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Learning to Estimate RIS-Aided mmWave Channels
Jiguang He, Member, IEEE, Henk Wymeersch, Senior Member, IEEE, Marco Di Renzo, Fellow, IEEE, and

Markku Juntti, Fellow, IEEE

Abstract—Inspired by the remarkable learning and prediction
performance of deep neural networks (DNNs), we apply one
special type of DNN framework, known as model-driven deep
unfolding neural network, to reconfigurable intelligent surface
(RIS)-aided millimeter wave (mmWave) single-input multiple-
output (SIMO) systems. We focus on uplink cascaded channel es-
timation, where known and fixed base station combining and RIS
phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training
overhead, the inherent channel sparsity of mmWave channels is
leveraged in the deep unfolding method. It is verified that the
proposed deep unfolding network architecture can outperform
the least squares (LS) method with a relatively smaller training
overhead and online computational complexity.

Index Terms—Deep unfolding, reconfigurable intelligent sur-
face, cascaded channel estimation, deep neural network.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) have recently

been introduced for enhanced energy efficiency (EE), spec-

trum efficiency (SE), positioning accuracy, as well as

network/physical-layer security [1]–[5]. The RIS, either being

passive, active, or a hybrid combination of the former two, is

used to smartly control the radio propagation environment,

by virtue of multi-function capabilities, e.g., reflection, re-

fraction, diffraction, scattering, and even absorption [6]. In

the literature, the RIS is commonly used as an intelligent

reflector, which breaks the well-known law of reflection [7], to

mitigate the blockage effect and expand the connectivity range,

especially for millimeter wave (mmWave) communications.

Since the RIS phase control and joint active and passive

beamforming are sensitive to the channel state information

(CSI) accuracy, the full potential of RIS cannot be achieved

when the channel estimation (CE) is poorly performed. There-

fore, accurate yet efficient CE methods for the individual

channels or the cascaded channel are of vital importance. In

our previous works, we took advantage of the inherent channel

sparsity and rank-deficiency features of the mmWave multiple-

input multiple-output (MIMO) channels and we applied the

iterative reweighted method and the atomic norm minimization

(ANM) method for estimating the channel parameters of RIS-

aided mmWave MIMO systems [8], [9]. These works fall into

the category of conventional model-based approaches, which
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suit only for a small- or medium-sized RIS, base station (BS),

and mobile station (MS).

As the number of RIS elements and BS/MS antennas

continues to grow (this is an inevitable trend in the mmWave

spectrum), more training overhead to obtain adequate CE per-

formance, within the channel coherence time, via conventional

model-based methods is required. Besides, the associated com-

putational complexity will become inevitably high. These con-

siderations motivate the application of data-driven or hybrid

approaches for CE in RIS-aided communications [10], [11].

In [12], a convolutional neural network (CNN) was considered

for RIS CE in a multi-user scenario. Therein, however, each

user needs to first estimate its own channel and then map

the estimate to the corresponding ground-truth channel, which

naturally increases the computational complexity. Therefore,

in this paper, we resort to a model-driven deep unfolding

approach, which has already been used in MIMO detection and

sparse signal recovery [13], [14], for estimating the cascaded

channel in RIS-aided mmWave single-input multiple-output

(SIMO) systems.

Deep unfolding mimics the operation of conventional (pro-

jected) gradient descent algorithms, and it is capable of

directly mapping the received pilot signals to the cascaded

channel. Its computationally intensive training process can

be executed offline and the online implementation/prediction

phase only entails low-complexity calculations, e.g., matrix

multiplications and additions, and element-wise operations.

Besides, the step sizes and regularization parameters can

be combined and optimized during the training of the deep

unfolding model, which is not possible in traditional gradient

descent methods. In this study, specifically, the rank-deficiency

property of the cascaded channel is explicitly considered in the

deep unfolding framework. It is verified that the deep unfold-

ing scheme can outperform the least squares (LS) estimation

and the ANM methods [9] in terms of normalized mean square

error (NMSE) with a smaller training overhead and a reduced

online computational complexity.

Notations: A bold lowercase letter a denotes a vector,

and a bold capital letter A denotes a matrix. (·)T and (·)H
denote the matrix or vector transpose and Hermitian transpose,

respectively. diag(a) denotes a square diagonal matrix with the

entries of a on its diagonal, E[·] is the expectation operator, 0

denotes the all-zero vector, IM denotes the M × M identity

matrix, and j =
√
−1. ‖ · ‖F and ‖ · ‖∗ denote the Frobenius

norm and nuclear norm of a matrix, respectively, and ‖ · ‖2
denotes the Euclidean norm of a vector.

