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Abstract

We consider the Moran model on the sharp peak landscape, in the
asymptotic regime studied in [3], where a quasispecies is formed. We
find explicitly the distribution of this quasispecies.

1 Introduction

In his paper [9], Eigen introduced the model of quasispecies to describe the
evolution of a population of macromolecules which is subject to two main
forces: mutation and selection. The model was developed further in a series
of papers by Eigen and Schuster [11, 12, 13], and analysed in great detail by
Eigen, McCaskill and Schuster in [10]. A major conclusion is that this kind of
evolutionary process, rather than selecting a single dominant species, is more
likely to select a master sequence (the macromolecule with the highest fitness)
along with a cloud of mutants that closely resemble the master sequence.
Hence the name quasispecies. One other major discovery that Eigen made
on this model was the existence of an error threshold allowing a quasispecies
to form: if the mutation rate exceeds the error threshold, then the population
evolves towards a totally random state, whereas if the mutation rate is below
the error threshold, a quasispecies can be formed.

Even if Eigen’s original goal was to explain the behaviour of a population
of macromolecules, the theory of quasispecies rapidly extended to other ar-
eas of biology. In particular, experimental studies support the validity of
the model in virology [7]. Some RNA viruses are known to have very high
mutation rates, like the HIV virus, and this is a factor of resistance against
conventional drugs. A promising strategy to combat this kind of viruses con-
sists in developing mutagenic drugs that would increase the mutation rate
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beyond the error threshold, in order to induce an error catastrophe [2, 23].
This strategy has successfully been applied to several types of RNA viruses
[4]. Moreover, several similarities have been observed between the evolution
of cancer cell populations and RNA viruses, in particular, the possibility of
inducing an error catastrophe [22].

Two important features of Eigen’s model are its deterministic nature (the
model is based on a system of differential equations derived from certain
chemical and physical laws) and the fact that the population is considered to
be infinite. When dealing with simple macromolecules, these assumptions are
quite natural. Nevertheless, they become unrealistic if we want to apply this
model to population genetics, and they are two of the major drawbacks when
applying it to virus populations, as pointed out by Wilke [24]. On one hand,
we have to take into account the stochastic nature of the evolution of a finite
population. The higher the complexity of the individuals, the harder it is to
explain the replication and mutation schemes via chemical reactions. This
fact, together with the widely recognised role of randomness in evolutionary
processes strongly suggest a stochastic approach to the matter. On the other
hand, when dealing with populations of complex individuals, the amount of
possible genotypes largely exceeds the size of the population. Therefore, if
we want to use Eigen’s model in population genetics, a finite and stochastic
version of the model is called for.

The interest of a finite stochastic counterpart to Eigen’s model is not new.
Eigen, McCaskill and Schuster already emphasise the importance of develop-
ing such a model [10], so does Wilke in the more recent paper [24]. Several
researchers have pursued this task. Demetrius, Schuster and Sigmund [5]
introduce stochasticity into Eigen’s model using branching processes. Mc-
Caskill [15] also develops a stochastic version of Eigen’s model. Nowak and
Schuster [18] use birth and death Markov processes to give a finite stochastic
version of Eigen’s model on the sharp peak landscape. Alves and Fontanari
[1] study the dependence of the error threshold on the population size for the
single sharp peak replication landscape. Saakian, Deem and Hu [20] com-
pute the variance of the mean fitness in a finite population model in order
to control how it approximates the infinite population model. Deem, Muñoz
and Park [19] use a field theoretic representation in order to derive analytical
results. Other recent papers introduce finite stochastic models that approach
Eigen’s model asymptotically when the population size goes to∞, like Musso
[17] or Dixit, Srivastava, Vishnoi [6].

In [3], Cerf studies a population of size m of chromosomes of length ℓ over
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an alphabet A of cardinality κ evolving according to a Moran model [16].
The mutation probability per locus is q. Only the sharp peak landscape is
considered: the master sequence, which we denote by w∗, replicates with rate
σ > 1, while all the other sequences replicate with rate 1. In the asymptotic
regime where

ℓ→ +∞ , m→ +∞ , q → 0 ,

ℓq → a ,
m

ℓ
→ α ,

a critical curve is obtained in the parameter space (a, α), which is given
by αφ(a) = ln κ. If αφ(a) < ln κ, then the population is totally random,
i.e., the fraction of the master sequence in a population at equilibrium con-
verges to 0. On the contrary, if αφ(a) > ln κ, then a quasispecies is formed,
i.e., at equilibrium, the population contains a positive fraction of the mas-
ter sequence, which in the asymptotic regime presented above converges to
(σe−a − 1)/(σ − 1).

The aim of our article is to obtain the whole distribution of the quasispecies.
As it is customary with this kind of models, we introduce Hamming classes
with respect to the master sequence in the space Aℓ of sequences of length ℓ.
We say that a chromosome u ∈ Aℓ belongs to the class d ∈ { 0, . . . , ℓ } if it
differs from the master sequence in exactly d characters, i.e.,

card
{

i ∈ { 0, . . . , ℓ } : w∗(i) 6= u(i)
}

= d .

We study then the concentration of each of these classes in a population at
equilibrium. For k ≥ 0 fixed, in the above asymptotic regime, we recover the
critical curve αφ(a) = ln κ. If αφ(a) < ln κ, then the fraction of the class k
converges to 0, whereas if αφ(a) > ln κ, then the fraction of the class k in a
population at equilibrium converges to

ρ∗k = (σe−a − 1)
ak

k!

∑

i≥1

ik

σi
.

We denote by Q(σ, a) the probability distribution which assigns mass ρ∗k to k,
for k ≥ 0, and we call it the distribution of the quasispecies with parameters
σ, a.

The article is organised as follows. First, we present our main result, along
with a sketch of the proof, a brief discussion about the distribution of the
quasispecies and some background material from [3]. The remaining sections
are devoted to the proof.
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2 Main Result

Let A be a finite alphabet of cardinality κ and ℓ ≥ 1 an integer. We consider
the space Aℓ of sequences of length ℓ over the alphabet A. Elements of the
space Aℓ represent the chromosome of an haploid individual. We consider a
population of size m of individuals from Aℓ. The size of the population m is
kept constant throughout the evolution.

When a reproduction occurs, the chromosome is subject to mutations. We
suppose that mutations occur independently at random at each locus, with
probability q ∈ ]0, 1−1/κ[ . If a mutation occurs, we replace the letter with a
new one, chosen uniformly at random between the remaining κ− 1 letters of
the alphabet A. The mutation mechanism is encoded in a mutation matrix
(

M(u, v), u, v ∈ Aℓ
)

, where M(u, v) is the probability that the chromo-
some u is transformed into v by mutation. We have the following analytical
expression for M(u, v):

M(u, v) =

ℓ
∏

j=1

(

(1− q)1u(j)=v(j) +
q

κ− 1
1u(j)6=v(j)

)

.

The only allowed transformations in a population consist of replacing a chro-
mosome of the population with a new one. For a population x ∈

(

Aℓ
)m

,
j ∈ { 1, . . . , m }, u ∈ Aℓ, we denote by x(j ← u) the populaton x where the
j–th chromosome x(j) has been replaced by u:

x(j ← u) =























x(1)
...

x(j − 1)
u

x(j + 1)
...

x(m)























.

The replication mechanism is encoded in a fitness function:

A : Aℓ −→ [0,+∞[ .

The discrete time Moran model is the Markov chain (Xt)t≥0, whose transition
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matrix is given by

∀t ∈ N ∀x ∈
(

Aℓ
)m

∀j ∈ { 1, . . . , ℓ } ∀u ∈ Aℓ \ {x(j)}

P
(

Xt+1 = x(j ← u) |Xt = x
)

=
1

m2λ

∑

1≤i≤m

A(x(i))M(x(i), u) ,

where λ > 0 is a constant such that

λ ≥ max {A(u) : u ∈ Aℓ } .

The other non–diagonal coefficients of the matrix are null. The diagonal
coefficients are arranged so that the matrix is stochastic, i.e., the sum over
each row equals 1. We will only consider the sharp peak landscape. Let
σ > 1 be a real number. There exists a particular sequence, called the master
sequence or the wild type, and denoted by w∗, for which the replication rate
is σ. The replication rate for all other sequences is 1. The fitness function is
then given by

∀u ∈ Aℓ A(u) =

{

1 if u 6= w∗ ,

σ if u = w∗ .

We denote by dH the Hamming distance between two chromosomes:

∀u, v ∈ Aℓ dH(u, v) = card
{

i : 1 ≤ i ≤ m, u(i) 6= v(i)
}

.

Let x be a population in
(

Aℓ
)m

. We fix an integer K ≥ 0 and we look at the
number NK(x) of chromosomes in x which are at distance K or less from
the master sequence:

NK(x) = card
{

i : 1 ≤ i ≤ m, dH(x(i), w
∗) ≤ K

}

.

Let φ : R+ −→ R
+ ∪ {+∞} be the map given by

∀a < ln σ φ(a) =
σ(1− e−a) ln

σ(1− e−a)

σ − 1
+ ln(σe−a)

(1− σ(1− e−a))
,

and φ(a) = 0 for a ≥ ln σ. Let (ρ∗k)k≥0 be the sequence given by

∀k ≥ 0 ρ∗k = (σe−a − 1)
ak

k!

∑

i≥1

ik

σi
.

We have then the following result:

6



Theorem 2.1. Suppose that

ℓ→ +∞ , m→ +∞ , q → 0 ,

ℓq → a ∈ ]0,+∞[ ,
m

ℓ
→ α ∈ [0,+∞] .

We have the following dichotomy:

• If αφ(a) < ln κ, then

∀K ≥ 0 lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

lim
t→∞

E
( 1

m
NK(Xt)

)

= 0 .

• If αφ(a) > ln κ, then

∀K ≥ 0 lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

lim
t→∞

E
( 1

m
NK(Xt)

)

= ρ∗0 + · · ·+ ρ∗K .

Furthermore, in both cases

∀K ≥ 0 lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

lim
t→∞

Var
( 1

m
NK(Xt)

)

= 0 .

2.1 Sketch of proof

The state space of the Markov chain (Xt)t≥0 has cardinality κℓm, which is
too big to work with. The first step in proving theorem 2.1 is to reduce
the state space. We use a classical technique called lumping and we build a
simpler process (Ot)t≥0, called the occupancy process, whose state space is
much smaller. The occupancy process (Ot)t≥0 keeps track of the number of
chromosomes in each of the ℓ+ 1 Hamming classes. This process will be the
main subject of our study. In addition, the state space of the process (Ot)t≥0

is naturally endowed with a partial order which allows us to use coupling and
monotonicity arguments.

We then compare the time that the process (Ot)t≥0 spends having at least a
sequence in one of the Hamming classes 0, . . . , K (which we call the persis-
tence time), with the time the process (Ot)t≥0 spends having no sequences
in any of the Hamming classes 0, . . . , K (which we call the discovery time).
Asymptotically, when αφ(a) > ln κ, the persistence time becomes negligible
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with respect to the discovery time, whereas when αφ(a) < ln κ, it is the dis-
covery time that becomes negligible with respect to the persistence time.
This already proves the first assertion in theorem 2.1.

The second statement of the theorem requires much more work. We build first
a coupling to compare the occupancy process (Ot)t≥0 with simpler processes:
a lower process (Oℓ

t)t≥0, and an upper process (OK+1
t )t≥0. These processes

stochastically bound the occupancy process (Ot)t≥0, and they only keep track
of the number of chromosomes in the Hamming classes 0, . . . , K. The goal
is to show that the invariant probability measures of the processes (Oℓ

t)t≥0

and (OK+1
t )t≥0 both converge to the Dirac mass at the point (ρ∗0, . . . , ρ

∗
K).

This is achieved by estimating the typical time that the processes spend
inside and outside a neighbourhood of (ρ∗0, . . . , ρ

∗
K). The time they spend

inside a neighbourhood of (ρ∗0, . . . , ρ
∗
K) is typically of exponential order in m,

whereas the time they spend outside such a neighbourhood is typically of
polynomial order in m. These estimates are enough to complete the proof of
theorem 2.1. The strategy to obtain the estimates is as follows. The mutation
probabilities M(u, v) for u > v go to 0 when ℓ → ∞, q → 0 and ℓq → a.
Thanks to this fact we can build the processes (Oℓ

t)t≥0 and (OK+1
t )t≥0 in such

a way that, for 0 ≤ k ≤ K, the evolution of the Hamming classes 0, . . . , k
does not depend on the remaining Hamming classes. We can then proceed
to prove the estimates by induction. Both the initial case and the inductive
step boil down to the study of birth and death Markov chains, for which
explicit formulas are available.

2.2 The distribution of the quasispecies

Let a be such that σe−a > 1. As stated in theorem 2.1, the distribution of
the quasispecies of parameters σ, a, is given by the sequence (ρ∗k)k≥0:

∀k ≥ 0 ρ∗k = (σe−a − 1)
ak

k!

∑

i≥1

ik

σi
.

Nevertheless, we will carry out the proof by induction, and in our proof we
will not find the sequence (ρ∗k)k≥0 in the above form, it will be given by the
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following recurrence relation:

ρ∗0 =
σe−a − 1

σ − 1
,

ρ∗k =
e−a

(σ − 1)ρ∗0 + 1− e−a

(

σ
ak

k!
ρ∗0 +

k−1
∑

l=1

ak−l

(k − l)!
ρ∗l

)

, k ≥ 1 .

We show next how to derive the explicit formula for (ρ∗k)k≥0 from the recur-
rence relation. Firstly, we remark that replacing ρ∗0 by its value,

e−a

(σ − 1)ρ∗0 + 1− e−a
=

1

σ − 1
.

Therefore, we can rewrite the recurrence relation as follows:

ρ∗0 =
σe−a − 1

σ − 1

ρ∗k =
ak

k!
ρ∗0 +

1

σ

k
∑

l=1

ak−l

(k − l)!
ρ∗l , k ≥ 1 .

Let f be the generating function of the sequence (ρ∗k)k≥0:

f(X) =
∑

k≥0

ρ∗kX
k .

Let us consider the following formal series:

1

σ
eaX =

∑

k≥0

1

σ

ak

k!
Xk .

We do the Cauchy product of the two formal series above and we obtain:

f(X)
(1

σ
eaX
)

=
∑

k≥0

(

1

σ

k
∑

l=0

ak−l

(k − l)!
ρ∗l

)

Xk .

Yet, thanks to the recurrence relation,

1

σ

k
∑

l=0

ak−l

(k − l)!
ρ∗l = ρ∗k +

( 1

σ
− 1
)ak

k!
ρ∗0 .

Thus,

f(X)
(1

σ
eaX
)

= f(X) +
( 1

σ
− 1
)

ρ∗0e
aX .
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Replacing ρ∗0 with its value gives the following expression for f :

f(X) = (σe−a − 1)
eaX

σ − eaX
.

We remark that f(1) = 1, thus (ρ∗k)k≥0 is indeed a probability distribution
on N. We develop this last expression as follows:

eaX

σ − eaX
=
∑

i≥1

(

eaX

σ

)i

=
∑

i≥1

1

σi

∑

k≥0

(aiX)k

k!
=
∑

k≥0

(

∑

i≥1

ik

σi

)

ak

k!
Xk .

We obtain finally

∀k ≥ 0 ρ∗k = (σe−a − 1)
ak

k!

∑

i≥1

ik

σi
.

We call this the probability distribution of the quasispecies with parame-
ters σ, a and we denote it by Q(σ, a). A short calculation shows that the
expectation and the variance of Q(σ, a) are given by:

E(Q) =
σae−a

σe−a − 1
, Var(Q) =

σae−a(σe−a + a− 1)

(σe−a − 1)2
.

The graphs at the end of the introduction show the frequency of the master
sequence and the first 10 Hamming classes for σ = 5 and σ = 106. The
graphs closely resemble those obtained by solving the differential equations
from Eigen’s original model [10, 21].

2.3 The occupancy process

The occupancy process (Ot)t≥0 will be the main subject of our study, it is
obtained from the original process (Xt)t≥0 via lumping, as in section 6.3 of
[3]. Let Pm

ℓ+1 be the set of the ordered partitions of the integer m in at most
ℓ+ 1 parts:

Pm
ℓ+1 =

{

(o(0), . . . , o(ℓ)) ∈ N
ℓ+1 : o(0) + · · ·+ o(ℓ) = m

}

.

A partition (o(0), . . . , o(ℓ)) is interpreted as an occupancy distribution, which
corresponds to a population with o(l) individuals in the Hamming class l, for
0 ≤ l ≤ ℓ. Since we are working with a Moran model, only a chromosome can
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change classes at a time, i.e., the only possible transitions for the occupancy
process (Ot)t≥0 are of the form

o −→ o(k → l) , 0 ≤ k, l ≤ ℓ ,

where o(k → l) is the occupancy distribution obtained by transferring a
chromosome from the Hamming class k to the class l, i.e.,

∀h ∈ { 0, . . . , ℓ } o(k → l)(h) =











o(h) if h 6= k, l ,

o(k)− 1 if h = k ,

o(l) + 1 if h = l .

We will work with a discrete time occupancy process (Ot)t≥0, whose transition
matrix is given by

∀o ∈ Pm
ℓ+1 ∀k, l ∈ { 0, . . . , ℓ } , k 6= l ,

pO
(

o, o(k → l)
)

=

o(k)

ℓ
∑

h=0

o(h)AH(h)MH(h, l)

m

ℓ
∑

h=0

o(h)AH(h)

,

where AH is the lumped fitness function, defined as follows

∀b ∈ { 0, . . . , ℓ } AH(b) =

{

σ if b = 0 ,

1 if b ≥ 1 ,

and MH is the lumped mutation matrix: for b, c ∈ { 0, . . . , ℓ } the coefficient
MH(b, c) is given by

∑

0≤k≤ℓ−b
0≤l≤b

k−l=c−b

(

ℓ− b

k

)(

b

l

)

(

p
(

1−
1

κ

))k(

1− p
(

1−
1

κ

))ℓ−b−k(p

κ

)l(

1−
p

κ

)b−l

.

3 Stochastic bounds

In this section we will build a lower process (Oℓ
t)t≥0 and an upper process

(OK+1
t )t≥0 in order to bound stochastically the occupancy process (Ot)t≥0.

The space Pm
ℓ+1 of the occupancy distributions is endowed with a natural
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order �. If o, o′ are two occupancy distributions we write that o � o′ if and
only if

∀l ∈ { 0, . . . , ℓ } o(0) + · · ·+ o(l) ≤ o′(0) + · · ·+ o′(l) .

