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A Faster Sampler for
Discrete Determinantal Point Processes

Simon Barthelmé, Nicolas Tremblay, and Pierre-Olivier Amblard

Abstract. Discrete Determinantal Point Processes (DPPs) have a wide array of potential

applications for subsampling datasets. They are however held back in some cases by the high cost
of sampling. In the worst-case scenario, the sampling cost scales as O(n3) where n is the number

of elements of the ground set. A popular workaround to this prohibitive cost is to sample DPPs

defined by low-rank kernels. In such cases, the cost of standard sampling algorithms scales as
O(np2 + nm2) where m is the (average) number of samples of the DPP (usually m ≪ n) and p

(m ⩽ p ⩽ n) the rank of the kernel used to define the DPP. The first term, O(np2), comes from

a SVD-like step. We focus here on the second term of this cost, O(nm2), and show that it can
be brought down to O(nm+m3 logm) without loss on the sampling’s exactness. In practice, we

observe extremely substantial speedups compared to the classical algorithm as soon as n > 1, 000.

The algorithm described here is a close variant of the standard algorithm for sampling continuous
DPPs, and uses rejection sampling. In the specific case of projection DPPs, we also show that

any additional sample can be drawn in time O(m3 logm).

Finally, an interesting by-product of the analysis is that a realisation from a DPP is typically
contained in a subset of size O(m logm) formed using leverage score i.i.d. sampling.

Discrete Determinantal Point Processes have been advocated as a way of sub-
sampling large datasets, because they produce samples that preserve some of the
diversity of the original dataset [1]. One impediment to their broad adoption in
practice lies in their computational cost; aside from some special cases (like random
spanning forests [2]), exact sampling of a DPP with a large number of elements is
rather expensive.

In this manuscript, we show that a simple modification of the standard algo-
rithm yields a substantial improvement, without loss on the algorithm’s exactness.
Here and throughout we let n designate the size of the ground set the DPP draws
from, and m the (average) size of the subsample produced by the DPP. In the
worst-case, the cost of producing a sample may be as high as O(n3) (as it requires
a full diagonalisation of the kernel, see [3]); however, in the more realistic context of
low-rank kernels and using standard exact sampling algorithms, this figure drops to
O(np2+nm2) where p (m ⩽ p ⩽ n) is the rank of the kernel [4]. We improve this to
O(np2 +nm+m3 logm). We readily see that, even though this is an improvement
for sampling any DPP, the closer is p to m, the more substantial the improvement
in practice, as np2 stays the headline complexity. We identify three popular and
general use-cases for which our approach brings substantial speed-ups compared to
the classical algorithm:

1) (extremely significant speed-up: p = m and orthogonalisation is already
computed) sample a DPP with kernel K = QQ⊤, where Q ∈ Rn×m is or-
thonormal (Q⊤Q = I) and given (for instance, the DPPs used in [5]). As
there is no orthogonalisation to compute, the total cost of sampling with
our algorithm is O(nm +m3 logm), which is substantially faster than the
best previously known cost in O(nm2).

All three authors are with CNRS, Univ Grenoble-Alpes, Gipsa-lab, France.
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2) (very significant speed-up: p = m and orthogonalisation has yet to be com-
puted) in some cases, the orthonormal basis Q is not known from the start.
A popular context is when one wishes to sample a fixed-size L-ensemble
of size m with L = V V ⊤ with V ∈ Rn×m a matrix of features. In this
case, one i/ first computes an orthonormal basis Q of the span of V , before
ii/ sampling a DPP with kernel K = QQ⊤ (as in the previous case). Step
i/ involves, e.g., a QR decomposition. Even though the cost of QR scales
theoretically as O(nm2), it is highly efficient (and parallelisable) in modern
hardware such that the bottleneck in previous state-of-the-art is step ii/.
Our improvement of step ii/ thus also has practical (possibly very large)
speed-ups in this context. In addition, there are special cases of feature
matrices V for which computing an orthogonal basis has cost less than
O(nm2); increasing further the potential benefits of our approach. This is
the case for instance for some classes of sparse V [6].

3) (significant speed-up: p equals a few times m) Same context as 2/ but in
the case where the feature matrix V is of size n × p with p > m. In this
case, the first step is to compute the SVD of V . If p is too large, this will
be the dominant step and our improvement over the second step will not
be that useful. However, in popular cases where p is only a few times m,
the speed-up is appreciable (see Section 3 for details).

Moreover, in contexts where one needs several realisations of the same DPP, step
i/ is computed once, and step ii/ as many times as the number of samples needed;
such that our improvement over step ii/ becomes that much more useful.

Organisation of the paper. Section 1 briefly introduces the main objects and the
state-of-the-art. Section 2 describes our algorithm and its runtime, and Section 3
presents empirical results. A corollary of our result states that DPPs are typically
contained in a i.i.d. sample of size O(m logm). Section 4 discusses this fact and
offers concluding remarks.

