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Abstract: 10 

Land surface temperature (LST) is an essential input for modeling the processes of energy 11 

exchange and balance of the earth’s surface. Thermal infrared (TIR) remote sensing is 12 

considered to be the most efficient way to obtain accurate LST, both regionally and globally. 13 

Currently, many LST retrieval algorithms have been developed, including the up-to-date SW-14 

TES (SW: split window; TES: temperature-emissivity separation) method, which is claimed to 15 

be able to accurately derive LST without the need for atmospheric information and land surface 16 

emissivity (LSE) based on the selected multiple TIR channel configuration. However, this 17 

hybrid method is actually not applicable to observations with large viewing angles and was only 18 

preliminarily evaluated in Australia. In this study, this method was extended for application to 19 

global TIR measurements with different viewing angles. Additionally, the performance of this 20 

extended SW-TES method was assessed globally for different seasons by using the MODIS 21 

LST product as a reference, and was also validated using in-situ LST measurements from the 22 

SURFRAD (SURFace RADiation budget network) sites. The results showed that the LST 23 
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retrievals using the extended SW-TES method were comparable to the MODIS LST product, 24 

with discrepancies of <2.7 K and <1.8 K for global daytime and nighttime observations, 25 

respectively. Validations based on the SURFRAD in-situ LST measurements indicated that the 26 

extended method could be used to retrieve LST accurately with a root-mean-square error 27 

(RMSE) of approximately 3.6 K during the daytime and 2.4 K during the nighttime. However, 28 

special attention should be paid when applying the extended method to daytime observations 29 

on grasslands and shrublands during hot seasons, considering the relatively large discrepancy 30 

when using this method compared with that obtained with the MODIS LST product (>4.0 K). 31 

Overall, in this study, the SW-TES method was extended, and the performance was 32 

comprehensively evaluated at the global scale, which may help in facilitating its potential 33 

applications. 34 

 35 

Keywords: Thermal infrared data, land surface temperature (LST), split window, temperature-36 

emissivity separation, accuracy assessment 37 

 38 

1. Introduction 39 

Land surface temperature (LST) is an important factor that influences water and energy 40 

exchange between the Earth’s surface and the atmosphere (Kappas and Phan, 2018; Sobrino et 41 

al., 2016; Tomlinson et al., 2011). It has been widely used in many studies, including 42 

climatology, meteorology, hydrology, and ecology (Anderson et al., 2008; Kappas and Phan, 43 

2018; Li et al., 2009; O'Connor et al., 2020; Yao et al., 2019). Therefore, LST has been listed 44 

as a high-priority parameter for the International Geosphere-Biosphere Programme (IGBP) 45 
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(Townshend et al., 1994). It has also been approved as an important Earth Surface Data Record 46 

(ESDR) by NASA and is defined as an Essential Climate Variable (ECV) by the Global Climate 47 

Observing System (GCOS) (O'Connor et al., 2020). 48 

Currently, thermal infrared (TIR) remote sensing is considered the most appropriate method 49 

for obtaining accurate LST, both regionally and globally (Li et al., 2013a; Sánchez-Aparicio et 50 

al., 2020). Over several decades, a wide variety of LST retrieval algorithms have been 51 

developed and can be roughly classified into four categories as follows (Li et al., 2013a; Li et 52 

al., 2013b; Sattari and Hashim, 2014). First, the single-channel method, which requires both 53 

atmospheric profiles and LSE to obtain the LST from the observed TIR radiance (Duan et al., 54 

2019b; Jimenez-Munoz and Sobrino, 2003; Ottlé and Vidal-Madjar, 1992; Qin et al., 2001b) 55 

(Jimenez-Munoz et al., 2009; Sánchez-Aparicio et al., 2020). Second, the split window (SW) 56 

method that can eliminate atmospheric effects by directly using the observations of two adjacent 57 

channels (Becker and Li, 1990; Coll and Caselles, 1997; McMillin, 1975; Qin et al., 2001a; 58 

Wan and Dozier, 1996; Wang et al., 2019b). But the performance of this method is shown to be 59 

sensitive to the channel LSE uncertainties, implying that accurate LSE of the study area must 60 

be known in advance (Jiang and Li, 2008; Wang et al., 2019a). Third, the temperature/emissivity 61 

separation (TES) method that can be used to simultaneously separate LST and LSE (Gillespie 62 

et al., 1998). However, accurate atmospheric correction is needed before applying this method 63 

(Hulley and Hook, 2011; Hulley et al., 2018; Ren et al., 2020). Four, the day/night methods that 64 

could also be used to retrieve LST and LSE at the same time (Wan and Li, 1997; Wan, 2008; 65 

Wan, 2014). By using two geographically matched images and assuming the LSE is unchanged 66 

in the two images, this method requires only the shape information of atmospheric profiles (Wan 67 
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and Li, 1997). But the assumption may not be true because of the spatial misregistration or 68 

variations in land surface conditions (Gao et al., 2014; Wan and Li, 1997). 69 

In fact, these existing LST retrieval methods were all designed to remove the effect of the 70 

atmosphere and LSE from satellite TIR observations under specific assumptions (Becker, 1987; 71 

Sobrino et al., 1991). Based on the above analysis, either atmospheric parameters, LSE, or both 72 

are required to be known in advance for these methods to recover accurate LST. Unfortunately, 73 

such prior knowledge at the pixel scale with high quality is not always available, which may 74 

lead to a decrease in LST retrieval accuracy. Inspired by the fact that SW and TES methods 75 

have complementary advantages and disadvantages, a hybrid method was proposed by Zheng 76 

et al. (2019) (hereafter referred to as the SW-TES method), and the required multi-channel 77 

configuration was also recommended (five channels centered at 8.6, 9.0, 10.4, 11.3, and 12.5 78 

μm). According to their study, the SW method was first used to remove the atmospheric effect 79 

from satellite TIR observations to obtain the ground observed radiance. Subsequently, the TES 80 

method was used to separate the LST and LSE simultaneously (Gillespie et al., 1998). Thus, 81 

neither atmospheric information nor LSE is required in this method, which is believed to be a 82 

promising strategy for eliminating the dependence on prior knowledge during LST retrieval. 83 

However, this method can only be applied to observations with viewing zenith angles <20° from 84 

the nadir. Extensions are therefore needed because of the large viewing angles of commonly 85 

used satellite observations (such as ±55° for MODIS and AVHRR, leading to a local viewing 86 

zenith angle >65°). Moreover, detailed performance assessment of the extended method at the 87 

global scale and validation using ground measured LST are also required to facilitate potential 88 

applications. 89 
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The objective of this study was to extend the SW-TES method for application to satellite 90 

observations with different viewing angles and assess its performance in detail. To achieve this 91 

aim, the extended SW-TES method was applied globally to obtain the LST of the entire Earth’s 92 

land surface for four months, corresponding to different seasons. Next, using the MODIS LST 93 

products as reference, the performance of the extended method was investigated. In addition, 94 

the LST retrieval accuracy of the extended SW-TES method was also validated using the in-95 

situ LST measured at seven American SURFRAD (SURFace RADiation budget network) sites. 96 

This paper is organized as follows: Section 2 introduces the data used to apply and evaluate the 97 

extended SW-TES method. Section 3 recalls the SW-TES method for LST retrieval and 98 

demonstrates the extensions of this study. Section 4 compares the retrieved LST with the 99 

MODIS LST product and in-situ LST measurements. Section 5 summarizes the main findings. 100 

2. Data 101 

2.1 AIRS data 102 

Currently, satellite TIR observations using the above-mentioned five channels are still not 103 

available. The atmospheric infrared sounder (AIRS) onboard the Aqua satellite can acquire the 104 

ultra-fine hyperspectral radiance of the Earth’s surface. The Aqua satellite operates in a polar 105 

sun-synchronous orbit at an altitude of 705 km, resulting in the AIRS passing overhead at almost 106 

the same local time every day with the Sun in the same position. The ascending node is 107 

approximately 1:35 pm, and the descending node is approximately 1:35 am. Therefore, these 108 

measurements are ideal for synthesizing theoretical multispectral observations of the Earth’s 109 

surface during both daytime and nighttime. Therefore, AIRS data was introduced in this study 110 

to generate the five required multichannel TIR observations in theory. The detailed 111 
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specifications of the AIRS instrument are listed in Table 1. 112 

Table 1. Characteristics of the AIRS instrument. 113 

Spatial Resolution 13.5 km at nadir 

Spatial Sampling 1.1˚ footprints 

Swath Width 1650 km (± 49.5 degrees) 

Spectral Range 2378 channels from 3.75–15.4 μm 

Spectral Resolution λ / ∆λ ≈ 1200 nominal 

Spectral Sampling λ / ∆λ ≈ 2400 nominal 

Radiometric Accuracy 0.2 K at 265 K 

Ground Coverage >95% global daily 

2.2 MODIS LST product for cross validation 114 

Because it is difficult to obtain the ground-measured LST globally, the well-validated and 115 

commonly used MODIS LST product (MYD11_L2) was introduced as a reference for 116 

intercomparison (Wan et al., 2015). The MYD11_L2 product was generated at a spatial 117 

resolution of 1 km from the generalized split-window algorithm (GSW), which requires prior-118 

known LSE information (Wan and Dozier, 1996). Similar to other SW methods, the 119 

performance of the GSW algorithm is sensitive to uncertainties in the emissivity difference 120 

between the two adjacent channels. Currently, the LSE of MODIS bands 31 and 32 are estimated 121 

by the classification-based method (Snyder et al., 1998). This method firstly classifies each 122 

pixel according to the input data in Land Cover (MCDLC1KM) and dynamic and seasonal 123 

factors. For different land cover types, the appropriate kernel models were applied to determine 124 
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the bidirectional reflectance distribution function models (BRDF), and then to obtain the 125 

hemispherical-directional reflectance, ( )  . Finally, the emissivity could be computed by 126 

1 ( )   (Snyder et al., 1998). However, the misclassification of the land cover type or 127 

inhomogeneity inside a single MODIS pixel still may decrease the LST retrieval accuracy. 128 

According to the validation results using temperature-based (T-based) and radiance-based 129 

(R-based) methods over different land cover types, such as grassland, cropland, inland water, 130 

silt playa, and bare soil, the MYD11_L2 product is believed to have an uncertainty of 131 

approximately 1.0 K in most cases, except for bare soil sites (Coll et al., 2009; Duan et al., 2018; 132 

Duan et al., 2019a; Wan, 2008; Wan and Li, 2008; Wan, 2014). The largest biases in the 133 

MYD11_L2 LST retrieval results were found to occur in the hot and warm bare soil zones 134 

