
HAL Id: hal-03835470
https://hal.science/hal-03835470

Preprint submitted on 31 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diffing E2E Tests against User Traces for Continuous
Improvement

Xavier Blanc, Thomas Degueule, Jean-Rémy Falleri

To cite this version:
Xavier Blanc, Thomas Degueule, Jean-Rémy Falleri. Diffing E2E Tests against User Traces for Con-
tinuous Improvement. 2022. �hal-03835470�

https://hal.science/hal-03835470
https://hal.archives-ouvertes.fr

Diffing E2E Tests against User Traces
for Continuous Improvement

Xavier Blanc
xavier.blanc@labri.fr

Univ. Bordeaux, Bordeaux INP, CNRS,
LaBRI

Bordeaux, France

Thomas Degueule
thomas.degueule@labri.fr

Univ. Bordeaux, Bordeaux INP, CNRS,
LaBRI

Bordeaux, France

Jean-Rémy Falleri
jean-remy.falleri@labri.fr

Univ. Bordeaux, Bordeaux INP, CNRS,
LaBRI

Bordeaux, France
Institut Universitaire de France

France

ABSTRACT
End-to-end testing (E2E) is a popular approach to uncover faults in
web applications by mimicking the behavior of real users. Using
dedicated frameworks (e.g., Playwright, Cypress), testers translate
high-level validation scenarios into concrete browser interactions
to evaluate the application’s behavior. Testers are forced to make
implementation choices when writing their tests: choosing one
of several valid selectors to click a button, focusing an input field
using a Click or Tab event, etc.

In this paper, we show that the resulting tests may not always
represent the behavioral of real users—some action sequences may
even be infeasible for users. These discrepancies between tests and
users hurt the very premise of E2E testing.

To address this issue, we propose a novel method that enables
testers to understand the true behavior of their E2E tests, and help
them improve their tests by pinpointing when, where, and in which
way they differ from the behavior of real users.

Using a set of E2E tests provided by our industrial partner, we
show that our tool is indeed able to identify discrepancies between
the tests and the users and that, in several cases, the testers decided
to update their tests to better match the behavior of their users.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
end-to-end testing, web application testing, trace differencing

ACM Reference Format:
Xavier Blanc, Thomas Degueule, and Jean-Rémy Falleri. 2022. Diffing E2E
Tests against User Traces for Continuous Improvement. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A popular approach to web application testing is to define and
execute end-to-end (E2E) tests to uncover faults by mimicking the
behavior of real users [1]. E2E testers typically leverage the capa-
bilities of popular testing frameworks such as Playwright, Cypress,

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

or Selenium to translate high-level validation scenarios (e.g., pur-
chasing a product in a webshop) into concrete interactions within
the browser where the web application runs.

Using these frameworks, simple steps in a scenario (e.g., clicking
a button or filling a form) can be realized in multiple ways. Indeed,
a modern stylized button may consist of several DOM elements,
each with its particular CSS selector, and the click itself may be
realized in various ways: clicking the button directly, focusing it and
pressing the Enter key, etc. Similarly, one may jump from one field
in a web form to the other by pressing the Tab key or by focusing
each field with a Click event before inputting a value. Although
there are many ways to realize the same scenario, only one (or a
handful) is eventually implemented and verified.

For E2E testing to be successful, it must simulate the behavior
of real users. However, since simple interactions may be realized
in many different ways, it is difficult for testers to assess whether
the interactions realized by their tests match what a user would do.
Worse, our exploratory analysis reveals that, out of the box, test
frameworks sometimes interact with web applications in a way that
can never be reproduced by actual users (Section 2). For instance,
when filling a web form, Playwright may use the JavaScript API
without performing any Click or Keystroke. This contrasts with
real user interactions that would inevitably require the use of the
mouse or the keyboard to focus on the fields and to set their values.
We believe that these discrepancies between tests and users hurt
the very objective of E2E testing and may prevent the tests from
revealing faults encountered by the users.

In this paper, our aim is twofold: assist the testers in understand-
ing the true behavior of their E2E tests, and help them improve
their tests by pinpointing when, where, and in which way they
differ from the behavior of a real user. To this end, we first present
a non-intrusive tool that automatically records every relevant in-
teraction on a web application (clicks, keystrokes, etc.). We use this
tool to record the traces resulting from test executions, as well as
the traces of real users interacting with the application (Section 3).
Then, we present a diff algorithm and interface that pinpoints and
highlights the differences between the execution(s) of a test and
the same scenario realized by one or several users (Section 4).

We hypothesize that whenever the trace produced from an auto-
mated test and from a user realizing the same scenario differ, the
testers may decide to update their tests to match the user’s trace
better. In our evaluation (Section 5), we find that, indeed, our tool
can identify new interactions that are of higher quality than those
used in the tests (e.g., because the user clicked on a different area

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Xavier Blanc, Thomas Degueule, and Jean-Rémy Falleri

or used some keyboard shortcuts) and identify ill-formed traces
that prompted the testers to reconsider their tests (e.g., because
the test filled two input fields in a form without switching focus in
between). This leads us to conclude that our tool can nicely com-
plement the usual E2E testing toolkit by improving the quality of
E2E tests implemented using the most popular frameworks.

2 BACKGROUND & EXPLORATORY ANALYSIS
Let us consider a straightforward web application composed of two
pages: a landing page and a login page (see Figure 1).

(a) Landing Page. (b) Login Page.

Figure 1: A simple web application with two pages: a landing
page and a login page.

