 0)
and has no variance, such that hA = hA0 and KM = K. Thus, this trait-based
framework collapses into the classic shallow lake ecological model (equations 1,
2).

The fitness W (i.e. per capita growth rate) of a macrophyte with trait x is given
by

W (x, A, M) = rM

A
1 ≠ M

KM (x)
hA(x)P + AP

hA(x)P

B

and the average fitness W of the macrophyte population is

W (x, A, M) =
⁄ Œ

≠Œ
W (x, A, M) p (x, x)dx.

The ecological dynamics of the eco-evolutionary model are thus given by

dM
dt = M W (x, A, M) ,

(eq. 3)

and eq. (2).

Following standard quantitative genetics techniques (Lande 1976) the phenotypic
trait change depends on the fitness gradient and genetic variance such that
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dx

dt = ‡G
2 ˆW (x, A, M)

ˆx
.

(eq. 4)

Asymptotic stability - We use as a reference the asymptotic behavior of the
ecological model (equations 1, 2 where hA = hA0, KM = K) and compare this
to the asymptotic behavior of the eco-evolutionary model (equations 2, 3 and 4).
Specifically, we evaluate the equilibrium (steady state) and its stability using
the MATLAB package MATCONT to numerically compute the continuation of
equilibrium points as a function of the nutrient loading T0 and their associated
eigenvalues for the ecological and the eco-evolutionary model. This analysis
enables us to determine how the eco-evolutionary feedback alters the stability of
the ecological system. To do so, we evaluate the di�erence between the level of
nutrient loading at which tipping points occur in the presence of eco-evolutionary
feedback compared to the level of nutrient loading at which tipping points occur
predicted by the ecological model alone (figure 1). We test the robustness of
our results by extending this analysis for the three parameters that a�ect the
ecological equilibrium, namely K, hA0 and hM (supporting information, figure
S1). Note that rM and rA do not a�ect the ecological equilibrium (see section 1
in supporting information).

Transient dynamics - To investigate the eco-evolutionary responses of the shallow
lake ecosystem to environmental change, we simulate the system when ecological
and evolutionary processes occur at comparable time scales. For this analysis,
we assume phenotypic variance ‡2 to be equal to genetic variance ‡G

2 (i.e.
high heritability) and use equations 2, 3 and 4 when nutrient loading changes
over time, i.e. dT0/dt = Ï. We examine the eco-evolutionary trajectories of
the macrophyte density as lake conditions deteriorate due to nutrient loading
increases (Ï > 0), and as macrophytes recover when nutrient loading decreases
(Ï < 0). We compare the eco-evolutionary trajectories generated under various
levels of genetic variance ‡G

2, and thus evolutionary rate. Specifically, we study
eco-evolutionary trajectories under 2 main scenarios. 1) A scenario of increasing
nutrient loading (T0 increases from 0.01 to 7.5) at a slow rate (Ï = 0.001, figure
2A, B) and fast rate (Ï = 0.01 in figure 3A, B) in the absence and presence of
genetic trait variance. In this scenario, we also test for the e�ects of the rate of
environmental change and of the level of genetic variance on eco-evolutionary
dynamics. Specifically, we simulate trajectories for increasing nutrient loading
under a range of environmental rate change (Ï = 0.0001 to 0.1 in logarithmic
steps of 1000.05), and a range of genetic trait variance (‡G

2 = 0.01 to 0.15
in steps of 0.005) (figure 4). 2) A scenario of decreasing nutrient loading (T0
decreases from 9 to 5 at a rate Ï = ≠0.001) in the absence and presence of
genetic trait variance (figure 5A, B). Lastly, we simulate di�erent management
intervention scenarios following a regime shift to the turbid state. Specifically,
we simulate an early (10000 timesteps after the shift) and a late (50000 timesteps
after the shift) intervention to reduce nutrient loading from 9 to 5 (Ï = ≠0.001)
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and we calculate numerically the recovery time of macrophytes from the turbid
to the clear-water state (figure 6). We use standard MATLAB functions to
numerically solve the di�erential equations of the system (the code is available
in the supporting information).