We will construct the lower process (Oℓ
t)t≥0 and the upper process (OK+1

t )t≥0

in such a way that for any o ∈ Pm
ℓ+1, if Oℓ

0 = O0 = OK+1
0 = o, then

∀t ≥ 0 Oℓ
t � Ot � OK+1

t .

The processes (Oℓ
t)t≥0 and (OK+1

t )t≥0 will be much simpler than the occu-
pancy process (Ot)t≥0.

3.1 The lower process

We start by building the lower process (Oℓ
t)t≥0. First of all, let us explain

loosely the dynamics of the lower process (Oℓ
t)t≥0. As long as there is no

master sequence present in the population, the lower process (Oℓ
t)t≥0 evolves

exactly as the original process (Ot)t≥0. When a master sequence appears, all
the chromosomes in the Hamming classes K + 1, . . . , ℓ are sent to the class
ℓ. As long as the master sequence is present in the population, a mutation
to any of the classes K +1, . . . , ℓ is directly sent to the class ℓ. Furthermore,
every mutation from a Hamming class to a lower class is also sent to the class
ℓ. To make this construction rigorous, we will modify the coupling map ΦO

defined in section 7.1 of [3]. To do so, we will also use the mapsMH and SO
defined in the section 7.1 of [3]. We take R to be the set

R = [0, 1]× { 0, . . . , m }2 × [0, 1]ℓ ,

and we define a map
ΦO : Pm

ℓ+1 ×R −→ P
m
ℓ+1 ,

as follows. Let r = (s, i, j, u1, . . . , uℓ) ∈ R and o ∈ Pm
ℓ+1. We take l = SO(o, s)

and k the only index in { 0, . . . , ℓ } such that

o(0) + · · ·+ o(k − 1) < j ≤ o(0) + · · ·+ o(k).

We define the map ΦO by:

ΦO(o, r) =

{

o(k → ℓ) ifMH(l, u1, . . . , uℓ) < l ,

o
(

k →MH(l, u1, . . . , uℓ)
)

otherwise.
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From this construction we see that

∀r ∈ R ∀o ∈ Pm
ℓ+1 ΦO(o, r) � ΦO(o, r) .

We define a map πℓ : Pm
ℓ+1 → P

m
ℓ+1 by setting, for o ∈ Pm

ℓ+1 and l ∈ { 0, . . . , ℓ },

πℓ(o)(l) =











o(l) if 0 ≤ l ≤ K ,

0 if K < l < ℓ ,

m− (o(0) + · · ·+ o(K)) if l = ℓ .

This map satisfies
∀o ∈ Pm

ℓ+1 πℓ(o) � o .

We denote by W∗ the set of the occupancy distributions having at least one
master sequence, i.e.,

W∗ =
{

o ∈ Pm
ℓ+1 : o(0) ≥ 1

}

,

and we denote by N the set of the occupancy distributions having no master
sequence, i.e.,

N =
{

o ∈ Pm
ℓ+1 : o(0) = 0

}

.

Let us define

oℓ
exit

= (0, . . . , 0, m) , oℓ
enter

= (1, 0, . . . , 0, m− 1) .

We define a lower map Φℓ
O by setting for o ∈ Pm

ℓ+1 and r ∈ R,

Φℓ
O(o, r) =



















ΦO(o, r) if o ∈ N and ΦO(o, r) 6∈ W∗ ,

oℓ
enter

if o ∈ N and ΦO(o, r) ∈ W
∗ ,

πℓ
(

ΦO(πℓ(o), r)
)

if o ∈ W∗ and ΦO(πℓ(o), r) 6∈ N ,

oℓ
exit

if o ∈ W∗ and ΦO(πℓ(o), r) ∈ N .

The next proposition compares the map Φℓ
O to the map ΦO.

Proposition 3.1. For all r ∈ R and for all o ∈ Pm
ℓ+1,

Φℓ
O(o, r) � ΦO(o, r) .

Proof. Let us take r ∈ R and o ∈ Pm
ℓ+1. We consider the four following cases:

• If o ∈ N and ΦO(o, r) 6∈ W∗, then

Φℓ
O(o, r) = ΦO(o, r) .
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• If o ∈ N and ΦO(o, r) ∈ W∗, we have

Φℓ
O(o, r) = oℓ

enter
and ΦO(o, r)(0) = 1 ,

the inequality holds since for all o ∈ Pm
ℓ+1 with o(0) = 1, we have oℓ

enter
� o .

• If o ∈ W∗ and ΦO(πℓ(o), r) 6∈ N , since the mapping ΦO is lower than ΦO,
we have

ΦO(πℓ(o), r) � ΦO(πℓ(o), r) .

Also πℓ(o) � o, and φO is monotone, so that

πℓ
(

ΦO(πℓ(o), r)
)

� ΦO(πℓ(o), r) � ΦO(πℓ(o), r) � ΦO(o, r) .

• If o ∈ W∗ and ΦO(πℓ(o), r) ∈ N , we have Φℓ
O(o) = oℓ

exit
, we remark then

that for all o ∈ Pm
ℓ+1, o

ℓ
exit
� o .

We finally conclude that Φℓ
O(o, r) � ΦO(o, r) , for all o ∈ Pm

ℓ+1 and for all
r ∈ R.

We define next the lower process (Oℓ
t)t≥0. Let

Rn = (In, Jn, Sn, Un,1, . . . , Un,ℓ) , n ≥ 1 ,

be an i.i.d. sequence of random vectors with values in R, as defined in
[3]. The components of Rn are independent random variables with uniform
distribution on their corresponding spaces. Let o ∈ Pm

ℓ+1 be the starting
point of the process. We set Oℓ

0 = o and

∀n ≥ 1 Oℓ
n = Φℓ

O

(

Oℓ
n−1, Rn

)

.

Proposition 3.2. We suppose that the processes (Oℓ
t)t≥0 and (Ot)t≥0 have

the same starting occupancy distribution o. We have then

∀t ≥ 0 Oℓ
t � Ot .

The proof is similar to the proof of proposition 8.1 of [3].

3.2 Dynamics of the lower process

We study now the dynamics of the lower process (Oℓ
t)t≥0 in W∗. For the

process (Oℓ
t)t≥0, the states in the set

T ℓ =
{

o ∈ Pm
ℓ+1 : o(0) ≥ 1 and o(0) + · · ·+ o(K) + o(ℓ) < m

}
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are transient, and the states in the set N ∪
(

W∗ \ T ℓ
)

form a recurrent class.
We will therefore focus on the dynamics of the process (Oℓ

t)t≥0 restricted to
W∗ \ T ℓ. Since

W∗ \ T ℓ =
{

o ∈ Pm
ℓ+1 : o(0) ≥ 1 and o(0) + · · ·+ o(K) + o(ℓ) = m

}

,

a state in W∗ \ T ℓ is completely determined by the occupation numbers of
the classes 0, . . . , K. The process (Oℓ

t)t≥0 always enters the set W∗ \ T ℓ at
oℓ
enter

. For i ∈ { 0, . . . , K }, we denote by wi the vector of NK+1 given by:

∀l ∈ { 0, . . . , K } wi(l) =

{

1 if l = i ,

0 otherwise .

The only possible transitions for the Hamming classes 0, . . . , K of the process
(Oℓ

t)t≥0 starting from a state in W∗ \ T ℓ are

(o(0), . . . , o(K)) −→ (o(0), . . . , o(K))− wi

if 1 ≤ o(i), 0 ≤ i ≤ K ,

(o(0), . . . , o(K)) −→ (o(0), . . . , o(K)) + wi

if o(0) + · · ·+ o(K) ≤ m− 1, 0 ≤ i ≤ K ,

(o(0), . . . , o(K)) −→ (o(0), . . . , o(K))− wi + wj

if 1 ≤ o(i), 0 ≤ i, j ≤ K, i 6= j .

The process (Oℓ
t)t≥0 always exits the set W∗ \ T ℓ at oℓ

exit
. If the process

(Oℓ
t)t≥0 starts from a state in W∗ \ T ℓ, until the time of exit from W∗ \ T ℓ,

the dynamics of
(

Oℓ
t(0), . . . , O

ℓ
t(K)

)

is that of a Markov chain on the state
space

EK =
{

z ∈ N
K+1 : z0 + · · ·+ zK ≤ m

}

.

Let us compute the associated transition probabilities. Let z ∈ EK .

• For 0 ≤ i ≤ K and 0 < z0 + · · ·+ zK < m ,

p(z, z + wi) =

m−
K
∑

l=0

zl

m((σ − 1)z0 +m)
×

(

σz0MH(0, i) +
i
∑

l=1

zlMH(l, i)

)

.
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• For 0 ≤ i ≤ K and 1 ≤ zi ,

p(z, z − wi) =
zi

m((σ − 1)z0 +m)
×

(

σz0

(

1−
K
∑

h=0

MH(0, h)

)

+
K
∑

l=1

zl

(

1−
K
∑

h=l

MH(l, h)

)

+m−
K
∑

l=0

zl

)

.

• For 0 ≤ i, j ≤ K, i 6= j and 1 ≤ zi ,

p(z, z−wi+wj) =
zi

m((σ − 1)z0 +m)
×

(

σz0MH(0, j)+

j
∑

l=1

zlMH(l, j)

)

.

The other non–diagonal coefficients of the matrix are null. The diagonal
coefficients are arranged so that the matrix is stochastic, i.e., the sum over
each row equals 1.

Since we are interested in the dynamics of (Oℓ
t)t≥0 in W∗ \ T ℓ, the transition

probabilities starting from a point in { z ∈ EK : z0 = 0 } are not relevant.
Moreover, the law of the exit point from { z ∈ EK : z0 ≥ 1 } is also not
relevant, what matters is the law of the exit time. Therefore we will modify
the matrix p into another stochastic matrix pℓ such that:

• Starting from { z ∈ EK : z0 = 0 }, there is a jump with probability 1 to
(1, 0, . . . , 0).

• The law of the exit time from { z ∈ EK : z0 ≥ 1 } is unchanged, but the
exit point is (0, . . . , 0) with probability 1.

More precisely, we define the matrix pℓ as follows:

• For z, z′ ∈ EK with z0 = 0,

pℓ
(

z, (1, 0, . . . , 0)
)

= 1 ,

pℓ(z, z′) = 0 if z′ 6= (1, 0, . . . , 0) .

• For z, z′ ∈ EK with z0 = 1 and z′0 = 0,

pℓ
(

z, (0, . . . , 0)
)

= p(z, z − w0) +
K
∑

i=1

p(z, z − w0 + wi) ,

pℓ(z, z′) = 0 if z′0 = 0 and z′ 6= (0, . . . , 0) .
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Finally, pℓ(z, z′) = p(z, z′) for all remaining z, z′ ∈ EK .

Let (Zℓ
t )t≥0 be a Markov chain with state space EK , starting at the point

zℓ = (1, 0, . . . , 0) and having for transition matrix pℓ. Since (Oℓ
t)t≥0 always

enters W∗ \ T ℓ at oℓ
enter

and its dynamics inside W∗ \ T ℓ is the same as the
dynamics of the chain (Zℓ

t )t≥0, we will rely on this Markov chain to compute
the desired estimates.

3.3 The upper process

We build now the upper process (OK+1
t )t≥0. First of all, let us explain loosely

the dynamics of the upper process (OK+1
t )t≥0. As long as there is no master

sequence present in the population, the upper process (OK+1
t )t≥0 evolves ex-

actly as the original process (Ot)t≥0. When a master sequence appears, all the
chromosomes in the Hamming classes K+1, . . . , ℓ are sent to the class K+1.
As long as the master sequence is present in the population, a mutation to
any of the classes K+1, . . . , ℓ is directly sent to the class K+1. Furthermore,
for all c < b, the mutation probability from the Hamming class b to the Ham-
ming class c is taken to be equal to MH(c+ 1, c). To make this construction
rigorous, we modify the mutation probabilities

(

MH(b, c), 0 ≤ b, c ≤ ℓ
)

and
we define new mutation probabilities

(

MK
H (b, c), 0 ≤ b, c ≤ ℓ

)

for the process

(OK+1
t )t≥0. Let us set for b ∈ {0, . . . , K + 1} and c ∈ {0, . . . , ℓ},

MK+1
H (b, c) =











MH(c+ 1, c) if 0 ≤ c < b ≤ K + 1 ,

MH(b, c) if b ≤ c ≤ K ,

0 if c ∈ {K + 2, . . . , ℓ } .

The coefficient MK+1
H (b,K + 1) is adjusted so that each row adds up to 1,

i.e., we take, for b ∈ { 0, . . . , K + 1 },

MK+1
H (b,K + 1) = 1−

K
∑

h=0

MK+1
H (b, h) =

1−
b−1
∑

h=0

MH(h+ 1, h)−
K
∑

h=b

MH(b, h) .

Moreover, for b ∈ {K + 2, . . . , ℓ}, we set

∀c ∈ {0, . . . , ℓ} MK+1
H (b, c) = MH(b, c) .
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We must verify that (MK+1
H (b, c), 0 ≤ b, c ≤ ℓ) is a stochastic matrix, i.e.,

that all entries of the matrix are non–negative and that each row adds up to 1.
Since (MH(b, c), 0 ≤ b, c ≤ ℓ) is already a stochastic matrix, these conditions
are satisfied for the rows MK+1

H (b, · ), b ∈ {K+2, . . . , ℓ }. For the first K+2
rows, the only thing left to verify is that the coefficient MK+1

H (b,K + 1) is
non–negative, in other words, that

∀b ∈ { 0, . . . , K + 1 }
b−1
∑

h=0

MH(h+ 1, h) +
K
∑

h=b

MH(b, h) ≤ 1 .

However, we are interested in the asymptotic regime

ℓ→ +∞ , m→ +∞ , q → 0 ,

ℓq → a ,
m

ℓ
→ α .

Thus, it is enough to verify the preceding inequalities for ℓ,m big enough
and q small enough. The mutation probabilities have the following limits:

∀b, c ≥ 0 lim
ℓ,m→∞

q→0, ℓq→a

MH(b, c) =







0 if 0 ≤ c < b ,

ac−b

(c− b)!
e−a if 0 ≤ b ≤ c .

We deduce that, for b ∈ { 0, . . . , K + 1 },

lim
ℓ,m→∞

q→0, ℓq→a

b−1
∑

h=0

MH(h+ 1, h) +

K
∑

h=b

MH(b, h) =

K
∑

h=b

ah−b

(h− b)!
e−a =

K−b
∑

k=0

ak

k!
e−a < 1 .

Therefore, for ℓ,m big enough and q small enough, the modified mutation
matrix (MK+1

H (b, c), 0 ≤ b, c ≤ ℓ) is indeed stochastic. We build now two
maps

M′
H , M

K+1
H : { 0, . . . , ℓ } × [0, 1] −→ { 0, . . . , ℓ }

in order to couple the mutation mechanisms of the processes (Ot)t≥0 and
(OK+1

t )t≥0. Naturally, this coupling will allow us to compare these processes.
Let b ∈ { 0, . . . , ℓ } and u ∈ [0, 1]. We define M′

H(b, u) to be the only index
c ∈ { 0, . . . , ℓ } such that

MH(b, 0) + · · ·+MH(b, c− 1) < u ≤ MH(b, 0) + · · ·+MH(b, c) .

Likewise, we defineMK+1
H (b, u) to be the only index c ∈ { 0, . . . , ℓ } such that

MK+1
H (b, 0) + · · ·+MK+1

H (b, c− 1) < u ≤ MK+1
H (b, 0) + · · ·+MK+1

H (b, c) .
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Lemma 3.3. The mapM′
H is above the mapMK+1

H in the following sense:

∀b ∈ { 0, . . . , ℓ } ∀u ∈ [0, 1] M′
H(b, u) ≥ M

K+1
H (b, u) .

Proof. Since MH(b, c) ≤ MH(c+1, c) for b > c, it follows from the definition
of the matrix (MK+1

H (b, c), 0 ≤ b, c ≤ ℓ) that

∀b, c ∈ { 0, . . . , ℓ }
c
∑

h=0

MH(b, h) ≤
c
∑

h=0

MK+1
H (b, h) .

These inequalities imply the desired result.

We have also the following result:

Lemma 3.4. The map M′
H is non–decreasing with respect to its first argu-

ment, i.e.,

∀b, c ∈ { 0, . . . , ℓ } ∀u ∈ [0, 1] b ≤ c ⇒ M′
H(b, u) ≤M

′
H(c, u) .

Proof. We consider the map

MH : { 0, . . . , ℓ } × [0, 1]ℓ → { 0, . . . , ℓ }

defined in section 7.1 of [3] by

∀b ∈ { 0, . . . , ℓ } ∀u1, . . . , uℓ ∈ [0, 1]ℓ

MH(b, u1, . . . , uℓ) = b−
b
∑

k=1

1uk<p/κ +
ℓ
∑

k=b+1

1uk>1−p(1−1/κ) .

The interest of this map lies in the following fact: if U1, . . . , Uℓ are i.i.d.
uniform random variables taking values on the interval [0, 1], then for all
b ∈ { 0, . . . , ℓ }, the law of MH(b, U1, . . . , Uℓ) is given by the b–th row of the
mutation matrix MH , i.e.,

∀c ∈ { 0, . . . , ℓ } P
(

MH(b, U1, . . . , Uℓ) = c
)

= MH(b, c) .

Moreover, we know thanks to lemma 7.1 of [3] that the map MH is non–
decreasing with respect to the Hamming class, i.e., for all b, c ∈ { 0, . . . , ℓ }
and u1, . . . , uℓ ∈ [0, 1],

b ≤ c ⇒ MH(b, u1, . . . , uℓ) ≤MH(c, u1, . . . , uℓ) .

19



Take a, b, h ∈ { 0, . . . , ℓ } with a ≤ b and let U1, . . . , Uℓ be i.i.d. uniform
random variables on [0, 1]. Thanks to the properties of the map MH , we
have

MH(a, 0) + · · ·+MH(a, h) = P
(

MH(a, U1, . . . , Uℓ) ≤ h
)

≥

P
(

MH(b, U1, . . . , Uℓ) ≤ h
)

= MH(b, 0) + · · ·+MH(b, h) .

This implies the desired result.

Let us define
R′ = [0, 1]× { 0, . . . , ℓ }2 × [0, 1] .

We build next two coupling maps

Φ′
O,ΦO : Pm

ℓ+1 ×R
′ −→ Pm

ℓ+1 .

Take r = (s, i, j, u) ∈ R′, and o ∈ Pm
ℓ+1. We set l = SO(o, s) and we set k to

be the only index in {0, . . . , ℓ} such that

o(0) + · · ·+ o(k − 1) < j ≤ o(0) + · · ·+ o(k).

The maps Φ′
O et ΦO are defined by:

Φ′
O(o, r) = o

(

k →M′
H(l, u)

)

,

ΦO(o, r) = o
(

k →MK+1
H (l, u)

)

.