Alice, a junior tester, is tasked with testing this simple web
application by implementing a new E2E test. Her objective is to
assess the following scenario:

(1) Go to the landing page
(2) Navigate to the login page
(3) Fill the username and password fields
(4) Submit the form
(5) Check that the user has been successfully logged in
To implement her scenario, Alice uses the Playwright framework

and writes the source code presented in Listing 1. She implements
all the scenario steps and makes some design choices to specify
how the test interacts with the browser. For instance, she decides
that moving from the landing page to the login page is performed
by clicking the DOM element identified by goto-login-page-link.
She also decides to rely on the fill() method of the Playwright
framework to implement step (3).

Listing 1: Source code of the simple E2E test (version 1).
const browser = await chromium.launch({

slowMo:1000,

headless:false

});

const page = await browser.newPage();

await page.goto('http://localhost:8090/');

await page.click('#goto-login-page-link');

await page.fill('#username', 'Jane');

await page.fill('#password','pass');

await page.click('form > div.button');

const testResult = await page.$eval('#logname',

el => el.value === 'Jane');

Alice’s design choices aim at realizing the scenario in a similar
manner as a real user. Her choices are also driven by her knowledge
of the framework and her willingness to make the source code as
clean as possible.

Bob, a senior tester who is also familiar with the playwright
framework, explains that the fill() method relies on the internal
JavaScript API of the browser to focus the text fields and set their
values. As a consequence, the test does not actually perform any
realistic user interaction (clicks or keystrokes) in step (3) of the sce-
nario. He then proposes a new version where the fill() methods
are each replaced by a click() and a type() (see Listing 2). This
new version is therefore much closer to the behavior of a real user.

Listing 2: Source code of the simple E2E test (version 2).
const browser = await chromium.launch({

slowMo:1000,

headless:false

});

const page = await browser.newPage();

await page.goto('http://localhost:8090/');

await page.click('#goto-login-page-link');

await page.click('#username');

await page.type('#username', 'Jane');

await page.click('#password');

await page.type('#password','pass');

await page.click('form > div.button');

const testResult = await page.$eval('#logname',

el => el.value === 'Jane');

Finally, Jenny, another senior tester, proposes a third version
claiming that some users usually use the Tab key to navigate
through the fields in a form. She also argues that the form > div.button

selector is too vague and may accidentally match another button in
the form if it were to evolve in the future. She then proposes another
selector that uniquely identifies the submit button. Listing 3 shows
the relevant lines in this third version.

Listing 3: Source code of the simple E2E test (version 3).
await page.click('#username');

await page.type('#username', 'Jane');

await page.keyboard.press('Tab');

await page.type('#password','pass');

await page.click('#submit');

This simple illustrative example shows that there are many ways
to implement the same E2E test. Some implementations, such as the
first version of this simple test, emulate a behavior that cannot be
realized by real users, which directly contradicts the purpose of E2E
testing. We argue that these implementations should be avoided
in tests, but that testers do not have the necessary tool support to
easily detect these cases.

There might also be several implementations that represent the
behavior of real users. It then becomes difficult for testers to decide
which design choices should be taken (e.g., here, a Click or a Tab).
In such a context, we argue that tests should be as close as possible
to real users, with the main motivation to uncover faults that may
be encountered by them. For instance, if most users use the Tab key
to switch among the fields, then the test should do the same.

In this paper, we aim at helping testers such as Alice, Bob, and
Jenny towards that objective. We propose an approach that iden-
tifies the real interactions made when executing an E2E test. We
then propose to compare these interactions with the ones realized

Diffing E2E Tests against User Traces for Continuous Improvement Conference’17, July 2017, Washington, DC, USA

Figure 2: Approach overview.

by real users of the application. We argue that highlighting the
differences in interactions between tests and users enables testers
to improve their E2E tests and, ultimately, their application’s qual-
ity. This overall process is depicted in Figure 2 and detailed in the
following sections.

3 RECORDING INTERACTIONS TRACES
In this section, we explain how we record the interactions per-
formed by tests and real users when using a web application. The
section starts by presenting the set of interactions we are inter-
ested, and then presents how we build sequences of interactions
(i.e., traces) by monitoring the browser and the web application.

3.1 User Interactions
In any web application, most interactions are performed thanks to
a pointing device (e.g., a mouse) and a keyboard. An interaction
mainly means to (1) focus on a specific element and (2) actuate it.

Some interactions simultaneously focus on an element and actu-
ate it (e.g., a mouse click). Others only focus an element (e.g., the
Tab key), or only actuate (the Enter key). Interactions have a target,
which is the element on which the interaction occurs and that can
be uniquely identified by a CSS selector [2].

Several interactions can be performed with the mouse: left-
clicking, double-clicking, right-clicking, selecting a text, moving
the mouse, etc. We choose to only consider left-click on an ele-
ment (mouse down), as the other mouse interactions rarely lead
to application-specific interactions in most web applications. We
further choose to abstract any left-click interaction by the word
Click$TargetCSSSelector (where TargetCSSSelector is the CSS
selector of the target element of the interaction). For instance, a click
on an element identified by the CSS selector #goto-login-page-link
is abstracted by the word Click$#goto-login-page-link.

