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Toward a sawmill digital shadow based
on coupled simulation and supervised
learning models

Sylvain Chabanet, Hind Bril El-Haouzi, Philippe Thomas

Abstract Digital Twins (DT) have been introduced as promising decision
support tools in many different settings and to serve a variety of purposes.
Many challenges are raised by their development, including an efficient us-
age of their computational resources to balance performance on precision,
computational cost and speed. This study is, in particular, concerned with
Digital Shadows (DS), a concept derived from DT, applied to sawmills sawing
production units. A method to combine a computationally intensive sawmill
simulation model with a machine learning model is proposed to predict set of
lumbers sawed from logs. Numeric experiments are exposed, and the proposed
method demonstrate improvements from 11% to 18% of the monitored couple
regret from its baseline.

Key words: Digital shadow, Active Learning, Sawmill simulation

1 Introduction
The concept of digital shadows (DS) is derived from the concept of digital
twin (DT) which is tracked back to NASA Apollo program, which built two
identical vehicles, one sent to space missions and the other remaining on
earth [2]. The objective was to monitor the twin sent to space during mission
and find solutions when faced with problems. Since then, the concepts and
definitions proposed for DS and DT have evolved and it remains a field of
active research. A broad generally accepted definition encompassing both DS
and DT concepts was proposed as "a set of digital models of physical entities
usable for optimization and decision-making purposes based on real-time
information" [19]. In particular, while both DS and DT are often associated
with simulation, digital models based on many technologies have been propose
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to support their respective capabilities. For example, [7] propose an hybrid
DT based on physics-based simulation augmented by a machine learning (ML)
model to predict acceleration responses of a structure subject to vibrations.
Similarly, [12] introduce a DT based on analytical models for the performance
evaluation of a manufacturing system. While the difference between DS and
DT is still subject to debates, an interesting discussion is provided by [18].
DT should be able to automatically influence their physical counterpart. As
such, they require an extremely precise representation and detailed models of
its behavior. DS, on the other hand, are decision support tools designed to
answer specific questions. It should be noticed, however, that this distinction
is not always made in the scientific literature, and DS can hardly be studied
independently from DT.

Due to the variety of technologies proposed to design them, DS might be
better described based on their capabilities : to maintain a description of the
physical counterpart (PC) based on real time or near real time data, to predict
future states of the PC or compare various configurations, and to support
decision making by returning instruction or optimized plans to the physical
world. Such capabilities are naturally built on top of one another. Descriptive
capabilities are required for predictive model to front-run production. Similarly,
the output of predictive models can be fed as input to optimization models
prescribing optimized plans (figure 1).

Fig. 1 The three main capabilities of a complete DS decision support tool

Digital shadows and digital twins have been studied in very different
contexts, from hospitals [9] to sawmills [5]. Sawmills, in particular, might
benefit greatly from DS for operational production monitoring and control.
Sawing operations, the breaking of logs into lumber, is a process divergent
and in co-production. From a single log, a sawmill will obtain simultaneously
several pieces of lumber of varied dimensions (figure 2). In the remaining of
this paper, the set of lumber obtained from a single log is named a basket
of products (BoP). Many factors introduce uncertainty on the yield of the
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sawing process. These factors include, for example, the heterogeneity of the
shapes of logs, whose general characteristics may change from one harvesting
site to another, or the emergence of automated sawlines which adjust sawing
operations on a log per log basis.

Fig. 2 Sawing a log produce several pieces of lumbers with various dimensions

All this makes it difficult to know in advance the mix of lumber that would
be obtained from sawing a batch of logs. Solutions proposed in the literature
to overcome this uncertainty include the use of specialized optimization
methods, such as robust or stochastic optimization [23], or the usage of sawing
simulators able to predict logs BoP based on information over their shape
[13] or even internal structure. Information over log shape may, in particular,
take the form of 3D scans, for example obtained from laser scanners which
may be placed at the entrance of sawmill log yards or sawing units. General
simulators able to flexibly model many sawmill configurations and predict
BoP of logs based on their scans have been developed by researchers and
industrial. They include, for example, Sawsim1 or Optitek [8]. Optitek, in
particular, as been used in many academic studies [14, 22]. Interestingly, both
of these studies demonstrate the benefit of BoP predicted by either simulation
or ML based metamodels of these simulators as input for planning decision
support optimization models.