(HAWBSZ), with an underestimation up to 4.5 K in the collection 5 (C5) product. Fortunately, 135 

the accuracy of the retrieved LST over HAWBSZ pixels has been greatly improved in the 136 

collection 6 (C6) product after several refinements have been made and the mean error 137 

decreases to <2.0 K (Wan, 2014). 138 

In addition to the MYD11_L2 product, a newer MODIS LST product, MYD21_L2, was 139 

also available currently (Hulley, 2015). The MODIS MYD21_L2 product was generated using 140 

the TES method which was originally designed for the Advanced Spaceborne Thermal 141 

Emission Reflection Radiometer (ASTER) instrument (Hulley and Hook, 2011). Comparing 142 

with the GSW method used in the MYD11_L2 product, the LST and LSE were retrieved 143 

simultaneously in the MYD21_L2 product. However, accurate atmospheric correction was 144 

firstly required before the LST retrieval (Hulley and Hook, 2011). The auxiliary atmospheric 145 
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products (Hulley et al., 2016) and the Water Vapor Scaling (WVS) Method (Tonooka, 2005) 146 

therefore were used to remove the atmospheric effect. The uncertainty of the MYD21_L2 LST 147 

product was announced to be <1.5 K (Hulley et al., 2016; Hulley et al., 2012). 148 

With the merits of good accuracy, long-term consistency, frequent revisit cycles, and global 149 

coverage, MODIS LST products have been widely used worldwide. Because the MODIS and 150 

AIRS are onboard the same satellite platform, Aqua, and provide observations of the same Earth 151 

surface patch within 5 minutes, it is easy to find pixel pairs matching each other both temporally 152 

and spatially. Thus, the MYD11_L2 C6 and MYD21_L2 C6 products for Aqua downloaded 153 

from the NASA website (https://search.earthdata.nasa.gov/) was used as the LST reference to 154 

evaluate the performance of the extended SW-TES method. 155 

2.3 In-situ LST measurements for direct validation 156 

To provide a direct evaluation of the performance of the extended SW-TES method, the T-157 

based validation method was used in this study to compare the derived LST with the in-situ 158 

LST measured at the satellite overpass in a simple manner. The T-based method requires the 159 

ground LST to be measured accurately at the satellite passing time and is adequate for 160 

representing the LST at the satellite pixel scale (Li et al., 2013a). Therefore, collection of in-161 

situ LST measurements is quite difficult, and the available datasets are very limited. The 162 

SURFRAD sites built in 1993 provide continuous, long-term, accurate, and quality-controlled 163 

measurements of broadband hemispherical upwelling and downwelling longwave radiation (3-164 

50 μm) at seven different locations in the United States (Augustine et al., 2000). After applying 165 

the Stefan–Boltzmann law, in-situ LST could be obtained every 3 minutes (before 2009) or 166 
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every 1 minute (after 2009) from the measured longwave radiation (Duan et al., 2019a). The 167 

SURFRAD measurements are currently widely used to evaluate the uncertainties of various 168 

satellite LST products, such as ASTER (Wang and Liang, 2009), AATSR (Ghent et al., 2017), 169 

MODIS (Duan et al., 2019a; Li et al., 2014; Wang and Liang, 2009), and VIIRS (Guillevic et 170 

al., 2014; Liu et al., 2015). In this study, the SURFRAD measurements were chosen to provide 171 

a direct validation of the extended SW-TES method described in Section 3. Relevant 172 

information on the seven SURFRAD sites is listed in Table 2. 173 

Table 2. Detailed information of the seven SURFRAD sites. 174 

Site name Latitude Longitude  Land cover 

Penn State (PSU) 40.72033° N 77.93100° W Cropland/natural vegetation 

Fort Peck (FPK) 48.30798° N 105.10177° W Grass 

Bondville (BND) 40.05155° N 88.37325° W Cropland 

Table Mountain (TBL) 40.12557° N 105.23775° W Grass 

Desert Rock (DRA) 36.62320° N 116.01962° W Open shrub 

Sioux Falls (SXF) 43.73431° N 96.62334° W Cropland 

Goodwin Creek (GCM) 34.25470° N 89.87290° W Cropland/natural vegetation 

2.4 MODIS land cover product 175 

To evaluate the performance of the extended SW-TES method in detail, the MODIS land 176 

cover product was used to study the consistency of the retrieved LST with the referenced LST 177 

for each land cover type separately. In this study, the annually published IGBP classification 178 

layer in the MODIS land cover climate modeling grid product (MCD12C1) was introduced. 179 
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According to the user guide (Sulla-Menashe and Friedl, 2018), the MCD12C1 product is 180 

provided with a pixel size of 0.05° × 0.05° by spatially aggregating and re-projecting the tiled 181 

MODIS land cover type product (MCD12Q1). According to previous studies, the MCD12Q1 182 

product was created using supervised classification of MODIS reflectance data, with an overall 183 

accuracy of 73.6% for the C6 product (Friedl et al., 2010; Sulla-Menashe et al., 2019). 184 

Following the IGBP scheme, the land surface was classified into 17 types (Fig. 1).  185 

 186 

Fig. 1. Global land cover types according to the IGBP layer in MCD12C1 C6 product for the year 2018. 187 

However, such a detailed classification is not necessary for evaluating the performance of 188 

the extended LST retrieval method. Therefore, similar land cover types were merged in this 189 

study (Table 3). Then, the consistency of the retrieved LST with the MODIS LST product was 190 

separately investigated for each of the land cover types in Section 4.2. Another advantage of 191 

combining similar land cover types is that it avoids the insufficiency of valid pixels regarding 192 

some of the land cover types of the Earth’s surface, such as the deciduous needleleaf forest, 193 

urban and built-up lands, etc. 194 
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Table 3. Legends of the 17 original MODIS IGBP land cover types and the merged land cover 195 

types used in this study. 196 

Original MODIS IGBP land cover type Merged land cover type 

Evergreen needleleaf forests 

Forests 

Evergreen broadleaf forests 

Deciduous needleleaf forests 

Deciduous broadleaf forests 

Mixed forests 

Closed shrublands 

Shrublands 

Open shrublands 

Woody savannas 

Savannas 

Savannas 

Grasslands Grasslands 

Permanent wetlands Wetlands 

Permanent snow and ice Snow/Ice 

Water bodies Water 

Croplands 

Croplands 

Cropland/natural vegetation mosaics 

Urban and built-up lands Urban 

Barren Barren 

2.5 Global climate classification map 197 

To investigate the potential impact of climate type on the performance of the extended SW-198 
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TES method, a Köppen-Geiger climate classification map was introduced (Beck et al., 2018). 199 

According to previous studies (Kriticos et al., 2012; Peel et al., 2007), the Köppen-Geiger 200 

system classifies the global climate into five main climate types (i.e., tropical, arid, temperate, 201 

cold, and polar) and 30 sub-types (Table 4). The map is generated according to the air 202 

temperature and precipitation data of the world using a threshold-based method (Beck et al., 203 

2018). The Köppen-Geiger climate classification map used in this study was derived at a spatial 204 

resolution of 1-km by combining climatic air temperature and precipitation data from multiple 205 

independent sources, as shown in Fig. 2 (Beck et al., 2018, 2020). The spatial resolution was 206 

unprecedented compared to previous versions (Beck et al., 2018). Moreover, the topographic 207 

effects were also corrected explicitly in this version, which could provide more accurate results 208 

in mountainous areas (Beck et al., 2018). 209 

 210 

Fig. 2. Global Köppen-Geiger climate classification map (referring to Table 4 for abbreviations of each sub-211 

classes). 212 
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Table 4. Overview of the Global Köppen-Geiger climate classes. 213 

Main classes First sub-classes Second sub-classes Abbreviation 

Tropical 

- Rainforest Af 

- Monsoon Am 

- Savannah Aw 

Arid 

Desert 
Hot BWh 

Cold BWk 

Steppe 
Hot BSh 

Cold BSk 

Temperate 

Dry summer 

Hot summer Csa 

Warm summer Csb 

Cold summer Csc 

Dry winter 

Hot summer Cwa 

Warm summer Cwb 

Cold summer Cwc 

No dry season 

Hot summer Cfa 

Warm summer Cfb 

Cold summer Cfc 

Cold 

Dry summer 

Hot summer Dsa 

Warm summer Dsb 

Cold summer Dsc 

Very cold winter Dsd 

Dry winter 

Hot summer Dwa 

Warm summer Dwb 

Cold summer Dwc 

Very cold winter Dwd 

No dry season 

Hot summer Dfa 

Warm summer Dfb 

Cold summer Dfc 

Very cold winter Dfd 

Polar 
- Tundra ET 

- Frost EF 
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3. Methodology 214 

3.1 Extension of the SW-TES method to different local viewing zenith angles 215 

In the study by Zheng et al. (2019), a procedure was first designed to select specific TIR 216 

channel pairs that are eligible to recover accurate ground brightness temperature using only 217 

satellite measurements based on an SW-like equation. Then, the TES algorithm was introduced 218 

to separate the LST and LSE from the recovered ground brightness temperatures. Finally, the 219 

LST could be retrieved from satellite TIR measurements directly without knowing both 220 

atmospheric information and LSE on the basis of the elaborately selected channel configuration. 221 

In their study, five channels centered at 8.6, 9.0, 10.4, 11.3, and 12.5 μm with the full width at 222 

half maximum (FWHM) of 0.1 μm were suggested to obtain the ground brightness temperature 223 

of three channels centered at 8.6, 9.0, and 10.4 μm (Zheng et al., 2019). However, the 224 

coefficients of the SW-like equation provided in their study were only applicable to quasi-nadir 225 

observations. According to Table 1, the largest viewing angle of AIRS could be up to 49.5° 226 

from the nadir, resulting in a local viewing zenith angle (θv) near 60°. The viewing angle of 227 

other instruments, such as MODIS, was even larger. Extensions, therefore, are needed before 228 

applying to observations on a global scale. 229 

In this study, the SW-like equation was optimized following previous studies to suppress 230 

the angular effects during ground brightness temperature retrieval (Wan and Dozier, 1996). 231 

Specifically, the coefficients in Eq. (1) were obtained as a function of the local viewing zenith 232 

angle, rather than constants (Niclos et al., 2011; Pérez-Planells et al., 2021). Similar to the 233 

traditional SW method, these coefficients could be determined by regression analysis of the 234 

simulation data (Wan and Dozier, 1996). First, the simulated satellite TIR measurements for 235 
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seven local viewing zenith angles (1 / cos(θv) = 1.00, 1.15, 1.30, 1.45, 1.60, 1.75, and 1.90, with 236 

θv = 0.00°, 29.59°, 39.72°, 46.40°, 51.32°, 55.15°, and 58.24°, respectively) were generated. 237 