Several interactions can be performed with the keyboard: editing
a text field, pressing the Enter key to submit a form, pressing the Tab
key to focus the next element, etc. When a user is editing a text field,
we consider that all the interactions they perform can be abstracted
by only one interaction: Edit$CSSSelector, as it is uncommon for
web applications to have custom interactions triggered by entering
a specific text value. When a user is not editing a text field, the
keyboard may be used to focus and actuate an element thanks to
keyboard shortcuts. Unfortunately, there is no standard defining
which keyboard shortcuts are generally available and supported.
TheWAI-ARIA Authoring Practices 1.1 defines some principles and
some guidances but does not specifies a list of keyboard shortcuts

that any browser and any web application should respect.1 The
W3C defines a list of keyboard shortcuts that are commonly sup-
ported by browsers, but these shortcuts are not for focusing on and
actuating elements.2 Finally, the gray literature contains some lists
of keyboard shortcuts for interacting with any web application.3

We then consider that the following shortcuts are supported by
most the browsers and web applications:

key interaction
Tab focus on the next element in the DOM
ShiftTab focus on the previous element in the DOM
Space actionate the focused element
Enter actionate the focused element
Arrow select an option in a select box
Esc close a popup or a dialog

We choose to abstract these interactions using the word
Key$TargetCSSSelector, where Key represents the keyboard short-
cut and TargetCSSSelector the target’s CSS Selector. In our ex-
ample, Tab$#username abstracts the fact that the Tab key has been
pressed when the element identified by #username was focused.
Note that this interaction makes the #password element focused.

Our set of interactions is relatively small but captures the major-
ity of the interactions that are performed by a user. For example,
running the test depicted in Listing 3 will yield the following trace:

nb interaction
1 Click$#goto-login-page-link

2 Click$#username

3 Edit$#username

4 Click$#password

5 Edit$#password

6 Click$#submit

By contrast, running the test depicted in Listing 1 highlights that
the test is not well designed as it does interact with the browser
like a real user (the fill() method uses the JavaScript API and does
not emulate clicks nor keyboard keys):

nb interaction
1 Click$#goto-login-page-link

2 Click$#submit

3.2 Recording traces
To record a trace of interactions, we monitor the web application
and listen to the mouse and keyboard events. More precisely, we
built a simple JavaScript script that listens to the mousedown and
keydown events. Each time such an event occurs, the script creates
the corresponding interactions and sends them to a server respon-
sible for storing the trace. Thanks to the Chrome extension API,
this script is injected into any page and executed just after loading.

Listing 4 presents the source code of the script for mouse inter-
actions. This script generates an interaction for each mousedown
event and sends it to the server.

Listing 4: A script for recording mouse interactions
document.addEventListener('mousedown', mouseDown, true);

1https://www.w3.org/TR/wai-aria-practices-1.1/
2https://www.w3schools.com/tags/ref_keyboardshortcuts.asp
3https://www.barrierbreak.com/have-you-ever-tried-to-access-the-webpage-using-
keyboard/

https://www.w3.org/TR/wai-aria-practices-1.1/
https://www.w3schools.com/tags/ref_keyboardshortcuts.asp
https://www.barrierbreak.com/have-you-ever-tried-to-access-the-webpage-using-keyboard/
https://www.barrierbreak.com/have-you-ever-tried-to-access-the-webpage-using-keyboard/

Conference’17, July 2017, Washington, DC, USA Xavier Blanc, Thomas Degueule, and Jean-Rémy Falleri

mouseDown(event) {

let prefix = 'Click';

let suffix = generateCSSSelector(event.target);

let interaction = prefix + '$' + suffix;

sendAction(interaction, SERVER_URL);

}

Listing 5 presents the source code of the script for keyboard
interactions. This script checks whether the target is editable or
not. It then generates an interaction (a word) depending on the key
that has been pressed and whether the target is editable. Finally,
the word that abstracts the interaction is sent to the server.

Listing 5: A script for recording keyboard interactions
document.addEventListener('keydown', keyDown, true);

keyDown(event) {

let prefix = 'Edit';

let isEditable = false;

if (event.target instanceof HTMLInputElement

&& !event.target.disabled

&& !event.target.readOnly) {

isEditable = true;

}

switch (event.code) {

case 'Tab':

if (event.shiftKey){

prefix = 'ShiftTab';

} else {

prefix = 'Tab';

}

break;

case 'Enter':

if (isEditable) {

prefix = 'Edit';

} else {

prefix = 'Enter';

}

break;

case 'Space':

if (isEditable) {

prefix = 'Edit';

} else {

prefix = 'Space';

}

break;

case 'ArrowUp':

case 'ArrowDown':

case 'ArrowLeft':

case 'ArrowRight':

prefix = event.code;

break;

case 'Escape':

prefix = 'Escape';

break;

default:

prefix = 'Edit';

}

let suffix = generateCSSSelector(event.target);

let interaction = prefix + '$' + suffix;

if (lastInteraction !== interaction) {

lastInteraction = interaction;

sendAction(interaction, SERVER_URL);

}

}

To ease the understanding of a recorded trace, we further attach
a screenshot of the page at the time the interaction took place. This
can be done thanks to the chrome extension API. We also attach
the coordinates of the bounding rectangle of the target element.
The screenshot and the bounding rectangle allow us to build a vi-
sualization of the traces highlighting the targets of the interactions
with red rectangles. Figure 3 presents our visualization for three
interactions of the trace obtained by running the test of Listing 2.

4 DIFFING TRACES
A trace captures the interactions performed through the web in-
terface (clicks and keyboard strokes). It can be recorded when a
test is run (test trace) or when a user browses the web application
(user trace). Diffing a test trace with a user trace highlights their
differences in terms of interaction. It therefore pinpoints the inter-
actions that are missed by the test, the ones that are done by the
test whereas the user does not perform them, and any other kinds
of discrepancies.

This section presents our approach for diffing two traces. It
starts by explaining how we use Myers’ algorithm to diff two traces.
Then, it describes our graphical visualization of the diff that uses
screenshots attached to the trace. Our approach is designed to help
testers understand the differences between the tests and the users to
help them decide whether—and how—the tests should be updated
to match the users.