We have thanks to lemma 3.3 that

∀r ∈ R′ ∀o ∈ Pm
ℓ+1 Φ′

O(o, r) � ΦO(o, r) .

Let
R′

n = (S ′
n, I

′
n, J

′
n, U

′
n), n ≥ 1

be an i.i.d. sequence of random vectors with values in R′, the random vari-
ables S ′

n, I
′
n, J

′
n, U

′
n being independent and having the uniform law in their

corresponding spaces. We also take the sequence (R′
n)n≥1 to be independent

of the sequence (Rn)n≥1 defined in section 3.1. We build the process (Ot)t≥0

with the help of the sequence (R′
n)n≥1. Let o ∈ Pm

ℓ+1 be the starting point of
the process, we set O0 = o and

∀n ≥ 1 On = Φ′
O(On−1, R

′
n) .

The next lemma shows that the process (Ot)t≥0 is monotone.
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Lemma 3.5. The coupling map Φ′
O is non–decreasing with respect to the

occupancy distribution, i.e.,

∀o, o′ ∈ Pm
ℓ+1 ∀r ∈ R′ o � o′ ⇒ Φ′

O(o, r) � Φ′
O(o

′, r) .

The proof is very similar to that of lemma 7.5 in [3], so we do not include
it here. We build next the upper process (OK+1

t )t≥0. We define a map
πK+1 : Pm

ℓ+1 → P
m
ℓ+1 as follows: for o ∈ Pm

ℓ+1 and l ∈ { 0, . . . , ℓ },

πK+1(o)(l) =











o(l) if 0 ≤ l ≤ K ,

m− (o(0) + · · ·+ o(K)) if l = K + 1 ,

0 if K + 2 ≤ l ≤ ℓ .

This map satisfies
∀o ∈ Pm

ℓ+1 o � πK+1(o) .

We also define

oK+1
exit

= (0, m, 0, . . . , 0) , oK+1
enter

= (1, m− 1, 0, . . . , 0) .

We build an upper map ΦK+1
O by setting for o ∈ Pm

ℓ+1 and r ∈ R′,

ΦK+1
O (o, r) =



















Φ′
O(o, r) if o ∈ N and Φ′

O(o, r) 6∈ W
∗

oK+1
enter if o ∈ N and Φ′

O(o, r) ∈ W
∗

πK+1

(

ΦO(πK+1(o), r)
)

if o ∈ W∗ and ΦO(πK+1(o), r) 6∈ N

oK+1
exit

if o ∈ W∗ and ΦO(πK+1(o), r) ∈ N

A proof similar to that of proposition 3.1 shows that:

Proposition 3.6. For all r ∈ R′ and for all o ∈ Pm
ℓ+1,

Φ′
O(o, r) � ΦK+1

O (o, r) .

We define an upper process (OK+1
t )t≥0 with the help of the i.i.d. sequence

(R′
n)n≥1 and the map ΦK+1

O . Let o ∈ Pm
ℓ+1 be the starting point of the process,

we set OK+1
0 = o and

∀n ≥ 1 OK+1
n = ΦK+1

O

(

OK+1
n−1 , R

′
n

)

.

Proposition 3.7. Suppose that the processes (Ot)t≥0, (OK+1
t )t≥0, have the

same starting occupancy distribution o. We have then

∀t ≥ 0 Ot � OK+1
t .

See proposition 8.1 of [3] for a detailed proof.
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3.4 Dynamics of the upper process

We will now study the dynamics of the upper process (OK+1
t )t≥0 in W∗. For

the process (OK+1
t )t≥0, the states in the set

T K+1 =
{

o ∈ Pm
ℓ+1 : o(0) ≥ 1 and o(0) + · · ·+ o(K) + o(K + 1) < m

}

are transient, and the states in the set N ∪
(

W∗ \ T K+1
)

form a recurrent
class. We will therefore focus on the dynamics of the process (OK+1

t )t≥0

restricted to W∗ \ T K+1. Since

W∗ \ T K+1 =
{

o ∈ Pm
ℓ+1 : o(0) ≥ 1 and o(0)+ · · ·+o(K)+o(K+1) = m

}

,

a state inW∗ \ T K+1 is completely determined by the occupation numbers of
the classes 0, . . . , K. The process (OK+1

t )t≥0 always enters the setW∗ \T K+1

at oK+1
enter. The only possible transitions for the Hamming classes 0, . . . , K of

the process (OK+1
t )t≥0 starting from a state in W∗ \ T K+1 are

(o(0), . . . , o(K)) −→ (o(0), . . . , o(K))− wi

if 1 ≤ o(i), 0 ≤ i ≤ K ,

(o(0), . . . , o(K)) −→ (o(0), . . . , o(K)) + wi

if o(0) + · · ·+ o(K) ≤ m− 1, 0 ≤ i ≤ K ,

(o(0), . . . , o(K)) −→ (o(0), . . . , o(K))− wi + wj

if 1 ≤ o(i), 0 ≤ i, j ≤ K, i 6= j .

The process (OK+1
t )t≥0 always exits the set W∗ \ T K+1 at oK+1

exit
. If the

process (OK+1
t )t≥0 starts from a state in W∗ \ T K+1, until the time of exit

from W∗ \ T K+1, the dynamics of (OK+1
t (0), . . . , OK+1

t (K))t≥0 is that of a
Markov chain on the state space

EK = { z ∈ N
K+1 : z0 + · · ·+ zK ≤ m } .

Let us compute the associated transition probabilities. Let z ∈ EK .

• For 0 ≤ i ≤ K and 0 < z0 + · · ·+ zK < m ,

p(z, z + wi) =

m−
K
∑

l=0

zl

m
(

(σ − 1)z0 +m
)

×

(

σz0M
K+1
H (0, i) +

K
∑

l=1

zlM
K+1
H (l, i) +

(

m−
K
∑

l=0

zl

)

MK+1
H (K + 1, i)

)

.
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• For 0 ≤ i ≤ K and 1 ≤ zi ,

p(z, z − wi) =
zi

m
(

(σ − 1)z0 +m
)×

(

σz0

(

1−
K
∑

h=0

MK+1
H (0, h)

)

+

K
∑

l=1

zl

(

1−
K
∑

h=0

MK+1
H (l, h)

)

+

(

m−
K
∑

l=0

zl

)(

1−
K
∑

h=0

MK+1
H (K + 1, h)

)

)

.

• For 0 ≤ i, j ≤ K, i 6= j and 1 ≤ zi ,

p(z, z − wi + wj) =
zi

m
(

(σ − 1)z0 +m
)

×

(

σz0M
K+1
H (0, j) +

K
∑

l=1

zlM
K+1
H (l, j) +

(

m−
K
∑

l=0

zl

)

MK+1
H (K + 1, j)

)

.

The other non–diagonal coefficients of the matrix are null. The diagonal
coefficients are arranged so that the matrix is stochastic, i.e., the sum over
each row equals 1.

Since we are interested in the dynamics of (OK+1
t )t≥0 in W∗ \ T K+1, the

transition probabilities starting from a point in { z ∈ EK : z0 = 0 } are not
relevant. Moreover, the law of the exit point from { z ∈ EK : z0 ≥ 1 } is
also not relevant, what matters is the law of the exit time. Therefore we will
modify the matrix p into another stochastic matrix pK+1 such that:

• Starting from { z ∈ EK : z0 = 0 }, there is a jump with probability 1 to
(1, m− 1, 0, . . . , 0).

• The law of the exit time from { z ∈ EK : z0 ≥ 1 } is unchanged, but the
exit point is (0, . . . , 0) with probability 1.

More precisely, we define the matrix pK+1 as follows:

• For z, z′ ∈ EK with z0 = 0,

pK+1
(

z, (1, m− 1, . . . , 0)
)

= 1 ,

pK+1(z, z′) = 0 if z′ 6= (1, m− 1, . . . , 0) .

• For z, z′ ∈ EK with z0 = 1 and z′0 = 0,

pK+1
(

z, (0, . . . , 0)
)

= p(z, z − w0) +

K
∑

i=1

p(z, z − w0 + wi) ,

pK+1(z, z′) = 0 if z′0 = 0 and z′ 6= (0, . . . , 0) .
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Finally, pK+1(z, z′) = p(z, z′) for all remaining z, z′ ∈ EK .

Let (ZK+1
t )t≥0 be a Markov chain with state space EK , starting at the point

zK+1 = (1, m− 1, 0, . . . , 0) and having for transition matrix pK+1. Since the
process (OK+1

t )t≥0 always enters W∗ \ T K+1 at oK+1
enter and its dynamics inside

W∗ \ T K+1 is the same as the dynamics of the chain (ZK+1
t )t≥0, we will rely

on this Markov chain to compute the desired estimates.

3.5 Bounds on the invariant measure

We denote by µℓ
O, µO, µK+1

O the invariant probability measures of (Oℓ
t)t≥0,

(Ot)t≥0, (O
K+1
t )t≥0. Let νK be the image measure of µO through the map

o ∈ Pm
ℓ+1 7−→

1

m

(

o(0) + · · ·+ o(K)
)

∈ [0, 1] .

For any function f : [0, 1] −→ R,
∫

[0,1]

f dνK =

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµO(o)

= lim
t→∞

E

(

f

(

Ot(0) + · · ·+Ot(K)

m

))

.

We fix a non–decreasing function f : [0, 1]→ R such that f(0) = 0. Thanks
to proposition 3.2 we have the following inequality:

∀t ≥ 0 f

(

Oℓ
t(0) + · · ·+Oℓ

t(K)

m

)

≤ f

(

Ot(0) + · · ·+Ot(K)

m

)

.

Moreover, thanks to proposition 3.7,

∀t ≥ 0 f

(

Ot(0) + · · ·+Ot(K)

m

)

≤ f

(

OK+1
t (0) + · · ·+OK+1

t (K)

m

)

.

We take the expectations and we send t to ∞, and we obtain

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµℓ
O(o)

≤

∫

[0,1]

f dνK ≤

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµK+1
O (o) .
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Our next goal is to find estimates of the above integrals. The strategy is the
same for the lower and upper integrals. Let θ be either K + 1 or ℓ and let
us study the invariant probability measure µθ

O. We will rely on a renewal
result. Let (Xt)t≥0 be a discrete time Markov chain taking values in a finite
space E . We suppose that (Xt)t≥0 is irreducible and aperiodic and we call µ
its invariant probability measure.

Proposition 3.8. Let W∗ be a subset of E and let e be a point in E \ W∗.
Let f be a function from E to R. We define

τ ∗ = inf
{

t ≥ 0 : Xt ∈ W
∗
}

, τ = inf
{

t ≥ τ ∗ : Xt = e
}

.

We have
∫

E

f(x) dµ(x) =
1

E(τ |X0 = e)
E

(
∫ τ

0

f(Xs) ds
∣

∣

∣
X0 = e

)

.

The proof is standard and similar to the proof of proposition 8.2 in [3], so
we omit it. We apply this renewal result to the process (Oθ

t )t≥0 restricted to
N ∪

(

W∗ \ T θ
)

, the set W∗ \ T θ, the occupancy distribution oθ
exit

and the
function o 7−→ f

((

o(0) + · · ·+ o(K)
)

/m
)

. Set

τ ∗ = inf
{

t ≥ 0 : Oθ
t ∈ W

∗
}

,

τ = inf
{

t ≥ τ ∗ : Oθ
t = oθ

exit

}

.

We then have

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµθ
O(o)

=

E

(
∫ τ

0

f

(

Oθ
s(0) + · · ·+Oθ

s(K)

m

)

ds
∣

∣

∣
Oθ

0 = oθ
exit

)

E
(

τ |Oθ
0 = oθ

exit

)

=

E

(
∫ τ∗

0

f

(

Oθ
s(0) + · · ·+Oθ

s(K)

m

)

ds
∣

∣

∣
Oθ

0 = oθ
exit

)

E
(

τ |Oθ
0 = oθ

exit

)

+

E

(
∫ τ

τ∗
f

(

Oθ
s(0) + · · ·+Oθ

s(K)

m

)

ds
∣

∣

∣
Oθ

0 = oθ
exit

)

E
(

τ |Oθ
0 = oθ

exit

) .

As long as (Oθ
t )t≥0 is in W∗ \ T θ, the dynamics of (Oθ

t (0), . . . , O
θ
t (K))t≥0 is

that of the Markov chain (Zθ
t )t≥0 defined at the end of the sections 3.2 and
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3.4. Suppose that (Zθ
t )t≥0 starts from zθ, where zθ is the point of EK given

by

zθ =

{

zK+1 = (1, 0, . . . , 0) if θ = K + 1 ,

zℓ = (1, m− 1, 0, . . . , 0) if θ = ℓ .

Let τ0 be the first time that the coordinate 0 becomes null, i.e.,

τ0 = inf
{

n ≥ 0 : Zθ
n(0) = 0

}

.

Since the process (Oθ
t )t≥0 always enters the set W∗ \ T θ at oθ

enter
, the law of

τ0 is the same as the law of τ − τ ∗ whenever the process (Oθ
t )t≥0 starts from

oθ
exit

. We conclude that the laws of
(

(Oθ
t (0), . . . , O

θ
t (K)), τ ∗ ≤ t ≤ τ

)

and
(

Zθ
t , 0 ≤ t ≤ τ0

)

are the same. In particular,

E
(

τ − τ ∗
∣

∣Oθ
0 = oθ

exit

)

= E
(

τ0
∣

∣Zθ
0 = zθ

)

,

and also

E

(
∫ τ

τ∗
f

(

Oθ
s(0) + · · ·+Oθ

s(K)

m

)

ds
∣

∣

∣
Oθ

0 = oθ
exit

)

=

E

(
∫ τ0

0

f

(

Zθ
s (0) + · · ·+ Zθ

s (K)

m

)

ds
∣

∣

∣
Zθ

0 = zθ
)

.

The formula for the invariant measure µθ
O can then be written as follows:

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµθ
O(o) =

E

(
∫ τ∗

0

f

(

Oθ
s(0) + · · ·+Oθ

s(K)

m

)

ds
∣

∣

∣
Oθ

0 = oθ
exit

)

E
(

τ ∗ |Oθ
0 = oθ

exit

)

+ E
(

τ0 |Z
θ
0 = zθ

)

+

E

(
∫ τ0

0

f

(

Zθ
s (0) + · · ·+ Zθ

s (K)

m

)

ds
∣

∣

∣
Zθ

0 = zθ
)

E
(

τ ∗ |Oθ
0 = oθ

exit

)

+ E
(

τ0 |Z
θ
0 = zθ

) .

The process (Zθ
t )t≥0 always enters the set {z ∈ EK : z0 ≥ 1} at zθ, and always

exits the set {z ∈ EK : z0 ≥ 1} at (0, . . . , 0). In order to write the previous
formula in terms of the invariant probability measure of (Zθ

t )t≥0, we apply
the renewal result stated in proposition 3.8 to the process (Zθ

t )t≥0, the set
{z ∈ EK : z0 ≥ 1} , the point 0 and the map z 7−→ f

(

(z0+ · · ·+ zK)/m
)

. We
set

τ1 = inf
{

t ≥ 0 : Zθ
t (0) ≥ 1

}

,

τ ′0 = inf
{

t ≥ τ1 : Z
θ
t = 0

}

,
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and we denote by νθ the invariant probability measure of the process (Zθ
t )t≥0 .

We have

∫

EK
f
(z0 + · · ·+ zK

m

)

dνθ(z) =

E

(
∫ τ ′0

0

f

(

Zθ
s (0) + · · ·+ Zθ

s (K)

m

)

ds
∣

∣

∣
Zθ

0 = 0

)

E
(

τ ′0 |Z
θ
0 = 0

) .

Since pθ(0, zθ) = 1, the Markov property yields

∫

EK
f
(z0 + · · ·+ zK

m

)

dνθ(z) =

E

(
∫ τ0

0

f

(

Zθ
s (0) + · · ·+ Zθ

s (K)

m

)

ds
∣

∣

∣
Zθ

0 = zθ
)

1 + E
(

τ0 |Z
θ
0 = zθ

) .

Reporting back in the formula for µθ
O, we get:

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµθ
O(o) =

E

(
∫ τ∗

0

f

(

Oθ
s(0) + · · ·+Oθ

s(K)

m

)

ds
∣

∣

∣
Oθ

0 = oθ
exit

)

E
(

τ ∗ |Oθ
0 = oθ

exit

)

+ E
(

τ0 |Z
θ
0 = zθ

)

+
1 + E

(

τ0 |Z
θ
0 = zθ

)

E
(

τ ∗ |Oθ
0 = oθ

exit

)

+ E
(

τ0 |Z
θ
0 = zθ

)

∫

EK
f
(z0 + · · ·+ zK

m

)

dνθ(z) .

In the sequel, we will try to estimate each of the terms appearing on the
right–hand side of this formula.

4 Induction and estimates

In this section we estimate the integral

∫

EK
f
(z0 + · · ·+ zK

m

)

dνθ(z) .
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Suppose that σe−a > 1 and let ρ∗ = (ρ∗0, . . . , ρ
∗
K) be the point of [0, 1]K+1

given by

ρ∗k = (σe−a − 1)
ak

k!

∑

i≥1

ik

σi
, 0 ≤ k ≤ K .

Let f : Pm
ℓ+1 −→ R be a non–decreasing continuous function with f(0) = 0.

We consider the following asymptotic regime:

ℓ→ +∞ , m→ +∞ , q → 0 ,

ℓq → a ,
m

ℓ
→ α .

Our goal is to prove that in this regime

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

∫

EK
f
(z0 + · · ·+ zK

m

)

dνθ(z) = f(ρ∗0 + · · ·+ ρ∗K) .

In order to prove this convergence, we estimate some hitting times associated
to the Markov chain (Zθ

t )t≥0. Let us define for 0 ≤ k ≤ K and for δ > 0,

Uk(δ) =

{

z ∈ EK :
∣

∣

∣

zi
m
− ρ∗i

∣

∣

∣
< δ, 0 ≤ i ≤ k

}

.

We also define, for any subset A ⊂ EK the hitting time of A:

τ(A) = inf{ t ≥ 0 : Zθ
t ∈ A } .

Theorem 4.1. Let δ > 0. For all 0 ≤ k ≤ K, there exist positive real
numbers αk, α

′
k, βk, β

′
k (all of them depending on δ), such that for ℓ,m big

enough and for q small enough, we have:

• For all z ∈ EK,

P
(

τ(Uk(δ)) ≥ mαk
∣

∣Zθ
0 = z

)

≤ exp(−α′
km) .