Then, the ground brightness temperature at different local viewing zenith angles could be 238 

acquired feasibly using this angle-dependent SW-like equation [Eq. (1)]. 239 

   
2

0 1 2 3( ) ( ) ( ) ( )v v vgi i i j v i jT A A T A T T A T T          (1) 

where giT  is the ground brightness temperature of channel i. 0 ( )vA  , 1( )vA  , 2 ( )vA  , and 240 

3( )vA   are the regression coefficients that vary with the local viewing zenith angle θv. Here, i 241 

and j represent the channels. iT  and jT  are the brightness temperatures of channels i and j, 242 

respectively. 243 

Finally, the TES method could be applied to separate the LST and LSE based on the 244 

retrieved ground brightness temperatures. 245 

3.2 Simulation dataset 246 

To generate the simulation dataset for determining the coefficients of the SW-like equation 247 

[Eq. (1)], the five suggested channel response functions in the study by Zheng et al. (2019) were 248 

introduced. According to their algorithm sensitivity analysis, the performance of the SW-TES 249 

method decreased as the channel width (full width at half maximum, FWHM) and channel noise 250 

(noise equivalent differential temperature, NEΔT) increased (Zheng et al., 2019). Based on 251 

numerical simulations, the channel FWHM and NEΔT of possible future sensors should be 252 

respectively limited within 0.1 μm and 0.1 K if the LST retrieval accuracy of 1.0 K is required. 253 

For those sensors with channel FWHM <0.6 μm, the LST could be retrieved with RMSE <1.2 254 

K and <1.5 K provided that the channel NEΔT is <0.1 K and <0.2 K, respectively (Zheng et al., 255 
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2019). In this study, considering that the spectral resolution of AIRS is ultra-fine, the ideal 256 

channel FWHM of 0.1 μm was therefore used in the following calculations (Fig. 3). Together 257 

with different ground-measured LSE spectra, atmospheric profiles, LST inputs, and sensor 258 

viewing angles, the satellite-observed channel brightness temperature under various imaging 259 

conditions could be simulated using the MODTRAN (MODerate resolution atmospheric 260 

TRANsmission) computer code, version 5.2.2 (Berk et al., 2004; Berk et al., 2006). 261 

 262 

Fig. 3. Channel response functions of the five required channels. 263 

In this study, the TIGR (The Institute for Genomic Research, 264 

http://ara.abct.lmd.polytechnique.fr/) database (Chevallier et al., 1998) was introduced as the 265 

MODTRAN inputs to generate simulation dataset of various atmospheric conditions (Chen et 266 

al., 2017; Ren et al., 2020; Wang et al., 2019b). After quality check and cloudy-sky removal, 267 

946 atmospheric profiles remained which were considered to be redundant because many of 268 

them were similar to each other (Fig. 4). Therefore, it is necessary to select different 269 

atmospheric profiles to make the total atmospheric water vapor content (WVC) and the bottom 270 

layer temperature (T0) uniformly distributed from dry to moist and from cold to warm, 271 

respectively. Following these criteria, a subset with a moderate sample number of 98 was 272 

selected and believed to be representative enough for determining the coefficients of the SW-273 
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like equation. As shown in Fig. 4, the selected 98 atmospheric profiles have varying 274 

characteristics with the water vapor content ranging from 0.09 g/cm2 to 6.15 g/cm2 and the 275 

bottom layer temperature (T0) ranging from 236.25 K to 311.95 K. 276 
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Fig. 4. Scatter plot of bottom layer temperature and total atmospheric water vapor content of the original 946 278 

atmospheric profiles (represented by circles) and the selected 98 ones (represented by triangles). 279 

The input LST was then assigned to vary with an interval of 5 K from T0 – 5 K to T0 + 15 280 

K if T0 ≥ 280 K and from T0 – 5 K to T0 + 5 K if T0 < 280 K. Additionally, the emissivity dataset 281 

used in the study of Zheng et al. (2019) was refined to be more representative at the global scale. 282 

First, the soil samples with similar characteristics were removed. Second, the vegetation 283 

samples were expanded to cover typical dry and fresh vegetations. Third, the typical rock 284 

samples were included to cover the three rock types (i.e. igneous, sedimentary, and 285 

metamorphic). Forth, the manmade samples were introduced to include typical paving, 286 

constructing, and roofing materials. In addition, the number of each kind of emissivity sample 287 

was determined referring to the study of Ren et al. (2020). Finally, a new dataset of 83 LSE 288 

spectra, containing 30 soil, 15 vegetation, 8 water/snow/ice, 25 rock, and 5 manmade samples 289 

were selected from the ECOSTRESS library (https://speclib.jpl.nasa.gov/) to represent different 290 
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Earth surface coverages globally (Fig. 5). 291 
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Fig. 5. LSE spectra of the (a) 30 soil samples, (b) 15 vegetation samples, (c) 8 water/snow/ice samples, (d) 294 

25 rock samples, and (e) 5 man-made samples. 295 

Finally, under each of the seven local viewing zenith angles (0.00°, 29.59°, 39.72°, 46.40°, 296 

51.32°, 55.15°, 58.24°), a dataset containing 37,848 cases could be simulated using the 297 

parameters described above. 298 

3.3 LST retrieval with different local viewing zenith angle 299 

Based on the simulation dataset described in Section 3.2, the coefficients of Eq. (1) for each 300 

local viewing zenith angle could be obtained using the least-squares fitting method separately. 301 

As shown in Fig. 6, all the coefficients varied almost linearly as functions of the secant local 302 

viewing zenith angle. With increasing local viewing zenith angle, 0 ( )vA  , 2 ( )vA  , and 3( )vA   303 

also increased, while 1( )vA   decreased, implying that it is necessary to extend the SW-TES 304 
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method for its application to global TIR measurements with different viewing angles. 305 
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Fig. 6. Coefficients of Eq. (1) as functions of the secant local viewing zenith angle regarding to (a) 0 ( )vA  , 308 

(b) 1( )vA  , (c) 2 ( )vA  , and (d) 3( )vA  . 309 

Using the coefficients obtained above, the ground brightness temperature of the three 310 

channels centered at 8.6, 9.0, and 10.4 μm could be obtained based on Eq. (1). Then, the TES 311 

method was introduced to separate the LST and LSE. This method combines three modules 312 

(Gillespie et al., 1998): the NEM algorithm, used to provide a first guess of the temperature and 313 

the emissivity spectrum; the Ratio algorithm, used to preserve shape of the emissivity spectrum; 314 

and the MMD (maximum-minimum difference) algorithm, used to find the accurate 315 
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temperature and emissivity by relating the minimum emissivity ( min ) to the spectra contrast 316 

(MMD). Therefore, an empirical relationship between min  and MMD is very important and 317 

required in the TES method (Hulley and Hook, 2011). On the basis of previously selected 83 318 

emissivity spectra, this min  ~ MMD relationship was adjusted for the spectra response 319 

functions of the three relevant channels with an uncertainty of about 0.008 (Fig. 7). 320 
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Fig. 7. The empirical relationship between min  and MMD, based on the selected 83 emissivity spectra 322 

samples. 323 

To provide an overall look of the extended SW-TES method, a brief illustration is presented 324 

in Fig. 8. 325 
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Fig. 8. Illustration of the extended SW-TES method for global land surface temperature retrieval. 327 

Using the simulation dataset above, the uncertainty of the extended SW-TES method could 328 

be accessed. Firstly, the simulated satellite observations under each of the seven local viewing 329 

zenith angles were separately inputted into the extended SW-TES method. The LST retrievals 330 

then were compared with the MODTRAN LST inputs used for generating the simulated dataset 331 

under each viewing zenith angle. As shown in Fig. 9a, the root-mean-square error (RMSE) of 332 

retrieved LST increased by about 0.4 K from 0.94 K to 1.37 K, as the secant local viewing 333 

zenith angle increased from 1.0 to 1.9. When the simulations and the relevant LST retrievals 334 

regarding the seven local viewing zenith angles were considered together, the overall LST 335 

retrieval uncertainty was approximately 1.16 K, as shown in Fig. 9b. Although the increase of 336 

local viewing zenith angle affects the performance of the extended SW-TES method, the overall 337 

LST retrieval accuracy was still acceptable according to the simulation results. 338 
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Fig. 9. Land surface temperature (LST) retrieval accuracy on the basis of simulation dataset. (a) RMSE of 340 

retrieved LST as a function of the secant local viewing zenith angle. (b) Residual histograms of retrieved LST 341 

when considering the simulations of the seven viewing zenith angles all together. 342 

4. Application to real satellite data 343 

4.1 LST retrieval from real AIRS data 344 

Currently, there are no operational satellites providing multispectral TIR observations of 345 

the five suggested channels. In this study, to apply the extended SW-TES method to real satellite 346 

data, theoretical space measurements were first generated by convoluting the five artificial 347 

channel response functions (Fig. 3) with the hyperspectral radiance of the AIRS instrument 348 

onboard the Aqua platform. Observations of the entire Earth’s land surface, obtained in four 349 

months (July 2018, October 2018, January 2019, and April 2019), representing the four seasons, 350 

were collected and processed. 351 

To apply the angle-dependent SW-like equation [Eq. (1)] to real satellite data, a look-up 352 

table of the coefficients for different viewing angles is required. Because the coefficients in Eq. 353 

(1) varied smoothly with the viewing zenith angle, according to Fig. 6, it was sufficient to 354 
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establish this look-up table using the coefficients at the seven viewing zenith angles described 355 

in Section 3.3. The coefficients at any other viewing angle could thus be linearly interpolated 356 

according to this look-up table. Then, the ground brightness temperature of each pixel could be 357 

easily obtained. Consequently, LST could be retrieved without knowing any prior knowledge 358 

after applying the TES algorithm. Finally, the LST retrieval accuracy was assessed through 359 

cross-validation with the MODIS LST product and direct validation with the in-situ LST 360 

measurements. The detailed processing flow for applying the extended SW-TES method to real 361 

AIRS data is shown in Fig. 10. 362 
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 363 

Fig. 10. The flow diagram of applying the extended SW-TES method to real AIRS data. 364 

4.2 Intercomparison with MYD11 LST product 365 

4.2.1 Intercomparison residuals for daytime and nighttime observations 366 

Following the processing flow shown in Fig. 10, the extended SW-TES method was 367 
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implemented to retrieve LST globally from the real AIRS data. Then, the well-validated 368 

MODIS MYD11_L2 LST product was considered as a reference to evaluate the global LST 369 

retrieval results. Based on the quality control layers distributed along with the MYD11_L2 LST 370 

product, only cloudless pixels with announced LST retrieval accuracy which were better than 371 