4.1 Myers’ Algorithm for Diffing Interactions
Traces

A trace represents a sequence of interactions. From a syntactical
point of view, each interaction is represented by a token, and the
trace can therefore be seen as simply a sequence of tokens. Diffing
two traces is, therefore, the same as applying a sequence differenc-
ing algorithm such as the one proposed by Myers [3]. The principle
of Myers’s algorithm is to find the longest common subsequence
(LCS) between the two sequences. Using this longest common sub-
sequence, it deduces the tokens that are conserved between the
two traces (those belonging to the LCS), the deleted tokens (tokens
of the left trace not belonging to the LCS), and the inserted tokens
(tokens of the right trace not belonging to the LCS). For instance,
if we diff the traces obtained by running the tests of Listing 1 and
Listing 2, we obtain the diff shown in Table 1. In this table, the
conserved tokens are represented by the white line containing two
equal (=) signs. The inserted tokens are represented by the green
lines with a plus (+) sign. The deleted tokens are represented by the
red lines with a minus (-) sign. In the diff terminology, a sequence
of consecutive red and green lines between white lines is called a
hunk. In Table 1, there is only one such hunk consisting of 4 green
lines (lines 2 to 5). This hunk indicates that in the second trace,

Diffing E2E Tests against User Traces for Continuous Improvement Conference’17, July 2017, Washington, DC, USA

Figure 3: Visualizing the interactions realized by the test
depicted in Listing 2. The red rectangles highlight which
element, identified by the corresponding CSS selector, is the
target of the interaction.

First trace Second trace
= Click$#goto-login-page-link = Click$#goto-login-page-link

+ Click$#username

+ Edit$#username

+ Click$#password

+ Edit$#password

= Click$#submit = Click$#submit

Table 1: Myers’ algorithm output for the traces of 1 and 2

there are four interactions that were not performed in the first
trace.

If we now compute a diff between test runs of Listing 2 and
Listing 3, we obtain the diff shown in Table 2. This diff contains

Second trace Third trace
= Click$#goto-login-page-link = Click$#goto-login-page-link

= Click$#username = Click$#username

= Edit$#username = Edit$#username

- Click$#password

+ Tab$#username

= Edit$#password = Edit$#password

- Click$#submit

+ Click$form > div.button

Table 2: Myers’ algorithm output for the traces of 2 and 3

two hunks. The first hunk contains one green line and one red line
(lines 4 and 5). This hunk indicates a Click interaction in the second
trace, while in the third trace, there was a Tab interaction. The
second hunk also contains one green and one red line (lines 7 and
8). This hunk indicates a Click interaction in both traces but on a
different target, as we can deduce from the different selector value.

More generally, there are three types of hunks. Firstly, hunks
consisting only of green lines, such as the one in Table 1. These
hunks represent interactions performed in the right trace but not
in the left trace, i.e., interactions performed by the users only, not
by the tests. Conversely, there are also hunks consisting only of
red lines. These hunks represent interactions performed in the left
trace but not in the right trace, i.e., interactions performed by the
tests only, not by the users. Finally, there are hunks composed of
both red and green lines, such as the ones in Table 2. These hunks
represent interactions performed differently by tests and users, for
instance because they interacted with different elements or because
they interacted with the same element with a different action.

4.2 Visualizing the diff
In the previously described presentation of the diff, using the to-
kens is not very readable for testers. We then propose a graphical
visualization that uses the tokens and the screenshots that were
recorded at the time the interaction took place as well as the bound-
ing rectangle highlighting which specific element was the target of
the interaction. We still use the green and red notations to display
the hunks. As an example, Figure 4 displays the beginning (lines 1
and 2) of the diff shown in Table 1. This visualization shows that
the first interaction is the same for the two traces and that the trace
of the second version has an interaction that is not present in the
trace of the first version. The main difference with Table 1 is that
the tester now clearly sees in the screenshot which actions took
place when the two traces diverged.

Figure 4: Visualization of lines 1 and 2 of the diff shown in
Table 1

Conference’17, July 2017, Washington, DC, USA Xavier Blanc, Thomas Degueule, and Jean-Rémy Falleri

Figure 5 displays another example based upon the lines 3 to 5
of Table 2. One notable difference to the table is that we pack the
red and green lines to save vertical space. The hunk displayed in
Figure 5 clearly shows that in the second trace, a click was made
on the password input, while in the third trace, the tab key was
pressed while the focus was on the username input.

Figure 5: Visualization of lines 3 to 5 of the diff shown in
Table 2

5 EVALUATION
This section presents the evaluation of our approach using a field
experiment [4]. We conducted this experiment with our industrial
partner Mr Suricate, a company specialized in implementing and
running E2E tests for external customers.4 The goal was to use
our approach on real test scenarios chosen by the company to an-
swer this research question: is our approach effective in pinpointing
relevant differences in the test traces?

5.1 Context
Mr Suricate covers the entire scope of its clients’ test campaigns, in-
cluding creating the E2E test suites and scenarios, alert notification,
test execution, and the creation of incident sheets in the event of a
test failure. It is a young growing company with many clients in
different business domains (eCommerce, banking, energy, etc.). In a
nutshell, their clients express their test objectives, and Mr Suricate
creates the test scenarios, implements them, runs them every day,
and reports anomalies whenever they arise.

To optimize the creation and the implementation of the test
scenarios, Mr Suricate has developed a graphical domain-specific
language (DSL), built atop Blockly,5 with a dedicated runtime en-
gine. The DSL mainly consists of basic building blocks (e.g., for
clicking on elements, filling text fields, navigating to a page) and
composite blocks (e.g., for executing actions in sequence or in par-
allel). Based on the Playwright framework, the runtime engine
compiles the scenarios written in this DSL into JavaScript files and
executes them.

