
1

RIS3D, a Referenced Information System in 3D
Supplemental materials

BRUNO DUTAILLY, Archeovision UMS3657, Centre National de la Recherche Scientifique, France
JEAN-CHRISTOPHEPORTAIS,Ministère de la culture, Direction Régionale des Affaires Culturelles Nouvelle-
Aquitaine, France
XAVIER GRANIER, Institut d’Optique Graduate School/LP2N, France

ACM Reference Format:
BrunoDutailly, Jean-Christophe Portais, and Xavier Granier. 2022. RIS3D, a Referenced Information System in 3D Supplemental
materials. ACM J. Comput. Cult. Herit. 1, 1, Article 1 (January 2022), 6 pages. https://doi.org/10.1145/3517043

In the following supplemental document, we are providing the readers with even more detailed choices on our
implementation. This concerns types, structure, non 3D features, query in JSON, converters, and user interface
for data manipulation regarding types...

1 TYPES
The table 1 shows a list of those types, and how they are handled in our implementation.

Table 1. Type handling in RIS3D

Type of data Type name in RIS3D Storage in JSON PostgreSQL query

Integer and floating
point number

int, double int, double Comparison functions are
available: equal, superior, in-
ferior, simple operations

Free text string string Comparison functions are
available: "like", "contains", ...

Boolean bool bool Test if true of false directly
List of words or texts enum("text 1","text 2",. . .) string Same as string type
Date, time, and datetime timestamp timestamp Many functions for compari-

son, operation and detail ex-
traction

Image image string: path to the file Test if filled
Any document file string: path to the file Test if filled
Color color string: text representing the

color as hexadecimal RGBA
Text comparison, no specific
function provided

Authors’ addresses: Bruno Dutailly, bruno.dutailly@u-bordeaux.fr, Archeovision UMS3657, Centre National de la Recherche Scientifique,
Archéopôle, Esplanade des Antilles, Pessac, France, 33600; Jean-Christophe Portais, jean-christophe.portais@culture.gouv.fr, Ministère de
la culture, Direction Régionale des Affaires Culturelles Nouvelle-Aquitaine, 54, rue Magendie, Bordeaux, France, 33074; Xavier Granier,
xavier.granier@institutoptique.fr, Institut d’Optique Graduate School/LP2N, LP2N-IOA, rue François Mitterand, Talence, France, 33400.

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or
affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or
to allow others to do so, for Government purposes only.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
XXXX-XXXX/2022/1-ART1 $15.00
https://doi.org/10.1145/3517043

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3517043
https://doi.org/10.1145/3517043

1:2 • Dutailly and Portais, et al.

2 STRUCTURE
Figure 1 shows an example of a typed structure and its JSON definition. All values are strings and contains the
RIS3D type of each field. The figure 2 shows two records conform to the structure. The first fit fully the structure
whereas the second is incomplete but still correct.

Fig. 1. Example of typed structure for storing user’s data and its JSON representation.

3 NON-3D FEATURES
Implemented non 3D features in our RIS3D are:

• User permissions: user accounts with group management and access control list to data.
• Type structure: an interface to create and edit the structure and type of data through a WYSIWYG JSON
editor.

• Export: the database can be exported to JSON, CSV or SQL formats.
• Import: data can be imported as CSV format. It consists in defining a mapping between columns of the
CSV and field in the data tree. This mapping is done through an interactive web application using pure
javascript and JQueryUI. Once this mapping done, the CSV is parsed and feed the database with some data
conversion if needed and a row range selection.

• Raw view: list all records of the database with the ability to delete each record one by one.
• Layer view: list all layers with the ability to export all records answered by the query to CSV and XLS
formats.

• Update and fixes: finds errors in the database structure and provides actions to fix them. This module is
capable of create fields in the database and change types if needed.

• Inconsistency: list issues in database records like an address in the data tree that is not defined in the type
structure, or a text in a record typed as "list of texts", but not present in the list, etc.

4 EXAMPLES OF WEB SERVICE COMMANDS AND QUERIES
As examples, we can cite, with the format "action"(keys):

• "get_me": return all data belonging to the logged user including layers, ACL, personal information. . . ;
• "get_shared_layers": return all layers shared by users in the same groups of the logged user;

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article 1. Publication date: January 2022.

RIS3D, a Referenced Information System in 3D
Supplemental materials • 1:3

Fig. 2. Two examples of user’s data fitting the structure definition and their JSON representation.