1.5 K were retained. Moreover, considering that the pixel size of MODIS is around 1.0 km, 372 

while that of AIRS is 13.5 km, the valid MODIS LST pixels were first aggregated to match the 373 

AIRS spatial resolution using the area-weighted pixel aggregation method (Gao et al., 2012; 374 

Qian et al., 2013). For example, all the MODIS LST pixels inside or overlapped with the 375 

corresponding AIRS pixel footprint were weighted and aggregated according to their 376 

overlapping areas. Please note that the pixel size varies along with the view angles for both 377 

instruments. Therefore, the actual coordinates of the four vertexes of each AIRS and MODIS 378 

pixel were calculated to determine their accurate overlapping areas. In addition, for each AIRS 379 

pixel, the corresponding MODIS LST product was aggregated only if all the involved MODIS 380 

pixels had valid LST values and the standard deviation was <1.5 K. We applied these two 381 

criteria to ensure the representativeness of the aggregated MODIS LST on the AIRS pixel scale 382 

and to guarantee the quality and homogeneity of the selected pixel pairs for intercomparison. 383 

The discrepancies between the retrieved LST and aggregated MODIS MYD11_L2 LST at 384 

the global scale for the four months were then calculated and analyzed (Fig. 11). Considering 385 

that the thermal environment should be more homogeneous at nighttime than during the daytime 386 

owing to the absence of solar loadings, results were separately generated for daytime and 387 

nighttime observations. It was observed that the LST retrieval results were overestimated during 388 

the daytime with the RMSE of 2.26 K and bias of 0.59 K when using the MODIS MYD11_L2 389 
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LST product as a reference (Fig. 11a). For nighttime observations, the LST retrieval results were 390 

much more consistent with the MODIS LST product, with an RMSE of 1.33 K (Fig. 11b), which 391 

was close to the algorithm uncertainty of the extended SW-TES method, as shown in Fig. 9b. 392 

Besides, the LST retrieval uncertainty (including RMSE and Bias) were also calculated as 393 

functions of MODIS LST (Fig. 11). As the LST increased, results showed that the RMSE of 394 

retrieved LST gradually increased during the daytime (Fig. 11c) while decreased during the 395 

nighttime (Fig. 11d). But the bias of retrieved LST decreased with increasing LST during both 396 

daytime and nighttime. Since the thermal homogeneity of land surface may decrease with 397 

increasing the LST during the daytime because of solar heating process. Therefore, the thermal 398 

heterogeneity of the land surface was suspected to be the main factor affecting the 399 

intercomparison results. 400 
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 404 

Fig. 11. Residual histograms of retrieved land surface temperature (LST) intercomparing with MODIS 405 

MYD11_L2 LST product (the former minus the latter) for global observations acquired during (a) the daytime 406 

and (b) the nighttime; and LST retrieval uncertainty as functions of MODIS LST for global observations 407 

acquired during (c) the daytime and (d) the nighttime. 408 

A global distribution map of the discrepancy between the retrieved LST and aggregated 409 

MODIS LST products was also produced for investigation. The RMSE and bias for each pixel 410 

were calculated if more than two valid LST retrieval results were available in the period of the 411 

selected four months. Moreover, similar to the processes above, the statistical analysis for the 412 

daytime and nighttime observations was done separately.  413 

According to the global RMSE distribution map for daytime observations (Fig. 12a), a large 414 

difference between the retrieved LST and MODIS LST products was found in some places, 415 

such as the regions in the east of the Caspian Sea, south of the Arabian Peninsula, north and 416 

southeast of Australia, and central Africa. However, during the nighttime, almost all pixels had 417 

relatively smaller LST retrieval RMSE and the magnitude generally did not vary with 418 
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geolocation (Fig. 12b). The spatial continuity of the global RMSE distribution map for 419 

nighttime observations was also better than that of daytime observations. According to the 420 

MODIS land cover product for 2018 (Fig. 1), the land surface of the above-mentioned regions 421 

was much more likely dominated by sparse shrublands and grasslands. Therefore, the severe 422 

surface thermal heterogeneity was considered as the most probable reason for the large 423 

discrepancies in these regions during the daytime. 424 

 425 

       426 

Fig. 12. RMSE distribution map of the retrieved land surface temperature (LST) intercomparing with the 427 

aggregated MYD11_L2 LST product for global observations acquired during (a) the daytime and (b) the 428 

nighttime. 429 

Fig. 13 shows that the distribution pattern of the global bias coincided with the RMSE 430 

distribution maps. The results showed that the retrieved LST was slightly underestimated 431 

compared with the aggregated MODIS LST product in desert areas (such as the regions of 432 

Sahara, Taklimakan, and Arabian) and overestimated in the rest areas for both daytime and 433 

nighttime observations. To investigate the possible reason that caused the LST underestimation 434 

in these areas, the retrieved LSE was compared with those used in the MODIS MYD11_L2 LST 435 

product. However, the variation of the surface emissivity spectra around 8.6 μm is quite large 436 

and the LSE for MODIS channel 29 is not provided by the MYD11_L2 product. In addition, 437 
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none of the five channels used in this study overlap with MODIS channel 32 when evaluated 438 

using their channel response functions. Therefore, we went on to compare the retrieved LSE for 439 

the 10.4 μm channel and the LSE from MODIS channel 31. We corrected for the potential 440 

impact of differences in the channel response functions by fitting the retrieved LSE for 10.4 μm 441 

channel to that of MODIS channel 31 using linear regression. The adaption coefficients were 442 

obtained using the emissivity dataset used in this study. Finally, we used this data to produce 443 

the bias distribution maps for the retrieved and adapted LSE values for the 10.4 μm channel 444 

using the aggregated MYD11_L2 LSE for MODIS band 31 as a reference (Fig. 14). Results 445 

showed that the retrieved LSE in some regions of the Sahara, Arabian, and the Taklimakan was 446 

a bit larger than the corresponding MODIS LSE product during both daytime and nighttime. 447 

But in other regions, it was generally smaller than the MODIS LSE. This may be one of the 448 

reasons that the retrieved LST was slightly underestimated in some desert areas comparing with 449 

the MODIS MYD11_L2 LST product while overestimated in the rest areas. Moreover, it should 450 

be noticed that the LST retrieval accuracy regarding to bare soil pixels in the C6 MYD11_L2 451 

product was generally lower than that of other land cover types, the absolute uncertainty of 452 

which was validated to be around ±2.0 K according to previous studies (Duan et al., 2017; Duan 453 

et al., 2018; Wan, 2014). This may also influence the comparison results. 454 

 455 

       456 
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Fig. 13. Bias distribution map of the retrieved land surface temperature (LST) intercomparing with the 457 

aggregated MYD11_L2 LST product (the former minus the latter) for global observations acquired during (a) 458 

the daytime and (b) the nighttime. 459 

 460 

 461 

Fig. 14. Bias distribution map of the retrieved land surface emissivity (LSE) for the 10.4 μm channel 462 

intercomparing with the aggregated MYD11_L2 LSE for MODIS band 31 (the former minus the latter) for 463 

global observations acquired during (a) the daytime and (b) the nighttime. Please note that the retrieved LSE 464 

for the 10.4 μm channel has been adapted to the response function of MODIS channel 31 by linear regression. 465 

These results indicated that the discrepancy between the retrieved LST and MODIS 466 

MYD11_L2 LST product was much smaller for nighttime observations than for daytime 467 

observations. During the nighttime, because of the absence of solar loading, the LST is 468 

considered to be more spatially homogeneous and closer to the effective air temperature. Thus, 469 

less uncertainty was introduced in both the aggregated MODIS MYD11_L2 LST product and 470 

the retrieved LST. Therefore, the retrieved LST coincided better with the MODIS MYD11_L2 471 

LST product during the nighttime than during the daytime. 472 

4.2.2 Intercomparison residuals for different seasons 473 

To evaluate the influence of seasons on the LST retrieval results, the discrepancy between 474 
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the retrieved LST and MODIS LST products was calculated daily. Because massive cloud 475 

coverage usually exists globally, the number of available pixel pairs is limited to a single day. 476 

Thus, the results obtained in the same month were combined to produce the statistics of the LST 477 

retrieval residuals. Moreover, one should notice that the four seasons are opposite in the two 478 

hemispheres of the Earth. Thus, the results for the four months (July 2018, October 2018, 479 

January 2019, and April 2019) were rearranged accordingly. In addition, the statistics were 480 

made for daytime and nighttime observations separately (Fig. 15). 481 

During the daytime, the results showed that the RMSE (Fig. 15a) and bias (Fig. 15b) 482 

between the retrieved LST and MODIS LST products increased as the season changed from 483 

spring to summer and then decreased in autumn and winter. The magnitude of RMSE was <3.0 484 

K, while the bias was <1.0 K based on the results during the four seasons. In autumn and winter, 485 

the RMSE and bias decreased further to <2.0 K and <0.5 K, respectively. In addition, the 486 

positive biases indicated that the retrieved LST was overestimated by taking the MODIS LST 487 

product as a reference for daytime observations in the four seasons. For nighttime observations, 488 

the discrepancy between the retrieved LST and MODIS LST product was much smaller than 489 

the daytime results. The RMSEs for all nighttime observations were <1.5 K, and no obvious 490 

variation in pattern was found as the seasons changed (Fig. 15a). Moreover, the magnitudes of 491 

LST retrieval biases during the nighttime were all <0.2 K, which were close to zero. Both RMSE 492 

and bias implied that the LST retrieval results were much closer to the MODIS MYD11_L2 493 

LST product in the nighttime than during the daytime. However, it should be noted that negative 494 

biases occurred in the results during the nighttime in autumn, as shown in Fig. 15b. 495 
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 496 

Fig. 15. (a) RMSE and (b) Bias of the retrieved land surface temperature (LST) intercomparing with the 497 

MYD11_L2 LST product (the former minus the latter) for different seasons at the global scale. The spring, 498 

summer, autumn, and winter refer to results in April 2019, July 2018, October 2018, and January 2019, 499 

respectively, for the northern hemisphere, while refer to results in October 2018, January 2019, April 2019, 500 

and July 2018, respectively, for the southern hemisphere. Therefore, the results for these four months were 501 

rearranged accordingly for statistical analysis. 502 

In addition, variations in the RMSE and bias with latitude were investigated for different 503 

months (Fig. 16). Statistics were made for a latitude interval of five degrees. During the daytime, 504 

with a decrease in latitude from 80° N to 20° N, the RMSE and bias for the observations in July 505 

2018 first increased and then decreased. When the latitude approached the equator, the RMSE 506 

and bias increased again, but gradually decreased as the latitude continually decreased to the 507 