Such generic sawmill simulation tools may be great steps toward the
development of flexible simulation-based sawmill DS. In particular, they
would provide flexible yet precise models backing predictive capabilities.
Several researchers, however, have noticed the important computational time
associated with running these simulations for thousands of logs [14, 22, 16],
which would impair their use for real or near real-time problems. The design
of DS based on simulation and ML models used simultaneously, appears,
therefore, as an interesting solution to this problem. Such DT and DS mixing
data-driven methods and other simulation techniques are sometimes referred
to as "hybrid" in the literature, for example by [1]. The "hybrid" qualifier
refers only to the variety of models involved in the predictive capabilities of
the twin. An interest of these hybrid DS is that, in particular, predictions
performed by a ML model are, in general, very fast. Such models may require
computationally intensive training phases, but these can be performed offline
when necessary. [1], for example, develop such a model to combine a simulation

1 https://www.halcosoftware.com/software-1-sawsim, Last accessed on June, 2021

https://www.halcosoftware.com/software-1-sawsim
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model based on finite element analysis with a ML model to optimize welding
operations.

Several factors complicate, indeed, the use of DS based only on data-driven,
ML-based predictive models. ML models, in particular, require large datasets
of labeled examples to be trained on. While in some cases these training
examples may be fully obtained from the physical twin, this is complicated
for sawmills by the difficulty of tracking logs and lumbers through several
diverging transformation processes. In a more general setting, simulation
remains necessary when historical data are not accessible from the start to
train ML models, for example after changing machine settings. A second
reason for favoring an hybrid DT is that ML models may, on some prediction
problems and depending on the simulation technology, remain more prone to
error and less explainable than these simulations.

This, however, raises the question of how to couple a simulation and ML
models performing the same prediction task with their respective advantages
and drawback. In this paper we propose a method to automatically decide,
on a log per log basis, whether its BoP should be predicted by a ML model
or a simulator.

The remaining of this study is structured as follows. Section 2 first presents
in more details the hybridization problem considered. Section 3 details our
proposed method, for which an experimental proof-of-concept is given in
section 4. Section 5 concludes this paper and exposes future works.

2 Problem description
The general problem considered in this study assumes the existence of a
stream of data items. For every individual data item X, some quantity y has
to be predicted by a DS. In this study, a data item is a set of information
over a specific log, and y is their BoP, but it could be generalized to any
other type of stream. The existence of a DS containing at least two digital
models able to make this prediction is similarly assumed. The first model is a
simulation model, very precise but computationally intensive. The second is a
ML model, fast but overall not as precise as a simulation. This ML model may
be based on any supervised learning algorithm, for example neural network or
random forest. As such, it is data-driven and requires labeled examples to be
trained on. The quality of a model prediction ŷ is evaluated by a loss function
l(ŷ, y), so that a prediction ŷ closest to the real value y will lead to a lower
loss. No upper bound is assumed on the number of simulations that may be
run in parallel. This may be an acceptable approximation if, for example, the
simulation is run on a cloud service so that the amount of computational
resources which can be punctually used is far greater than what is wished to
be used on the long term to maintain overall computational costs reasonable.
However, an asymptotic simulation budget b is targeted, i.e, a limit of the
simulation budget as time goes to infinity. It is defined here as the limit of the
total accumulated simulation time divided by the time length of the stream :
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b = lim
T→+∞

1

T

∞∑
k=0

pk1{ak<T} . (1)

Here, pk is the time necessary to predict y for the kth data item entering the
stream, ak its time of arrival and 1{...} the indicator function.