Singular-perturbation analysis – To investigate how feedbacks between ecology
and evolution determine the eco-evolutionary dynamics observed in the numerical
experiments, we use singular perturbation theory (figures 2C, 3C, 3D and 5C).
This theory enables studying dynamical systems with processes occurring in
di�erent timescales, such as ecological (fast) and evolutionary (slow) processes.
The separation of timescales is the focus of this theory that has been used
previously to investigate eco-evolutionary dynamics (Cortez and Ellner 2010;
Vasseur et al. 2011; Patel and Schreiber 2015). Using this theory, we approximate
the ecological dynamics by assuming that they are always in a quasi-steady state
determined by the mean trait value xú of the macrophyte population. We can thus
derive analytical expressions for macrophyte M(xú) and algae A(xú) density,
and calculate the fitness gradient ˆW (xú, A, M)/ˆxú using these quantities.
Subsequently, we can investigate the transitions between these ecological states
as evolution slowly drives phenotypic change. We use the MATLAB package
MATCONT (Dhooge et al. 2008) to numerically compute the continuation of
ecological equilibrium for di�erent values of the mean trait.

All analysis are performed using parameter values following Dakos et al. (2019)
for the ecological model and the macrophyte evolving trait (Table 1).

Table 1. State variables and model parameters, their units and values.

Symbol Unit Value
State variables
Macrophyte density M gr/m3 -
Algae density A gr/m3 -
Trait a�ecting competitive ability of
macrophytes (e.g. photopigments
synthesis)

x - evolving
trait
(non-
negative)

Parameters
Nutrient loading (measured as carrying
capacity of algae)

T0 gr/m3 varied*

Growth rate of algae rA day-1 0.1
E�ect of macrophytes on algae hM gr/m3 0.2
Growth rate of macrophytes rM day-1 0.05
Carrying capacity of macrophytes K gr/m3 1
Exponent in the Hill function P - 4
Genetic variance in the macrophyte
population

‡2 =
‡G

2
- varied*

Optimal trait value under low turbidity ◊ - 0
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Symbol Unit Value
Width of Gaussian distribution for
decreasing performance with x

· - 5

Background e�ect of algae on
macrophytes

hA0 gr/m3 2

Scaling exponent of the half-saturation
parameter

⁄ - 0.1

Rate of environmental stress Ï day-1 varied*

* Values of the varied parameters are specified in each figure legend.

Results
Can evolution a�ect the resilience of the shallow lake ecosystem? (Asymptotic
stability)

The asymptotic behavior of the system (figure 1) shows that macrophytes trait
evolution can increase the resilience of shallow lake ecosystems in two ways.
First, trait evolution shifted the tipping point at which the lake shifts to the
turbid-water state at a higher level of nutrient loading compared to the level
predicted by the ecological model (e.g. tipping in the ecological model occurs
at T0 = 7.3, tipping in the eco-evolutionary model occurs at T0 = 8.5; figure
1). Second, trait evolution shifted the tipping point that marks the transition
from the turbid-water back to the clear-water state at a higher level of nutrient
loading compared to the level predicted by the ecological model (e.g. tipping
in the ecological model occurs at T0 = 5.2, tipping in the eco-evolutionary
model occurs at T0 = 7.6; figure 1). Thus, the range of nutrient loading where
bistability occurs was lower with evolution (blue vs. red shaded region in Figure
1). In other words, evolution decreased the range of hysteresis over the nutrient
loading gradient. These e�ects were robust to changes in parameters that a�ect
ecological equilibria (figure S1 in supporting information).