1. Background and notation

1.1. Discrete DPPs

For more background on discrete DPPs, we refer readers to [1] and [7]. Discrete
DPPs are a specific instance of a discrete point process. We say X is a discrete
point process on a ground set Ω, if it is a random subset of Ω. Without loss of
generality, we let Ω = {1, . . . , n} so that X is a random subset of indices.

Definition 1.1 (DPP). X is a DPP on Ω with marginal kernel K ∈ Rn×n such
that 0 ⩽ K ⩽ I, noted X ∼ DPP (K), if for all fixed subsets S ⊆ Ω, we have

(1) p(S ⊆ X ) = detKS

Here KS is the principal submatrix of K with indices given by S. We shall
use “Matlab” notation, where KA,B denotes the submatrix with row indices A and
column indices B, KA,: means all columns and K:,B all rows.

Definition 1.2 (Projection DPP). A projection DPP is a DPP whose kernel is a
projection matrix (ie. K2 = K).

If K is a projection matrix, it can be written as QQ⊤ where Q ∈ Rn×m is an
orthonormal basis for spanK (Q⊤Q = I and spanQ = spanK). Note that any
orthonormal basis for K is enough, Q need not be a basis of eigenvectors.
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Projection DPPs are important because of the following mixture decomposition,
due to [3].

Theorem 1.3 (mixture representation). Let X ∼ DPP (K), and K = UΛU⊤ the
eigendecomposition of K, with Λ the diagonal matrix of eigenvalues {λj}j=1,...,n

and U = (u1|u2| . . . |un) the matrix of eigenvectors. Then the following process
produces a sample from X .

1) Sample a subset Y of eigenvectors by including each eigenvector uj with
probability λj.

2) Form the projection kernel KY = U:,Y(U:,Y)
⊤

3) Sample X ∼ DPP (KY)

The cost of sampling a DPP when following this recipe equals the cost of com-
puting the eigendecomposition of K (O(np2) with p the rank of K) followed by
the cost of sampling a projection DPP (step 3). It is the latter step that we focus
on here.

1.2. Fixed-size DPPs

The cardinal of a DPP is in general random. Such varying-sized samples are not
practical in many applications, which led authors in [8] to define fixed-size DPPs1

Definition 1.4 (Fixed-size DPP). A fixed size DPP of size m is a DPP X condi-
tioned on |X | = m.

To sample a fixed-size DPP with kernel K, one follows the same recipe as in
Theorem 1.3 except for the first step that is replaced by:

1) Sample a subset Y of eigenvectors by including each eigenvector uj with
probability λj; conditioned on |Y| = m.

Performing such a conditioned sampling can be done by Algorithm 8 of [8], which
works by explicitly computing elementary polynomials.

1.3. L-ensembles and fixed-size L-ensembles

L-ensembles are a subclass of DPPs popular in Machine Learning applications be-
cause of their intuitive definition:

Definition 1.5 (L-ensemble). Let L be a positive semi-definite matrix. X is a
L-ensemble on Ω if for all X ⊆ Ω

(2) p(X = X) =
1

det(I +L)
det(LX)

L-ensembles are specified via their likelihood function, Eq. (2), which states
that those subsets of Ω where the submatrix LX is well-conditioned, are preferred.
Intuitively, if Li,j represents a similarity between items i and j of Ω, then the
L-ensemble favours subsets of Ω that hold dissimilar items.

As with DPPs, one defines fixed-size L-ensembles as:

Definition 1.6 (Fixed-size L-ensemble). A fixed size L-ensemble of size m is a
L-ensemble X conditioned on |X | = m.

(Fixed-size) L-ensembles are (fixed-size) DPPs with kernelK = (I+L)−1L [1,7],
and the mixture representation thus applies.

To conclude this section, we have seen that all (fixed-size) L-ensembles and
more generally all (fixed-size) DPPs have a mixture representation that divides the

1They are often called k-DPPs in the literature, but we prefer “fixed-size DPPs” in order not
to overload the symbol k too much.
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sampling algorithm in two steps: i/ a diagonalisation step that costs O(np2), ii/ a
step consisting of sampling a projection DPP. Step ii/ is known2 to cost O(nm2)
in the literature. The purpose of this paper is to show that the cost of this second
step can always be reduced to O(nm+m3 logm).

1.4. State-of-the-art

Various directions have been explored when designing fast samplers for discrete
DPPs. Some have focused on bypassing the eigendecomposition of K or L [9–11].
If K is a sparse matrix, then the algorithms in [9] can be quite advantageous
compared to standard O(n3) algorithms. These algorithms are difficult to adapt
to L-ensembles in an efficient manner (for instance, they cannot take advantage
of sparsity in L). Random spanning forests [2] are an example of a discrete DPP
where a fast sampler (Wilson’s algorithm, [12]) is available, and sparsity in L seems
to play a role. However, Wilson’s algorithm does not extend readily to L-ensembles
with arbitrary structures.