• For all z ∈ Uk(δ),

P
(

τ(Uk(2δ)
c) ≤ exp(βkm)

∣

∣Zθ
0 = z

)

≤ exp(−β ′
km) .

We will prove this theorem by induction on k. The strategy is as follows.
From the definition of Uk(δ) we see that

U0(δ) ⊃ U1(δ) ⊃ · · · ⊃ UK(δ) ,
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and that in order to know whether the process (Zθ
t )t≥0 is in Uk(δ), it is enough

to check the first k + 1 coordinates, Zθ
t (0), . . . , Z

θ
t (k). The process (Zθ

t )t≥0

has been built in such a way that the dynamics of (Zθ
t (k))t≥0 does not depend

on the coordinates k + 1, . . . , K. The case k = 0 boils down to the study of
birth and death Markov chains, which are very similar to the ones studied
in section 9 of [3]. If the estimates hold at rank k − 1, then we know that
the process (Zθ

t )t≥0 spends almost all of its time inside the set Uk−1(δ). As
long as the process is in Uk−1(δ), we can bound stochastically the dynamics
of (Zθ

t (k))t≥0 with a pair of birth and death chains, which can be studied
with the same techniques as the birth and death chains from the case k = 0.
To begin with, we show that the process (Zθ

t (k))t≥0 does not depend on the
coordinates k + 1, . . . , K. Let us take k in {0, . . . , K}, z = (z0, . . . , zK) a
point in EK , and let us compute the following transition probabilities:

P
(

Zθ
t+1(k) = zk + 1 |Zθ

t = z
)

= pθ(z, z + wk) +
∑

0≤i≤K
i 6=k

pθ(z, z + wk − wi) ,

P
(

Zθ
t+1(k) = zk − 1 |Zθ

t = z
)

= pθ(z, z − wk) +
∑

0≤i≤K
i 6=k

pθ(z, z − wk + wi) .

In the case of the lower process (Zℓ
t )t≥0, we obtain

pℓ(z, z + wk) +
∑

0≤i≤K
i 6=k

pℓ(z, z + wk − wi) =

m− zk
m
(

(σ − 1)z0 +m
) ×

(

σz0MH(0, k) +
k
∑

l=1

zlMH(l, k)

)

,

pℓ(z, z − wk) +
∑

0≤i≤K
i 6=k

pℓ(z, z − wk + wi) =
zk

m
(

(σ − 1)z0 +m
)

×

(

σz0
(

1−MH(0, k)
)

+
k
∑

l=1

zl
(

1−MH(l, k)
)

+m−
k
∑

l=0

zl

)

.

In the case of the upper process (ZK+1
t )t≥0, we obtain

pK+1(z, z + wk) +
∑

0≤i≤K
i 6=k

pK+1(z, z + wk − wi) =
m− zk

m
(

(σ − 1)z0 +m
)

×

(

σz0MH(0, k) +

k
∑

l=1

zlMH(l, k) +

(

m−
k
∑

l=0

zl

)

MH(k + 1, k)

)

,
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pK+1(z, z − wk) +
∑

0≤i≤K
i 6=k

pK+1(z, z − wk + wi) =

zk

m
(

(σ − 1)z0 +m
)

(

σz0
(

1−MH(0, k)
)

+

k
∑

l=1

zl
(

1−MH(l, k)
)

+

(

m−
k
∑

l=0

zl

)

(

1−MH(k + 1, k)
)

)

.

We observe that none of the above expressions depend on zk+1, . . . , zK . More-
over, if we define for k ∈ {0, . . . , K},

M ℓ
H(ℓ, k) = 0 , MK+1

H (K + 1, k) = MH(k + 1, k) ,

we can rewrite the above transition probabilities as follows:

pθ(z, z + wk) +
∑

0≤i≤K
i 6=k

pθ(z, z + wk − wi) =
m− zk

m
(

(σ − 1)z0 +m
)

×

(

σz0MH(0, k) +
k
∑

l=1

zlMH(l, k) +

(

m−
k
∑

l=0

zl

)

Mθ
H(θ, k)

)

,

pθ(z, z − wk) +
∑

0≤i≤K
i 6=k

pθ(z, z − wk + wi) =

zk

m
(

(σ − 1)z0 +m
)

(

σz0
(

1−MH(0, k)
)

+

k
∑

l=1

zl
(

1−MH(l, k)
)

+

(

m−
k
∑

l=0

zl

)

(

1−Mθ
H(θ, k)

)

)

.

We first give some general results concerning birth and death Markov chains,
which we then use to study both the initial case k = 0 and the inductive
step.

4.1 Birth and death Markov chains

First of all we give some explicit formulas for mean hitting times of birth
and death Markov chains. These formulas can be derived from the classical
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formulas for finite state space Markov chains (see [14], chapter 6). Next, we
apply these formulas to study the limiting behaviour of a family of birth and
death Markov chains, under suitable hypotheses. Let (Zt)t≥0 be a birth and
death Markov chain taking values in { 0, . . . , m } and having the following
transition probabilities

P
(

Zt+1 = i+ 1
∣

∣Zt = i
)

= δi , 0 ≤ i < m ,
P
(

Zt+1 = i− 1
∣

∣Zt = i
)

= γi , 0 < i ≤ m.

Let us define

π(0) = 1 , π(i) =
δ1 · · · δi
γ1 · · · γi

, 0 < i < m .

For a subset A ⊂ { 0, . . . , m }, we define the hitting time of A by

τ(A) = inf
{

t ≥ 0 : Zt ∈ A
}

.

Let a, b be two points in { 0, . . . , m }, with a < b.l We have the following
formula for the hitting time of b starting from a:

E
(

τ({b})
∣

∣Z0 = a
)

=

b−1
∑

i=a

b−1
∑

j=i

1

δi

π(i)

π(j)
.

Likewise, we have the following formula for the hitting time of a starting
from b:

E
(

τ({a})
∣

∣Z0 = b
)

=
b−1
∑

i=a

b−1
∑

j=i

1

γi+1

π(i)

π(j)
.

Let a < i < b be three points in { 0, . . . , m }. We have the following formulas
for the exit point of { a, . . . , b }:

P
(

Zτ({a,b}) = a
∣

∣Z0 = i
)

=

b−1
∑

j=i

1

π(j)

b−1
∑

j=a

1

π(j)

,

P
(

Zτ({a,b}) = b
∣

∣Z0 = i
)

=

i−1
∑

j=a

1

π(j)

b−1
∑

j=a

1

π(j)

.
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We consider now a family of birth and death Markov chains (Zt)t≥0 depending
on four parameters: m, ℓ ≥ 1, q ∈ [0, 1], δ′ > 0. For m, ℓ ≥ 0, q ∈ [0, 1] and
δ′ > 0, the process (Zt)t≥0 is a birth and death Markov chain with state space
{ 0, . . . , m } and transition probabilities given by:

P
(

Zt+1 = i+ 1 |Zt = i
)

= δi , 0 ≤ i < m ,

P
(

Zt+1 = i− 1 |Zt = i
)

= γi , 0 < i ≤ m,

where δi, γi can depend on the parameters m, ℓ, q, δ′. We are interested in
the asymptotic behaviour of (Zt)t≥0 when m, ℓ go to∞ and q, δ′ go to 0. We
make the following assumptions.

Assumption 1. There exist a constant C > 0 (which can depend on ℓ, q, δ′

but not on m) and an integer k ≥ 1 such that for all m, ℓ large enough and
q, δ′ small enough

∀i ∈ { 0, . . . , m− 1 } δi ≥
C

mk
,

∀i ∈ { 1, . . . , m } γi ≥
C

mk
.

Assumption 2. For all ρ ∈ [0, 1], we have the following large deviation
estimate:

lim
ℓ,m→∞
q→0

1

m
ln π(⌊ρm⌋) = fδ′(ρ) ,

where fδ′ : [0, 1] −→ R is a function for which there exists ρ∗1 ≤ ρ∗ ≤ ρ∗2
in [0, 1] such that fδ′ is increasing over [0, ρ∗1[ and decreasing over ]ρ∗2, 1].
Moreover, ρ∗ does not depend on δ′ and

lim
δ′→0

ρ∗1 = lim
δ′→0

ρ∗2 = ρ∗ .

Assumption 3. For each m, ℓ ≥ 1, q ∈ [0, 1], δ′ > 0, there exists r1 ≤ r2 in
[0, 1] such that

1 ≤ i ≤ j ≤ ⌊r1m⌋ =⇒ π(i) ≤ π(j) ,

⌊r2m⌋ ≤ i ≤ j ≤ m =⇒ π(i) ≥ π(j) .

Moreover,
lim

ℓ,m→∞
q→0

r1 = ρ∗1 , lim
ℓ,m→∞
q→0

r2 = ρ∗2 .
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These three assumptions will be verified by the birth and death Markov
chains that we will derive later from the process (Zθ

t )t≥0. With these as-
sumptions in hand we can prove the following proposition. Let us define, for
δ > 0,

V (δ) =
{

i ∈ { 0, . . . , m } :
∣

∣

∣

i

m
− ρ∗

∣

∣

∣
< δ

}

.

For any subset A ⊂ { 0, . . . , m } we define the hitting time of A by

τ(A) = inf{ t ≥ 0 : Zt ∈ A } .

Proposition 4.2. Suppose that the three assumptions are satisfied. Let δ >
0. There exist positive real numbers α, α′, β, β ′ (depending on δ, δ′) such that
for m, ℓ large enough and q, δ′ small enough

∀i ∈ { 0, . . . , m } P
(

τ(V (δ)) ≥ mα |Z0 = i
)

≤ exp(−α′m) ,

∀i ∈ V (δ) P
(

τ(V (2δ)c) ≤ exp(βm) |Z0 = i
)

≤ exp(−β ′m) .

Proof. We begin by showing the first statement in the proposition. The cases
i ≤ ρ∗m and i ≥ ρ∗m are dealt with in a similar way, thus, we will only show
the result for i ≤ ρ∗m. Let us call b the minimum of the discrete interval
V (δ),

b = ⌊(ρ∗ − δ)m⌋+ 1 .

From the formulas provided at the beginning of the section we obtain

E
(

τ(V (δ))
∣

∣Z0 = i
)

= E
(

τ({b})
∣

∣Z0 = i
)

=

b−1
∑

j=i

b−1
∑

k=j

1

δj

π(j)

π(k)
.

By assumptions 2 and 3, for m, ℓ big enough and q, δ′ small enough, the point
r1 is in V (δ), so that b ≤ r1, thus

1 ≤ j ≤ k ≤ b− 1 =⇒
π(j)

π(k)
≤ 1 .

Furthermore, by assumption 1, for m, ℓ large enough and q, δ′ small enough,

∀j ∈ { 0, . . . , m− 1 } δj ≥
C

mk
.

It follows that

E
(

τ(V (δ))
∣

∣Z0 = 0
)

≤
1

C
mk+2 .
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Let a > k + 2. By the Markov inequality,

P
(

τ(V (δ)) > ma
∣

∣Z0 = i
)

≤
1

C
m−(a−k−2) .

We will next estimate for n ≥ 1,

P
(

τ(V (δ)) ≥ nma
∣

∣Z0 = i
)

.

We decompose this probability according to the possible states of the process
at time (n− 1)ma:

P
(

τ(V (δ)) ≥ nma
∣

∣Z0 = i
)

=
∑

j<b

P
(

Z(n−1)ma = j, τ(V (δ)) ≥ (n− 1)ma, τ(V (δ)) ≥ nma
∣

∣Z0 = i
)

=
∑

j<b

P
(

Z(n−1)ma = j, τ(V (δ)) ≥ (n− 1)ma
∣

∣Z0 = i
)

× P
(

τ(V (δ)) ≥ nma
∣

∣Z0 = i, Z(n−1)ma = j, τ(V (δ)) ≥ (n− 1)ma
)

.

Thanks to the Markov property,

P
(

τ(V (δ)) ≥ nma
∣

∣Z0 = i, Z(n−1)ma = j, τ(V (δ)) ≥ (n− 1)ma
)

= P
(

τ(V (δ)) ≥ nma − (n− 1)ma
∣

∣Z0 = j
)

≤
1

C
m−(a−k−2) .

Therefore, for all n ≥ 1,

P
(

τ(V (δ)) ≥ nma
∣

∣Z0 = i
)

≤

1

C
m−(a−k−2)P

(

τ(V (δ)) ≥ (n− 1)ma
∣

∣Z0 = i
)

.

We iterate this procedure for the times (n−2)ma, . . . , 2ma, ma and we obtain

P
(

τ(V (δ)) ≥ nma
∣

∣Z0 = i
)

≤

(

1

C
m−(a−k−2)

)n

= exp
(

− n
(

(a− k − 2) lnm+ lnC
)

)

.

Thus, setting n = m, we obtain the desired result with α = k + 3 and
α′ = (α− k − 3) lnm0 + lnC for m0 large enough so that α′ > 0.

We show next the second statement of the proposition. Let t > 0, i ∈ V (δ),
and let us first estimate the value of

P
(

τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

.
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Let θ be the last time the process (Zt)t≥0 visits the set V (δ) before time
τ(V (2δ)c), i.e.,

θ = max
{

s < τ(V (2δ)c) : Zs ∈ V (δ)
}

.

We denote by b and c the extreme points of the discrete interval V (δ),

b = ⌊(ρ∗ − δ)m⌋+ 1 , c = ⌊(ρ∗ + δ)m⌋ .

Likewise, we denote by b′ and c′ the extreme points of the discrete interval
V (2δ),

b′ = ⌊(ρ∗ − 2δ)m⌋+ 1 , c′ = ⌊(ρ∗ + 2δ)m⌋ .

We have then

P
(

τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

=
∑

s<t

P
(

θ = s, τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

=
∑

s<t

(

P
(

θ = s, Zs = b, τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

+ P
(

θ = s, Zs = c, τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

)

.

Let us consider the first term within the parenthesis. By the Markov property,

P
(

θ = s, Zs = b, τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

= P

(

Zs = b, Zs+1 = b− 1, τ(V (2δ)c) ≤ t
Zr 6∈ V (δ) for s < r ≤ τ(V (2δ)c)

∣

∣

∣

∣

Z0 = i

)

≤ P

(

Zr 6∈ V (δ) for r ≤ τ(V (2δ)c)
τ(V (2δ)c) ≤ t− s− 1

∣

∣

∣

∣

Z0 = b− 1

)

≤ P
(

Zτ(V (2δ)c∪{b}) ∈ V (2δ)c
∣

∣Z0 = b− 1
)

= P
(

Zτ({b′−1,b}) = b′ − 1
∣

∣Z0 = b− 1
)

.

We now use the formulas provided at the beginning of the section:

P
(

Zτ({b′−1,b}) = b′ − 1
∣

∣Z0 = b− 1
)

=

1

π(b− 1)
b−1
∑

i=b′−1

1

π(i)

.

Therefore,

P
(

Zτ({b′−1,b}) = b′ − 1
∣

∣Z0 = b− 1
)

≤
π(b′ − 1)

π(b− 1)
.
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Let ε > 0 and let ℓ,m be large enough and q small enough so that

∣

∣

∣

∣

1

m
ln π(b− 1)− fδ′(ρ

∗ − δ)

∣

∣

∣

∣

<
ε

2
,

∣

∣

∣

∣

1

m
ln π(b′ − 1)− fδ′(ρ

∗ − 2δ)

∣

∣

∣

∣

<
ε

2
.

We have then

π(b′ − 1)

π(b− 1)
= exp

(

m
( 1

m
ln π(b′ − 1)−

1

m
ln π(b− 1)

)

)

≤ exp
(

−m
(

fδ′(ρ
∗ − δ)− fδ′(ρ

∗ − 2δ)− ε
)

)

.

Thanks to assumption 2, we can choose ε and δ′ small enough so that

ε < fδ′(ρ
∗ − δ)− fδ′(ρ

∗ − 2δ) .

We choose β1 as follows:

β1 = fδ′(ρ
∗ − δ)− fδ′(ρ

∗ − 2δ)− ε .

We have β1 > 0 and

P
(

θ = s, Zs+1 = b− 1, τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

≤ exp(−β1m) .

The term
P
(

θ = s, Zs+1 = c+ 1, τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

is dealt with in a similar fashion, thus obtaining β2 > 0 such that

P
(

θ = s, Zs+1 = c+ 1, τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

≤ exp(−β2m) .

It follows that

P
(

τ(V (2δ)c) ≤ t
∣

∣Z0 = i
)

≤ t
(

exp(−β1m) + exp(−β2m)
)

.

We choose β < min(β1, β2) and for m0 large enough

β ′ = min(β1 − β, β2 − β)−
1

m0

ln 2 .

We apply the previous inequality at time t = exp(βm) and we obtain the
desired result.
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4.2 The initial case

We study here the case k = 0. We will use the results from the previous
section to study the birth and death Markov chains (Zθ

t (0))t≥0, θ = k + 1
or θ = ℓ. These processes are very similar to the upper and lower birth
and death chains studied in [3]. In particular, the analysis in chapter 9
of [3] is still valid for (Zθ

t (0))t≥0. The process (Zθ
t (0))t≥0 is a birth and

death Markov chain taking values on { 0, . . . , m } and having the following
transition probabilities

δ0 = 1 ,

δi =
σi(m− i)MH(0, 0) + (m− i)2Mθ

H(θ, 0)

m(σi+m− i)
, 1 ≤ i ≤ m− 1 ,

γi =
σi2
(

1−MH(0, 0)
)

+ i(m− i)
(

1−Mθ
H(θ, 0)

)

m(σi+m− i)
, 1 ≤ i ≤ m,

where M ℓ
H(ℓ, 0) = 0 and MK+1

H (K + 1, 0) = MH(1, 0). The mutation prob-
abilities Mθ

H depend on the parameters ℓ and q. In particular, the process
(Zθ

t (0))t≥0 belongs to the class of birth and death Markov chains studied in
the previous section, even if there is no parameter δ′. We show next that
(Zθ

t (0))t≥0 fulfils the three assumptions made in section 4.1. From the ex-
pressions given for δi and γi we see that for all ℓ,m ≥ 1, q ∈ [0, 1],

∀i ∈ { 0, . . . , m− 1 } δi ≥
MH(0, 0)

m2
,

∀i ∈ { 1, . . . , m } γi ≥
1−MH(0, 0)

m2
.

Define a function φ : ]0, 1]× [0, 1[× ]0, 1[−→ ]0,+∞[ by

φ(β, ε, ρ) =
(1− ρ)

(

σβρ+ (1− ρ)ε
)

ρ
(

σ(1− β)ρ+ (1− ρ)(1− ε)
) ,

and let ρ(β, ε) be the only positive root of the equation φ(β, ε, ρ) = 1, i.e.,

ρ(β, ε) =
1

2(σ − 1)

(

σβ − 1− ε+
√

(σβ − 1− ε)2 + 4ε(σ − 1)
)

.