Can evolution prevent the collapse of the shallow lake ecosystem as the environ-
ment deteriorates over time? (Transient dynamics)

The increase in resilience predicted by the asymptotic behavior of the system
(presented in the previous section) can prevent the collapse of the ecosystem
when it is subjected to slow temporal increases in nutrient loading (Ï > 0).
In the absence of evolution, increasing nutrient loading from T0 = 0.01 to
T0 = 7.5 beyond the tipping point (figure 2A) caused the macrophyte population
to collapse (green dashed line in figure 2B). In contrast, when evolutionary
trait change occurred, natural selection increased the mean trait of macrophytes
(black solid line in figure 2B), and macrophytes did not collapse (green solid line
in figure 2B) despite the fact that nutrient loading exceeded the value where the
tipping point occurs in the ecological model (ecological tipping point T0 = 7.3
figure 2A). This is because as the trait value gradually evolved, the tipping
point at which the macrophyte population collapses gradually shifted to a higher
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nutrient loading (figure 2C). In this simulation scenario, evolution enabled the
maintenance of the ecosystem in the clear-water state at nutrient loading levels
that would otherwise cause the transition to the turbid-water state. However,
this is not always the case. As we describe in the next section, if the increase in
nutrient loading is too fast, evolution might not be fast enough to "push" the
tipping point to higher, safer nutrient loading levels that can prevent the regime
shift to the turbid-water state.

Can evolution influence the recovery of the macrophyte-dominated state after
ecosystem collapse?

When rates of environmental deterioration are fast, namely when Ï is high,
the collapse of the macrophyte population cannot be prevented by phenotypic
evolution (figure 3B). In this simulation scenario, nutrient loading increases to
T0 = 7.5 ten times faster compared to figure 2B. Interestingly, the collapse to
the turbid state still occurs even though at T0 = 7.5 the only eco-evolutionary
stable state possible is the clear-water state (figure 1). However, the collapse is
temporary: macrophytes eventually recover (figure 3B). When the macrophytes
shift to low densities, the gradual increase in the trait value allows the macro-
phytes to slowly recover until their population abruptly shifts back to a high
density (around timestep 10000 in figure 3B). Gradual trait evolution therefore
shifts the ecosystem back to the clear-water state, in which algae density and
turbidity are low.

Such “evolutionary recovery” of the macrophyte population returns the ecosystem
to a clear-water state without requiring reductions in nutrient loading. Before
the increase in nutrient loading, the macrophyte population is well adapted to
low nutrient loading conditions, and therefore its mean trait value is nearly zero.
However, when nutrient loading quickly reaches 7.5, the fitness gradient becomes
positive for trait values near zero (point i in figure 3D). As a consequence, the
mean trait gradually increases until a tipping point occurs (x = 5.35, point
ii in figure 3C and D) where the macrophytes shift from low to high density.
Gradual evolutionary trait change thus induces a transition from the turbid
to the clear-water state, resulting in ecosystem recovery. Once the lake has
recovered, the fitness gradient turns negative and therefore, a smaller mean trait
is selected for until the fitness gradient vanishes at the only (asymptotically)
stable eco-evolutionary equilibrium when nutrient loading is 7.5 (x = 1.4 point
iii in figure 3C and D). However, the transient ecosystem dynamics can include
a "temporary" transition in the turbid state (figure 3B) because the evolutionary
dynamics occur more slowly than the ecological dynamics.

When can evolution prevent ecosystem collapse?

From the two previous sections, it becomes obvious that whether evolution can
prevent ecosystem collapse or drive its recovery after a transient collapse depends
on the relative rates of environmental and heritable trait change (figure 4). High
genetic trait variance enabling fast evolutionary dynamics with respect to the
ecological dynamics in combination with low rates of environmental change can
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prevent a regime shift from the clear-water to the turbid ecosystem state (top
left corner in figure 4). By comparison, low genetic trait variance and high rates
of environmental change leads to ecosystem collapse (bottom right corner in
figure 4). Additionally, the lower the genetic trait variance, the longer the period
of the transient collapse is (e.g. the period between ecosystem collapse and
“recovery” is four times longer when ‡2 = ‡G

2 = 0.01 than when ‡2 = ‡G
2 = 0.1).