Another direction for generic DPP samplers is to give up on exactness. Ap-
proximate samplers are available, based on Markov Chain Monte Carlo methods.
The most recent results in that direction are in [13], where the authors show that

given some preprocessing there are MCMC samplers that run in Õ(mω), where

the Õ is shorthand for O(.) “up to logarithmic factors”, and ω is the exponent of
matrix-multiplication time, which for practical values of m is effectively 3. The pre-
processing consists essentially in estimating the inclusion probabilities, also known
as the leverage scores, and its runtime is given by [13] as Õ(nmω−1). Our results

are essentially the same (preprocessing in O(nm2), sampling in Õ(m3)), but our
sampler is exact.

Finally, two recent papers [14,15] extend the tree-based sampling approach of [16]
to obtain both approximate and exact samplers with complexity slightly larger than
our proposal. There are also more complicated to implement. However, these can
handle non-symmetric DPPs, which the algorithm given here cannot do.

2. Sampling via accept-reject

In this section the goal is to formulate and analyse an algorithm for sampling a
projection DPP X ∼ DPP (QQ⊤) with Q ∈ Rn×m, verifying Q⊤Q = I. The
first exact such algorithm was described by [3], and adapted in [1] to the discrete
case. The first efficient version appeared in [4]. It is effectively a variant of the
Gram-Schmidt algorithm.

For completeness we give an easy derivation in the next section (Section 2.1),
and the notation will serve to describe our own variant, in Section 2.2.

2.1. State-of-the-art algorithm

A projection DPP has size m almost surely (see [1]). We shall sample the m
elements successively. Let X = (x1, . . . , xm) be an ordered version of X ; we can go
from X to X by forgetting the order and from X to X by ordering randomly. The
latter can be achieved by picking a first item uniformly from X , then a second, then
a third etc. The sampling algorithm proceeds via the following decomposition:

(3) p(X ) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xm|x1 . . . xm−1)

The algorithm samples x1 first, then x2 given x1 has been selected, etc. The law
of x1 is the law of the first element of X , a randomly ordered version of X . That

2This is an average (resp. deterministic) cost for DPPs (resp. fixed-size DPPs) for which m
refers to the average (resp. desired) size of the sample.
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is equivalent to x1 being sampled uniformly at random from X , and so:

p(x1 = i) =
1

m
p(i ∈ X ) = Ki,i

m

We can similarly obtain the law of x2 given x1, as two elements drawn randomly
(without replacement) from X :

p(x2 = i|x1 = j) =
p(x1 = j, x2 = i)

p(x1 = j)
=
p(i ∈ X , j ∈ X )
m(m− 1)

× m

p(j ∈ X )

=
1

(m− 1)

detK{i,j}

Kj,j

The formula for determinants of block matrices yields:

detK{i,j}

Kj,j
= Ki,i −

K2
i,j

Kj,j

and so:

p(x2 = i|x1 = j) =
1

(m− 1)

(
Ki,i −

K2
i,j

Kj,j

)
For the general term in the chain rule decomposition (eq. (3)), the same reason-

ing applies. We obtain:

p
(
xt = i|X 1:(t−1) = Xt

)
=

1

(m− t)
(
Ki,i −Ki,Xt(KXt)

−1KXt,i

)
(4)

Eq. (4) is enough to give us a sampling algorithm, since at each step we have an
explicit (discrete) probability distribution to sample from. However, implementing
eq. (4) näıvely, we would be computing a matrix inverse at each step, which would
turn out to be quite expensive for large m. To get an efficient algorithm a bit more
work is needed.

Let us reexpress eq. (4) in terms of Q. Recalling K = QQ⊤, we obtain:

p
(
xt = i|X 1:(t−1) = Xt

)
=

1

(m− t)
(
Kii −Qi,:Mt(Qi,:)

⊤)(5)

where Mt = (QXt,:)
⊤ (QXt,:(QXt,:)

⊤)−1
QXt,: is a projection matrix (M2

t = Mt)
of size m and rank |Xt| = t− 1, and so can be rewritten

Mt =

t−1∑
i=1

sis
⊤
i

where s1 . . . st form an orthonormal basis for spanMt = spanQ⊤
Xt,:

, the linear
subspace spanned by the rows of Q selected so far. A first source of computa-
tional savings comes from realising that Mt can be computed iteratively via the
Gram-Schmidt process. Notice that Mt = Mt−1 + st−1s

⊤
t−1, and Mt−1 spans

spanQ⊤
Xt−1,:

. We obtain st−1 via Gram-Schmidt: first we compute the residual

zt−1 = (I −Mt−1)Q
⊤
xt−1,:

and then we normalise:

st−1 =
zt−1

∥zt−1∥
At each step t this costs O(m(t− 1)) operations, and we will need to do this m− 1
times at a total cost of O(m3).