4https://www.mrsuricate.com/
5https://developers.google.com/blockly

Participant Age Exp. (y) Rôle Scenario
𝑇𝐴 27-32 1.5 Tester 𝑆_𝐴
𝑇𝐵 27-32 2 Tester 𝑆_𝐵
𝑇𝐶 23-27 1.5 Tester 𝑆_𝐶
𝑇𝐷 27-32 2.5 Tester 𝑀𝑎𝑛𝑖𝑡𝑜𝑢

𝑇𝐸 23-27 3 Product owner 𝑍𝑎𝑑𝑖𝑔

𝑇𝐹 18-23 0.5 Tester 𝑍𝑎𝑑𝑖𝑔

Table 3: The six employees who participated to our experi-
ment

5.2 Corpus and Methodology
Weworked closelywith two testmanagers ofMr Suricate to conduct
our field experiment. They gave us five real test scenarios coming
from five different external clients. They also asked the clients to
open their scenario and to accept to publish some information: two
accepted (Manitou Group6 and Zadig & Voltaire7) and the three
others preferred to remain anonymous.

The test managers provided us with a virtual machine running
the runtime engine which allowed us to run the tests at any time.
After instrumenting their runtime with our trace recorder (cf. Sec-
tion 3.2), we then ran the five scenarios to obtain the five corre-
sponding traces generated from the execution of the tests.

Then, six employees of Mr Suricate (five testers and one product
owner) participated in our experiment. Each of them acted as a
real user that would attempt to realize the actions described in the
scenarios. They carried out the scenarios using an instrumented
version of the Chrome browser that captured their traces in the
same way we recorded the tests. We decided to assign each tester
to a different scenario and the PO to the Zadig & Voltaire scenario.
We thus obtained six user traces. Table 3 lists the participants, their
age, their experience, their role in the company, and the scenario
they were assigned (𝑆_𝐴, 𝑆_𝐵, and 𝑆_𝐶 denote the three scenarios
for which the corresponding company preferred to remain anony-
mous).

Finally, we invited the testers and the PO to use our diff visual-
ization to compare their own trace with that of the corresponding
test, to know whether the diff helps them to better understand and
possibly improve the automated test. We asked the testers and the
PO to mark each interaction in each hunk as either “Of Interest”
or “Not Interesting” (cf. Figure 6). If an interaction is marked as
“Of Interest”, it means that the difference triggered the tester to
investigate the test and potentially improve it.

Our field experiment is then composed of six cases (one for each
of the six employees). A case is composed of three parts: a user
trace, the corresponding test trace, and the diff with the marks of
interest. Thanks to these six cases, we first answer our research
question through quantitative analysis. When a hunk is marked as
“Of Interest”, it means that the diff visualization pushed the testers
to question their tests and, potentially, to improve them so that they
can be closer to the behavior of a real user. The more hunks end
up being marked as “Of Interest”, the more tests may be improved.

6https://www.manitou.com/
7https://zadig-et-voltaire.com/

https://www.mrsuricate.com/
https://developers.google.com/blockly
https://www.manitou.com/
https://zadig-et-voltaire.com/

Diffing E2E Tests against User Traces for Continuous Improvement Conference’17, July 2017, Washington, DC, USA

Figure 6

Section 5.3 presents the metrics we measured and the results of our
quantitative analysis.

To better understand the differences between the test traces and
the user traces, two of the authors inspected all the hunks and
built a taxonomy of their underlying causes. As it is a subjective
task, the two authors worked together to reach a consensus. Finally,
an interview session was conducted with the two test managers
of Mr Suricate where we shared with them the results of our ex-
periment and asked them to give their opinion on the taxonomy.
Section 5.4 presents this analysis.

5.3 Quantitative analysis
We first made some descriptive statistics by counting:

• the number of interactions in the test trace (#TestI),
• the number of interactions in the user trace (#UserI).

Table 4 presents all the metrics we measured. First, it shows
that the number of interactions in the test traces (#TestI) ranges
from 21 to 69. This highlights the fact that the five scenarios are
quite complex as they consists of a significant number of steps.
It should be noted that the Zadig & Voltaire scenario is the most
complex, with a total of 69 interactions. This scenario consists in
choosing several products in the webshop and then buying them
after creating a user account.

The descriptive statistics shows that some user traces have more
interactions than the test traces, while others have less. This de-
pends on the scenario but also on the experience of the participants.
As a matter of fact, the less experienced participant did not strictly
follow the steps of the scenario, and performed much more interac-
tions than the other participants. Two other participants, 𝑆𝐴 and
𝑆𝐸 , performed less interactions than the test. In the case of 𝑆𝐴 , the
tester did not manage to finish the scenario before the session was
over. In the case of 𝑆𝐸 , the test performs interactions that can be
avoided by a real user; we discuss this point later in Section 5.4.

We then measured the following metrics on the diff:
• the number of interactions common to the test and user
traces (#Sim),

• the number of hunks (#Hunks),
• the number of hunks that contain interactions of the test
and the user traces (#HTU),

• the number of hunks that contains only interactions of the
test trace (#HT_),

• the number of hunks that contains only interactions of the
user trace (#H_U),

• the number of interactions contained in the biggest hunk
(HChurn).