South Pole. As for the observations in January 2019, the varying pattern of RMSE and bias was 508 

reversed as the latitude increased from the South Pole to the North Pole. The results of the 509 

spring and autumn were generally between summer and winter. However, during the nighttime, 510 

the LST retrieval RMSE of the four months increased gradually with increasing latitude from 511 

the South Pole to the North Pole, and no other obvious variations were found. But there was a 512 
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decrease in the biases with respect the latitude between 20° N and 40° N for both daytime and 513 

nighttime observations. This is believed to be relevant to desert regions, as shown in Fig. 13. 514 

Overall, the retrieved LST during the nighttime coincided better with the MODIS LST 515 

product than the daytime. However, the discrepancy between the retrieved LST and MODIS 516 

LST product during summer was generally much larger than that in other seasons. In addition, 517 

most of the biases were found to be positive, indicating that the retrieved LST was 518 

overestimated compared with the MODIS LST product under most circumstances. According 519 

to the sensitivity analysis provided by Zheng et al. (2019), LST retrieval bias increases with an 520 

increase in the noise-equivalent differential temperature (NEΔT). Because of the quadratic term 521 

introduced in the SW-like equation, the noise always contributes positively to the LST retrievals. 522 

This could probably explain the overestimation of LST retrievals by the proposed method. 523 

   524 

 525 

Fig. 16. RMSE and bias of the retrieved land surface temperature (LST) intercomparing with the MYD11_L2 526 

LST product as functions of latitude (the former minus the latter) during (a) the daytime, (b) nighttime. 527 
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4.2.3 Intercomparison residuals for different land cover types 528 

To further study the performance of the proposed LST retrieval method, statistics of the 529 

discrepancy between the retrieved LST and MODIS MYD11_L2 LST products were processed 530 

separately for different land cover types. The MCD12C1 product published in 2018 was 531 

introduced to identify the land cover type for each pixel. Because the pixel size of the retrieved 532 

LST was larger than that of the MCD12C1 product, the land cover type possessed by the 533 

majority of MODIS pixels inside the corresponding AIRS pixel’s footprint was taken as the 534 

classification result of the retrieved LST pixel. Moreover, if the MODIS pixel number of the 535 

dominated land cover type inside the corresponding AIRS pixel’s footprint is <60%, this pixel 536 

would be removed from the following statistics. 537 

During the daytime, it was shown that the RMSE of LST retrievals was <2.5 K for different 538 

land cover types, except for shrublands and grasslands, with a magnitude of approximately 3.0 539 

K (Fig. 17a). Compared with the daytime results, the RMSE was <1.4 K for all land cover types 540 

during the nighttime, except for the water and wetlands (Fig. 17a). Nevertheless, the LST 541 

retrieval RMSE of nighttime observations over the water and wetlands were about 1.6 K and 542 

2.2 K respectively, which were still lower than most daytime results. Moreover, as indicated by 543 

the statistics of bias, the retrieved LST was underestimated compared with the MODIS 544 

MYD11_L2 LST product for barren and overestimated for the remaining land cover types (Fig. 545 

17b). 546 
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 547 

Fig. 17. (a) RMSE and (b) Bias between the retrieved land surface temperature (LST) and MYD11_L2 LST 548 

product (the former minus the latter) for different land cover types. Observations acquired in the four months 549 

were merged to generate the statistics. The meaning of abbreviations follows: All=All land cover types 550 

together, For=Forests, Shr=Shrublands, Sav=Savannas, Gra=Grasslands, Wat=Water, Cro=Croplands, 551 

Bar=Barren, Wet=Wetlands. 552 

Variations in the LST retrieval RMSE for each land cover type as a function of season are 553 

also shown in Fig. 18. During the daytime, the results showed that the RMSE of the retrieved 554 

LST generally increased first and then decreased as the season changed from spring to winter 555 

for most land cover types (Fig. 18a). However, a large discrepancy was found during the 556 

summer for grasslands in the northern hemisphere (mainly in central Africa according to Fig. 557 

13), with RMSE >4.0 K, and for shrublands in the southern hemisphere (mainly in Australia 558 

according to Fig. 13), with RMSE >8.0 K. This may be due to three reasons. First, radiation 559 

from vegetation and bare soil contribute to satellite TIR observations because the shrublands 560 

and grasslands are usually covered by sparse vegetation. Because the surface heating speed is 561 

quite different between vegetation and bare soil, the surface heterogeneity should therefore 562 

increase during the daytime in hot seasons. Consequently, the upscaling error in the aggregated 563 
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MODIS LST product may also increase. Second, the LSE was retrieved simultaneously with 564 

the LST in the extended SW-TES method, and it was assigned according to the land cover types. 565 

For heterogeneous land surfaces, the LSE may be generated differently using these two 566 

strategies. This may also introduce additional biases in the comparison results. As shown in Fig. 567 

18, during the daytime of summer, the RMSE between the retrieved LSE for the 10.4 μm 568 

channel and the aggregated LSE for the MODIS band 31 for grasslands is the largest in the 569 

northern hemisphere. In the southern hemisphere, the retrieved LSE for the 10.4 μm channel 570 

for shrublands, grasslands, and wetlands are generally more different from the aggregated LSE 571 

for the MODIS band 31 than other land cover types. However, the LSE retrieval RMSE using 572 

the MODIS product as a reference is <0.02, which generally could not lead to an LST retrieval 573 

discrepancy of >4.0 K. Therefore, the third reason may be that the atmospheric correction using 574 

the SW-like equation (1) was failed under these conditions. 575 

As for the nighttime observations (Fig. 18b), the retrieved LST in both hemispheres was 576 

close to the MODIS LST product for all land cover types in all seasons, with RMSE <2.0 K, 577 

except the results for water and wetlands in some seasons of the northern hemisphere. One 578 

reason for the slightly larger RMSE under this condition may be that pure pixels are rare for 579 

water and wetlands during the winter in the northern hemisphere. In addition, the thermal 580 

heterogeneity of the land surface may increase because of the freezing water and snow cover in 581 

winter. This is perhaps another reason for the relatively larger RMSE for these land cover types 582 

during winter in the northern hemisphere. Nevertheless, as shown in Fig. 18b, the magnitude of 583 

RMSE was less than 1.5 K in most cases, indicating that the performance of the extended SW-584 

TES method was consistent with the MODIS MYD11_L2 LST product. 585 
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 586 

 587 

 588 

Fig. 18. RMSE of retrieved land surface temperature (LST) intercomparing with MYD11_L2 LST product 589 

as a function of season for different land cover types separately for observations during (a) the daytime, and 590 

(b) the nighttime; and the RMSE between the retrieved land surface emissivity (LSE) for the 10.4 μm channel 591 

and the aggregated MYD11_L2 LSE for MODIS band 31 as a function of season for different land cover 592 

types separately for observations during (c) the daytime, and (d) the nighttime. Please note that the retrieved 593 

LSE for 10.4 μm channel has been adapted to the response function of MODIS channel 31 by linear regression. 594 

The spring, summer, autumn, and winter refer to results in April 2019, July 2018, October 2018, and January 595 
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2019, respectively, for the northern hemisphere, and refer to results in October 2018, January 2019, April 596 

2019, and July 2018, respectively, for the southern hemisphere. 597 

The biases between the retrieved LST and MODIS MYD11_L2 LST products were also 598 

calculated and are shown in Fig. 19. Except for the results of barren areas, the retrieved LST 599 

was overestimated compared with the MODIS MYD11_L2 LST product for both daytime and 600 

nighttime observations during all seasons in the two hemispheres. Statistics showed that the 601 

biases were generally larger during the daytime than during the nighttime. As shown in Fig. 19a, 602 

the biases were almost all >1.0 K for different land cover types, except for the barren during the 603 

daytime, while the magnitude was <1.0 K under most circumstances during the nighttime. The 604 

largest biases for daytime observations occurred in summer in the grasslands in the northern 605 

hemisphere (≈4.2 K) and shrublands in the southern hemisphere (≈7.8 K). The main reason for 606 

this observation may be the larger thermal heterogeneity of shrublands during daytime caused 607 

by solar loading, as explained above. For nighttime observations, the largest bias occurs in 608 

winter with respect to the wetlands in the northern hemisphere (≈2.2 K) and during autumn in 609 

the built-up lands/barren in the southern hemisphere (≈-1.2 K). However, the magnitude was 610 

still smaller than in most cases during daytime. 611 
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 612 

 613 

Fig. 19. Bias of retrieved land surface temperature (LST) intercomparing with MYD11_L2 LST product (the 614 

former minus the latter) as a function of season for different land cover types separately. The statistics were 615 

processed for observations acquired in the (a) daytime, and (b) nighttime. The spring, summer, autumn, and 616 

winter refer to results in April 2019, July 2018, October 2018, and January 2019, respectively, for the northern 617 

hemisphere, and refer to results in October 2018, January 2019, April 2019, and July 2018, respectively, for 618 

the southern hemisphere. 619 

Overall, these results suggested that the strong solar loading during the daytime could have 620 

a considerable influence on the comparison results. The relatively smaller RMSE and bias for 621 

nighttime observations than the daytime observations implied that thermal heterogeneity was 622 

likely the main reason for the difference between the retrieved LST and MODIS MYD11_L2 623 

LST product. 624 

4.2.4 Intercomparison residuals for different climate types 625 

Climate type may also impact the performance of the extended SW-TES method. Statistics 626 
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of the discrepancy between retrieved LST and MODIS MYD11_L2 LST products were 627 

processed separately for different climate types. In this section, the RMSE and bias of retrieved 628 

LST with MODIS MYD11_L2 LST product as a reference were calculated for each of the five 629 

main climate types classified by the Köppen-Geiger system (Fig. 2 and Table 4). 630 

As shown in Fig. 20, as the climate transited from “tropical” to “polar,” the RMSE of 631 

retrieved LST gradually decreased from 2.4 K to 1.9 K for daytime observations, while the 632 

RMSE increased from 1.1 K to 1.9 K for nighttime observations (Fig. 20a). In addition, the 633 

biases for observations of the arid climate type were generally smaller than those of other 634 

climate types. The bias regarding the results of the arid climate type during the nighttime was 635 

even below zero (Fig. 20b). Considering that only the LST retrieval biases for “barren” were 636 

negative, as shown in Fig. 17, large overlaps must exist between the areas covered by the land 637 

cover type “barren” and the climate type “arid.”  638 

 639 

Fig. 20. (a) RMSE and (b) Bias between the retrieved land surface temperature (LST) and MYD11_L2 LST 640 

product (the former minus the latter) for different climate types. Observations acquired in the four months 641 

were merged to generate the statistics. The meaning of abbreviations follows: All=All climate types together, 642 