The objective is to propose a dispatching function 1ToSimul(X) taking value
1 if the prediction of the data item X has to be performed by the simulation
model. Such a decision has to be taken immediately after arrival, without
consideration for future data item. Additionally, the loss of a prediction from
the ML model, l(ŷML, y) is, of course, unknown when the decision has to be
taken and can’t be used directly.

For the purpose of mathematical modeling, the following assumptions are
also used. The prediction of the simulation model is supposed to be exact,
i.e, l(ŷSimul, y) = 0 if 1ToSimul(X) = 1. The prediction time of the ML model
is neglected, i.e, l(pk, y) = 0 if 1ToSimul(Xk) = 0. The times of arrivals of
data items are assumed to follow a Poisson process of rate µ. Simulation
times are sampled from an Exponential law of mean λ. These choices make
the process recording the number of simulations being run simultaneously a
continuous-time markov chain process, ensure the existence of a stationary
limiting distribution and allows the usage of the ergodic theorem. However,
the results described in the following of this section hold in a more general
case, as long as stationarity and ergodicity can be assumed.

Following this modeling, consider α = P(1ToSimul(X) = 1) the fraction of
the stream whose prediction is obtained from the simulation model. If the
decision 1ToSimul(Xk) is taken independently from past and future arrival, the
process formed by the data items for which a prediction is requested from the
simulation model forms a Poisson process of rate µα. Noting N(t) the number
of simulations running in parallel at time t, the budget b can be rewritten as:

b = lim
T→+∞

1

T

∫ T

0

N(t) dt , (2)

i.e., the target budget b is also the average number of simulation running
in parallel at any time. Additionally, according to the ergodic theorem, it
is equal to E(N) under the process stationary distribution. Little’s law [11]
yield, in turn:

E(N) = E(p)µα = λµα . (3)

Hence, to target the budget b, the simulation rate α must be α = b
λµ .

3 Proposal
The problem considered in this study is similar to problems detailed in the
active learning (AL) literature. AL is a field from the ML literature concerned
with reducing the cost associated with labeling data to train an ML model.
While unlabeled collection of data items X are, in many settings, easy to
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gather in huge quantity, their labels y may be costly or difficult to obtain.
This is often the case when the Oracle providing the labels is, for example,
a team of human experts. More precisely, AL is concerned with guiding the
selection of a subset of unlabeled items that are considered the more useful
to improve the performances of the ML model. It is often an iterative process
where a ML model has already be initially trained on a small training set and
is used to define a measure m of the utility of labeling a point. Data items
maximizing this measure, or having it above some threshold are then selected
from an unlabeled dataset or data stream and labeled. The ML model may
be periodically retrained when a sufficient amount of new labeled data have
been gathered, or when another condition is trigered such as the detection of
changes in the data stream. For example, [21] propose an AL method based
on a Random Forest (RF) model to detect surface defects in a stream of
products.

Three main scenarios exist in the AL literature, depending on the way the
active learner gains access to data :

• Pool-based active learning is concerned with cases where an unlabeled
dataset may be accessed at once by the learner.

• Stream-based active learning considers cases where data items are not
accessible at once but one by one from a data stream. The decision to
label every item has then to be taken immediately for every data item, or
for small batches of item, without considering the future of the stream.

• Membership Query Synthesis scenarios do not consider the existence of
real unlabeled data. Instead, the learner may create synthetic data and
request labels for these. This scenario is rarely investigated as synthetic
data may be difficult to label, especially for human oracles.

All three scenarios may be of interest in the context of DS. In particular,
simulation-based DS may be of great interest to label synthetic data and
stream-based active learning may be used to manage real time data streams
continuously collected by the twin. This study focuses on this second stream
based case.

Many measures m of labeling utility have been introduced for both regres-
sion and classification tasks [10]. In particular several are based on heuristic
or statistical measures of the uncertainty or confidence associated with a
prediction. The method proposed in this study is to use such measures of
uncertainty to design the dispatching function 1ToSimul(X), under the reason-
ing that such a measure may bring valuable insight over the unobservable
loss l(ŷML, y), and that ML prediction whose confidence is considered too low
should preferably be obtained from the simulation model.