Increasing genetic trait variance thus reduces both the range of environmental
rates of change that causes ecosystem collapse and the duration of the transient
collapse caused by fast environmental change.

Can evolution facilitate the recovery of a degraded lake ecosystem after manage-
ment intervention?

When nutrient loading levels surpassed the tipping point predicted by the eco-
evolutionary model (T0 = 8.5), the only possible stable state for the shallow lake
is the turbid state. In such situations, recovery of the ecosystem would require
management interventions that substantially reduce nutrient loading levels due
to hysteresis. However, the timing and the extent of interventions needed to
achieve ecosystem recovery will depend on the trait evolution of macrophytes.

Figure 5 illustrates this by simulating an engineered reduction in nutrient loading
after the lake has shifted to the turbid water state (from T0 = 9 to T0 = 5). The
reduction in nutrient loading causes an immediate recovery in a lake with no
evolving macrophytes when the nutrient loading crosses the tipping point that
marks the transition from the turbid to the clear-water state (T0 = 5.2) (green line
Figure 5). However, in a lake with evolving macrophytes this intervention results
in an almost one order of magnitude slower recovery (30000 days (~83 years) with
evolution- instead of 4300 days (~12 year) without evolution figure 5B). This is
because macrophytes that are well-adapted to high nutrient loading conditions
(T0 = 9) have low carrying capacity due to resource allocation tradeo�s, and high
carrying capacities are only possible when the trait value is small. Following
the decrease in nutrient loading, natural selection selects for smaller trait values,
but this response is slow. As a result, by the time the nutrient loading has
reached the minimum (i.e. T0 = 5, point i in figure 5B), the mean trait is just
x = 7.2 and the macrophyte density in the stable equilibrium is limited to 0.34
(figure 5C). The rise in macrophyte density occurs much later, only after the
evolutionary process has driven the mean trait to low values (point ii in figure
5B), and so evolution delays the recovery of the degraded lake ecosystem.

The delay caused by evolution to ecosystem recovery raises the question of
how and when to perform an intervention. The time required to recover the
ecosystem following an intervention depends on the mean trait of the macrophyte
population at the time of intervention. Because phenotypic trait change through
evolution takes time, an intervention quickly after a transition to the turbid
state may be more e�cient because evolution otherwise would lead to adaptation
to the turbid state, i.e. stabilizing the turbid state (figure 6B). Indeed, as the
time between the collapse and the intervention increases, the mean trait at the
onset of the intervention increases and therefore the time required for recovery
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following the intervention also increases (figure 6A and B).

This delay in recovery depends on the rate of evolution, and thus, in our model,
on the amount of genetic variation (figure 6C and D). As the amount of time
before the intervention increases, the macrophytes adapt to the turbid state, but
the degree to which they do so depends on genetic variation (figure 6C). After
the intervention, the delay in recovery then depends both on trait value at the
moment of the intervention and the evolutionary rate determined by the amount
of genetic variation. Overall, our simulations show that with increasing genetic
variation the delay in recovery is reduced (figure 6D), with one exception: if the
intervention delay is short, then the setting with low genetic variation can show
the fastest recovery time, because trait change during the intervention delay
remained small.

Discussion
Evolutionary e�ects on tipping points

We show that trait evolution can impact ecosystems with alternative stable states
by changing the threshold of environmental stress at which tipping points occur
(figure 1). The possibility that evolution could shift ecosystem tipping points was
proposed by Dakos et al. (2019). Here, we present theoretical support for this
hypothesis using shallow lakes as a model system, demonstrating that macrophyte
evolution can shift the tipping points to higher levels of environmental stress,
increasing resilience of the shallow lake ecosystem. Our results, however, also
point to a delay in ecosystem recovery if evolutionary trait change occurs before
management interventions take place.