Tro=Tropical, Ari=Arid, Tem=Temperate, Col=Cold, Pol=Polar. 643 
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Similar to land cover types, variations in the LST retrieval RMSE for each climate type as 644 

a function of season were also investigated, as shown in Fig. 21. For daytime observations (Fig. 645 

21a), it was observed that the LST retrieval RMSE varied much more considerably during 646 

spring and summer in both the hemispheres. During autumn and winter, the RMSE of the 647 

retrieved LST was almost the same referring to the MODIS MYD11_L2 LST product. This was 648 

perhaps caused by the severe thermal heterogeneity of the land surface during the daytime of 649 

hot seasons. The largest value was observed in spring with respect to the tropical climate in 650 

northern hemisphere (≈4.0 K) and the arid climate in southern hemisphere (≈6.8 K). For all 651 

nighttime observations (Fig. 21b), the RMSE of the retrieved LST were <2.0 K, except for cold 652 

and polar climates during the winter. During the night, the highest values were observed in 653 

winter with respect to the cold climate in northern hemisphere (≈2.4 K) and the polar climate 654 

in southern hemisphere (≈2.1 K). Obviously, the LST retrieval RMSE during nighttime 655 

coincided with the MODIS MYD11_L2 LST product better than that during the daytime. 656 

 657 

 658 
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Fig. 21. RMSE of retrieved land surface temperature (LST) intercomparing with MYD11_L2 LST product 659 

as a function of season for different climate types. The statistics were processed for observations acquired in 660 

the (a) daytime, and (b) nighttime. The spring, summer, autumn, and winter refer to results in April 2019, 661 

July 2018, October 2018, and January 2019, respectively, for the northern hemisphere, and refer to results in 662 

October 2018, January 2019, April 2019, and July 2018, respectively, for the southern hemisphere. 663 

Fig. 22 showed that the variations in the LST retrieval bias for each climate type as a 664 

function of season. It was observed that the retrieved LST was overestimated compared with 665 

the MODIS MYD11_L2 LST product for almost all climate types during the daytime (Fig. 22a). 666 

However, during nighttime, the biases were negative for the arid climate in the northern 667 

hemisphere in all seasons and for the polar climate in the southern hemisphere, except winter 668 

(Fig. 22b). For most cases, the magnitude of bias was <2.0 K. But attention should be paid to 669 

the daytime results of tropical and temperate climates in the northern hemisphere, as well as the 670 

results of tropical and arid climates in the southern hemisphere, the magnitude of which could 671 

be larger than 3.0 K. 672 

 673 

 674 
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Fig. 22. Bias of retrieved land surface temperature (LST) intercomparing with MYD11_L2 LST product (the 675 

former minus the latter) as a function of season for different climate types. The statistics were processed for 676 

observations acquired in the (a) daytime, and (b) nighttime. The spring, summer, autumn, and winter refer to 677 

results in April 2019, July 2018, October 2018, and January 2019, respectively, for the northern hemisphere, 678 

and refer to results in October 2018, January 2019, April 2019, and July 2018, respectively, for the southern 679 

hemisphere. 680 

4.3 Intercomparison with MYD21 LST product 681 

To have a better understanding about the performance of the extended SW-TES method, 682 

the retrieved results were also compared with the MODIS MYD21_L2 product (Fig. 23-Fig. 683 

30). Our data showed that the LST retrieval RMSE was increased by approximately 0.4 K than 684 

that when using the MYD11_L2 LST as a reference for both daytime and nighttime 685 

observations at the global scale (Fig. 23). This bias indicated that the retrieved LST was 686 

underestimated by -0.97 K and -0.86 K for the daytime and nighttime observations, respectively 687 

(Fig. 23). In contrast, the retrieved LST was seen to be overestimated when compared with the 688 

MYD11_L2 LST products (Fig. 11). In fact, the MYD21_L2 LST product was shown to be 689 

slightly larger than the MYD11_L2 LST product for most cases according to previous studies 690 

(Hulley et al., 2016; Yao et al., 2020). This indicated that the LST retrieval results using the 691 

extended SW-TES method fell in between these two MODIS LST products for most situations 692 

when evaluated at the global scale. When considering the discrepancies between our LST 693 

retrievals and the MYD21_L2 LST product for different land cover types, we found that the 694 

desert areas had larger RMSE (Fig. 24) as the retrieved LST values for these regions was shown 695 
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to be underestimated (Fig. 25). One reason for this may be that the LSE for these regions was 696 

slightly overestimated (Fig. 26). 697 
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Fig. 23. Residual histograms of retrieved land surface temperature (LST) intercomparing with MYD21_L2 699 

LST product (the former minus the latter) for global observations acquired during (a) the daytime and (b) the 700 

nighttime. 701 

 702 

 703 

Fig. 24. RMSE distribution map of the retrieved land surface temperature (LST) intercomparing with the 704 

aggregated MYD21_L2 LST product for global observations acquired during (a) the daytime and (b) the 705 

nighttime. 706 

 707 

 708 
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Fig. 25. Bias distribution map of the retrieved land surface temperature (LST) intercomparing with the 709 

aggregated MYD21_L2 LST product (the former minus the latter) for global observations acquired during 710 

(a) the daytime and (b) the nighttime. 711 

 712 

 713 

Fig. 26. Bias distribution map of the retrieved land surface emissivity (LSE) for the 10.4 μm channel 714 

intercomparing with the aggregated MYD21_L2 LSE for MODIS band 31 (the former minus the latter) for 715 

global observations acquired during (a) the daytime and (b) the nighttime. Please note that the retrieved LSE 716 

for the 10.4 μm channel has been adapted to the response function of MODIS channel 31 by linear regression. 717 

The RMSE for the retrieved LST for each season was almost the same as those calculated 718 

using the MYD11_L2 LST product as a reference (Fig. 27a). However, all the biases were 719 

negative (Fig. 27b), suggesting that the LST retrievals were all smaller than the MYD21_L2 720 

LST products for each of the different seasons. Fig. 28 showed that the largest discrepancy 721 

appears in the land cover type values for barren data with an RMSE of >3.0 K and a bias of <-722 

2.0 K. The other land cover types had an RMSE of <2.0 K using the MYD21_L2 LST as a 723 

reference (Fig. 28) while the RMSE for the LSE retrievals in the 10.4 μm channel when 724 

evaluated against the aggregated MYD21_L2 LSE for MODIS band 31 was <0.02 (Fig. 29). 725 

Additionally, for those regions with an “Arid” climate type, the RMSE and bias values for the 726 

retrieved LST were >2.5 K (Fig. 30a) and <-1.0 K (Fig. 30b) respectively, which was 727 
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significantly poorer than the results for the other climate types. In fact, barren land cover was 728 

generally shown to overlap with the arid climate type. Therefore, the results shown in Fig. 30 729 

agreed with those of Fig. 28. Moreover, a comparison of the LST retrieval biases when using 730 

the MYD21_L2 LST as a reference with those results shown in section 4.2 once again showed 731 

that the retrieved LST values fell between these two MODIS LST products under most 732 

conditions. 733 

 734 

Fig. 27. (a) RMSE and (b) Bias of the retrieved land surface temperature (LST) intercomparing with the 735 

MYD21_L2 LST product (the former minus the latter) for different seasons at the global scale. The spring, 736 

summer, autumn, and winter refer to results in April 2019, July 2018, October 2018, and January 2019, 737 

respectively, for the northern hemisphere, while refer to results in October 2018, January 2019, April 2019, 738 

and July 2018, respectively, for the southern hemisphere. Therefore, the results for these four months were 739 

rearranged accordingly for statistical analysis. 740 

 741 
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Fig. 28. (a) RMSE and (b) Bias between the retrieved land surface temperature (LST) and MYD21_L2 LST 742 

product (the former minus the latter) for different land cover types. Observations acquired in the four months 743 

were merged to generate the statistics. The meaning of abbreviations follows: All=All land cover types 744 

together, For=Forests, Shr=Shrublands, Sav=Savannas, Gra=Grasslands, Wat=Water, Cro=Croplands, 745 

Bar=Barren, Wet=Wetlands. 746 

 747 

Fig. 29. (a) RMSE and (b) Bias between retrieved land surface emissivity (LSE) for the 10.4 μm channel and 748 

the aggregated MYD21_L2 LSE for MODIS band 31 (the former minus the latter) for different land cover 749 

types. Observations acquired in the four months were merged to generate the statistics. The meaning of 750 

abbreviations follows: All=All land cover types together, For=Forests, Shr=Shrublands, Sav=Savannas, 751 

Gra=Grasslands, Wat=Water, Cro=Croplands, Bar=Barren, Wet=Wetlands. 752 

 753 

Fig. 30. (a) RMSE and (b) Bias between the retrieved land surface temperature (LST) and MYD21_L2 LST 754 

product (the former minus the latter) for different climate types. Observations acquired in the four months 755 
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were merged to generate the statistics. The meaning of abbreviations follows: All=All climate types together, 756 

Tro=Tropical, Ari=Arid, Tem=Temperate, Col=Cold, Pol=Polar. 757 

4.4 Validation with in-situ LST measurements 758 

In this section, the T-based method was applied to validate the performance of the extended 759 

SW-TES method based on in-situ LST measurements from seven American SURFRAD sites 760 

(Duan et al., 2019a). However, the LST was not measured directly in the SURFRAD sites while 761 

the broadband hemispherical upwelling and downwelling infrared radiation (3-50 μm) was 762 

provided. The Stephan-Boltzmann’s law then was used to calculate the in-situ LST (Eq. 2). 763 

1
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R R
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   (2) 764 

where R


 and R


 are respectively the upwelling and downwelling infrared radiation (W/m2), 765 

b  is the surface broadband emissivity,   is the Stephan-Boltzmann constant (5.67 × 10−8 766 