As shown in [3], we have:

1 ≤ i ≤ j ≤ ⌊ρ(β, ε)m⌋ =⇒ π(i) ≤ π(j) ,

⌊ρ(β, ε)m⌋ ≤ i ≤ j ≤ m =⇒ π(i) ≥ π(j) .

We have also the following result:
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Proposition 4.3. Let a ∈ ]0,+∞[ . For ρ ∈ [0, 1], we have

lim
ℓ,m→∞

q→0, ℓq→a

1

m
ln π(⌊ρm⌋) =

∫ ρ

0

lnφ(exp(−a), 0, s) ds .

A detailed proof is provided in [3]. Let us define, for σe−a > 1,

ρ∗0 = ρ
(

e−a, 0
)

=
σe−a − 1

σ − 1
.

The function

ρ 7→

∫ ρ

0

lnφ(e−a, 0, s) ds

is increasing on ]0, ρ∗0[ , and decreasing on ]ρ∗0, 1[ . We also have

lim
ℓ,m→∞

q→0, ℓq→a

ρ
(

MH(0, 0),M
θ
H(θ, 0)

)

= ρ∗0 .

Since all three assumptions are verified we can apply proposition 4.2 to the
process (Zθ

t (0))t≥0. Let δ > 0 and define

V0(δ) =
{

i ∈ { 0, . . . , m } :
∣

∣

∣

i

m
− ρ∗0

∣

∣

∣
< δ

}

.

We also define, for any subset A ⊂ { 0, . . . , m } the hitting time of A:

τ(A) = inf
{

t ≥ 0 : Zθ
t (0) ∈ A

}

.

Corollary 4.4. Let δ > 0. There exist positive real numbers α0, α
′
0, β0, β

′
0

(depending on δ), such that for ℓ,m big enough and q small enough,

∀i ∈ { 0, . . . , m } P
(

τ(V0(δ)) ≥ mα0

∣

∣Zθ
0(0) = i

)

≤ exp(−α′
0m) ,

∀i ∈ V0(δ) P
(

τ(V0(2δ)
c) ≤ exp(β0m)

∣

∣Zθ
0(0) = i

)

≤ exp(−β ′
0m) .

4.3 The inductive step

We perform now the inductive step. Let us fix an integer k ∈ { 0, . . . , K }.
We suppose that the result of theorem 4.1 is true at rank k − 1, and we
prove that it remains true at rank k. We recall that, for δ > 0, the subset
Uk(δ) ⊂ EK is defined by

Uk(δ) =
{

z ∈ EK :
∣

∣

∣

zi
m
− ρ∗i

∣

∣

∣
< δ, 0 ≤ i ≤ k

}

.
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The hitting time of a subset A ⊂ EK is defined by

τ(A) = inf{ t ≥ 0 : Zθ
t ∈ A } .

We will prove that for δ > 0, there exist positive real numbers αk, α
′
k, βk, β

′
k

(depending on δ, δ′) such that for ℓ,m large enough and q small enough,

∀z ∈ EK P
(

τ(Uk(δ)) ≥ mαk
∣

∣Zθ
0 = z

)

≤ exp(−α′
km) ,

∀z ∈ Uk(δ) P
(

τ(Uk(2δ)
c) ≤ exp(βkm)

∣

∣Zθ
0 = z

)

≤ exp(−β ′
km) .

Let δ′ > 0. By the induction hypothesis, the process (Zθ
t )t≥0 spends most

of its time inside the set Uk−1(2δ
′). Therefore, we will study the dynamics

of the kth coordinate (Zθ
t (k))t≥0 when Zθ

t is in Uk−1(2δ
′). Conditionally on

(

Zθ
t (0), . . . , Z

θ
t (k − 1)

)

t≥0
, the process (Zθ

t (k))t≥0 can be seen as a birth and
death process having time–dependent transition probabilities. The classical
formula for birth and death processes cannot be applied directly to the pro-
cess (Zθ

t (k))t≥0. Our goal is to get rid of this time dependence. We will build
a process (Zt)t≥0 whose conditional law given

(

Zθ
t (0), . . . , Z

θ
t (k − 1)

)

t≥0
is

the same as the law of (Zθ
t (k))t≥0. We will then realize a coupling between

the process (Zt)t≥0 and a pair of birth and death Markov chains, a lower
one (ZL

t )t≥0 and an upper one (ZU
t )t≥0. The key point is that the transition

probabilities of (ZL
t )t≥0 and (ZU

t )t≥0 are not time dependent any more. The
coupling only works as long as the process (Zθ

t )t≥0 is in the set Uk−1(2δ
′).

Since (Zθ
t )t≥0 spends most of its time inside Uk−1(2δ

′), the coupling will
allow us to obtain the desired estimates. For i ∈ { 0, . . . , K }, we define
a pair of maps δi, γi : [0, 1]

k × { 0, . . . , m } −→ { 0, . . . , m } as follows. Let
ρ = (ρ0, . . . , ρk−1) ∈ [0, 1]k.

• We set δm(ρ) = 0 and for 0 ≤ i < m,

δi(ρ) =
1− i/m

(σ − 1)ρ0 + 1

(

σρ0MH(0, k) +
k−1
∑

l=1

ρlMH(l, k)

+
i

m
MH(k, k) +

(

1−
k−1
∑

l=0

ρl −
i

m

)

MH(θ, k)

)

.

• We set γ0(ρ) = 0 and for 0 < i ≤ m,

γi(ρ) =
i/m

(σ − 1)ρ0 + 1

(

σρ0
(

1−MH(0, k)
)

+
k−1
∑

l=1

ρl
(

1−MH(l, k)
)

+
i

m

(

1−MH(k, k)
)

+
(

1−
k−1
∑

l=0

ρl −
i

m

)

(

1−MH(θ, k)
)

)

.
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These maps allow us to express the transition probabilities of (Zθ
t (k))t≥0 in

the following way. For z = (z0, . . . , zk) ∈ EK \ { 0 } and i = zk,

P
(

Zθ
t+1(k) = i+ 1

∣

∣Zθ
t = z

)

= δi

(z0
m
, . . . ,

zk−1

m

)

,

P
(

Zθ
t+1(k) = i− 1

∣

∣Zθ
t = z

)

= γi

(z0
m
, . . . ,

zk−1

m

)

.

The process (Zθ
t (k))t≥0 is not well suited to build a coupling, therefore, we

build another process (Zt)t≥0 whose conditional law given the trajectories
(

Zθ
t (0), . . . , Z

θ
t (k − 1)

)

t≥0
is the same as the law of (Zθ

t (k))t≥0. We define a
map

C : [0, 1]k × { 0, . . . , m } × [0, 1] −→ [0, 1]

by setting for ρ ∈ [0, 1]k, i ∈ { 0, . . . , m } and u ∈ [0, 1],

C(ρ, i, u) = i− 1u<γi(ρ) + 1u>1−δi(ρ) .

The map C is defined so that if U is a uniform random variable on [0, 1],
then for ρ ∈ [0, 1]k and i ∈ { 0, . . . , m },

P
(

C(ρ, i, U) = i+ 1
)

= δi(ρ), P
(

C(ρ, i, U) = i− 1
)

= γi(ρ) .

Lemma 4.5. For m large enough, the map C is non–decreasing with respect
to the argument i:

∀ρ ∈ [0, 1]k ∀i, j ∈ { 0, . . . , m } ∀u ∈ [0, 1]

i ≤ j =⇒ C(ρ, i, u) ≤ C(ρ, j, u) .

Proof. It is enough to show that the result holds for j = i+ 1. We have

C(ρ, i+ 1, u)− C(ρ, i, u) =

1−
(

1u<γi+1(ρ) − 1u<γi(ρ)

)

+
(

1u>1−δi+1(ρ) − 1u>1−δi(ρ)

)

.

This quantity is negative if and only if

γi(ρ) ≤ u < γi+1(ρ) and 1− δi(ρ) < u ≤ 1− δi+1(ρ) .

This can only happen if δi(ρ) + γi+1(ρ) > 1. However, taking y ∈ [0, 1] such

40



that i = ⌊ym⌋, we see that

lim
m→∞

δi(ρ) + γi+1(ρ) =

1

(σ − 1)ρ0 + 1

(

σρ0

(

(1− y)MH(0, k) + y
(

1−MH(0, k)
)

)

+

k−1
∑

l=1

ρl

(

(1− y)MH(l, k) + y
(

1−MH(l, k)
)

)

+ y
(

(1− y)MH(k, k) + y
(

1−MH(k, k)
)

)

+
(

1−
k−1
∑

l=0

ρl − y
)(

(1− y)MH(θ, k) + y
(

1−MH(θ, k)
)

)

)

,

Yet, for u ∈ ]0, 1[ and v ∈ [0, 1] we have

(1− u)v + u(1− v) < v + 1− v = 1 .

Thus,

lim
m→∞

δi(ρ) + γi+1(ρ) <

1

(σ − 1)ρ0 + 1

(

σρ0 +

k−1
∑

l=1

ρl + y +
(

1−
k−1
∑

l=0

ρl − y
)

)

= 1 ,

as required.

Let (Un)n≥1 be an i.i.d. sequence of uniform random variables on [0, 1]. We
define the process (Zt)t≥0 using the process (Zθ

t )t≥0 and the sequence (Un)n≥1.
Let z = (z0, . . . , zK) ∈ EK \ {0} be the starting point of the process (Zθ

t )t≥0.
We take Z0 = zk and

∀n ≥ 1 Zn = C

(

Zθ
n−1(0)

m
, . . . ,

Zθ
n−1(k − 1)

m
,Zn−1, Un

)

.

From this construction, conditionally on
(

Zθ
t (0), . . . , Z

θ
t (k − 1)

)

t≥0
, both pro-

cesses (Zt)t≥0 and (Zθ
t (k))t≥0 have the same law.

Let us fix δ′ > 0. We build next a lower birth and death Markov chain (ZL
t )t≥0

and an upper one (ZU
t )t≥0 in order to bound stochastically the process (Zt)t≥0

when (Zθ
t )t≥0 is in Uk−1(2δ

′). Let Wk−1(δ
′) be the subset of [0, 1]k given by

Wk−1(δ
′) =

{

ρ ∈ [0, 1]k : |ρi − ρ
∗
i | < δ′, 0 ≤ i < k

}

.

41



In particular, we have

Wk−1(δ
′) ∩

Z
k

m
= Uk−1(δ

′) .

We define (ZL
t )t≥0 to be a birth and death Markov chain on the state space

{ 0, . . . , m }, having the following transition probabilities:

δLi = min{ δi(ρ) : ρ ∈ Wk−1(2δ
′) } , 0 ≤ i ≤ m,

γLi = max{ γi(ρ) : ρ ∈ Wk−1(2δ
′) } , 0 ≤ i ≤ m.

Likewise, we define (ZU
t )t≥0 to be a birth and death Markov chain on the

state space { 0, . . . , m } having the following transition probabilities:

δUi = max{ δi(ρ) : ρ ∈ Wk−1(2δ
′) } 0 ≤ i ≤ m,

γUi = min{ γi(ρ) : ρ ∈ Wk−1(2δ
′) } 0 ≤ i ≤ m.

The processes (ZL
t )t≥0 and (ZU

t )t≥0 are well defined, since if ρi and ρ′i are the
points that maximise the functions γi(ρ) and δi(ρ) respectively, we have

δLi + γLi = δLi + γi(ρi) ≤ δi(ρi) + γi(ρi) ≤ 1 ,

δUi + γUi = δi(ρ
′
i) + γUi ≤ δi(ρ

′
i) + γi(ρ

′
i) ≤ 1 .

In order to couple these processes we define the maps

CL, CU : { 0, . . . , m } × [0, 1] −→ [0, 1]

by setting for i ∈ { 0, . . . , m } and u ∈ [0, 1],

CL(i, u) = i− 1u<γL
i
+ 1u>1−δLi

,

CU(i, u) = i− 1u<γU
i
+ 1u>1−δUi

.

The maps CL, CU are built so that if U is a uniform random variable on
[0, 1], then

P
(

CL(i, U) = i+ 1
)

= δLi and P
(

CL(i, U) = i− 1
)

= γLi ,

P
(

CU(i, U) = i+ 1
)

= δUi and P
(

CU(i, U) = i− 1
)

= γUi .

The definition of the transition probabilities δLi , γ
L
i , δ

U
i , γ

U
i implies that the

map CL is below the map C and the map CU is above the map C, i.e.,

∀ρ ∈ Wk−1(2δ
′) ∀i ∈ { 0, . . . , m } ∀u ∈ [0, 1]

CL(i, u) ≤ C(ρ, i, u) ≤ CU(i, u) .
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We define the processes (ZL
t )t≥0, (Z

U
t )t≥0 with the help of the same sequence

(Un)n≥1 that was used to define (Zt)t≥0. Let i ∈ { 0, . . . , m } be the starting
point of the processes. We set ZL

0 = ZU
0 = i and

∀n ≥ 1 ZL
n = CL(ZL

n−1, Un) , ZU
n = CU(ZU

n−1, Un) .

Let τ(Uk−1(2δ
′)c) be the exit time from the set Uk−1(2δ

′) for the process
(Zθ

t )t≥0:
τ(Uk−1(2δ

′)c) = inf { t ≥ 0 : Zθ
t 6∈ Uk−1(2δ

′) } .

Proposition 4.6. Let z = (z0, . . . , zK) ∈ Uk−1(2δ
′) be the starting point of

the process (Zθ
t )t≥0. If ZL

0 = Z0 = ZU
0 = zk, then

∀n ∈ [0, τ(Uk−1(2δ
′)c)] ZL

n ≤ Zn ≤ ZU
n .

Proof. We will show the inequality by induction on n ∈ N. For n = 0 we
have equality ZL

0 = Z0 = ZU
0 . Suppose that the inequality holds at time

n < τ(Uk−1(2δ
′)c), i.e., ZL

n ≤ Zn ≤ ZU
n and

(

Zθ
n(0)/m, . . . , Z

θ
n(k − 1)/m

)

is
in the set Wk−1(2δ

′). We then have

ZL
n+1 = CL(ZL

n , Un+1

)

,

Zn+1 = C

(

Zθ
n(0)

m
, . . . ,

Zθ
n(k − 1)

m
,Zn, Un+1

)

,

ZU
n+1 = CU

(

ZU
n , Un+1

)

.

Lemma 4.5 and the induction hypothesis together imply that

C

(

Zθ
n(0)

m
, . . . ,

Zθ
n(k − 1)

m
,ZL

n , Un+1

)

≤ C

(

Zθ
n(0)

m
, . . . ,

Zθ
n(k − 1)

m
,Zn, Un+1

)

≤

C

(

Zθ
n(0)

m
, . . . ,

Zθ
n(k − 1)

m
,ZU

n , Un+1

)

.

Since the map CL is below C and the map CU is above C, we have

CL(ZL
n , Un+1

)

≤ C

(

Zθ
n(0)

m
, . . . ,

Zθ
n(k − 1)

m
,ZL

n , Un+1

)

,

CU
(

ZU
n , Un+1

)

≥ C

(

Zθ
n(0)

m
, . . . ,

Zθ
n(k − 1)

m
,ZU

n , Un+1

)

.

Combining the above inequalities we obtain ZL
n+1 ≤ Zn+1 ≤ ZU

n+1 and the
induction step is completed.
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Let δ > 0 and define

Vk(δ) =
{

i ∈ { 0, . . . , m } :
∣

∣

∣

i

m
− ρ∗k

∣

∣

∣
< δ

}

.

We define the hitting time of a subset A ⊂ { 0, . . . , m } for the processes
(ZL

t )t≥0, (Z
U
t )t≥0 as follows

τL(A) = inf
{

t ≥ 0 : ZL
t ∈ A

}

,

τU(A) = inf
{

t ≥ 0 : ZU
t ∈ A

}

.

The following result will help to finish the proof of the induction step for
theorem 4.1. We recall that the definition of (ZL

t )t≥0 and (ZU
t )t≥0 depends

on the parameter δ′ > 0.

Proposition 4.7. Let δ > 0. There exist positive real numbers α, α′, β, β ′

(depending on δ, δ′) such that for ℓ,m large enough and q, δ′ small enough:

• For all i ∈ { 0, . . . , m },

P
(

τL(Vk(δ)) ≥ mα
∣

∣ZL
0 = i

)

≤ exp(−α′m) ,

P
(

τU(Vk(δ)) ≥ mα
∣

∣ZU
0 = i

)

≤ exp(−α′m) .

• For all i ∈ Vk(δ),

P
(

τL(Vk(2δ)
c) ≤ exp(βm)

∣

∣ZL
0 = i

)

≤ exp(−β ′m) ,

P
(

τU(Vk(2δ)
c) ≤ exp(βm)

∣

∣ZU
0 = i

)

≤ exp(−β ′m) .

We prove this proposition in the next section. The proof is the same for
both the lower and the upper birth and death chain, we will therefore show
the result for the process (ZL

t )t≥0 only. We show now how to complete the
inductive step with the help of this result.

Let δ, δ′ > 0 with 2δ′ < δ and let z0 ∈ EK be the starting point of the pro-
cess. Thanks to the induction hypothesis, there exist positive real numbers
αk−1, α

′
k−1, βk−1, β

′
k−1 (depending on δ′) such that for ℓ,m large enough and

q small enough,

∀z ∈ EK P
(

τ(Uk−1(δ
′)) ≥ mαk−1

∣

∣Zθ
0 = z

)

≤ exp(−α′
k−1m) ,

∀z ∈ Uk−1(δ
′) P

(

τ(Uk−1(2δ
′)c) ≤ exp(βk−1m)

∣

∣Zθ
0 = z

)

≤ exp(−β ′
k−1m) .
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Let αk > αk−1, we have

P
(

τ(Uk(δ)) ≥ mαk
∣

∣Zθ
0 = z0

)

= P
(

τ(Uk−1(δ
′)) ≥ mαk−1 , τ(Uk(δ)) ≥ mαk

∣

∣Zθ
0 = z0

)

+ P
(

τ(Uk−1(δ
′)) < mαk−1 , τ(Uk(δ)) ≥ mαk

∣

∣Zθ
0 = z0

)

.

By the induction hypothesis the first term in the sum is bounded above by
exp(−α′

k−1m). We use the Markov property to control the second term:

P
(

τ(Uk−1(δ
′)) < mαk−1 , τ(Uk(δ)) ≥ mαk

∣

∣Zθ
0 = z0

)

=
∑

t<mαk−1

z∈Uk−1(δ′)

P
(

τ(Uk−1(δ
′)) = t, Zθ

t = z, τ(Uk(δ)) ≥ mαk
∣

∣Zθ
0 = z0

)

=
∑

t<mαk−1

z∈Uk−1(δ′)

P
(

τ(Uk−1(δ
′)) = t, Zθ

t = z
∣

∣Zθ
0 = z0

)

× P
(

τ(Uk(δ)) ≥ mαk − t
∣

∣Zθ
0 = z

)

.