Themetric #Sim shows that the test trace and the user trace share
a lot of interactions. The ratio #Sim / #TestI ranges from 0.40 (Zadig
& Voltaire) to 0.86 (𝑆𝐴), which is not surprising as Zadig & Voltaire
is the most complex scenario. The metric #Hunks shows that the
discrepancy is high. The metrics #HTU, #HT_ and #H_U give more
information. First of all, #HTU shows that most of the hunks contain
interactions of the test and the user traces. This means that the
traces diverge in a lot of ways. Some hunks (#HT_) only contain
interactions of the test trace. We show in Section 5.4 that they
highlight cases where the test performs interactions that are not
useful anymore. Some hunks (#H_U) only contain interactions of
the user trace. We show in Section 5.4 that they either identify
cases where the user performed additional extra interactions or
highlight cases where the test misses to perform some interactions.
The metric HChurn show that the biggest hunk belongs to the
Zadig & Voltaire scenario, which is not surprising as it is the most
complex scenario. Finally, the #Mark metric shows that there are
hunks that contain at least one interaction of interest. If we consider
that the object of interest is the hunk, 12% of the hunks (8/64) are
interesting. Their existence asks for a deeper investigation of the
tests to check whether they may be improved. This low score shows
that our approach lacks precision as it produces many hunks that
are not interesting. If we now consider that the object of the interest
is the couple (user trace, test trace), then 66% are interesting. Finally,
the two cases of the Zadig & Voltaire scenario show that the results
of our approach also vary with the participant.

As a short conclusion, this quantitative analysis shows that our
approach pinpoints discrepancies between the user and test traces.
Participants expressed that some of these discrepancies need more
investigation and may end with some test improvement. The anal-
ysis also shows that our approach identifies many hunks that are
not considered to be of interest (86%) and that the results are pretty
subjective.

5.4 Hunks analysis
Two authors analyzed the 64 hunks of the experiment and identified
six main causes of discrepancy. They then interviewed the test
managers and asked them to get their opinion on the causes.

5.4.1 Tab vs click. Focusing on an element of a web application can
be done either by clicking on it or using the Tab key. The test traces
of our experiment mostly contain clicks; tabs rarely happened. The
user traces contain clicks and tabs, depending on the participants.
This difference in practice is, therefore, a cause of the discrepancy.
For example, Figure 7 shows such a hunk in the Manitou Group
scenario. The test focuses on the password field by clicking on it,
whereas the user uses the Tab key. The two test managers agreed
that this case of discrepancy is important as the test should be as
close as possible to the user’s behavior.

Conference’17, July 2017, Washington, DC, USA Xavier Blanc, Thomas Degueule, and Jean-Rémy Falleri

Tester - Scenario #TestI #UserI #Sim #Hunks #HTU #HT_ #H_U HChurn #Mark
𝑇𝐴 - 𝑆𝐴 54 43 29 9 5 2 2 10 1
𝑇𝐵 - 𝑆𝐵 22 22 19 3 3 0 0 4 0
𝑇𝐶 - 𝑆𝐶 61 68 45 14 8 3 3 8 4

𝑇𝐷 -𝑀𝑎𝑛𝑖𝑡𝑜𝑢𝐺𝑟𝑜𝑢𝑝 21 22 17 5 4 0 1 4 1
𝑇𝐸 - 𝑍𝑎𝑑𝑖𝑔&𝑉𝑜𝑙𝑡𝑎𝑖𝑟𝑒 69 63 28 16 13 1 2 18 0
𝑇𝐹 - 𝑍𝑎𝑑𝑖𝑔&𝑉𝑜𝑙𝑡𝑎𝑖𝑟𝑒 69 114 41 17 10 0 7 30 0

Table 4: Experimental quantitative results

Figure 7: A Click vs Tab hunk in the Manitou Group scenario

5.4.2 SameWidget. Each page of a web application presents graph-
ical widgets that are technically composed of several HTML ele-
ments. For instance, a button is frequently composed of a surround-
ing bloc (<div>), an image () and a legend (). However,
depending on which element is clicked, our approach returns dif-
ferent interactions (the CSS selector is unique for each element),
which is a cause of discrepancy. For example, Figure 8 presents
such a difference in the Manitou Group scenario. The test clicked
on the legend, whereas the user clicked on the surrounding block.
The two test managers agreed that this case discrepancy is not as
important. They argue that the widget itself is of importance, not
the technical details of its implementation.

Figure 8: A example of hunk in the Manitou Group scenario
with a click on a same widget that yields two different inter-
actions.

5.4.3 Missing Interaction. A testing framework may sometimes
use the JavaScript API to focus and interact with the elements.
The test trace does not contain the corresponding interactions in
such a case, whereas the user trace does. Indeed, a user cannot

use the JavaScript API and always uses the mouse or the keyboard.
Figure 9 presents an example on the Zadig & Voltaire scenario. The
Figure shows a form with several fields. The user trace (on the right)
registered a click on the element, whereas the test trace (on the
left) did not (there is no interaction). The two test managers said
that this cause of discrepancy is very important and asked for an
improvement of the testing framework. Their framework already
extends the fill() method of the Playwright Framework. Their
extension modifies the default behavior of this method by making
an explicit click on the fields and by using the keyboard to fill
them. Our experiment made it possible to identify new situations
where their framework still uses the JavaScript API. Therefore,
they wanted to investigate these situations with the objective to
potentially improve their framework.

Figure 9: An example of hunk in the Zadig &Voltaire scenario
with no focus on the element.

5.4.4 Web Application Changes. There are some changes, which
are performed on a web application, that do not break the tests. For
example, this is the case when the changes aim to ease the user
experience by automatically filling the fields. These changes do
not have any impact on the test trace as the test always fills the
fields. They, however, have an impact on the user trace as the user
is not required to fill the fields anymore. Figure Figure 10 presents
an example on the Zadig & Voltaire scenario. The form is now
automatically filled, but the test still explicitly fills it. This is to be
contrasted with the user trace, where no such action happened.
The two test managers were interested by this case of discrepancy,
as the tests should remain consistent with the web application’s
behavior, even when it does evolve.