W/m2/K4).  767 

According to Eq. 2, the in-situ LST could be obtained only if the broadband emissivity of 768 

the SURFRAD sites was known. Previous studies indicated that the uncertainty of 0.01 in the 769 

broadband emissivity will introduce an error of about 0.3 K in the derived LST (Heidinger et 770 

al., 2013; Xing et al., 2021). In the seven SURFRAD sites, the surfaces are normally covered 771 

or partly covered by vegetation and their surface broadband emissivities are shown to be high 772 

and with limited variations (Duan et al., 2019a). Therefore, a fixed value of 0.97 was used in 773 

some studies to calculate the in-situ LST (Heidinger et al., 2013; Xing et al., 2021). The 774 

consequent error introduced by using this fixed value was announced to be not a dominant 775 

source of uncertainty in the SURFRAD-based performance metrics (Heidinger et al., 2013). 776 
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Therefore, the broadband emissivity of the seven SURFRAD sites were also assumed to be 0.97 777 

in this study. 778 

Considering that the pixel size of retrieved LST was around 13.5 km × 13.5 km, the 779 

standard deviation of MODIS LSTs inside each AIRS pixel footprint was calculated to select 780 

pixel pairs with high spatial thermal homogeneity. The corresponding ARIS pixel was 781 

considered homogenous only if the standard deviation of MODIS LSTs was <1.5 K. In addition, 782 

the data contaminated by clouds should be removed to ensure robust statistics before evaluating 783 

the discrepancy between the retrieved LST and in-situ LST measurements. However, no cloud 784 

mask layers were provided along with AIRS radiance. Thus, for each AIRS image, the MODIS 785 

cloud mask in the corresponding MYD11_L2 granule was used to identify cloudless AIRS 786 

pixels. 787 

Taking the in-situ LST measurements from the seven SURFRAD sites in the year 2018 and 788 

2019 as ground truth, the validation results showed that the LST could be retrieved with an 789 

RMSE of 3.58 K during the daytime (Fig. 31a). As a comparison, the uncertainties of MODIS 790 

MYD11_L2 and MYD21_L2 LST products were also evaluated and found to have the RMSE 791 

of 2.93 K (Fig. 31b) and 2.46 K (Fig. 31c), respectively. The bias of retrieved LST was around 792 

0.42 K, which was larger than that of the MODIS MYD11_L2 LST product with the bias of 793 

about -0.95 K (Fig. 31b). Therefore, the retrieved LST was generally larger than the MODIS 794 

MYD11_L2 LST product, as described in the previous sections. 795 
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 796 

 797 

Fig. 31. In-situ land surface temperature (LST) versus (a) the retrieved LST using the extended SW-TES (SW: 798 

split window; TES: temperature-emissivity separation) method, (b) the MYD11_L2 LST product, and (c) the 799 

MYD21_L2 LST product. The observations acquired in the daytime of year 2018 and 2019 were merged to 800 

generate the statistics. 801 

For the nighttime observations, the validation results showed that the LST could be 802 

retrieved with an RMSE of 2.35 K using the extended SW-TES method (Fig. 32a). Based on 803 

the in-situ LST measurements, the RMSEs of the MODIS MYD11_L2 and MYD21_L2 LST 804 

products were also calculated with the value of 2.29 K (Fig. 32b) and 1.64 K (Fig. 32c), 805 

respectively. In addition, the biases showed that the retrieved LST was overestimated, while the 806 

MODIS MYD11_L2 LST product was underestimated when compared with the in-situ LST. 807 

This was consistent with the results in Section 4.2, in which the retrieved LST was generally 808 
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larger than the MODIS MYD11_L2 LST product under most conditions. 809 

 810 

 811 

Fig. 32. In-situ land surface temperature (LST) versus (a) the retrieved LST using the extended SW-TES (SW: 812 

split window; TES: temperature-emissivity separation) method, (b) the MYD11_L2 LST product, and (c) the 813 

MYD21_L2 LST product. The observations acquired in the nighttime of year 2018 and 2019 were merged to 814 

generate the statistics. 815 

We then investigated the performance of the extended SW-TES method in detail by 816 

calculating the individual RMSE and bias values for the retrieved LST at each SURFRAD site 817 

(Fig. 33 and Fig. 34). The uncertainties in the MYD11_L2 and MYD21_L2 LST products were 818 

also calculated using the in-situ data for comparison. The daytime evaluations revealed that the 819 

LST could be retrieved with an RMSE of <2.0 K at only two sites (Fig. 33a): the Table Mountain 820 

site (grass) and the Desert Rock site (open shrub). For the MYD11_L2 LST product, only the 821 
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Table Mountain site (grass) and Fort Peck (grass) sites produced an RMSE of <2.0 K. For the 822 

MYD21_L2 LST product, the RMSEs at the Desert Rock (open shrub) and Fort Peck (grass) 823 

sites were <2.0 K. All the observations at the other SURFRAD sites (dominated by cropland) 824 

showed that both the retrieved LST and the MYD11_L2 LST product exhibited a large 825 

discrepancy between the in-situ LST measurements. Moreover, the LST seems to be greatly 826 

overestimated at the Bondville site (cropland) while underestimated at the Goodwin Creek site 827 

(cropland/natural vegetation) with the bias being recorded at around 4.0 K and -4.0 K, 828 

respectively (Fig. 33b). 829 

 830 

Fig. 33. (a) RMSE and (b) Bias of the retrieved land surface temperature (LST), the MYD11_L2 LST product, 831 

and the MYD21_L2 LST product taking in-situ LST from the seven SURFRAD sites as references (retrieved 832 

LST, MYD11_LST, and MYD21_LST minus the in-situ LST). Observations acquired in the daytime of year 833 

2018 and 2019 were merged to generate the statistics for each site separately. The meaning of abbreviations 834 

follows: All=All sites together, BND= Bondville, TBL= Table Mountain, DRA= Desert Rock, FPK= Fort 835 

Peck, GCM= Goodwin Creek, PSU= Penn State, SXF=Sioux Falls. 836 

During the nighttime, the LST could be retrieved with an RMSE of <2.0 K except at the 837 

Desert Rock (open shrub), Goodwin Creek (cropland/natural vegetation), and the Penn State 838 

(cropland/natural vegetation) sites (Fig. 34a). But for the MYD11_L2 LST product, the RMSE 839 
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was over 2.0 K only at the Desert Rock (open shrub) site. For the MYD21_L2 LST product, the 840 

RMSEs at all sites were <2.0 K except the Fort Peck site (grass) which has the RMSE of 2.07 841 

K. Results also showed that the MYD11_L2 LST was greatly underestimated at the Desert Rock 842 

site (with the bias recorded at around -4.0 K), while the extended SW-TES method 843 

overestimated the retrieved LST at the Goodwin Creek (cropland/natural vegetation), and the 844 

Penn State (cropland/natural vegetation) sites with the bias being recorded at around 2.5 K (Fig. 845 

34b). 846 

 847 

Fig. 34. (a) RMSE and (b) Bias of the retrieved land surface temperature (LST), the MYD11_L2 LST product, 848 

and the MYD21_L2 LST product taking in-situ LST from the seven SURFRAD sites as references (retrieved 849 

LST, MYD11_LST, and MYD21_LST minus the in-situ LST). Observations acquired in the nighttime of year 850 

2018 and 2019 were merged to generate the statistics for each site separately. The meaning of abbreviations 851 

follows: All=All sites together, BND= Bondville, TBL= Table Mountain, DRA= Desert Rock, FPK= Fort 852 

Peck, GCM= Goodwin Creek, PSU= Penn State, SXF=Sioux Falls. 853 

5. Discussions 854 

5.1 Uncertainties in the cross-validation results when referencing the MODIS LST 855 

products 856 
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Validation of the LST values from space is challenging, especially at the global scale. 857 

Currently, there are three commonly applied methods: The T-based method, the R-based 858 

method, and the cross-validation method (Li et al., 2013a). The cross-validation method uses 859 

the well characterized and validated LST products from other satellites as a reference to validate 860 

any new LST values retrieved from these systems. Therefore, it does not require any ground 861 

measurements. 862 

Here, we used the widely applied and accepted MODIS LST values including the 863 

MYD11_L2 and MYD21_L2 products to complete the cross-validation analyses. The MODIS 864 

LST products are well characterized having been validated using both the T-based and R-based 865 

methods at various sites in several previous studies (Coll et al., 2009; Duan et al., 2019a; Hulley 866 

et al., 2018; Li et al., 2021; Wan, 2014). However, most of these validation sites are located 867 

within flat, homogeneous regions that meet the requirements of the T-based and R-based 868 

validation methods. The satellite observations for the other areas are generally found to be 869 

mixed signals from various ground features and may even include the effects of the surface 870 

structures. This means that the absolute accuracy of the MODIS LST products for the pixels 871 

from heterogeneous or ragged areas remains largely unknown. Thus, the discrepancy between 872 

our retrieved LST data and the MODIS LST products is likely to be associated with four key 873 

factors: first, the uncertainty in the extended SW-TES method; second, the uncertainty in the 874 

MODIS LST products; third, the uncertainty resulting from spatial-temporal misregistration 875 

and the viewing angle misregistration of the two sensors; and fourth, the uncertainty introduced 876 

during the downscaling process. 877 
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In addition to the uncertainties discussed above, differences in the channel response 878 

functions of the two sensors may also introduce additional uncertainties into the LSE 879 

comparisons as there may be differences in the emissivity signatures captured by each channel 880 

(Jacob et al., 2004). Here, we adapted the 10.4 μm channel LSE results to the channel 31 881 

MODIS data using linear regression on the basis of the 83 typical emissivity samples and the 882 

relevant channel response functions. This method was adopted in the hopes of suppressing the 883 

influence of these additional uncertainties. However, it should be noted that the uncertainty 884 

within this linear relationship was around 0.005, which was then transferred to the LSE 885 

comparisons and may even be magnified during our downstream analyses. This means that our 886 

LSE comparison results may not be as reliable as our LST comparison results. 887 

These factors mean that it is very challenging to complete a delicate and accurate 888 

comparison between our retrieved LST with the MODIS LST data. Additionally, differences in 889 

the channel configurations (including the channel center and width) make it even harder to 890 

compare LSE values. However, the cross-validation method could be performed across 891 

different seasons and geographies, indicating that the performance of the proposed method 892 

could be evaluated for a variety of conditions including different hemispheres, land cover types, 893 

and climatic zones, amongst others. Thus, the cross-validation method was still used in many 894 

studies (Gao et al., 2017; Qian et al., 2013; Trigo et al., 2008). In this study, a set of selection 895 

criteria was created for the pixel pairs used in each comparison according to their quality control 896 

layers and viewing geometries in an effort to increase the reliability of the comparison results. 897 

Taken together we believe that the results of the cross-validation studies still produce valuable 898 

data around the possible limitations of the proposed method as a first step. 899 
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5.2 Issues associated with the T-based validation method using ground measurements 900 

from SURFRAD sites 901 

The SURFRAD sites were originally constructed to monitor the global surface energy 902 

budget to help advance our understanding of different regional climates (Augustine et al., 2000; 903 

Augustine et al., 2005), but have also been used to validate the LST retrieval data from satellites. 904 

These sites acquire independent measures of both upwelling and downwelling, solar and 905 

infrared radiation at each location and the surface skin temperature then could be derived using 906 

the downward and upward longwave radiation values generated from the pyrgeometers via the 907 