Next, we can show that the probability distribution we sample from at step t can
be easily obtained from the one we had at step t− 1. It is more convenient to write
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Algorithm 1: Sampling from a projection DPP X ∼ DPP (K = QQ⊤),
standard algorithm

Initialise π(x)←
∑m

j=1Q
2
x,j , X = ∅, Gram-Schmidt basis S = [] ;

foreach t ∈ 1 . . .m do

Sample x from π(x)
m−(t−1) , add to X ;

Compute residual zt = (I − SS⊤)(Qx,:)
⊤ ;

Add column st =
zt

∥zt∥ to S ;

Compute v = Qst ∈ Rn ;

Update probabilities π(x)← π(x)− (vx)
2;

end

this using unnormalised versions of the densities. Let π(1)(i) = mp(x1 = i) = Ki,i.
Next, we define:

π(2)(i) = (m− 1)p(x2 = i|x1 = j) = Ki,i −
K2

i,j

Ki,i
= π(1)(i)−

K2
i,j

Ki,i

Note that we have suppressed the dependency on the past in the notation π(2)(i):
it is to be understood as the (unnormalised) density we draw from at the second
step of the algorithm. In the general case, we define:

(6) π(t)(i) = (m− t+ 1) p
(
xt = i|X 1:(t−1) = Xt

)
Injecting eq. (4) and eq. (5), we find

π(t)(i) = π(1)(i)−Qi,:Mt(Qi,:)
⊤ = π(1)(i)−Qi,:(Mt−1 + st−1s

⊤
t−1)(Qi,:)

⊤

= π(t−1)(i)− (Qi,:st−1)
2(7)

All we need to do at each step of the algorithm is to

1) pick an item i according to π(t)

2) perform a step of the Gram-Schmidt algorithm to update Mt based on the
new vector Qi,:

3) Update the probability distribution to π(t+1) according to eq. (7)

Sampling from a discrete distribution (step 1 above) can be done at cost O(n),
and is needed m times, for a total cost of O(nm). We have already established
that the cost of the Gram-Schmidt algorithm is O(m3). It is the update to the
probability distribution that is the most costly, with each step costing O(nm) (n
dot products in Rm) for a total of O(nm2). Since n > m the cost of the algorithm
scales as O(nm2). We show pseudo-code for this standard algorithm as alg. 1.

In the next section, we move on to the core of our contribution, showing that
this O(nm2) cost can be reduced to O(nm+m3 logm) via rejection sampling.

2.2. Using rejection sampling

The use of rejection sampling is not exactly new in this context, since algorithms
for sampling continuous DPPs use this strategy out of necessity [17]. In the discrete
case, we believe it has not been used before because it looked like an unnecessary
complication. In fact, it leads to an algorithm that is faster but no more complicated
to implement than the traditional discrete sampler described in alg. 1.

As we discussed above, the most expensive part of alg. 1, lies in updating the
probability distribution to sample from (last step of the for loop). It turns out that
the accept-reject method lets us bypass this step.
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To briefly recall the rejection sampling idea, suppose we have an unnormalised
density π(x) (the target) we wish to draw from, and a proposal q(x), also unnor-
malised, but that we know how to draw from, and is not too far from π. Further,
q(x) has support at least as wide as π(x), and upper bounds it (π(x) ⩽ q(x) over
the support). We may then draw x from q(x) and accept the sample with proba-

bility π(x)
q(x) . The accepted samples then have density π(x). If q(x) is a good bound

for π(x), then the rejection sampler will be quite efficent. In the limit where π = q,
the acceptance probability goes to 1. If on the other hand q(x) is quite loose, the
acceptance probability may be bad.

In the DPP sampling algorithm, we need to sample from π(1), then π(2), etc. up
to π(m). Our proposal is to compute π(1) exactly for all n entries, then use π(1) as
proposal distribution for the rest of the sequence.

Recall that π(t) is the unnormalised density defined in eq. (6). From the recursion
in eq. (7), we have that

π(t)(x) ⩾ π(t+1)(x)

for all x and 1 ⩽ t ⩽ m− 1. This is true in particular for π(1), which can therefore
be used as a proposal distribution for all subsequent π(t). We can directly compute
the probability of accepting a proposed sample. At step t, we sample x from the

normalised density 1
mπ

(1)(x) and accept it with probability π(t)(x)
π(1)(x)

. The acceptance

probability equals:

(8) ρt =

n∑
i=1

π(t)(i)

π(1)(i)

π(1)(i)

m
=

1

m

n∑
i=1

π(t)(i) =
(m− t+ 1)

m

This probability decreases at each step of the algorithm, but at the final step it
is still positive and equals 1

m .

Let us outline the proposed algorithm. First, one computes every entry of π(1).
For this we use the following formula

(9) π(1)(i) = Ki,i =

n∑
i=1

Q2
ij

The computation is equivalent to computing the norm of each row of Q, at cost
O(nm). Because we need to sample from π(1) repeatedly, it pays to use Walker’s
alias method [18] (see also Chapter III.4 of [19]). Given a preprocessing cost of
O(n), the alias method gives us all subsequent samples at cost O(1) instead of
O(n).