• "get_structure": return the typed structure tree;
• "set_record_json"(table,path,id,value): set the value at path of record id in table;
• "add_point"(x,y,z,nx,ny,nz,data): add a new 3D point (x,y,z) with normal (nx,ny,nz) in table point
with data as JSON;

• "query"(select,from,where): query the database and return records.
Since queries must not be related to the database engine, we define a query structure as a JSON object. The

web server will translate it into the right query language, ensuring our extended types to JSON standard types
will be nicely handled. The query structure is made up of three keys:

• "select": an array of table fields to get in each record. If only one field is needed, the expected array can be
a string;

• "from": an array of tables names. Tables used by where will be automatically added to the from table list;
• "where": a sub-object containing conditions and operators. A condition is a path in the user’s data tree to
a chosen field, a boolean-valued function, and an optional argument. All conditions can be organized with
logical operators, basically "AND" and "OR" operators. This organization supports a construction in a tree
to allow priorities in the evaluation of these conditions. Figure 3 shows an example of where statement of
a query to match records between two dates and containing one of two keywords.

In the web server, a recursive evaluation ftattens the JSON object into the database language (cf. Figure 3).

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 • Dutailly and Portais, et al.

Fig. 3. where statement of a query as a tree representation (a), written in JSON (b) and translated to PostgreSQL language
(c).

The following example shows a query in JSON format and how it is flattened to a SQL query for PostgreSQL.
{
"AND" :
{
"function" :
{
"address" : "location/room",
"operator" : "==",
"argument" : "'entrance'"
},
"function" :
{
"address" : "device/senor/temperature/value",
"operator" : ">",
"argument" : "12"
}
}

}

will result in PostgreSQL language and a JSONb field named "data" to:
data#>>'{location,room}' = 'entrance' AND data#>>'{device,sensor,temperature,value}' > 12

Types not supported natively by the database engine and custom operator not supported too, must be translated
to a valid SQL query. This is done on the server side since the user must not suffer from database engine limitation.
The following example shows how custom operators on custom types are translated:
AND
address : "device/sensor/temperature/photo/image", operator : "EXISTS", argument : null

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article 1. Publication date: January 2022.

RIS3D, a Referenced Information System in 3D
Supplemental materials • 1:5

address : "device/sensor/temperature/photo/date", operator : ">=", argument : "2020/04/01"

will result in PostgreSQL language to:
(data#>>'{device,senor,temperature,photo}')::jsonb ? 'image' AND
to_timestamp(data#>>'{device,senor,temperature,photo,date}') >= to_timestamp('2020/04/01')

The operator "EXISTS" is transformed to the "?" operator on JSON field, and the type "date" given as a text is
converted into a postgres timestamp.

5 CONVERTERS
Table 2 shows a non exhaustive list of converters. Implementation of those converters relies on technical choices.
This list must grows regarding the needs of users.

Table 2. Type converters. * are converters with arguments

From ↓ to
→

Integer Floating
point

Text Date Boolean Color List of
texts

Integer to double to text timestamp
to date

to bool index and
RGBA to
color

Floating
point

round, floor,
ceil

formula* to text is positive

Text char count,
parse int,
index of*

parse double concat text* parse date* is empty Hex to color,
name to
color

split*

Date to
timestamp,
year, month,
...

to ISO, to
format*

add days*,
add
minutes*, ...

is before*

Boolean to int to text* not to color*
Color to RGBA to name set alpha*,

keep red, ...
List of
texts

list count,
index in list

to text is in list to color index prefix

6 VISUALISATION AND EDITION OF DATA REGARDING THEIR TYPES
The table 3 shows how data is displayed and edited regarding types.

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 • Dutailly and Portais, et al.

Table 3. Data visualization and editing in RIS3D

Type of data Visualization Edition

Integer and floating point number as text Input text field
Free text directly in UI or 2D sprite Input text field
Boolean as text check box
List of words or texts as text Input text field with completion and/or

validation and combo box
Date, time, and datetime as text in several format interactive calendar widget
Image as an image in UI or 2D sprite Dialog box to browse to the image
Any document as an icon in the UI, opened by the de-

fault application on the computer host
Dialog box to browse to the file

Color as a colored item in UI or in 3D Color picker dialog box

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article 1. Publication date: January 2022.

	1 Types
	2 Structure
	3 Non-3D features
	4 Examples of web service commands and queries
	5 Converters
	6 Visualisation and edition of data regarding their types