5.4.5 User-Side Interactions. Participants frequently clicked or
used their keyboard aside from the scenario. The test never per-
forms these interactions. Figure 11 presents an example on the
Manitou Group scenario: the figure shows that the participant
clicked somewhere on the form, even though it was not required

Diffing E2E Tests against User Traces for Continuous Improvement Conference’17, July 2017, Washington, DC, USA

Figure 10: An example of an evolution of the Zadig & Voltaire
web application that may ask for an update ot the test.

by the test scenario. The two test managers are not interested in
this case of discrepancy.

Figure 11: An example of a side click made on the Manitou
Group scenario.

5.4.6 User Deviations. Participants of our evaluation sometimes
deviated from the scenario, leading to hunks that may be large. For
example, Figure 12 presents an example on the Zadig & Voltaire
scenario. The figure shows that the participant chose a different
value than the test for a text field. This difference is due to the
sometimes loose steps in a scenario (here, “create an account”). The
two test managers said that this case might be interesting even if
they agreed that most of the hunks would lead to nothing. They
argue that this kind of hunks may help to update a fuzzy test in
some very rare situations.

Figure 12: An example of a use deviation in the Zadig &
Voltaire scenario. The test and the user chose different values
for the same field.

5.5 Threat to validity
Our approach aims at measuring and comparing the clicks and the
keyboard strokes performed by automated tests and by real users.
Our field experiment on five industrial scenarios with six testers
confirms that our approach accurately abstracts the interactions,
and there is no threat to construct validity.

In total, 629 interactions have been realized in our evaluation.
We cannot assume that all kinds of interactions have been realized.
However, we can consider that all of the commonly performed
interactions have been observed, limiting the threat to content
validity.

We agree that the results we obtained are influenced by the
scenarios, the participants, and the managers, which is a threat to
internal validity. Furthermore, the results we obtained cannot be
generalized much beyond the specific web applications we have
been studying, which is a threat to external validity. To limit these
threats, we conducted a field experiment with a company that built
a considerable experience in E2E testing. We also worked on large
industrial scenarios representing complex E2E tests.

6 RELATEDWORK
In this section, we describe the related work on the domain of E2E
web testing. E2E web tests are known to be fragile [5], therefore
researchers have extensively worked on means to mitigate this
issue. To the best of our knowledge, no other approaches have been
introduced to precisely compare two interactions traces like ours.
However, there is a body of complementary work in three main
domains, as follows.

6.1 Automated web test repair
Researchers have investigated how to repair broken web tests [6–
10]. The objective of these approaches is to automatically repair
web tests that are broken due to a variety of reasons, such as layout
changes in the web application. They usually use a DOM analysis or
a visual analysis (using computer vision algorithms) to identify and
repair the cause of the breakage. In contrast to these approaches, we
do not aim at automatically repair web tests, but rather to pinpoint
subtle differences between the execution of a test and the behavior
of a real user.

6.2 Improving the robustness of web tests
Several approaches have been described to decrease the odds of a
test being broken by a change in the web application. There are two
main categories of approaches. Approaches from the first category
aim at improving the robustness of the CSS selectors used in the
tests [2, 7, 11–14]. Approaches from the second one aim at relying
on visual cues to guide the test instead of CSS selectors [15–17].
In our work, we leverage these approaches to synthesize selectors
when the test or the user are interacting with the web application.

6.3 Web test debugging
Many approaches have been introduced to help developers to debug
web pages [18–21]. Two main challenges are addressed by these
approaches. First, they aim at recording as precisely as possible
what happened during a browsing session to enable developers to
replay the session and reproduce the behavior. Second, they usually

Conference’17, July 2017, Washington, DC, USA Xavier Blanc, Thomas Degueule, and Jean-Rémy Falleri

try to establish links between the DOM elements manipulated and
the source code written by the developers. Nevertheless, they are
not designed to quickly compare two different browsing sessions,
like we do. However, in our approach we borrow the idea of the
recording web session traces with a lower level of precision to
support comparing two different sessions.

7 CONCLUSION
E2E tests are meant to reflect the behavior of real users to un-
cover the faults they might encounter using a web application. As
testers are forced to make implementation choices when translating
high-level validation scenarios into concrete automated tests using
popular E2E frameworks such as Playwright or Cypress, the re-
sulting tests may not always represent the behavioral of real users.
In particular, we show that some interactions resulting from these
tests may not even be feasible by real users. These discrepancies
hurt the very premise of E2E testing.

In this paper, we proposed a novel method to record the inter-
action traces of both real users and E2E tests. Using a novel diff
algorithm and visualization for interaction traces, we have shown
that it was able to pinpoint when, where, and in which way the
tests and the users differ.

Our field experiment with the Mr Suricate company showed that,
while our approachmay sometimes show information to testers that
they do not find interesting, it was also able to pinpoint in several
places that the tests were either out-of-sync with the application
or too far from a real user’s behavior. This prompted managers at
the company to investigate some of their E2E tests, as well as their
testing framework, which highlights the usefulness of our approach
and tool.

For future work, we would like to expand our field experiment
by including more users for each scenario to soften the subjectivity
of our results. Ideally, we would like to record the behavior of
real users interacting with the web application in production, and
use these traces in the comparison with the E2E tests. To lessen
the number of false positives in the diff, we also plan to exploit
the information contained in the screenshots to match widgets
more accurately. When the user and the test click on two different
element, and thus two different selectors, the screenshots should
allow us to recognize that they actually click on the same widget,
and that no diff should be reported.

Diffing E2E Tests against User Traces for Continuous Improvement Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Chapter Five - Approaches

and Tools for Automated End-to-End Web Testing,” in Advances in Computers,
A. Memon, Ed. Elsevier, Jan. 2016, vol. 101, pp. 193–237. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0065245815000686

[2] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Robula+: an algorithm
for generating robust XPath locators for web testing,” Journal of Soft-
ware: Evolution and Process, vol. 28, no. 3, pp. 177–204, 2016, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1771. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1771

[3] E. W. Myers, “An O(ND) Difference Algorithm and Its Variations.” in Algorithmica,
1986, pp. 251–266.