The ecosystem response to a deteriorating environment depends not only on the
tipping points, but also on the interaction between the rates of environmental
change and evolution. Specifically, when environmental stress increases slowly
and the evolutionary process is fast, adaptive evolution of macrophytes prevents
ecosystem collapse (figure 2). Conversely, a collapse to the turbid state occurs
when there is a fast increase in environmental stress and the evolutionary process
is comparatively slow (figure 4). Genetic variance of fitness-related traits defines
the "speed" of adaptive evolution; in wild populations, most estimates of genetic
variance of fitness-related traits are typically below 0.1 (Hendry et al. 2018;
Bonnet, Morrissey, and Kruuk 2019). In our simulations, both the transient
collapse and the no-collapse scenarios occur for values of genetic variance below
0.1, suggesting that, for the rates of evolution enabled by these values of genetic
variance, ecosystem collapse may be avoided only if environmental stress increases
slowly.

The introduction of evolutionary dynamics in the shallow lake ecological model
makes the system sensitive to the rate of environmental change. While in the
ecological model alone, the ecosystem collapse only occurs when nutrient loading
exceeds a certain magnitude, in the eco-evolutionary model such collapse can also
be caused by the rate at which nutrient loading increases. This is the consequence
of the di�erent timescales at which ecological (fast) and evolutionary (slow)
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dynamics occur. In general, dynamical systems that have processes operating on
di�erent timescales are sensitive to both the magnitude and the rate of change
of parameters (Ashwin et al. 2012). Similar dynamics have been described in
other systems that have ecological processes occurring at di�erent timescales
(Vanselow, Wieczorek, and Feudel 2019; Gil et al. 2020).

Our results show that even when the collapse occurs, gradual evolutionary trait
change can return the ecosystem to its pre-collapse state (figure 3). Selection can
drive the trait value beyond the tipping point that marks the transition to the
clear-water state, resulting in “evolutionary recovery” of the ecosystem. Similar
evolutionarily driven regime shifts, such as the one causing the “evolutionary
recovery” in the shallow lake, have been previously documented in communi-
ties with intraguild predation (Patel and Schreiber 2015) and in communities
connected through species with complex life cycles (Chaparro-Pedraza and de
Roos 2020). However, if there are barriers to evolution, such as the absence of
genetic variation or interference from trade-o�s with responses to other selection
pressures, the ecosystem can stay "trapped" in the turbid state. Although,
theoretically, this evolutionarily driven regime shift enables the recovery of
macrophytes from a state of very low density, demographic stochasticity could
lead the population to extinction before the evolutionary process can drive the
trait value beyond the tipping point that marks the transition to the clear-water
state. Therefore, management measures should focus on maintaining large popu-
lation sizes and genetic variability to prevent both demographic stochastic e�ects
and genetic erosion. Such measures may include, for instance, introduction of
genetic variants from diverse, regional sites to increase genetic diversity of the
macrophyte population at the time of the intervention.

Evolution can also have undesired e�ects in ecosystems with alternative stable
states. We find that evolution can actually delay ecosystem recovery following
a management intervention. Because alternative stable states correspond to
qualitatively di�erent ecological conditions (Sche�er 2009), selective pressures
in the alternative states may greatly di�er. We find that adaptation to the
degraded state (i.e. turbid state), although enabling the persistence of the
macrophyte population in this state, delays the recovery of the ecosystem when
conditions ameliorate (figure 5). This is because of a trade-o� between shading
tolerance and performance. Similar negative e�ects caused by adaptation to
degraded conditions have been also reported in response to pulse perturbations
(Lyberger, Osmond, and Schreiber 2020). Following an intervention to ameliorate
environmental conditions, gradual evolutionary change drives the adaptation
of the organisms present in the degraded ecosystem to the novel and improved
conditions. Such evolutionary process occurs slowly compared to the ecological
dynamics, and, as a consequence, ecosystem recovery may be slower than in
systems without evolution. Tipping point theory predicts a regime shift back
to the clear-water state to occur "fast" once the environmental conditions are
restored to a level beyond the tipping point that marks the transition from the
turbid to the clear-water state (Sche�er et al. 2001; Sche�er and Carpenter 2003;
Folke et al. 2004). In contrast, our results indicate that evolutionary change
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can transform such a regime shift in a more gradual response because the traits
underlying ecosystem responses change slowly. Various mechanisms have been
identified to underlie the slow unfolding of regime shifts after a tipping point has
been exceeded (Hughes et al. 2013), including ecological processes that occur
at di�erent timescales. We here find that this transient behavior can also be
caused by the interaction of ecological and evolutionary processes.