Let m be large enough so that mαk −mαk−1 < exp(βk−1m) . For t < mαk−1 ,

P
(

τ(Uk(δ)) ≥ mαk − t
∣

∣Zθ
0 = z

)

≤ P
(

τ(Uk(δ)) ≥ mαk −mαk−1

∣

∣Zθ
0 = z

)

= P
(

τ(Uk−1(2δ
′)c) ≤ exp(βk−1m), τ(Uk(δ)) ≥ mαk −mαk−1

∣

∣Zθ
0 = z

)

+ P
(

τ(Uk−1(2δ
′)c) > exp(βk−1m), τ(Uk(δ)) ≥ mαk −mαk−1

∣

∣Zθ
0 = z

)

.

By the induction hypothesis, the first term in the sum is bounded above by
exp(−β ′

k−1m). For the second term we have:

P
(

τ(Uk−1(2δ
′)c) > exp(βk−1m), τ(Uk(δ)) ≥ mαk −mαk−1

∣

∣Zθ
0 = z

)

≤ P
(

τ(Uk(δ)) ≥ mαk −mαk−1

∣

∣ τ(Uk−1(2δ
′)c) > exp(βk−1m), Zθ

0 = z
)

.

Since exp(βk−1m) > mαk − mαk−1 and 2δ′ < δ, conditionally on the event
τ(Uk−1(2δ

′)c) > exp(βk−1m), the event τ(Uk(δ)) ≥ mαk−mαk−1 depends only
on Zθ

t (k). Moreover, by proposition 4.6,

∀t ∈ { 0, . . . , exp(βk−1m) } ZL
t ≤ Zθ

t (k) ≤ ZU
t .

Therefore,

P
(

τ(Uk(δ)) ≥ mαk −mαk−1

∣

∣ τ(Uk−1(2δ
′)c) > exp(βk−1m), Zθ

0 = z
)

≤ P
(

τL(Vk(δ)) ≥ mαk −mαk−1 |ZL
0 = zk

)

+ P
(

τU (Vk(δ)) ≥ mαk −mαk−1 |ZU
0 = zk

)

.
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Let α > 0 be given by proposition 4.7. Choosing αk large enough so
that mαk −mαk−1 > mα, this last expression is bounded by 2 exp(−α′m) (by
proposition 4.7), and this yields the desired bound for the hitting time of
Uk(δ).

In order to show the bound on the exit time of Uk(2δ), we argue in a similar
way. Let z0 ∈ Uk(δ) be the starting point of the process. Let βk−1 be given
by the induction hypothesis and let βk > 0. We have

P
(

τ(Uk(2δ)
c) ≤ exp(βkm)

∣

∣Zθ
0 = z0

)

=

P
(

τ(Uk−1(2δ)
c) ≤ exp(βk−1m), τ(Uk(2δ)

c) ≤ exp(βkm)
∣

∣Zθ
0 = z0

)

+ P
(

τ(Uk−1(2δ)
c) > exp(βk−1m), τ(Uk(2δ)

c) ≤ exp(βkm)
∣

∣Zθ
0 = z0

)

.

By the induction hypothesis, the first term in the sum is bounded above by
exp(−β ′

k−1m). For the second term we have:

P
(

τ(Uk−1(2δ)
c) > exp(βk−1m), τ(Uk(2δ)

c) ≤ exp(βkm)
∣

∣Zθ
0 = z0

)

≤ P
(

τ(Uk(2δ)
c) ≤ exp(βkm)

∣

∣Zθ
0 = z0, τ(Uk−1(2δ)

c) > exp(βk−1m)
)

.

Let β be given by proposition 4.7, and βk > 0 such that βk < βk−1∧β. Then,
conditionally on τ(Uk−1(2δ)

c) > exp(βk−1m), the event τ(Uk(δ)) ≤ exp(βkm)
only depends on Zθ

t (k). Since τ(Uk−1(2δ)
c) > exp(βk−1m) > exp(βkm), by

proposition 4.6 we have

∀t ∈ { 0, . . . , exp(βk−1m) } ZL
t ≤ Zθ

t (k) ≤ ZU
t .

Therefore,

P
(

τ(Uk(2δ)
c) ≤ exp(βkm)

∣

∣Zθ
0 = z0, τ(Uk−1(2δ)

c) > exp(βk−1m)
)

≤ P
(

τL(Vk(2δ)
c) ≤ exp(βkm) |ZL

0 = z0k
)

+ P
(

τU(Vk(2δ)
c) ≤ exp(βkm) |ZU

0 = z0k
)

≤ 2 exp(−β ′m) .

This completes the induction step.

4.4 Dynamics of (ZL

t
)t≥0

We study here the dynamics of the process (ZL
t )t≥0 in order to prove propo-

sition 4.7. First of all, we look for the points ρ in Wk−1(δ
′) that minimise

and maximise the functions δi(ρ) and γi(ρ). Since we have

∀l ∈ { 1, . . . , k − 1 } MH(l, k) ≥MH(θ, k) ,
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the function δi(ρ0, . . . , ρk−1) is non–decreasing with respect to the variables
ρ1, . . . , ρk−1. Likewise, γi(ρ0, . . . , ρk−1) is non–increasing with respect to the
variables ρ1, . . . , ρk−1. Therefore, for all i ∈ { 0, . . . , m },

δLi = min
ρ0:|ρ0−ρ∗

0
|<δ′

δi(ρ0, ρ
∗
1 − δ

′, . . . , ρ∗k−1 − δ
′) ,

γLi = max
ρ0:|ρ0−ρ∗

0
|<δ′

γi(ρ0, ρ
∗
1 − δ

′, . . . , ρ∗k−1 − δ
′) .

Let us take the partial derivatives of δi(ρ) and γi(ρ) with respect to ρ0:

∂δi(ρ0, . . . , ρk−1)

∂ρ0
=

1− i/m
(

(σ − 1)ρ0 + 1
)2

(

σ
(

MH(0, k)−MH(θ, k)
)

−(σ−1)
k−1
∑

l=1

ρl

(

MH(l, k)−MH(θ, k)
)

−(σ−1)
i

m

(

MH(k, k)−MH(θ, k)
)

)

,

∂γi(ρ0, . . . , ρk−1)

∂ρ0
=

i/m
(

(σ − 1)ρ0 + 1
)2

(

− σ
(

MH(0, k)−MH(θ, k)
)

+

(σ− 1)

k−1
∑

l=1

ρl

(

MH(l, k)−MH(θ, k)
)

+ (σ− 1)
i

m

(

MH(k, k)−MH(θ, k)
)

)

.

The sign of these partial derivatives does not depend on ρ0. In particular, for
fixed ρ1, . . . , ρk−1, the functions δi(ρ) and γi(ρ) are monotone with respect to
ρ0. Furthermore, the partial derivatives above have opposite signs, thus

∂δi(ρ0, . . . , ρk−1)

∂ρ0
= 0 ⇐⇒

∂γi(ρ0, . . . , ρk−1)

∂ρ0
= 0

⇐⇒ σ
(

MH(0, k)−MH(θ, k)
)

− (σ − 1)
k−1
∑

l=1

ρl

(

MH(l, k)−MH(θ, k)
)

− (σ − 1)
i

m

(

MH(k, k)−MH(θ, k)
)

= 0 .

We suppose that

ℓ→ +∞ , m→ +∞ , q → 0 ,

in such a way that
ℓq → a ∈ ]0,+∞[ .
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We have the following limits for the mutation probabilities:

lim
ℓ→∞, q→0

ℓq→a

MH(l, k) =







ak−l

(k − l)!
e−a if l ≤ k ,

0 if l = θ .

For ℓ large enough and q small enough, the coefficient MH(l, k) −MH(θ, k)
is positive. Since the equation ∂δi(ρ0, . . . , ρk−1)/∂ρ0 = 0 is linear with re-
spect to i, we conclude that there exists an i∗ ∈ { 0, . . . , m } (depending on
m, ρ∗1, . . . , ρ

∗
k−1, δ

′) such that:

• If 0 ≤ i ≤ i∗, the function ρ0 7→ δi(ρ0, ρ
∗
1 − δ′, . . . , ρ∗k−1 − δ′) is non–

increasing, the function ρ0 7→ γi(ρ0, ρ
∗
1 − δ

′, . . . , ρ∗k−1 − δ
′) is non–decreasing,

and

δLi = δi(ρ
∗
0 + δ′, ρ∗1 − δ

′, . . . , ρ∗k−1 − δ
′) ,

γLi = γi(ρ
∗
0 + δ′, ρ∗1 − δ

′, . . . , ρ∗k−1 − δ
′) .

• If i∗ < i ≤ m, the function ρ0 7→ δi(ρ0, ρ
∗
1 − δ′, . . . , ρ∗k−1 − δ′) is non–

decreasing, the function ρ0 7→ γi(ρ0, ρ
∗
1 − δ

′, . . . , ρ∗k−1 − δ
′) is non–increasing,

and

δLi = δi(ρ
∗
0 − δ

′, ρ∗1 − δ
′, . . . , ρ∗k−1 − δ

′) ,

γLi = γi(ρ
∗
0 − δ

′, ρ∗1 − δ
′, . . . , ρ∗k−1 − δ

′) .

From the definition of δi(ρ), γi(ρ) we deduce that, for m ≥ 2,

∀i ∈ { 0 . . . , m− 1 } δLi ≥
σ(ρ∗0 − δ

′)MH(0, k)

m((σ − 1)(ρ∗0 + δ′) + 1)
≥

c

m
,

∀i ∈ { 1 . . . , m } γLi ≥
σ(ρ∗0 − δ

′)(1−MH(0, k))

m((σ − 1)(ρ∗0 + δ′) + 1)
≥

c

m
,

where c is a positive constant depending on k, δ′ but not on m.

We study now the products π(i), which are defined by

π(0) = 1 , π(i) =
δ1 · · · δi
γ1 · · · γi

, 1 < i < m .

We study first the ratio δi(ρ)/γi(ρ). For 0 < i < m, we have

δi(ρ)

γi(ρ)
= φ

(

MH(0, k), . . . ,MH(k, k),MH(θ, k), ρ0, . . . , ρk−1,
i

m

)

,
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where the function φ : ]0, 1]k+1× [0, 1[× ]0, 1[k× ]0, 1[−→ ]0,+∞[ is given by:

∀β ∈ ]0, 1]k+1 ∀ε ∈ [0, 1[ ∀ρ ∈ ]0, 1[k ∀η ∈ ]0, 1[

φ(β, ε, ρ, η) =

(1− η)

(

σρ0β0 +

k−1
∑

l=1

ρlβl + ηβk +
(

1−
k−1
∑

l=0

ρl − η
)

ε

)

η

(

σρ0(1− β0) +
k−1
∑

l=1

ρl(1− βl) + η(1− βk) +
(

1−
k−1
∑

l=0

ρl − η
)

(1− ε)

)

.

In order to understand the behaviour of the products π(i), it is enough to
know whether the value of φ is larger or smaller than 1. The equation
φ(β, ε, ρ, η) = 1 is linear with respect to η, its only root being

η(β, ε, ρ) =

σρ0β0 +

k−1
∑

l=1

ρlβl +
(

1−
k−1
∑

l=0

ρl

)

ε

(σ − 1)ρ0 + 1− βk + ε
.

Therefore,

φ(β, ε, ρ, η) > 1 if η < η(β, ε, ρ) ,

φ(β, ε, ρ, η) < 1 if η > η(β, ε, ρ) .

Moreover, the function φ(β, ε, ρ, η) is continuous and non–decreasing with
respect to the variables β, ε. Take ψ : ]0, 1]k+1 × [0, 1[× ]0, 1[−→ ]0,+∞[ to
be the function defined by:

∀β ∈ ]0, 1]k+1 ∀ε ∈ [0, 1[ ∀η ∈ ]0, 1[

ψ(β, ε, η) =

{

φ(β, ε, ρ∗0 + δ′, ρ∗1 − δ
′, . . . , ρ∗k−1 − δ

′, η) if η ≤ i∗/m ,

φ(β, ε, ρ∗0 − δ
′, ρ∗1 − δ

′, . . . , ρ∗k−1 − δ
′, η) if η > i∗/m .

We have the following large deviation estimates for the products π(i).

Proposition 4.8. Let a ∈ ]0,+∞[ . For η ∈ [0, 1], we have

lim
ℓ,m→∞

q→0, ℓq→a

1

m
ln π(⌊ηm⌋) =

∫ η

0

lnψ
(

e−aa
k

k!
, . . . , e−a, 0, s

)

ds .
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The proof is very similar to that of proposition 9.1 of [3], so we omit it. Let
us define

ρ− = min

{

η
(

e−aa
k

k!
, . . . , e−a, 0, ρ∗0 + δ′, ρ∗1 − δ

′, . . . , ρ∗k−1 − δ
′
)

,

η
(

e−aa
k

k!
, . . . , e−a, 0, ρ∗0 − δ

′, ρ∗1 − δ
′, . . . , ρ∗k−1 − δ

′
)

}

,

ρ+ = max

{

η
(

e−aa
k

k!
, . . . , e−a, 0, ρ∗0 + δ′, ρ∗1 − δ

′, . . . , ρ∗k−1 − δ
′
)

,

η
(

e−aa
k

k!
, . . . , e−a, 0, ρ∗0 − δ

′, ρ∗1 − δ
′, . . . , ρ∗k−1 − δ

′
)

}

.

From the definitions, we see that

ψ
(

e−aa
k

k!
, . . . , e−a, 0, η

)

> 1 for η < ρ− ,

ψ
(

e−aa
k

k!
, . . . , e−a, 0, η

)

< 1 for η > ρ+ .

In particular, the function

η 7→

∫ η

0

lnψ
(

e−aa
k

k!
, . . . , e−a, 0, s

)

ds

is non–decreasing on ]0, ρ−[ and non–increasing on ]ρ+, 1[ . Furthermore,
when δ′ goes to 0, the points ρ− and ρ+ converge to ρ∗k:

lim
δ′→0

ρ− = lim
δ′→0

ρ+ = ρ∗k .

We also define

η− =

min
{

η
(

MH(0, k), . . . ,MH(k, k),MH(θ, k), ρ
∗
0 + δ′, ρ∗1 − δ

′, . . . , ρ∗k−1 − δ
′
)

,

η
(

MH(0, k), . . . ,MH(k, k),MH(θ, k), ρ
∗
0 − δ

′, ρ∗1 − δ
′, . . . , ρ∗k−1 − δ

′
)

}

,

η+ =

max
{

η
(

MH(0, k), . . . ,MH(k, k),MH(θ, k), ρ
∗
0 + δ′, ρ∗1 − δ

′, . . . , ρ∗k−1 − δ
′
)

,

η
(

MH(0, k), . . . ,MH(k, k),MH(θ, k), ρ
∗
0 − δ

′, ρ∗1 − δ
′, . . . , ρ∗k−1 − δ

′
)

}

.
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We then have

1 ≤ i ≤ j ≤ η−m =⇒ π(i) ≤ π(j) ,

η+m ≤ i ≤ j ≤ m =⇒ π(i) ≥ π(j) ,

and the situation between η−m and η+m is somewhat more delicate. Any-
how, when ℓ,m→∞, q → 0 and ℓq → a, we have

lim
ℓ,m→∞

q→0, ℓq→a

η− = ρ− , lim
ℓ,m→∞

q→0, ℓq→a

η+ = ρ+ .

For δ > 0, we set

Vk(δ) =
{

i ∈ { 0, . . . , m } :
∣

∣

∣

i

m
− ρ∗k

∣

∣

∣
< δ

}

,

and we define the hitting time of a subset A ⊂ { 0, . . . , m } by

τL(A) = inf
{

t ≥ 0 : ZL
t ∈ A

}

.

We recall that the definition of (ZL
t )t≥0 depends on the parameter δ′ > 0. The

above results show that the birth and death Markov chain (ZL
t )t≥0 verifies

assumptions 1,2,3 of section 4.1, we can therefore apply proposition 4.2 to
the process (ZL

t )t≥0 and we obtain the following result.

Corollary 4.9. Let δ > 0. There exist positive real numbers αk, α
′
k, βk, β

′
k

(depending on δ, δ′) such that for ℓ,m large enough and q, δ′ small enough,

∀i ∈ { 0, . . . , m } P
(

τL(Vk(δ)) ≥ mαk
∣

∣ZL
0 = i

)

≤ exp(−α′
km) ,

∀i ∈ Vk(δ) P
(

τL(Vk(2δ)
c) < exp(βkm)

∣

∣ZL
0 = i

)

≤ exp(−β ′
km) .

Thus the estimates of proposition 4.7 for the lower process (ZL
t )t≥0 are proved.

4.5 Convergence

In this section we will prove that when σe−a > 1, the invariant probability
measure νθ converges to the Dirac mass at ρ∗. Let a such that σe−a > 1. Let
ρ∗ be the point of [0, 1]K+1 given by:

∀k ≥ 0 ρ∗k = (σe−a − 1)
ak

k!

∑

i≥1

ik

σi
.
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We consider the asymptotic regime

ℓ→ +∞ , m→ +∞ , q → 0 ,

ℓq → a ,
m

ℓ
→ α .

Theorem 4.10. For every continuous and increasing function f : Pm
ℓ+1 → R

such that f(0) = 0, we have

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

∫

EK
f
(z0 + · · ·+ zK

m

)

dνθ(z) = f(ρ∗0 + · · ·+ ρ∗K) .

Proof. Let δ > 0 and let us define

UK(δ) =
{

z ∈ EK :
∣

∣

∣

zk
m
− ρ∗k

∣

∣

∣
< δ, 0 ≤ k ≤ K

}

.

We define two sequences of stopping times (Tn)n≥0 and (T ∗
n)n≥1 as follows.

Let T0 = 0 and set

T ∗
1 = inf

{

t ≥ 0 : Zθ
t ∈ UK(δ)

}

, T1 = inf
{

t ≥ T ∗
1 : Zθ

t 6∈ UK(2δ)
}

,

...
...

T ∗
k = inf

{

t ≥ Tk−1 : Z
θ
t ∈ UK(δ)

}

, Tk = inf
{

t ≥ T ∗
k : Zθ

t 6∈ UK(2δ)
}

,

...
...