[4] K.-J. Stol and B. Fitzgerald, “The ABC of Software Engineering Research,” ACM
Transactions on Software Engineering and Methodology, vol. 27, pp. 1–51, 2018.

[5] M. Hammoudi, G. Rothermel, and P. Tonella, “Why do Record/Replay Tests of
Web Applications Break?” in 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST), Apr. 2016, pp. 180–190.

[6] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering - ESEC/FSE 2018.
Lake Buena Vista, FL, USA: ACM Press, 2018, pp. 503–514. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3236024.3236063

[7] S. Brisset, R. Rouvoy, L. Seinturier, and R. Pawlak, “Erratum: Leveraging
Flexible Tree Matching to repair broken locators in web automation scripts,”
Information and Software Technology, vol. 144, p. 106754, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584921002020

[8] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “WATER: Web Application TEst
Repair,” in Proceedings of the First International Workshop on End-to-End Test Script
Engineering - ETSE ’11. Toronto, Ontario, Canada: ACM Press, 2011, pp. 24–29.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=2002931.2002935

[9] M. Hammoudi, G. Rothermel, and A. Stocco, “WATERFALL: An Incremental
Approach for Repairing Record-replay Tests of Web Applications,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016, pp.
751–762. [Online]. Available: http://doi.acm.org/10.1145/2950290.2950294

[10] W. Chen, H. Cao, and X. Blanc, “An Improving Approach for DOM-Based Web
Test Suite Repair,” in Web Engineering, M. Brambilla, R. Chbeir, F. Frasincar, and
I. Manolescu, Eds. Cham: Springer International Publishing, 2021, pp. 372–387.

[11] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Reducing web test cases aging
by means of robust XPath locators,” in 2014 IEEE International Symposium on
Software Reliability Engineering Workshops. IEEE, 2014, pp. 449–454.

[12] ——, “Using Multi-Locators to Increase the Robustness of Web Test Cases,” in 2015
IEEE 8th International Conference on Software Testing, Verification and Validation
(ICST), Apr. 2015, pp. 1–10, iSSN: 2159-4848.

[13] Y. Zheng, S. Huang, Z.-w. Hui, and Y.-N. Wu, “A Method of Optimizing Multi-
Locators Based on Machine Learning,” in 2018 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C), Jul. 2018, pp.
172–174.

[14] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Synthesizing Web Element Locators
(T),” in 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Nov. 2015, pp. 331–341.

[15] E. Alégroth, M. Nass, and H. H. Olsson, “JAutomate: A Tool for System- and
Acceptance-test Automation,” in Verification and Validation 2013 IEEE Sixth Inter-
national Conference on Software Testing, Mar. 2013, pp. 439–446, iSSN: 2159-4848.

[16] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Automated generation of visual
web tests from DOM-based web tests,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing - SAC ’15. Salamanca, Spain: ACM Press,
2015, pp. 775–782. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2695664.2695847

[17] ——, “Pesto: Automated migration of DOM-based Web tests towards the visual
approach,” Software Testing, Verification and Reliability, vol. 28, no. 4, p. e1665,
2018, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1665. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1665

[18] B. Burg, A. J. Ko, and M. D. Ernst, “Explaining Visual Changes in Web
Interfaces,” in Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, ser. UIST ’15. New York, NY, USA: Association
for Computing Machinery, Nov. 2015, pp. 259–268. [Online]. Available:
https://doi.org/10.1145/2807442.2807473

[19] P.-Y. P. Chi, S.-P. Hu, and Y. Li, “Doppio: Tracking UI Flows and Code
Changes for App Development,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’18. New York, NY, USA:
Association for Computing Machinery, Apr. 2018, pp. 1–13. [Online]. Available:
https://doi.org/10.1145/3173574.3174029

[20] S. Oney and B. Myers, “FireCrystal: Understanding interactive behaviors in
dynamic web pages,” in 2009 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Sep. 2009, pp. 105–108, iSSN: 1943-6106.

[21] J. Mickens, J. Elson, and J. Howell, “Mugshot: Deterministic Capture and Replay
for Javascript Applications,” in Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 11–11, event-place: San Jose, California.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855711.1855722

http://www.sciencedirect.com/science/article/pii/S0065245815000686
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1771
http://dl.acm.org/citation.cfm?doid=3236024.3236063
https://www.sciencedirect.com/science/article/pii/S0950584921002020
http://portal.acm.org/citation.cfm?doid=2002931.2002935
http://doi.acm.org/10.1145/2950290.2950294
http://dl.acm.org/citation.cfm?doid=2695664.2695847
http://dl.acm.org/citation.cfm?doid=2695664.2695847
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1665
https://doi.org/10.1145/2807442.2807473
https://doi.org/10.1145/3173574.3174029
http://dl.acm.org/citation.cfm?id=1855711.1855722

	Abstract
	1 Introduction
	2 Background & Exploratory Analysis
	3 Recording Interactions Traces
	3.1 User Interactions
	3.2 Recording traces

	4 Diffing Traces
	4.1 Myers' Algorithm for Diffing Interactions Traces
	4.2 Visualizing the diff

	5 Evaluation
	5.1 Context
	5.2 Corpus and Methodology
	5.3 Quantitative analysis
	5.4 Hunks analysis
	5.5 Threat to validity

	6 Related Work
	6.1 Automated web test repair
	6.2 Improving the robustness of web tests
	6.3 Web test debugging

	7 Conclusion
	References