At the first step we sample our first item from π(1). At step 2, and all subsequent
steps, we use rejection sampling, which involves computing the ratio

(10)
π(t)(x)

π(1)(x)
= 1− 1

π(1)(x)

t−1∑
j=1

(Qx,:sj)
2

by eq. (7). Computing the acceptance ratio has cost O(m(t−1)) at step t, the cost
of t− 1 dot products in Rm. We do this repeatedly until a proposal is accepted, at
which point we need to perform a Gram-Schmidt step to update Mt to Mt+1. We
then move on to the next iteration, or stop if t = m.

We summarise the whole process as alg. 2. To recapitulate the different compu-
tational costs:

• Preprocessing cost: computing π(1) for all entries comes at cost O(nm) and
setting up Walker’s alias method at cost O(n)

• The Gram-Schmidt process (computing zt then st) costs O(tm) at step t.
Summing this figure for t = 1 to m gives a cost of O(m3)
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• We now need to compute the average cost of the while loop at step t. The
rejection sampler has probability ρt of succeeding, given by eq. (8). The
number of proposals Rt that are required until acceptance is thus a random
variable that follows a geometric distribution with success probability ρt:
the expected number of proposals at iteration t is therefore

(11) E(Rt) =
1

ρt
=

m

m− t+ 1
.

Since computing the acceptance ratio has cost O(m(t−1)) for each trial, the

expected cost of the while loop at step t scales as O
(

m2(t−1)
m−t+1

)
. Summing

this figure for t = 1 to m, one has
∑m

t=1
m2(t−1)
m−t+1 ⩽ m3

∑m
t=1

1
m−t+1 which

scales as 3 O(m3 logm).

Tallying everything we obtain the following theorem:

Theorem 2.1. Alg. 2 samples a projection DPP, with an expected runtime scaling
as O(nm + m3 logm). Also, any additional sample from the same DPP can be
obtained in an extra O(m3 logm) expected runtime.
Moreover, these expected runtimes are representative. Indeed, ∀δ ∈

(
0, 12

)
, the total

number of proposals R =
∑m

t=1Rt satisfies, with probability greater than 1− δ:

R ⩽ 2m logm+ 3m log
1

δ

Proof. The fact that Alg. 2 samples a projection DPP inO(nm+m3 logm) expected
runtime is proven above the Theorem’s statement. The fact that any additional
sample from the same DPP only costs an extra O(m3 logm) expected runtime
comes from the fact that all initialisation steps (the computation of π(1) and the
setting-up cost of Walkers’ algorithm) have already been computed for the first
sample. To obtain any extra sample, one only needs to run the for loop once more,
costing O(m3 logm).
The final statement relates to concentration properties of R. For m = 1, the
statement is trivial. We now show the result for m ⩾ 2. At step t of Alg. 2
the number of proposals of the sampler is a random geometric variable Rt with
parameter (m − t + 1)/m. Note that all the Rt’s are independent. We study here
the behavior of R =

∑m
t=1Rt which is the total number of rejection sampling steps

used during the whole course of Alg. 2. In [21], the following one-tailed bound for
R is given in Thm 2.3. ∀λ ⩾ 1:

p (R ⩾ λE[R]) ⩽
1

λ

(
1− 1

m

)(λ−1−log λ)E[R]

We look for λ large enough s.t. p (R ⩾ λE[R]) ⩽ δ, i.e.:

log

(
1

δ

)
⩽ −(λ− 1− log λ)E[R] log

(
1− 1

m

)
(12)

One has4 ∀λ ⩾ 1, 13λ− log 3
2 ⩽ λ− 1− log λ such that Eq. (12) is verified provided

that:

λ ⩾ 3

(
log

3

2
− log δ−1

E[R] log
(
1− 1

m

))

3∑m
t=1

1
m−t+1

=
∑m

t=1
1
t
scales as O(logm): see, e.g., Chapter 6 of [20]

4In fact, the function λ − 1 − log λ is convex for all λ ⩾ 1 and thus lower-bounded by all its
tangents. The one we use is the tangent in 3/2. Other choices lead to other constants in the
result.
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Algorithm 2: Sampling from a projection DPP X ∼ DPP (K = QQ⊤)
with rejection sampling

Initialise π(1)(x)←
∑m

j=1Q
2
x,j , X ← ∅, Gram-Schmidt basis S ← [] ;

Initialise alias table for Walker’s alias algorithm to sample from π(1).
foreach t ∈ 1 . . .m do

accept ← false ;

while not accept do
Draw x from π(1) using the alias method;

Compute acceptance ratio r = 1− 1
π(1)(x)

∑t−1
j=1(Qx,:st)

2 ;

if rand() < r then
accept ← true

end

end

Add x to X ;

Compute residual zt = (I − SS⊤)(Qx,:)
⊤ ;

Add column st =
zt

∥zt∥ to S ;

end

Stated differently, setting λ to this lower bound implies p(R ⩽ λE[R]) ⩽ 1− δ. All
is left to show is that ∀m ⩾ 2:

∀δ ∈
(
0,

1

2

)
, 3

(
log

3

2
− log δ−1

E[R] log
(
1− 1

m

))E[R] ⩽ 2m logm+ 3m log δ−1

For this, we use two upper-bounds. The first one is ∀m > 1,− 1

log(1− 1
m )

⩽ m− 1/2.