II. SYSTEM MODEL

We consider a nearly-passive RIS-aided mmWave SIMO

network, where the MS communicates with the BS via the

http://arxiv.org/abs/2107.12631v2
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Fig. 1: A typical scenario for maintaining the connectivity by deploy-
ing an RIS in a mmWave SIMO network.

RIS, as shown in Fig. 1. The BS and RIS are equipped with

multiple antennas and with nearly-passive scattering elements,

respectively, while the MS is equipped with a single antenna.

We further assume that the direct MS-BS channel is blocked.1

The RIS-BS channel, which is denoted as H1 ∈ CM×N

with M and N being the number of antennas and scattering

elements at the BS and RIS, respectively, can be written as

H1 =

L1
∑

i=1

g1,iα(φ1,i)α
H(θ1,i) = A(φ1)diag(g1)A

H(θ1),

(1)

where L1 ≪ min{M,N} is the number of channel paths, in-

cluding one line-of-sight (LoS) path (with i = 1) and multiple

non-line-of-sight (NLoS) paths (with i > 1), and g1,i ∈ C,
θ1,i ∈ R, and φ1,i ∈ R denote the propagation path gain,

the angle of departure (AoD), and the angle of arrival (AoA)

associated with the ith propagation path. The array response

vector α(φ1,i) , [1, ejπ sin(φ1,i), . . . , ej(M−1)π sin(φ1,i)]T ∈
CM×1 is obtained by assuming half-wavelength inter-element

spacing, and α(θ1,i) ∈ CN×1 can be formulated in the

same manner. We assume g1,1 ∼ CN (0, σ2
LoS), and define

the vectors g̃1 , [g1,2, . . . , g1,L1
]T ∼ CN (0, σ2

NLoSIL1−1),
g1 , [g1,1, g̃

T
1 ]

T, φ1 , [φ1,1, . . . , φ1,L1
]T, θ1 ,

[θ1,1, . . . , θ1,L1
]T, A(φ1) , [α(φ1,1), . . . ,α(φ1,L1

)], and

A(θ1) , [α(θ1,1), . . . ,α(θ1,L1
)].

Similarly, the MS-RIS channel h2 ∈ CN×1 can be written

as

h2 =

L2
∑

i=1

g2,iα(φ2,i) = A(φ2)g2. (2)

All the channel parameters in h2 are defined as those

in H1. We also assume g2,1 ∼ CN (0, σ2
LoS), g̃2 ,

[g2,2, . . . , g2,L2
]T ∼ CN (0, σ2

NLoSIL2−1), and define g2 ,

[g2,1, g̃
T

2 ]
T and A(φ2) , [α(φ2,1), . . . ,α(φ2,L2

)] with L2 ≪
N .

The end-to-end uplink MS-RIS-BS channel (including the

effect of the RIS) can be written as

h = H1Ωh2 = H1diag(h2)ω, (3)

where Ω = diag(ω) is the RIS phase control matrix, with

ω = [ω1, . . . , ωN ]T and |ωi| = 1 for ∀i [1]. We are interested

1When the direct MS-BS channel exists, we can estimate it by setting the
RIS into an absorption mode. Then, we can estimate the cascaded channel by
subtracting the direct MS-BS channel.

in low-cost and low-complexity implementations of RISs, we

hence focus on RISs that can control only the phase response.

In (3), H1diag(h2) is referred to as the cascaded channel.

By knowing it, we can optimize the RIS phase control matrix

and BS beamforming/combining vector. Let us define it as

Hc ∈ CM×N , i.e.,

Hc = H1diag(h2). (4)

Based on the considered assumptions, we have rank(H1) =
L1 and rank(diag(h2)) = N . Thus rank(Hc) ≤
min{rank(H1), rank(diag(h2))} = L1. The inherent channel

sparsity (represented by the rank deficiency of the cascaded

channel) can be applied in order to enable an efficient yet

accurate CE of (4).

III. LEARNING TO ESTIMATE

In this section, we first introduce the channel sounding

procedure, and then describe the optimization problem formu-

lation for recovering the cascaded channel by using conven-

tional (model-based) methods. Finally, we describe the model-

driven deep unfolding method for estimating the rank-deficient

cascaded channel.