The ergodic theorem for Markov chains implies that

∫

EK
f
(z0 + · · ·+ zK

m

)

dνθ(z) = lim
t→∞

1

t
E

( t
∑

i=0

f

(

Zθ
i (0) + · · ·+ Zθ

i (K)

m

))

.

Let t ≥ 0. We decompose this last sum as follows:

t
∑

i=0

f

(

Zθ
i (0) + · · ·+ Zθ

i (K)

m

)

=
∑

n≥1

T ∗

n∧t−1
∑

i=Tn−1∧t

f

(

Zθ
i (0) + · · ·+ Zθ

i (K)

m

)

+
∑

n≥1

Tn∧t−1
∑

i=T ∗

n∧t

f

(

Zθ
i (0) + · · ·+ Zθ

i (K)

m

)

.

The function f is continuous. Let ε > 0 and let us choose δ small enough so
that

∀z ∈ UK(δ)

∣

∣

∣

∣

f
(z0 + · · ·+ zK

m

)

− f(ρ∗0 + · · ·+ ρ∗K)

∣

∣

∣

∣

<
ε

2
.
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We have then

∣

∣

∣

∣

E

( t
∑

i=0

f

(

Zθ
i (0) + · · ·+ Zθ

i (K)

m

))

− tf(ρ∗0 + · · ·+ ρ∗K)

∣

∣

∣

∣

≤

∑

n≥1

2f(1)E
(

T ∗
n ∧ t− Tn−1 ∧ t

)

+
tε

2
.

Next we study the expression
∑

n≥1

(

T ∗
n ∧ t− Tn−1 ∧ t

)

.

Let us define
N(t) = max

{

n ≥ 0 : Tn ≤ t
}

.

We can rewrite the previous sum as follows

∑

n≥1

(

T ∗
n ∧ t− Tn−1 ∧ t

)

≤

N(t)
∑

n=1

(

T ∗
n − Tn−1

)

+
(

t− TN(t)

)

.

We study now the random variable N(t). Let n ∈ N, b > 0 and z ∈ EK .
More precisely, we week estimates on the following probability:

P
(

N(n exp(bm)/2) ≥ n
∣

∣Zθ
0 = z

)

.

From the definition of N(t), it follows that N(t) ≥ n if and only if Tn ≤ t.
Thus

P
(

N(n exp(bm)/2) ≥ n
∣

∣Zθ
0 = z

)

= P
(

Tn ≤ n exp(bm)/2
∣

∣Zθ
0 = z

)

.

Let us define for i ≥ 1,

Yi = Ti − Ti−1 , Y ∗
i = Ti − T

∗
i .

By theorem 4.1, there exist positive real numbers β et β ′ such that, for all
i ≥ 1,

P
(

Yi ≤ exp(βm)
∣

∣Zθ
0 = z

)

≤ P
(

Y ∗
i ≤ exp(βm)

∣

∣Zθ
0 = z

)

=
∑

z′∈UK(δ)

P
(

Y ∗
i ≤ exp(βm)

∣

∣Zθ
0 = z, Zθ

T ∗

i
= z′

)

P
(

Zθ
T ∗

i
= z′

∣

∣Zθ
0 = z

)

=
∑

z′∈UK(δ)

P
(

T1 ≤ exp(βm)
∣

∣Zθ
0 = z′

)

P
(

Zθ
T ∗

i
= z′

∣

∣Zθ
0 = z

)

≤ exp(−β ′m) .
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Let us define the following Bernoulli random variables:

∀i ≥ 1, εi = 1Y ∗

i ≤exp(βm) .

Notice that
Tn = Y1 + · · ·+ Yn ≥ Y ∗

1 + · · ·+ Y ∗
n .

If Tn ≤ n exp(βm)/2, then there exist n/2 indices in { 1, . . . , n } such that
Y ∗
i ≤ exp(βm). Therefore,

Tn ≤
1

2
n exp(βm) =⇒ ε1 + · · ·+ εn ≥

n

2
.

Thus,

P
(

N
(

n exp(βm)/2
)

≥ n
∣

∣

∣
Zθ

0 = z
)

=

P
(

Tn ≤ n exp(βm)/2
∣

∣

∣
Zθ

0 = z
)

≤ P
(

ε1 + · · ·+ εn ≥ n/2
)

.

Let λ ≥ 0, thanks to Chebyshev’s exponential inequality we have

P
(

ε1+ · · ·+ εn ≥ n/2
)

≤ exp
(

−λ/2+ lnE
(

exp(λε1/n) · · · exp(λεn/n)
)

)

.

Since ε1, . . . , εn−1 are measurable with respect to
(

Zθ
t , 0 ≤ t ≤ T ∗

n

)

,

E
(

exp(λε1/n) · · · exp(λεn/n)
)

= E
(

E
(

exp(λε1/n) · · · exp(λεn/n) |Z
θ
t , 0 ≤ t ≤ T ∗

n

)

)

= E
(

exp(λε1/n) · · · exp(λεn−1/n)E
(

exp(λεn/n) |Z
θ
t , 0 ≤ t ≤ T ∗

n

)

)

.

Thanks to the strong Markov property, the above conditional expectation
can be rewritten as follows:

E
(

exp(λεn/n) |Z
θ
t , 0 ≤ t ≤ T ∗

n

)

= E
(

exp(λε1/n) |Z
θ
0 = Zθ

τ∗n

)

.

Yet, for all z′ ∈ UK(δ),

E
(

exp(λε1/n) |Z
θ
0 = z′

)

≤ exp
(

− β ′m+
λ

n

)

+ 1− exp(−β ′m) .

We iterate this procedure and we obtain

E
(

exp(λε1/n) · · · exp(λεn/n)
)

≤

(

exp
(

− β ′m+
λ

n

)

+ 1− exp(−β ′m)

)n

.
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The change of variables λ→ nλ yields

P
(

ε1 + · · ·+ εn ≥ n/2
)

≤ exp

(

− n
(

λ/2− ln
(

exp(−β ′m+ λ) + 1− exp(−β ′m)
)

)

)

.

Let Λ∗(t) be the Cramér transform of the Bernoulli law with parameter
p = exp(−β ′m):

Λ∗(t) = sup
λ≥0

(

λt− ln
(

peλ + 1− p
)

)

.

Optimising the previous inequality over λ ≥ 0, we obtain

P
(

ε1 + · · ·+ εn ≥ n/2
)

≤ exp
(

− nΛ∗(1/2)
)

.

We can rewrite the function Λ∗(t) as

Λ∗(t) = t ln
t

p
+ (1− t) ln

1− t

1− p
.

In our particular case, for m large enough,

Λ∗(1/2) =
1

2
ln

exp(β ′m)

2
+

1

2
ln

exp(β ′m)

2(exp(β ′m)− 1)
≥ c(m) ,

where c(m) is a positive constant depending on m but not on n. It follows
that for m large enough,

∀n ≥ 1 P
(

N
(

n exp(βm)/2
)

≥ n
∣

∣

∣
Zθ

0 = z
)

≤ exp
(

− nc(m)
)

.

Let t ≥ 0. We seek next an upper bound for the expectation

E

(N(t)
∑

k=1

(

T ∗
k − Tk−1

)

+
(

t− TN(t)

)

)

.

The sum inside the parenthesis is at most t, therefore, for n ≥ 1

E

( N(t)
∑

k=1

(

T ∗
k − Tk−1

)

+
(

t− TN(t)

)

)

≤

E

(

(

N(t)
∑

k=1

(

T ∗
k − Tk−1

)

+
(

t− TN(t)

)

)

1N(t)<n

)

+ tP
(

N(t) ≥ n
)

.

55



Let

nt = min
{

n ∈ N : t ≤
n exp(βm)

2

}

.

On one hand, the analysis of the random variable N(n exp(βm)/2) shows
that taking n = nt, the second term is bounded by

nt

2
eβmP

(

N(nte
βm/2) ≥ nt

)

≤
nt

2
exp(βm− ntc(m)) ,

which goes to 0 when t goes to ∞. On the other hand, we can bound the
first term thanks to theorem 4.1:

E

(

(

N(t)
∑

k=1

(

T ∗
k − Tk−1

)

+
(

t− TN(t)

)

)

1N(t)<nt

)

≤ E

( nt+1
∑

k=1

(

T ∗
k −Tk−1

)

)

=

nt+1
∑

k=1

E
(

T ∗
k −Tk−1

)

≤ (nt+1)
mα

1− exp(−α′m)
,

where α, α′ > 0. We combine the above inequalities, and we obtain for m
large enough and for all t > 0,

1

t
E

(

∑

n≥1

(

T ∗
n ∧ t− Tn−1 ∧ t

)

)

≤
2

(nt − 1) exp(βm)

(

nt

2
exp(βm− ntc(m)) + (nt + 1)

mα

1− exp(−α′m)

)

.

When t goes to ∞ this expression goes to 2mα/ exp(βm)(1 − exp(−α′m)),
which in turn goes to 0 with m. We deduce that, for m large enough, there
exists tm > 0 such that for all t ≥ tm,

∣

∣

∣

∣

∣

1

t
E

( t
∑

i=0

f
(Zθ

i (0) + · · ·+ Zθ
i (K)

m

)

)

− f(ρ∗0 + · · ·+ ρ∗K)

∣

∣

∣

∣

∣

< ε .

Thus,

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

∫

EK
f
(z0 + · · ·+ zK

m

)

dνθ(z) = f(ρ∗0 + · · ·+ ρ∗K) .
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5 The neutral phase

Throughout this section we take a such that σe−a < 1. Let µO be the
invariant probability measure of the process (Ot)t≥0 and let νK be the image
measure of µO through the map

o ∈ Pm
ℓ+1 7−→

1

m

(

o(0) + · · ·+ o(K)
)

∈ [0, 1] .

We will prove that when σe−a < 1, the probability measure νK converges to
the Dirac mass at 0. In order to prove the convergence of νK to δ0, we slightly
modify the occupancy process (Ot)t≥0. Let W∗

K be the set of the occupancy
distributions having at least one individual in the Hamming classes 0, . . . , K,
i.e.,

W∗
K =

{

o ∈ Pm
ℓ+1 : o(0) + · · ·+ o(K) ≥ 1

}

,

and let NK be the set of the occupancy distributions having no individuals
in the Hamming classes 0, . . . , K, i.e.,

NK =
{

o ∈ Pm
ℓ+1 : o(0) + · · ·+ o(K) = 0

}

.

Let us define the occupancy distribution oexit by:

∀l ∈ { 0, . . . , ℓ } oexit(l) =

{

m if l = K + 1 ,

0 otherwise .

Let ΦO be the coupling map defined in section 7.1 of [3]. We define a new
coupling map ΦΘ by setting for o ∈ Pm

ℓ+1 and r ∈ R,

ΦΘ(o, r) =

{

oexit if o ∈ W∗
K and ΦO(o, r) ∈ NK ,

ΦO(o, r) otherwise .

Since for all o ∈ NK we have o � oexit, the map ΦΘ is above the map ΦO in
the following sense:

∀r ∈ R ∀o ∈ Pm
ℓ+1 ΦO(o, r) � ΦΘ(o, r) .

Thus, we can build an upper process (Θt)t≥0 with the help of the i.i.d. se-
quence of random vectors (Rn)n≥0, such that if the processes (Ot)t≥0, (Θt)t≥0

both start from the same occupancy distribution o, then

∀t ≥ 0 Ot � Θt .
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Let µΘ be the invariant probability measure of the process (Θt)t≥0. We fix a
non–decreasing function f : [0, 1] −→ R such that f(0) = 0. We have

∫

[0,1]

f dνK ≤

∫

Pm
ℓ+1

f
(o(0) + · · ·+ o(K)

m

)

dµΘ(o) .

We apply now the renewal result of proposition 3.8 to the process (Θt)t≥0, the
set W∗

K , the function o 7−→ f
((

o(0) + · · ·+ o(K)
)

/m
)

, and the occupancy
distribution oexit. Set

τ ∗K = inf{ t ≥ 0 : Θt ∈ W
∗
K } ,

τK = inf{ t ≥ τ ∗K : Θt = oexit } .

We have then

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµΘ(o) =

E

(
∫ τK

0

f

(

Θs(0) + · · ·+Θs(K)

m

)

ds
∣

∣

∣
Θ0 = oexit

)

E
(

τK |Θ0 = oexit

) .

Since f(0) = 0, we have

∫ τK

0

f

(

Θs(0) + · · ·+Θs(K)

m

)

ds =

∫ τK

τ∗K

f

(

Θs(0) + · · ·+Θs(K)

m

)

ds .

Moreover, since f is non–decreasing,

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµΘ(o) ≤

f(1)E
(

τK − τ
∗
K |Θ0 = oexit

)

E
(

τ ∗K |Θ0 = oexit

)

+ E
(

τK − τ
∗
K |Θ0 = oexit

) .

Our aim is to show that the ratio of the right–hand side of this expression
converges to 0. We call τ ∗K the discovery time of the first K + 1 Hamming
classes, and τK − τ

∗
K the persistence time of the first K+1 Hamming classes.

Let o ∈ NK . Starting from any occupancy distribution o, the processes
(Ot)t≥0 and (Θt)t≥0 both have the same dynamics until time τK . Thus, it
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is enough to estimate the expectations of τ ∗K and τK − τ ∗K for the original
occupancy process (Ot)t≥0. With a slight abuse of notation, we set

τ ∗K = inf{ t ≥ 0 : Ot ∈ W
∗
K } ,

τK = inf{ t ≥ τ ∗K : Ot = oexit } .

We deduce from the last inequality that

∫

[0,1]

f dνK ≤
f(1)E

(

τK − τ
∗
K |O0 = oexit

)

E
(

τ ∗K |O0 = oexit

)

+ E
(

τK − τ
∗
K |O0 = oexit

) .

We estimate next the expectations appearing in the above inequality.

Proposition 5.1. For all o ∈ NK, we have

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

ℓ
lnE

(

τ ∗K
∣

∣O0 = o
)

= ln κ .

Proof. Let τ ∗ be the discovery time of the master sequence, i.e.,

τ ∗ = inf
{

t ≥ 0 : Ot(0) ≥ 1
}

.

Obviously, τ ∗ ≥ τ ∗K . Moreover, thanks to propositions 10.3 and 10.6 of [3],
we know that for any occupancy distribution o such that o(0) = 0, we have

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

ℓ
lnE

(

τ ∗
∣

∣O0 = o
)

= ln κ .

We immediately deduce the upper bound for τ ∗K :

∀o ∈ NK lim sup
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

ℓ
lnE

(

τ ∗K
∣

∣O0 = o
)

≤ ln κ .

We next prove the lower bound following the strategy proposed in [3] to esti-
mate the discovery time of the master sequence. We work with the distance
process (Dt)t≥0 introduced in chapter 7 of [3]. We set

NK =
{

d ∈ { 0, . . . , ℓ }m : d(i) > K, 1 ≤ i ≤ m
}

,

W∗
K =

{

d ∈ { 0, . . . , ℓ }m : ∃ i ∈ { 1, . . . , m } such that d(i) ≤ K
}

.
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Let
τ ∗K = inf

{

t ≥ 0 : Dt ∈ W
∗
K

}

.

The law of the discovery time τ ∗K is the same for the distance process and
for the occupancy process. Let b ∈ { 0, . . . , ℓ } and let us denote by (b)m the
column vector whose entries are all b:

(b)m =







b
...
b






.

On the sharp peak landscape the distance process restricted to the set N is
monotone (corollary 8.6 of [3]). Thus,

∀d ∈ NK E
(

τ ∗K
∣

∣D0 = d
)

≥ E
(

τ ∗K
∣

∣D0 = (K + 1)m
)

.

In order to estimate this last expectation we use lemmas 11.4 and 11.5 of [3],
which we state next. We denote by B the binomial law with parameters ℓ
and 1− 1/κ.

Lemma 5.2. For b ≤ ℓ/2, we have

1

κℓ

(

ℓ

2b

)b

≤ B(b) ≤
ℓb

κℓ−b
.

Lemma 5.3. For ρ ∈ [0, 1], we have

lim
ℓ→∞

1

ℓ
lnB(⌊ρℓ⌋) = −(1− ρ) ln

(

κ(1− ρ)
)

− ρ ln
κρ

κ− 1
.

The following result is a variation of lemma 10.15 of [3]. The proof is similar
and we omit it.

Lemma 5.4. For b ∈ {K + 1, . . . , ℓ }, we have

∀n ≥ 0 P
(

τ ∗K ≤ n |D0 = (b)m
)

≤ nm
B(0) + · · ·+ B(K)

B(b)
.

We show next the lower bound on the hitting time τ ∗K :

lim inf
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

ℓ
lnE

(

τ ∗K
∣

∣D0 = (K + 1)m
)

≥ ln κ .
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Let E be the event given by

E =
{

∀n ≤ mℓ3/4 ∀l ≤ ln ℓ Un,l > p/κ
}

.

If the event E happens, then until time mℓ3/4, none of the mutation events in
the process (Dn)n≥0 can create a chromosome in one of the classes 0, . . . , K.
Indeed, on E ,

∀b ∈ {K + 1, . . . , ℓ } ∀n ≤ mℓ3/4

MH(b, Un,1, . . . , Un,ℓ) ≥ MH(K + 1, Un,1, . . . , Un,ℓ)

≥ K + 1 +

ℓ
∑

l=K+2

1Un,l>1−p(1−1/κ) ≥ K + 1 .

Thus, on the event E , we have τ ∗K ≥ mℓ3/4. The probability of E is

P (E) =
(

1−
p

κ

)mℓ3/4 ln ℓ

.

Let ε > 0. Let us suppose that the process starts at (K + 1)m and let us
estimate the probability

P
(

τ ∗K > κℓ(1−ε)
)

≥ P
(

τ ∗K > κℓ(1−ε), E
)

≥ P
(

∀t ∈ {mℓ3/4, . . . , κℓ(1−ε) } Dt ∈ NK , E
)

=
∑

d∈NK

P
(

∀t ∈ {mℓ3/4, . . . , κℓ(1−ε) } Dt ∈ NK , Dmℓ3/4 = d, E
)

≥
∑

d≥(ln ℓ)m

P
(

∀t ∈ {mℓ3/4, . . . , κℓ(1−ε) } Dt ∈ NK |Dmℓ3/4 = d, E
)

× P (Dmℓ3/4 = d, E) .
(

Σ1

)

Using the Markov property we obtain

P
(

∀t ∈ {mℓ3/4, . . . , κℓ(1−ε) } Dt ∈ NK |Dmℓ3/4 = d, E
)

= P
(

∀t ∈ { 0, . . . , κℓ(1−ε) −mℓ3/4 } Dt ∈ NK |D0 = d
)

= P
(

τ ∗K > κℓ(1−ε) −mℓ3/4 |D0 = d
)

≥ P
(

τ ∗K > κℓ(1−ε) |D0 = d
)

.