The second one is the following bound on E[R]. As E[Rt] = m/(m− t+1), one has

(see, e.g., Chapter 6 of [20]): E[R]
m =

∑m
t=1

1
m−t+1 =

∑m
t=1

1
t = γ+ψ(m)+ 1

m where

γ ≈ 0.577 is Euler’s constant and ψ(m) the digamma function. Now, a known
bound is ψ(m) ⩽ logm− 1

2m , which yields E[R] ⩽ m(logm+ γ) + 1
2 . □

2.3. Some refinements

Algorithm 2 works well enough as is but there are some refinements that can reduce
the computational cost further (at least theoretically).

2.3.1. Preprocessing for general DPPs

In some applications we require several samples from the same DPP, and algorithms
have been described that trade higher set-up cost for a lower cost per sample (see
[16]). If the target DPP is a projection DPP, then setting up alg. 2 for repeated
sampling could not be easier. In practice a substantial amount of time is spent
computing π(1), and a smaller amount setting up the alias table. All of this can
be done as part of preprocessing, so the first sample from the DPP costs O(nm+
m3 logm) but after that the cost is just O(m3 logm) per sample.

If the target DPP is not a projection DPP, then one has to use the mixture
representation (Thm 1.3): draw a random set of eigenvectors Y and run alg. 2
with Q = UY,:. Since the kernel changes every time, so does π(1) and it cannot be
computed as part of pre-processing. However, the kernels encountered in practice
tend to have rapidly decreasing eigenvalues, so that the variance in Y is quite small
and the DPP is close to a projection DPP. Without getting into too much detail,



10 S. BARTHELMÉ, N. TREMBLAY, AND P-O. AMBLARD

it is possible to pre-compute the partial sum

π̂(1)(i) =
∑
j∈Ŷ

U2
i,j

for some highly likely subset of Y, denoted here Ŷ. π(1) for the actual sampled Y
can be obtained efficiently by removing the extra entries and adding the missing
ones. The alias table can be computed from scratch. This type of preprocessing
brings down the cost to O(ns+m3 logm) per sample, where m = E|Y| and s is the
expected size of the symmetric difference between Ŷ and Y.

2.3.2. Caching computations and updating the proposal distribution

Clearly, Alg. 2 has some wasted computation, since all the computations done when
a proposal x is rejected are performed again should x come up a second time. When
n is small, or when π(1) has low entropy, this may indeed happen several times.
Caching is one way of reducing the amount of redundant computations that are
performed. Going back to the recursive formula for π(t) (eq. (7)), we see that
it is cheaper to compute π(t) from π(t−1) then it is to compute it from scratch.
A reasonable caching strategy is then to keep track for every point x of the last
density evaluation performed for that point. If x comes up again, the evaluation of
the acceptance ratio is simplified.

Another natural idea is to update the proposal distribution over the course of
the algorithm (instead of sticking with π(1) throughout). The most basic version is
that any x that has already been selected has an acceptance probability of 0, so we
may as well not suggest them. Another is that points similar to a selected point
are quite unlikely to come up further down, and so it may be worth computing
π(t) for these neighbours to tighten the bound. Finally, we may combine this idea
with the caching idea, which provides a better bound for every point that has
ever been suggested. Unfortunately this runs against the difficulty of updating the
alias table in Walker’s algorithm, which one would have to compute from scratch
at every update (at cost O(n)). A better way would be to use a binary tree
representation [19], which can be updated at cost O(log n) and provides samples
also at cost O(log n). The implementation complexity increases a lot however, and
we have not pursued this further. As we shall see below, Alg. 2 is quite fast in
practice, and implementation time may be better invested in feature computation
and orthogonalisation.

3. Empirical results

We compare the Accept/Reject algorithm (Alg. 2) to its classical counterpart
(Alg. 1) for different values of n and m. Both algorithms are implemented in
the Julia language and are publicly available 5. For each value of n, we sample a
random projection matrix of size n ×m (via QR decomposition of a matrix with
Gaussian entries). We then pre-compute the leverage scores, and run each algo-
rithm 100 times. Fig. 1 a) and b) show the measured median runtimes. All tests
are run on a 2017 Linux laptop with i7-8550U Intel CPU.