A. Channel Sounding

During the sounding process, pilot signals are sent from

the MS to the BS via the RIS. A different RIS phase control

matrix is considered for each channel use while the combining

matrix at the BS is fixed. The received signal at channel use

k, for k = 1, . . . ,K , can be written as

y[k] = WH[k]H1Ω[k]h2s[k] +WH[k]n[k], (5)

where W[k] ∈ CM×NW is the combining matrix at the BS

with NW denoting the number of columns,2 s[k] is the pilot

signal sent by the MS, and n[k] ∼ CN (0, σ2) is the additive

white Gaussian noise (AWGN) at the BS.

The received signal y[k] in (5) can be reformulated as

y[k] = WH[k]Hcω[k]s[k] +WH[k]n[k], (6)

where Ω[k] = diag(ω[k]).
Without loss of generality, we assume s[1] = s[K] = 1

and W[1] = W[K] = W. The received signals Y =
[y[1], . . . ,y[K]] can be rewritten as

Y = WHHcΩ̄+WHN, (7)

where Ω̄ = [ω[1], . . . ,ω[K]] and N = [n[1], . . . ,n[K]]. An

additional vectorization step is considered for all the terms

in (7), resulting in

y = (Ω̄
T ⊗WH)hc + n, (8)

where y = vec(Y),hc = vec(Hc), and n = vec(WHN).
Based on the vectorized received signal y, we need to estimate

2We consider an analog combining matrix, which is a suitable choice
for fulfilling the requirements of reduced-complexity hybrid precoding ar-
chitectures commonly assumed for mmWave MIMO transceivers. When
NW > NRF, with NRF being the number of radio frequency (RF) chains
at the BS, we need K⌈NW/NRF⌉ channel uses to complete the sounding
process. Otherwise, K channel uses are sufficient.
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the vectorized cascaded channel hc. Let us define Ψ = Ω̄
T ⊗

WH. Then, (7) can be simplified as y = Ψhc + n. Based

on the obtained signal model, the objective of this paper is

to extract hc from the noisy received signal y by assuming

that the matrix Ψ is known. This is accomplished by using

the deep unfolding method, which is detailed next.

B. Optimization Problem Formulation

In order to recover hc from the noisy observation y, we

formulate the following regularized optimization problem

ĥc = argmin
hc

‖y −Ψhc‖22 + λrank(Hc), (9)

which takes into consideration the rank deficiency of the

cascaded channel Hc and the impact of noise [15]. The

regularization parameter λ > 0 is introduced to control the

tradeoff between the data fitting and the rank of the cascaded

channel. The optimization problem in (9) can be further

reformulated as

ĥc = argmin
hc

‖y−Ψhc‖22 + λ‖Hc‖∗, (10)

which is obtained by relaxing rank(Hc) with its nuclear norm,

i.e., ‖Hc‖∗. This is a convenient approach because rank(Hc)
is a noncovex function of Hc. In addition, ‖Hc‖F ≤ ‖Hc‖∗ ≤√
r‖Hc‖F with r ≥ 1. Notably, when rank(Hc) = 1 (e.g.,

H1 has only the LoS path), we have ‖Hc‖∗ = ‖Hc‖F. Also,

the singular values of Hc have a high probability to fulfill

the following condition: σ1 ≫ σ2 > · · · > σL1
with σi

being the ith largest singular value of Hc, which results in

‖Hc‖∗ ≈ ‖Hc‖F. Thus, we further replace rank(Hc) in (10)

with ‖Hc‖F, i.e., ‖hc‖2, which yields

ĥc = argmin
hc

‖y −Ψhc‖22 + λ‖hc‖2. (11)

To accurately solve this optimization problem, we need to

carefully choose the regularization parameter λ. The optimal

value of λ is, however, difficult to obtain. As a reference, λ

is chosen equal to 4σ2
√

MN(M+N) log(M+N)
NWK

[15].