The delay in the recovery of a degraded ecosystem after an intervention has
important implications for ecosystem management and policy. Our results show
that once a bistable ecosystem shifts, recovery back to the desired state may
be orders of magnitude slower if important organisms, such as macrophytes,
have adapted to the undesired state prior to the management (figure 6). Thus,
rapid restoration after a regime shift might be crucial to increase the chances
of a fast recovery. Alternatively, loss of trait variation during the collapse may
delay adaptation to the undesired state, which would then prevent the delay in
recovery after an intervention. In general, our results indicate that a long delay
in the intervention after a regime shift may often be detrimental for the recovery
time, and even more detrimental when trait variation is low. Measures aiming
at restoring degraded ecosystems should therefore focus on a fast intervention
to ameliorate conditions, in combination with conservation or introduction (e.g.
through transplantations) of genetic variants that are well-adapted to the desired
state.

Limitations and future directions

The shallow lake model we use serves as a first step to understand how ecological,
evolutionary and stress dynamics interact in ecosystems with ASSs. Although
macrophytes have a key role in the maintenance of the clear-water state, it is
reasonable to speculate that evolution of competitive traits in algae may also
shift ecosystem tipping points, probably reducing the increased resilience that
only macrophyte evolution confers. Perhaps, transient dynamics will not only be
a�ected by such shifts in tipping points, but also by the very distinct generation
times that algae and macrophytes have, and how these di�erentially influence
evolutionary rates. The e�ects of evolutionary processes of multiple interacting
species on ecosystem tipping points and their associated dynamics need further
investigation.

We adopt an ecological model that has been broadly used to describe the
shallow lake ecosystem dynamics as the basis of our eco-evolutionary model.
This model belongs to a group of models that assumes population size to be
infinite, precluding the possibility of demographic stochasticity. On the one
hand, this simplifying assumption facilitates an extensive mapping of qualitative
system dynamics. On the other hand, e�ects of demographic stochasticity are
neglected even though they may be consequential for populations at the brink
of extinction (Lande 1993), e.g. following a catastrophic collapse due to a
regime shift. In addition, following standard modelling methods of quantitative
genetics, we assume heritable trait variation to remain constant. Population
size, however, may influence standing genetic variation. Heritable trait variation
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might therefore change with changes in population size, such as those caused by
a collapse following a regime shift. Heritable trait variation mainly influences
the evolutionary rate (Lande 1976), and has a small e�ect on the evolutionary
endpoint that corresponds to the trait value where the fitness gradient vanishes
(see eq. 4). We therefore expect that variability in trait variance does not have
a significant e�ect on the asymptotic behavior of the system and thus on the
location of the tipping points. However, it likely alters the transient behavior of
the system.