For very small values of n, the classical algorithm is faster, which can be explained
by the efficiency of BLAS calls. At each step the whole conditional distribution is
computed, the main cost being a matrix multiplication (i.e., a BLAS call), which
benefits from efficient multithreaded code. However, the different asymptotic scal-
ings (O(nm2) vs. O(nm)) soon makes the classical algorithm uncompetitive. The

5we’ve added a folder in our DPP.jl repository containing the code necessary to reproduce the

figures, available here: https://github.com/dahtah/DPP.jl/tree/main/misc/sampling_paper

https://github.com/dahtah/DPP.jl/tree/main/misc/sampling_paper
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Figure 1. Left panels: median time needed to sample a projection DPP, using the standard
approach (Alg. 1) vs. A/R (Alg. 2). For two values of m: a) m = 30, b) m = 60. Note
that here the time taken to compute an orthogonal basis is not taken into account (see
text). Right panels: simulation of a full workload that includes feature generation and
orthogonalisation (see text). c) time taken by each step in the computation as a function
of n. Solid lines are runtimes when sampling using the classical method, dashed, when
using A/R. Note that the first two steps (labeled “kernel” and “RRQR”, in red and green
respectively) are identical. A/R sampling becomes beneficial at around n = 1, 000 and
is orders of magnitude faster at n = 100, 000. d) Sampling time as a function of total
computation time.

cross-over point in our simulations is at around n = 1, 000, and by n = 10, 000 the
difference is stark.

In many cases, sampling a projection DPP is only one of the steps in a process
that involves feature computation and orthogonalisation. For instance, in [22], a
DPP based on the Gaussian kernel is used to produce a subset of the data suitable
for running clustering algorithms. Starting from n points, x1, . . . ,xn in Rd they use

a DPP with L-ensemble given by Lij = γκ(x,y) = γ exp
(
− 1

σ2 ∥x− y∥2
)
, where γ

is a tuning parameter that determines the expected size. Producing a sample from
this exact DPP requires the eigendecomposition of L which is impractical; however,
L is numerically low-rank for relevant values of σ and this can be exploited. In [22]
the authors use a low-rank approximation of L from Random Fourier Features [23]
followed by a SVD. This brings down the total cost to O(nm2). We now sketch
(without any formal justification) another procedure which gives comparable results
at lower cost.

First, Gaussian kernel matrices have rapidly decaying spectra (see e.g. [24]),
which implies in particular that DPPs sampled from a Gaussian L-ensemble are well
approximated by projection DPPs with kernels Pm = UmU t

m where Pm projects
onto the dominant eigenspace of L of order m. Therefore, all we need is a good
basis for the dominant eigenspace. Methods from randomised linear algebra offer
good practical tools (“range finders”) to obtain a basis for such a space, see [25].
For these simulations, we used the following approximation:

1) First, select 5m columns uniformly from L. Call this matrix A. We call
this the “kernel step”.

2) Second, use Rank-Revealing QR (RRQR, [26]) and random projections, as
implemented in the Julia package LowRankApprox.jl, to produce Q, an
orthonormal matrix of size n ×m that approximates the image of A. We
call this the “RRQR” step.

3) Third, sample a DPP with projection kernel QQt using either the classical
or the A/R algorithm.

We set m = 100 and time each step. This results in a total runtime of around 1.2
sec. at n = 105 with the A/R sampler, which challenges the notion that DPPs are
very slow to sample from. With this procedure, the time spent sampling the actual
DPP goes up to 20% of total time for the classical algorithm at n = 105, but using
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the A/R sampler sampling time becomes negligible. See Fig. 1 c) and d) to see how
these times vary with n.
This indicates that for some computations the implementation effort may be better
allocated to speeding up the (deterministic) linear algebra and feature computation
part rather than the sampling part. In this particular instance, step (1) at least
could be sped up relatively easily by exploiting parallelism, or the GPU, which we
did not attempt.

4. Discussion and perspectives

On top of the improvement on the sampling time of DPPs, our results imply the
following intriguing by-product. Let X be a projection DPP of size m. A set
of O(m logm) points sampled i.i.d. from the inclusion probability distribution
p(i ∈ X ) = π(1)(i)/m (also known as leverage scores) contains with high probability
a realisation from the DPP. The consequences of this fact are worth discussing.
First, let us put the result a bit more formally.

Definition 4.1. Let X be a DPP on Ω and Y ⊆ Ω. We call Φ(Y) a thinning
algorithm if it returns a subset of Y. Moreover, we say Φ(Y) is successful when it
returns a realisation from X .

Corollary 4.2. Let X be a projection DPP of size m, and Y be a set of i.i.d.
points sampled with replacement with probability proportional to the leverage scores:
p(i ∈ X ) = π(1)(i)/m. Let δ ∈ (0, 1/2). A simple modification of Alg. 2 gives a
thinning algorithm Φ that verifies: Φ(Y) is successful with probability greater than
1− δ provided that |Y| ⩾ 2m logm+ 3m log

(
1
δ

)
.

Proof. Let Y be drawn i.i.d. with replacement from the leverage score distribution
π(1). Φ is the following simple modification of Alg. 2. Instead of drawing a new
proposal x using the alias method at the beginning of the while loop as in Alg. 2,
draw uniformly and without replacement from Y. If Φ finishes before emptying
Y, then it is successful. If there is no more item in Y to draw from and Φ is not
terminated, then it fails. The probability that Φ succeeds is thus equal to the
probability that |Y| is larger than the number of proposals R of Alg. (2). As shown
in Theorem 2.1, setting |Y| = 2m logm + 3m log

(
1
δ

)
yields: p(|Y| ⩾ R) ⩽ 1 − δ,

finishing the proof. □

Note that this is a substantial improvement over the work of [11], which gives
this result only for |Y| ⩾ O(m2) i.i.d. points.