C. Model-Driven Deep Unfolding

Deep unfolding is a deep neural network framework that

mimics the conventional gradient descent method. The dif-

ference lies in that deep unfolding is able to learn from a

large amount of (synthetic) data with enhanced performance

and reduced online implementation complexity and number of

iterations. Typically, this is exemplified in a reduced number

of layers in the deep unfolding network. When solving the

optimization problem in (11) by using the (conventional)

gradient descent method, we iteratively update h
(i)
c , with (i)

denoting the iteration index, as follows

h(i)
c = h(i−1)

c − β∇f(h(i−1)
c ), (12)

where 0 < β < 1 is the step size and ∇f(h
(i−1)
c ) is the

gradient of f(hc) = ‖y−Ψhc‖22+λ‖hc‖2 evaluated at h
(i−1)
c ,

which can be expressed as

∇f(h(i−1)
c ) = (ΨHΨh(i−1)

c −ΨHy) + λh(i−1)
c /‖h(i−1)

c ‖2,
(13)

Fig. 2: The ith layer of the deep unfolding network model for
estimating the cascaded channel vector.

when λ is fixed. The initial value, i.e, h
(0)
c , can be set equal

to the all-zero vector. In this case, the denominator ‖h(i−1)
c ‖2

in the last term of (13) needs to be modified as ‖h(i−1)
c ‖2+ ǫ

with ǫ > 0 when i = 1.

Substituting (13) into (12), we obtain

h(i)
c = h(i−1)

c −βΨHΨh(i−1)
c +βΨHy−βλh(i−1)

c /‖h(i−1)
c ‖2.

(14)

The Gram matrix ΨHΨ, the compressed statistics ΨHy, and

h
(i−1)
c , are needed to apply the gradient descent algorithm.

Therefore, these three terms constitute the input variables of

the deep unfolding neural network model.

To be specific, the ith layer of the deep unfolding model

for mimicking the gradient descent iteration in (14) is in-

troduced in Fig. 2. The accuracy and convergence speed of

the channel estimate in (14) highly depends on the specific

choice of the step size β and the regularization parameter λ.

In the considered deep unfolding model, these parameters are

learnable parameters that are automatically determined during

the data-driven training phase. To this end, we introduce three

generalized learnable parameters δ
(i)
1 ∈ [−1, 0], δ

(i)
2 ∈ [0, 1],

and δ
(i)
3 ∈ [−1, 0], for the ith layer of the deep unfolding

model in Fig. 2. In (14), more specifically, −β and β in

the second and third term are replaced by δ
(i)
1 and δ

(i)
2 ,

respectively, and the product −βλ/‖h(i−1)
c ‖2 in the last term

is unfolded in the learnable parameter δ
(i)
3 . As shown in Fig. 2,

in order to further enhance the prediction capabilities of the

deep unfolding network model, we serially concatenate the

term h
(i−1)
c + δ

(i)
1 ΨHΨh

(i−1)
c + δ

(i)
2 ΨHy+ δ

(i)
3 h

(i−1)
c with a

learnable weight matrix M(i), a bias vector b(i), and a non-

linear activation function.

The complete deep unfolding network model is illustrated

in Fig. 3 and it comprises L layers from Fig. 2. In particular,

the observations {ΨHΨ,ΨHy} are input to all the layers of

the deep unfolding network model. The online computational

complexity of the proposed scheme is O(M2N2L), which is

smaller than the ANM based scheme that requires O((M +
N)6) per iteration [9].

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-

posed deep unfolding network model against two benchmark

schemes: (i) the LS estimator and (ii) the direct solution of (11)
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Fig. 3: Complete deep unfolding network model for channel estima-
tion, which comprises L layers from Fig. 2

by using the CVX toolbox.3 We evaluate the impact of the

training overhead, the training SNR, the number of paths, and

the angular parameter distribution. As far as the RIS phase

control matrices as concerned, their diagonal elements are set

equal to the column vectors of a discrete Fourier transform

(DFT) matrix. A set of orthonormal vectors are considered

for W, e.g., the normalized column vectors from a DFT

matrix. It is worth mentioning that we transform the data from

the complex-valued domain to the real-valued domain before

applying the deep unfolding network model. The channel

h
(0)
c is set equal to the all-zero vector. In the first L − 1

layers, we use relu activation functions, while no activation

function is applied in the last layer. The loss function during

the training phase is the NMSE between the output cascaded

channel vector and the ground-truth cascaded channel vector.

The Adam algorithm is used for training, whose learning

rate is 0.001 during the first 20 epochs and it is halved

in the remaining epochs, and the batch size is 64. We use

1e5 samples for training and 1e4 samples for testing. The

parameter setup is summarized in Table I.