Our study focuses on the e�ects of evolutionary trait change in ecosystems with
ASSs. However, adaptive trait changes that enable species to persist locally
despite environmental change can also be mediated by phenotypic plasticity
(Gienapp et al. 2008; Turcotte and Levine 2016). Evolutionary trait change is
characterized by selection of existing heritable variants that are capable of coping
with the novel conditions, whereas trait change due to phenotypic plasticity is
mediated by the expression of di�erent phenotypes in di�erent environmental
conditions by a single genotype. Evolutionary change can take generations
whereas trait changes mediated by phenotypic plasticity can occur within the
lifespan of an organism. Hence, trait changes mediated by phenotypic plasticity
occur on a timescale more similar to that of ecological processes than trait
change mediated by evolutionary processes. However, even when phenotypic
plasticity is the only mechanism underlying trait changes, adaptive changes
might not be instantaneous and thus tracking the environment is not possible
when it changes quickly (Stomp et al. 2008). How fast trait changes mediated
by phenotypic plasticity alter the short- and long-term dynamics of the system
and the likelihood of regime shifts, and how this interacts with trait changes
mediated by evolution, including evolution of phenotypic plasticity, needs further
investigation. We expect a reduced legacy e�ect of trait changes, likely resulting
in a reduced delay in recovery compared to the dynamics we modelled here.

Environmental change is occurring at an unprecedented rate (Ste�en, Eliott,
and Bellamy 2004) and is likely to increase the frequency and severity of regime
shifts in ecosystems (Ste�en et al. 2018; Drijfhout et al. 2015). It is therefore of
utmost importance to gain insight into the processes governing this phenomenon
under environmental stress. By considering trait evolution of a key species
in a shallow lake ecosystem, we demonstrate how evolutionary processes can
be integrated in the study of regime shifts and resilience not only for shallow
lakes but for ecosystems in general. We have identified the balance between
the rates of environmental change and evolution to be crucial factors triggering
catastrophic regime shifts when environmental stress approaches a tipping point.
Our findings suggest that ecosystem restoration measures may be more e�ective
when implemented quickly after a regime shift and that high diversity of genetic
variants can increase the chances of a fast recovery. This highlights the urgency
to mitigate the e�ects of global change and loss of phenotypic diversity in
ecosystems.
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Figure legends
Figure 1: Asymptotic behavior of the shallow lake ecosystem

Macrophyte density (top panel) and mean trait value (bottom panel) in the
ecological (eq. 1, 2; blue lines) and eco-evolutionary (eq. 2, 3, 4; red lines) equi-
librium as function of nutrient loading. The ecological equilibrium is computed
for a macrophyte population with mean trait value equal to zero (see Methods
section for further explanation) and no genetic trait variance (‡G

2= 0), therefore
natural selection cannot induce phenotypic changes. Solid lines represent stable
equilibriums (states) and dotted lines represent unstable equilibriums (states).
Bistability occurs in the shaded regions (blue in the ecological model, and red in
the eco-evolutionary model) delimited by tipping points that mark the transition
between alternative stable states (open circles when the trasition corresponds to
the collapse of the macrophyte population, and filled circles when it corresponds
to recovery). The vertical dashed line indicates the nutrient loading equal to 7.5.
‡G

2 = 0.05 in the eco-evolutionary model, other parameter values as in table 1.

Figure 2. Eco-evolutionary dynamics when A) nutrient loading increases with a
rate 0.001 per day from 0.01 until 7.5. B) Dynamics of the macrophyte density
(green lines) and trait (black lines) when evolution does not take place (due to
absence of genetic trait variance, ‡G

2 = 0) and when it does occur (‡G
2 = 0.05).

When evolution occurs the macrophyte population has initially a trait value of 0
(it is well adapted to the low nutrient loading) and as nutrient loading increases
the trait value increases; when nutrient loading reaches its maximum (7.5) the
trait value equals 0.3, after nutrient load stabilizes the trait approaches a value
of 1.4. We evaluate the equilibrium at these trait values (i. x = 0, ii. x = 0.3,
iii. x = 1.4) in panel C. C) Macrophyte density in the equilibrium as a function
of nutrient loading for three di�erent trait values. Color lines represent the
clear-water stable state and the dots correspond to the tipping points that mark
the transition to the turbid state for the trait values indicated by the points i,
ii and iii in panel B. The grey vertical solid line indicates the nutrient loading
equal to 7.5. Other parameter values as in table 1.