In the neutral case the distance process is monotone (corollary 8.6 of [3]).
Thus, for all d ≥ (ln ℓ)m,

P
(

τ ∗K > κℓ(1−ε) |D0 = d
)

≥ P
(

τ ∗K > κℓ(1−ε) |D0 = (ln ℓ)m
)

.
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Therefore, we can rewrite inequality (Σ1) as follows:

P
(

τ ∗K > κℓ(1−ε)
)

≥

P
(

τ ∗K > κℓ(1−ε) |D0 = (ln ℓ)m
)

P
(

Dmℓ3/4 ≥ (ln ℓ)m, E
)

.
(

◦
)

Since the distance process is monotone, we have

P
(

Dmℓ3/4 ≥ (ln ℓ)m, E |D0 = (K + 1)m
)

≥

P
(

Dmℓ3/4 ≥ (ln ℓ)m, E |D0 = (1)m
)

.

We also have the following estimate (section 10.5 of [3]):

P
(

Dmℓ3/4 ≥ (ln ℓ)m, E |D0 = (1)m
)

≥
(

▽
)

(

1−m exp
(

−
1

3
(ln ℓ)2

))(

1−
p

κ

)mℓ3/4 ln ℓ

.

We estimate next
P (τ ∗K > κℓ(1−ε) |D0 = (ln ℓ)m) .

Let ε′ > 0. We have

P
(

τ ∗K > κℓ(1−ε)
∣

∣D0 = (ln ℓ)m
)

= P
(

τ ∗K > mℓ2, Dt ∈ NK for mℓ2 ≤ t ≤ κℓ(1−ε)
∣

∣D0 = (ln ℓ)m
)

=
∑

d∈NK

P
( τ ∗K > mℓ2, Dmℓ2 = d
Dt ∈ NK for mℓ2 ≤ t ≤ κℓ(1−ε)

∣

∣

∣
D0 = (ln ℓ)m

)

≥
∑

d≥(ℓκ(1−ε′))m

P
(

Dt ∈ NK for mℓ2 ≤ t ≤ κℓ(1−ε)
∣

∣ τ ∗K > mℓ2, Dmℓ2 = d
)

× P
(

τ ∗K > mℓ2, Dmℓ2 = d
∣

∣D0 = (ln ℓ)m
)

.
(

Σ3

)

The Markov property and the monotonicity of the process (Dt)t≥0 give for
d ≥ (ℓκ(1− ε′))m,

P
(

Dt ∈ NK for mℓ2 ≤ t ≤ κℓ(1−ε)
∣

∣ τ ∗K > mℓ2, Dmℓ2 = d
)

= P
(

∀t ∈ { 0, . . . , κℓ(1−ε) −mℓ2 } Dt ∈ NK

∣

∣D0 = d
)

= P
(

τ ∗K > κℓ(1−ε) −mℓ2
∣

∣D0 = d
)

≥ P
(

τ ∗K > κℓ(1−ε)
∣

∣D0 = d
)

≥ P
(

τ ∗K > κℓ(1−ε)
∣

∣D0 = (ℓκ(1− ε
′))m

)

.
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Reporting back into the inequality (Σ3),

P
(

τ ∗K > κℓ(1−ε)
∣

∣D0 = (ln ℓ)m
)

≥ P
(

τ ∗K > κℓ(1−ε)
∣

∣D0 = (ℓκ(1− ε
′))m

)

× P
(

τ ∗K > mℓ2, Dmℓ2 ≥ (ℓκ(1− ε
′))m

∣

∣D0 = (ln ℓ)m
)

.
(

♥
)

Estimation of P (τ ∗K > mℓ2, Dmℓ2 ≥ (ℓκ(1−ε′))m |D0 = (ln ℓ)m) . We write

P
(

τ ∗K > mℓ2, Dmℓ2 ≥ (ℓκ(1− ε
′))m

∣

∣D0 = (ln ℓ)m
)

≥
(

♮
)

P
(

Dmℓ2 ≥ (ℓκ(1− ε
′))m

∣

∣D0 = (ln ℓ)m
)

− P
(

τ ∗K ≤ mℓ2
∣

∣D0 = (ln ℓ)m
)

.

We control the last term by applying lemma 5.4 with n = mℓ2 and b = ln ℓ:

P
(

τ ∗K ≤ mℓ2 |D0 = (ln ℓ)m
)

≤ (mℓ)2
B(0) + · · ·+ B(K)

B(ln ℓ)
.

Using lemma 5.2 we get

B(0) + · · ·+ B(K)

B(ln ℓ)
≤

1− (ℓκ)K+1

1− ℓκ

(2 ln ℓ

ℓ

)ln ℓ

.

Thus,

P
(

τ ∗ ≤ mℓ2 |D0 = (ln l)m
)

≤ (mℓ)2
1− (ℓκ)K+1

1− ℓκ

(2 ln ℓ

ℓ

)ln ℓ

.
(

♭
)

An estimate from section 10.5 of [3] will help us control the other term: there
exists a constant c(ε′) > 0 such that for ℓ large enough, we have

P
(

Dmℓ2 ≥ (ℓκ(1− ε
′))m

∣

∣D0 = (ln ℓ)m
)

≥ 1−m exp
(

−
1

2
c(ε′)ℓ

)

.

This inequality together with estimates (♮) and (♭) give

P
(

τ ∗K > mℓ2, Dmℓ2 ≥ (ℓκ(1− ε
′))m

∣

∣D0 = (ln ℓ)m
)

≥
(

♣
)

1−m exp
(

−
1

2
c(ε′)ℓ

)

− (mℓ)2
1− (ℓκ)K+1

1− ℓκ

(2 ln ℓ

ℓ

)ln ℓ

.

Estimation of P (τ ∗K > κℓ(1−ε) |D0 = (ℓκ(1 − ε′))m) . We use the inequality
of lemma 5.4 with n = κℓ(1−ε) and b = ℓκ(1− ε′):

P
(

τ ∗K ≤ κℓ(1−ε)
∣

∣D0 = (ℓκ(1− ε
′))m

)

≤ κℓ(1−ε)m
B(0) + · · ·+ B(K)

B(ℓκ(1− ε′))
.
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For ε′ small enough, the large deviation estimates of lemma 5.3 imply the
existence of a constant c(ε, ε′) > 0 such that, for ℓ large enough,

P
(

τ ∗K ≤ κℓ(1−ε)
∣

∣D0 = (ℓκ(1− ε
′))m

)

≤ exp(−c(ε, ε′)ℓ) .
(

♠
)

Plugging the inequalities (♣) and (♠) into (♥) we obtain

P
(

τ ∗K > κℓ(1−ε)
∣

∣D0 = (ln ℓ)m
)

≥
(

1− exp(−c(ε, ε′)ℓ)
)

(

△
)

(

1−m exp
(

−
1

2
c(ε′)ℓ

)

− (mℓ)2
1− (ℓκ)K+1

1− ℓκ

(2 ln ℓ

ℓ

)ln ℓ
)

.

We now use the inequalities (◦), (▽), (△) to conclude that, for ℓ large enough,

P
(

τ ∗K > κℓ(1−ε)
∣

∣D0 = (K + 1)m
)

≥

(

1−m exp
(

−
1

3
(ln ℓ)2

))(

1−
p

κ

)mℓ3/4 ln ℓ(

1− exp(−c(ε, ε′)ℓ)
)

×

(

1−m exp
(

−
1

2
c(ε′)ℓ

)

− (mℓ)2
1− (ℓκ)K+1

1− ℓκ

(2 ln ℓ

ℓ

)ln ℓ
)

.

Moreover, thanks to the Markov inequality,

E
(

τ ∗K |D0 = (K + 1)m
)

≥ κℓ(1−ε) P
(

τ ∗K ≥ κℓ(1−ε)
∣

∣D0 = (K + 1)m
)

.

We finally deduce that

lim inf
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

ℓ
lnE

(

τ ∗K |D0 = (K + 1)m
)

≥ (1− ε) lnκ .

Sending ε to 0 gives the desired lower bound.

We estimate next E
(

τK−τ ∗K |O0 = oexit

)

. Let φ : ]0,+∞[−→ [0,+∞] be the
function defined in [3] by setting φ(a) = 0 if a ≥ ln σ and

∀a < ln σ φ(a) =
σ(1− e−a) ln

σ(1− e−a)

σ − 1
+ ln(σe−a)

(1− σ(1− e−a))
.

Proposition 5.5. We have

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

m
lnE

(

τK − τ
∗
K |O0 = oexit

)

= φ(a) .
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Proof. For any subset E ⊂ Pm
ℓ+1 we define the hitting time of E by

τ(E) = inf
{

t ≥ 0 : Ot ∈ E
}

.

Let us define also the following occupancy distributions:

o1 = (1, m− 1, 0, . . . , 0) , o2 = (1, 0, . . . , 0, m− 1) ,

∀l ∈ { 0, . . . , ℓ } o3(l) =











1 if l = K ,

m− 1 if l = ℓ ,

0 otherwise .

Thanks to the monotonicity of the process (Ot)t≥0 we have

E
(

τ(NK) |O0 = o3
)

≤ E
(

τK − τ
∗
K |O0 = oexit

)

≤ E
(

τ(NK) |O0 = o1
)

.

We prove first the lower bound, i.e.,

lim inf
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

m
lnE

(

τ(NK) |O0 = o3
)

≥ φ(a) .

Indeed, we have

E
(

τ(NK) |O0 = o3
)

≥

E
(

τ(NK) |O0 = o3, O1 = o2
)

P
(

O1 = o2 |O0 = o3
)

.

On one hand, thanks to the Markov property and the monotonicity of the
process

E
(

τ(NK) |O0 = o3, O1 = o2
)

≥ 1 + E
(

τ(NK) |O0 = o2
)

.

Since τ(NK) ≥ τ(N ), thanks to the estimate for τ(N ) (corollary 9.2 of [3]),
we obtain

lim inf
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

m
lnE

(

τ(NK) |O0 = o2
)

≥

lim inf
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

m
lnE

(

τ(N ) |O0 = o2
)

≥ φ(a) .

On the other hand, we have

P
(

O1 = o2 |O0 = o3
)

=
1

m2

(

MH(K, 0) + (m− 1)MH(ℓ, 0)
)

≥
1

m2
MH(K, 0) =

1

m2

(

1− p
(

1−
1

κ

)

)ℓ−K(p

κ

)K

.
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Thus,

lim inf
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

m
lnP

(

O1 = o2 |O0 = o3
)

≥ 0 .

The above inequalities give the desired lower bound:

lim inf
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

m
lnE

(

τ(NK) |O0 = o3
)

≥ φ(a) .

We prove next the upper bound:

lim sup
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

m
lnE

(

τ(NK) |O0 = o1
)

≤ φ(a) .

To alleviate the notation we denote by Po and Eo the probability and the ex-
pectation for the process (Ot)t≥0 starting from the occupancy distribution o.
Let o′ be the occupancy distribution given by o′ = (0, m, 0, . . . , 0). We have

Eo1

(

τ(NK)
)

= Eo1

(

τ(N )
)

+ Eo1

(

τ(NK)− τ(N )
)

.

Yet, thanks to the strong Markov property and the monotonicity of the
process, and since τ(NK) ≥ τ(N ),

Eo1

(

τ(NK)− τ(N )
)

=
∑

o∈N

Eo

(

τ(NK)
)

Po1

(

Oτ(N ) = o
)

≤
∑

o∈N

Eo′
(

τ(NK)
)

Po1

(

Oτ(N ) = o
)

= Eo′
(

τ(NK)
)

.

We develop this last expectation as follows:

Eo′
(

τ(NK)
)

= Eo′
(

τ(W∗ ∪NK)
)

+ Eo′
(

τ(NK)− τ(W
∗ ∪ NK)

)

.

Yet,

Eo′
(

τ(NK)− τ(W
∗ ∪NK)

)

=
∑

o∈W∗

Eo

(

τ(NK)
)

Po′
(

Oτ(W∗∪NK) = o
)

≤
∑

o∈W∗

Eo1

(

τ(NK)
)

Po′
(

Oτ(W∗∪NK) = o
)

= Eo1

(

τ(NK)
)

Po′
(

τ(W∗) < τ(NK)
)

.
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Thus,

Eo′
(

τ(NK)
)

≤ Eo′
(

τ(W∗ ∪NK)
)

+ Eo1

(

τ(NK)
)

Po′
(

τ(W∗) < τ(NK)
)

.

Therefore,

Eo1

(

τ(NK)
)

≤
1

Po′
(

τ(NK) < τ(W∗)
)

(

Eo1

(

τ(N )
)

+ Eo′
(

τ(W∗ ∪NK)
)

)

.

We estimate next the three terms appearing on the right–hand side of this
formula. We control the first expectation with the help of the estimate for the
persistence time of the master sequence (corollary 9.2 of [3]) and we obtain:

lim sup
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1

m
lnEo1

(

τ(N )
)

≤ φ(a) .

We bound from below the probability in the denominator using the estimates
on the discovery time τ ∗K . On the event

E =
{

∀n ≤ mℓ3/4 ∀l ≤ ln ℓ Un,l > p/κ
}

,

if Dmℓ3/4 ≥ (ln ℓ)m, we have τ(NK) < τ(W∗). Therefore, using
(

▽
)

,

Po′
(

τ(NK) < τ(W∗)
)

≥ P
(

Dmℓ3/4 ≥ (ln ℓ)m, E |D0 = (1)m
)

≥
(

1−m exp
(

−
1

3
(ln ℓ)2

))(

1−
p

κ

)mℓ3/4 ln ℓ

.

It remains to estimate the expectation Eo′
(

τ(W∗ ∪NK)
)

. We estimate first,
for n ≥ 0, the probability Po′

(

τ(W∗ ∪ NK) > n
)

. We have

Po′
(

τ(W∗ ∪ NK) > n
)

=
∑

o∈W∗

K\W∗

Po′
(

τ(W∗ ∪ NK) > n,On−1 = o, τ(W∗ ∪ NK) > n− 1
)

=
∑

o∈W∗

K\W∗

Po′
(

τ(W∗ ∪ NK) > n |On−1 = o, τ(W∗ ∪ NK) > n− 1
)

× Po′
(

On−1 = o, τ(W∗ ∪ NK) > n− 1
)

.

Thanks to the Markov property and the monotonicity of the process, we have
for all o ∈ W∗

K \W
∗,

Po′
(

τ(W∗ ∪ NK) > n |On−1 = o, τ(W∗ ∪ NK) > n− 1
)

=

Po

(

τ(W∗ ∪NK) > 1
)

= 1− Po

(

τ(W∗ ∪ NK) = 1
)

≤ 1− Po

(

τ(W∗) = 1
)

≤ 1− P
(

τ(W∗) = 1 |O0 = o3
)

≤ 1−
MH(K, 0)

m2
.
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Thus,

Po′
(

τ(W∗ ∪ NK) > n
)

≤
(

1−
MH(K, 0)

m2

)

Po′
(

τ(W∗ ∪ NK) > n− 1
)

.

We iterate this inequality and we obtain

Po′
(

τ(W∗ ∪ NK) > n
)

≤
(

1−
MH(K, 0)

m2

)n

.

Finally,

Eo′
(

τ(W∗ ∪ NK)
)

=
∑

n≥0

Po′
(

τ(W∗ ∪ NK) > n
)

≤
∑

n≥0

(

1−
MH(K, 0)

m2

)n

=
m2

MH(K, 0)
=

m2

(

1− p
(

1−
1

κ

)

)ℓ−K(p

κ

)K
.

We put together the above inequalities and we obtain the desired upper
bound.

Let φ : ]0,+∞[→ [0,+∞] be the function defined by φ(a) = 0 if a ≥ ln σ
and

∀a < ln σ φ(a) =
σ(1− e−a) ln

σ(1− e−a)

σ − 1
+ ln(σe−a)

(1− σ(1− e−a))
.

From the estimates obtained in this section we conclude that for α ∈ [0,+∞[
or α = +∞,

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

E
(

τK − τ ∗K |O0 = oexit

)

E
(

τ ∗K |O0 = oexit

) =

{

0 if αφ(a) < ln κ

+∞ if αφ(a) > ln κ

In particular, if α φ(a) < ln κ, we have

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

∫

[0,1]

f dνK = 0 .
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6 Synthesis

Let us look at the formula given at the end of section 3.5:

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµθ
O(o) =

E

(
∫ τ∗

0

f

(

Oθ
s(0) + · · ·+Oθ

s(K)

m

)

ds
∣

∣

∣
Oθ

0 = oθ
exit

)

E
(

τ ∗ |Oθ
0 = oθ

exit

)

+ E
(

τ0 |Z
θ
0 = zθ

)

+
1 + E

(

τ0 |Z
θ
0 = zθ

)

E
(

τ ∗ |Oθ
0 = oθ

exit

)

+ E
(

τ0 |Z
θ
0 = zθ

)

∫

EK
f
(z0 + · · ·+ zK

m

)

dνθ(z) .

The integral appearing in the first term of the right–hand side is bounded as
follows:

0 ≤ E

(
∫ τ∗

0

f

(

Oθ
s(0) + · · ·+Oθ

s(K)

m

)

ds

)

≤ f(1)E
(

τ ∗ |Oθ
0 = oθ

exit

)

.

The stopping times τ ∗ and τ0 are the same as the discovery time of the master
sequence and the persistence time of the master sequence from [3]. As shown
in [3], the following estimates hold:

lim
ℓ,m→∞

q→0, ℓq→a

1

ℓ
lnE

(

τ ∗ |Oθ
0 = oθ

exit

)

= ln κ ,

lim
ℓ,m→∞

q→0, ℓq→a

1

m
lnE

(

τ0 |Z
θ
0 = zθ

)

= φ(a) ,

where the function φ : R+ → R
+ ∪ {+∞} is given by φ(a) = 0 if a ≥ ln σ,

and

∀a < ln σ φ(a) =
σ(1− e−a) ln

σ(1− e−a)

σ − 1
+ ln(σe−a)

(1− σ(1− e−a))
.

Therefore,

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

E
(

τ0 |Z
θ
0 = zθ

)

E
(

τ ∗ |Oθ
0 = oθ

exit

) =

{

0 si α φ(a) < ln κ ,

+∞ si α φ(a) > ln κ .

This, together with the results form the previous section and section 4.5
imply that
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• If αφ(a) < ln κ, then

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµθ
O(o) = 0 .

• If αφ(a) > ln κ, then

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

∫

Pm
ℓ+1

f

(

o(0) + · · ·+ o(K)

m

)

dµθ
O(o) = f(ρ∗0 + · · ·+ ρ∗K) .
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