A. Impact of the Training Overhead

Fig. 4 shows the NMSE for a 1 × 16 SIMO system (i.e.,

M = 16) by using the proposed deep unfolding approach

as a function of the training overhead. During the training

phase, the SNR is γ = 1/σ2 = 20 dB. From Fig. 4, we

see that the proposed scheme with K = 24 channel uses for

training outperforms the LS estimator even if the latter uses

a longer training phase with K = 32. Also, as expected, the

higher the training overhead is, the lower the NMSE of the

proposed scheme is. It is worth noting that the proposed deep

unfolding method outperforms the numerical solution of (11)

by using CVX, and the ANM algorithm. This is attributed to

the learning capability of the deep unfolded network through

the learnable parameters introduced in Fig. 2.4

B. Impact of the Number of Paths

In this subsection, we study the impact of the number of

paths, which is increased from one to two and three. The SNR

for training is γ = 20 dB and K = 28. The corresponding

3The scripts of the implementation are available at
https://github.com/jiguanghe/RISCE.

4If the regularization parameter λ in (11) can be optimally designed, better
performance can be expected.

TABLE I: Parameter Setup.

Parameter Value Parameter Value

L1 {1, 2, 3} h
(0)
c 0

L2 {1, 2, 3} Optimizer Adam

σ2
LoS 1 Learning rate 0.001, 0.0005

σ2
NLoS 0.01 Batch size 64
M 16 ρ(·) relu

N 32 Training samples 1e5
L 15 Testing samples 1e4

sin(θ1) U [0, 1] Loss NMSE
sin(φ1) U [0, 1] sin(φ2) U [0, 1]
NW 8 K {24, 28}

Fig. 4: Impact of training overhead on estimating the cascaded
channel for a 1× 16 SIMO system with N = 32 and L1 = L2 = 1.
Deep unfolding vs. LS estimation, ANM [9], and the direct solution
of (11).

NMSE is shown in Fig. 5. When the number of paths increases,

the rank of the cascaded channel increases accordingly. In this

case, Fig. 5 shows that the NMSE increases as the number

of paths increases. In other words, by keeping the training

overhead fixed, the proposed deep unfolding method benefits

from the sparsity of the channel, i.e., the number of paths is

small.

C. Impact of the Training SNR

In this subsection, we study the impact of the training

SNR on the estimation performance. Two SNR values, i.e.,

γ = 0 dB, γ = 20 dB, and an SNR that varies in the set

γ ∈ {0, 5, 10, 15, 20} dB are considered. The corresponding

NMSE is shown in Fig. 6. We observe that the proposed

deep unfolding method provides the best NMSE when it is

trained at a high SNR except if the operating SNR during

the test phase is too low. In other words, nearly noise-free

training samples bring the best performance in the high SNR

regime, and vice versa, as depicted in Fig. 6. The training SNR

plays a critical role in the prediction performance of the deep

unfolding models.5

D. Impact of the Angular Parameter Distribution

Unlike the previous study in which the angular parameters

are distributed as U [0, 1], in this subsection, we evaluate the

5If the SNR value(s) can be incorporated into the proposed deep unfolding
structure, better performance is expected, which is left for our future investi-
gation.

https://github.com/jiguanghe/RISCE
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Fig. 5: Impact of the number of paths on estimating the cascaded
channel for a 1× 16 SIMO system with N = 32.

Fig. 6: Impact of the training SNR on estimating the cascaded channel
for a 1× 16 SIMO system with N = 32.

impact of the angular parameter distribution when estimating

the cascaded channel. The corresponding NMSE is shown in

Fig. 7. We observe that the NMSE decreases when the range

of sin(θ1), sin(φ1), sin(φ2) decreases. In other words, the

estimation accuracy of the proposed deep unfolding method

increases when the individual channels are subject to a reduced

variability.
V. CONCLUSIONS

In this letter, we have introduced a deep unfolding model for

efficiently estimating the end-to-end RIS channel in mmWave

SIMO systems. With the aid of simulation results, we have

shown that the proposed approach can outperform three

benchmark schemes based on the LS method, a CVX-based

numerical solution of the channel estimation problem, and

the ANM algorithm. The impact of the number of paths, the

training SNR, and the angular parameter distribution on the

estimation accuracy has been investigated. In addition, the

proposed deep unfolding network model has a low online

prediction complexity, since it requires the computation of

vector matrix multiplications and additions. On the other hand,

the LS estimation methods usually require a matrix inversion.

Possible generalizations of the present work include the

channel estimation problem in RIS-aided multiuser MIMO

systems, and the joint optimization of the active and passive

beamforming at the BS and at the RIS, respectively.

Fig. 7: Impact of the angular parameter distribution on estimating the
cascaded channel for a 1× 16 SIMO system with N = 32.
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