Figure 3. Eco-evolutionary dynamics A) when nutrient loading increases with a
rate 0.01 per day from 0.01 until 7.5. B) Dynamics of the macrophyte density
(green lines) and trait (black lines) when evolution does not take place (due
to absence of genetic trait variance, ‡G

2 = 0) and when it does occur (‡G
2 =

0.05). C) Macrophyte density and D) fitness gradient (dark grey when positive
and light grey when negative) in the equilibrium as a function of trait value
when nutrient loading is 7.5. At trait values near zero (point i) the only stable
equilibrium (state) possible is the turbid state with low macrophyte density. At
this trait value, the fitness gradient is positive and therefore larger values of the
trait are selected for in the population (single dark grey arrow). As the trait
value increases, the macrophyte density increases gradually until a trait value of
5.35 where a tipping point occurs (point ii). At this point, the system abruptly
shift to the clear-water state with higher density of macrophytes (black vertical
double arrow). Following the regime shift, the fitness gradient turns negative and
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therefore a smaller trait value is selected for until the fitness gradient vanishes
when the trait value equals 1.4 (point iii). Other parameter values as in table 1.

Figure 4. Time during which macrophyte density is below an arbitrary threshold
of 0.5 g/m3 (color axis) when nutrient loading increases from 0.001 until 7.5 as
a function of the rate of increase in nutrient loading (horizontal axis) and the
genetic trait variance (vertical axis). The time during which the macrophyte
density is below 0.5 equals 0 when the combination of environmental

and genetic trait variance enables evolution to prevent the collapse of the shallow
lake ecosystem, whereas it is larger than 0 when the ecosystem collapses and
evolution drives the recovery.
Other parameter values as in table 1.

Figure 5. Eco-evolutionary dynamics when A) nutrient load decreases with a
rate 0.001 per day from 9 until 5. B) Dynamics of the macrophyte density
(green lines) and trait (black lines) for the nutrient loading trajectory in panel
A when evolution does not take place (due to absence of genetic trait variance,
‡G

2 = 0) and when it does occur (‡G
2 = 0.05). When evolution occurs the

macrophyte population has initially a trait value of 8.2 (it is well adapted for
the nutrient loading level equal to 9) and as nutrient loading decreases the trait
value decreases; when nutrient loading reaches its minimum (5) the trait value
equals 7.2 (point i), after nutrient loading stabilizes the trait approaches a value
of 0.25 (point ii). We evaluate the ecological equilibrium at these trait values (x
= 0.25, x = 7.2) in panel C besides the trait value when x = 0 (scenario without
evolution). C) Macrophyte density in the equilibrium as a function of nutrient
loading for three di�erent trait values. Solid lines represent stable equilibriums
(states) and dotted lines represent unstable equilibriums (states). The vertical
grey lines indicate the nutrient loading levels equal to 5 and 9. Other parameter
values as in table 1.

Figure 6. A) Nutrient loading of the shallow lake system when an increase in
nutrient loading from 0.01 to 9 ( = 0.001 per day) is followed by an intervention
to reduce nutrient loading from 9 to 5 ( = -0.001 per day) starting at time 10000
days (solid line) and 50000 days (dashed line). B) Dynamics of the macrophyte
density (green lines) and trait (black lines) for the nutrient loading trajectories
in panel A. The intervention delay (black arrows on top) corresponds to the
time elapsed between the collapse (i.e. population density crosses 0.9 in the
collapse trajectory) and the start of the intervention, whereas the recovery time
(grey arrows on top) corresponds to the time elapsed between the start of the
intervention and the time at which the macrophyte population recovers (i.e.
population reaches a density of 0.9 in the recovery trajectory). C) Recovery time
after the intervention and D) average trait value of the macrophyte population
at the start of the intervention as a function of intervention delay. ‡G

2 = 0.05
in A and B, other parameter values as in table 1.
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