A natural question is then to ask if the result is optimal. Can we find a thinning
algorithm that succeeds with high probability for even smaller i.i.d sets? The answer
is no in general (proved in the supplementary material):

Proposition 4.3. Corollary 4.2 is optimal in the following sense. Let X and Y
be as previously. There does not exist a generic thinning algorithm able to succeed
with fixed non-null probability if |Y| = o(m logm).

Proof. The proposition states that there does not in general exist a thinning al-
gorithm that succeeds with a non-null probability if |Y| is asymptotically smaller
than m logm. We shall prove this by exhibiting a type of DPP X for which this is
verified.

It is well-known in the folklore that a form of stratified sampling is a special
case of projection DPPs. In stratified sampling, we partition the ground set Ω into
m classes, and sample an item uniformly from each segment of the partition. To
simplify the argument, assume Ω can be cut into m subsets of equal size, and define
vector ej as the (normalised) indicator of segment j, i.e. ej(i) =

√
n
m if item i is
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in segment j and 0 otherwise. Let E = [e1 . . . em]. Then it is easy to show that
stratified sampling is equivalent to a DPP X with marginal kernel K = EEt. Since
EtE = I, the DPP in question is a projection DPP.

Because of the nature of stratified sampling, we know that X contains a point
from each one of the segments, and that p(i ∈ X ) = m

n for all i. Now in order for
any thinning algorithm to produce a stratified sample, the i.i.d. sample Y needs

to contain at least one point from each segment. Let l
def
= |Y|: how large does l

need to be so that Y contains at least one point from each segment with probability
at least α (α > 0 fixed)? This is an instance of the coupon collector’s problem.
Assume that at each time t we add a ball to one of m urns with equal probability,
and call T the smallest t such all urns have at least one ball. We will show that for
any l(m) = o(m logm), limm→∞ p(T < l(m)) = 0.

To do this, we need an upper bound for p(T < l(m)). Many bounds exist in
the literature for large values of T , but we have not been able to find one for the
left tail in the published literature. There is, however, one on the stackexchange
website by a user called “cardinal” 6, which we draw from. T can be viewed as a
sum of m geometric variables: T =

∑m
i=1 Ti, where Ti is the time at which i urns

have at least one ball. All the Ti’s are independent geometric random variables
with success probability pi = 1− i−1

m . Indeed, the same representation is obtained
by considering alg. 2 in the special case of stratified sampling (each iteration fills
one urn). Next, we use, for any s > 0

(13) p(T < l) = p(exp(−sT ) > exp(−sl)) ⩽ exp(sl)E (exp(−sT ))
where we used Markov’s inequality. Since T is a sum of independent geometric
variables, E(exp(−sT )) is easy to compute7:

E(exp(−sT )) =
m∏
i=1

i

m(es − 1) + i

Picking s = 1
m , we obtain:

p(T < l) ⩽ exp
l
m

m∏
i=1

i

m(e1/m − 1) + i

Since e
1
m ⩾ 1 + 1

m , we can upper bound the right-hand side to:

p(T < l) ⩽ exp
l
m

m∏
i=1

i

1 + i
=

exp( l
m )

m+ 1

Therefore, any choice of sample size l(m) such that
exp(

l(m)
m )

m+1 goes to 0 in the limit

is asymptotically too small (the probability of success goes to 0). One can check

that
exp( l

m )

m+1 = o(1) is equivalent to l(m) = o(m logm), which proves our claim. □

This transition occuring at O(m logm) calls for discussion, and paves the way to
future interesting lines of research. First of all, Corollary 4.2 shows, from an original
angle, that the repulsiveness of DPPs is weak. Indeed, other repulsive processes such
as hard-core processes cannot verify such property in all generality. For instance,
in the high density limit of a hard-sphere model, the probability that the position
of m non-overlapping spheres can be found within a set of only O(m logm) iid
points drawn uniformly, tends to 0. In addition, these results ask the following

6see https://stats.stackexchange.com/q/7774

7Using E
(
exp−sT

)
=

∏m
j=1 E

(
exp−sTj

)
=

∏m
j=1

pj exp−s

1−(1−pj) exp−s and changing variable i ←

m− j + 1 in the product

https://stats.stackexchange.com/q/7774
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question: in what cases should one pay the extra cost of sampling m elements
from a DPP, rather than simply sampling O(m logm) elements i.i.d. ? Of course,
when the objective is to sample a diverse set, such as in search engines, then it is
always worthwhile to sample the DPP. However, in the case of integration [27, 28]
for instance; or in the case of coresets [22], the answer is not so clear and requires
investigation.
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