Stefan-Boltzmann’s law (Duan et al., 2019a; Guo et al., 2020; Krishnan et al., 2020). Although 908 

these measurements have been successfully designed and applied in several previous studies to 909 

validate the LST products of various satellites (Guillevic et al., 2014; Malakar et al., 2018; 910 

Pinker et al., 2019; Wang and Liang, 2009), there have been several more recent reports that 911 

have started to identify some issues with this data.  912 

First, the accuracy of the in-situ LST values derived from the pyrgeometer readings may 913 

be limited. For example, Guillevic et al. (2012) indicated that the instrumental uncertainty alone 914 

leads to an error of about 1.0 K in the derived LSTs from the SURFRAD sites. In addition, 915 

when the derived LST for the grassland sites were compared with those from the TIR 916 

radiometers, the authors noted an average difference in readings of up to 2.0 K (Krishnan et al., 917 

2020). Gerace et al. (2020) also announced that the standard deviation in the differences 918 

between the LST derived data from the SURFRAD sites and those retrieved from the 919 

spaceborne TIR instruments was around 2.0 K. Since this 2.0 K residual error consistently exists, 920 

the SURFRAD measurements are likely to be particularly challenging in T-based validations 921 
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requiring high degrees of accuracy. This error is likely the result of reflected solar radiation as 922 

the pyrgeometers are sensitive to radiation from 3 to 50 μm (Hulley et al., 2021). 923 

Second, the differences in the spatial representativeness of the ground sites and satellite 924 

pixels are also a challenge for T-based validation using SURFRAD measurements especially 925 

during the daytime. Previous study has demonstrated that the shadow issues, phenological 926 

changes in the crop/grassland sites, and differences in the surface geology surrounding the 927 

Desert rock site lead to more heterogeneous surfaces (Guillevic et al., 2014; Malakar et al., 928 

2018; Wang and Liang, 2009), making the measurements from the SURFRAD sites less reliable 929 

at the satellite pixel scale. Malakar et al. (2018) showed that the Sioux Falls, Penn State, and 930 

Goodwin Greek sites are more suitable for LST validation when using sensors with a spatial 931 

resolution of >100 m than the other four SURFRAD sites. 932 

Given this, several studies have suggested that it is necessary to introduce more robust and 933 

homogeneous ground-measured datasets to clarify the uncertainty source in the T-based 934 

validation results (Guo et al., 2020; Hulley et al., 2021). For example, Hulley et al. (2021) 935 

suggest that the Jet Propulsion Laboratory (JPL) sites, University of Valencia (UV) sites, and 936 

Karlsruhe Institute of Technology (KIT) sites are more suitable for performing the T-based 937 

validations. These sites are all located in homogeneous areas with known emissivity 938 

characterizations and provide TIR based radiance instead of pyrgeometer based measurements. 939 

However, the SURFRAD data is an open access dataset and remains easier to obtain. Therefore, 940 

we completed our validations using the SURFRAD data. Although the RMSEs of the T-based 941 

validations using the SURFRAD data were higher than the Global Observing System for 942 

Climate recommended thresholds on accuracy, it should be noted that the uncertainties stated 943 
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above were also included in the comparisons. In addition, the uncertainty in our results is 944 

comparable with that of the MODIS LST products evaluated using the same in-situ 945 

measurements as their reference. 946 

6. Conclusions 947 

Previous studies have successfully proposed many LST retrieval algorithms, including the 948 

widely used SW and TES methods. However, atmospheric information, LSE, or both are 949 

required in these methods to obtain accurate LST. Combining the advantages of the SW and 950 

TES algorithms, a new hybrid method was proposed by Zheng et al. (2019), which could be 951 

used to retrieve the LST without prior known atmospheric information and LSE. However, their 952 

method was not applicable to observations with large viewing angles and was only 953 

preliminarily evaluated in Australia. In this study, this method was first extended for application 954 

to global TIR observations with different viewing angles. The overall algorithm uncertainty of 955 

the extended SW-TES method was found to be around 1.16 K, according to the simulation 956 

analysis. Consequently, the performance of this extended method was satisfactorily assessed 957 

globally by referring to the MODIS LST product, and was also validated using in-situ LST 958 

measurements from seven American SURFRAD sites. 959 

Taking the MODIS MYD11_L2 LST product as the reference, we found that the LST could 960 

be retrieved with RMSE <2.5 K for global daytime observations using the extended SW-TES 961 

method. For nighttime observations, the RMSE decreased to <1.5 K because of the absence of 962 

solar loading. The generally positive biases indicated that the retrieved LST was overestimated 963 

compared with the MODIS MYD11_L2 LST product. It should also be noted that the 964 
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uncertainties of the MYD11_L2 LST product are approximately 1.0 K (Duan et al., 2018; Duan 965 

et al., 2019a; Wan, 2014), which may have also contributed to the discrepancies between the 966 

retrieved LST and MYD11_L2 LST product. Therefore, it can be concluded that the extended 967 

SW-TES method could be used to retrieve the global LST from the suggested multichannel 968 

satellite observations with acceptable accuracy. 969 

Separate intercomparison results by season showed that for both hemispheres, the largest 970 

RMSE of retrieved LST during daytime occurred in summer, followed by spring, autumn, and 971 

winter. The RMSE exceeded 4.0 K, while the bias exceeded 3.0 K based on the results of 972 

summer and spring in the southern hemisphere. In contrast, LST retrievals coincided with the 973 

MYD11_L2 LST product much better in the northern hemisphere with RMSE <2.5 K and bias 974 

<1.0 K. For nighttime observations, no obvious relations were found between the LST retrieval 975 

RMSE and the seasons. In addition, the RMSE was shown to be <1.5 K in both the hemispheres 976 

while the bias was <0.7 K, thus indicating that the discrepancy between the retrieved LST and 977 

MYD11_L2 LST product was much smaller than the corresponding daytime results. Moreover, 978 

the variations in RMSE and bias as a function of latitude for daytime observations showed that 979 

the LST retrievals during the local cold seasons generally coincided with the MYD11_L2 LST 980 

product better than during the local hot seasons. However, for nighttime observations, the 981 

results for each latitude during different seasons were almost the same and increased gradually 982 

with increasing latitude from the South Pole to the North Pole. 983 

From the intercomparison residuals and the statistics for different land cover types, we 984 

found that the retrieved LST was underestimated in barren regions. In contrast, the retrieved 985 
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LST was greatly overestimated in grasslands and shrublands during hot seasons. For example, 986 

in summer, the RMSE was >4.0 K for grasslands in the northern hemisphere and >8.0 K for 987 

shrublands in the southern hemisphere. Therefore, special attention should be paid when 988 

applying the extended SW-TES method to such land cover types under the above-mentioned 989 

circumstances. However, during the nighttime, the RMSE of retrieved LST compared with the 990 

MYD11_L2 LST product was within 2.0 K for all land cover types in both the hemispheres and 991 

in all seasons, except the water in the winter and the wetlands in spring and winter in northern 992 

hemisphere, the magnitude of which was approximately 2.5 K. Because the same method and 993 

coefficients were used for both daytime and nighttime observations, thermal heterogeneity 994 

resulting from the strong solar loading is believed to be the main reason for the large 995 

discrepancy in the daytime LST retrieval results. 996 

As for the residual statistics made for different climate types, results showed that the RMSE 997 

of retrieved LST decreased gradually as the climate transited from “tropical” to “polar” for 998 

daytime observations. However, for nighttime observations, the variation pattern reversed, that 999 

is, the LST retrieval RMSE increased gradually as the climate transited from “tropical” to 1000 

“polar.” Moreover, attention should be paid to daytime observations regarding tropical, arid, 1001 

and temperate climates during spring and summer. The magnitude of RMSE under these 1002 

circumstances could reach 4.0 K in the northern hemisphere and 6.8 K in the southern 1003 

hemisphere. A possible reason for this may be that the thermal surroundings of the land surface 1004 

would be more heterogeneous. 1005 

In addition to the comparison results with the MYD11_L2 LST product, the retrieved LST 1006 
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was also compared with the MYD21_L2 LST product. Results showed that the LST retrieval 1007 

RMSE was larger by about 0.4 K than that when using MYD11_L2 LST product as a reference 1008 

for both daytime and nighttime observations at the global scale. Moreover, the biases showed 1009 

that the retrieved LST was generally underestimated with magnitude of about -1.0 K at the 1010 

global scale when taking the MYD21_L2 LST product as a reference, while was overestimated 1011 

when taking the MYD11_L2 LST product as a reference. This indicated that the LST retrieval 1012 

results using the extended SW-TES method fell in between these two MODIS LST products for 1013 

most circumstances globally. 1014 

In addition to the cross-validation using the MODIS LST product, the extended SW-TES 1015 

method was validated based on in-situ LST measurements. It was demonstrated that the LST 1016 

could be retrieved with an RMSE of 3.58 K for daytime observations and 2.35 K for nighttime 1017 

observations. As a comparison, the RMSE of the MODIS MYD11_L2 LST product comparing 1018 

with the same in-situ LST measurements was around 2.93 K for daytime observations and 2.29 1019 

K during the nighttime. Additionally, the RMSE of the MODIS MYD21_L2 LST product 1020 

comparing with the in-situ LST was around 2.46 K for daytime observations and 1.64 K during 1021 

the nighttime. Therefore, it was concluded that the extended SW-TES method could be used to 1022 

retrieve LST with an accuracy close to that of the MODIS LST product. Compared with 1023 

previous studies, the extended SW-TES method had the advantages of the method proposed by 1024 

Zheng et al. (2019), which does not require any prior knowledge of the atmosphere and LSE 1025 

during LST retrieval. In addition, this method could be used to retrieve LST from global TIR 1026 

measurements at different viewing angles. 1027 
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Nevertheless, additional efforts are required to further improve LST retrieval accuracy. For 1028 

example, because the biases of retrieved LST were found to vary with the land cover and climate 1029 

types, and were different for daytime and nighttime observations, obtaining the coefficients of 1030 

the SW-like equation separately according to the land cover type, climate type, and 1031 

day/nighttime may improve the performance of the proposed method. Moreover, the 1032 

coefficients of the SW-like equation can also be parameterized as a function of the atmospheric 1033 

water vapor content to increase the ground brightness temperature retrieval accuracy under 1034 

humid atmospheric conditions (Niclos et al., 2011; Pérez-Planells et al., 2021). Detailed 1035 

investigations are planned in one of our succeeding works. Besides, the angle effect of surface 1036 

emissivity maybe significant for TIR measurements with large viewing angles. Therefore, the 1037 

empirical relationship between minimum emissivity and emissivity contrast could also be 1038 

adapted for large viewing angles to improve the LST and LSE separation accuracy. 1039 
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