In particular, consider q the quantile at level 1−α of m(X). In general, this
quantile may be estimated from observed past values from the stream. If the
dispatching function is taken as 1ToSimul(X) = 1m(X)>q, then a simulation
result is requested for the portion α of the stream for which the ML model is
considered the least confident according to m.
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The ML model used in this study is a RF model [3]. RF are machine learning
models popular for their ease of use, overall good results and robustness, and
have been used with success in many studies in industrial context [17, 4]. They
also gave good performances in past studies comparing ML models to predict
BoP of logs [14, 15]. RF are ensembles of decision tree models, where the
prediction is given by ŷ = t̄(X) = 1

B

∑B
i=0 ti(X). Here, ti(X) are predictions

of individual trees and B is the number of trees in the forest. Individual trees
are trained on bootstrap samples selected from the whole training data set.

The measure m considered here is an estimator of the sampling variance
of a random forest introduced by [20]. It evaluates how much the prediction
may change if a similar model had been trained on a different dataset. This
measure was used for AL for example in [6] which propose a method to predict
alloys melting points. It is expressed as :

k∑
i=1

Cov[Ji, t.(x)]
2 +

k∑
i=1

(t̄−i(x)− ¯̂t(x))2 − ek

B2

B∑
i=1

(ti(x)− t̄(x))2 . (4)

Here, k is the member of data items in the training set, e the Euler number,
t̄−i(x) the average of the prediction of trees which didn’t use the ith data
item for training, and Ji the number of time the ith item was present in the
bootstrap sample used to train a tree t.. Cov is the usual covariance estimate.
Considering that [20] recommend to use forests with high number a trees,
comparable with the number of data items used to train it, B is fixed to 500
in this paper experiments.

If the simulation model is precise enough, its predictions, collected along the
stream may, additionally, be added to a training dataset used to periodically
retrain and improve the performances of the ML model with more data.

A pseudo-code summary of the proposed solution is exposed algorithm 1.

Algorithm 1 General flow of the proposed strategy
Initialize LabelledSet

Initialize MLmodel on LabelledSet
for x in stream do

Predict ŷ ← ML prediction
Evaluate m(x), the labeling utility measure
if m(x) < q then

ŷ ← Simulation prediction
add ŷ to LabelledSet

end if
if Model update condition then

Update ML model on LabelledSet
end if

end for
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4 Experiments and results
This section first presents the dataset used during the experiments proposed
in this study. Additional details over these experiments are also given, and
the results are exposed.

4.1 Materials and method

The dataset used in the experiments described in this section originates from
the Canadian forest-product industry. It contains information about 2219
wood log. In particular, both the 3D scans of every logs given, as well as a
collection of six describing features. An example of such a 3D scan is presented
figure 3. A scan point cloud, whose points are organized into rough ellipsoids
spanning the log surface.

Fig. 3 3D scan of a log

The six know-how features summarizing information over the shape of logs
are the length, volume, diameter at both extremities, curvature and taper (a
measure of the shrinking of a log from one end to another). While the scans
were used to simulate the sawing of logs and obtain their BoP, these six know-
how are required by the ML model to make their own predictions. 3D scans
are, indeed, unordered collection of points and the number of points varies
from scan to scan. They are, therefore, unstructured data and can’t be used
directly by commons ML models. To summarize scans by a few descriptive
features implies a loss of information that cannot be used by the ML model
to make predictions. Therefore, such a ML model cannot, in particular, be
expected to perform as well as a simulation model.

The BoP of every log, obtained by simulating its sawing with the simulator
Optitek were also obtained. Simulation times, however, were not part of this
dataset. They have been, therefore, generated randomly when required.

The sawmill simulated was able to produce up to 47 types of lumbers,
characterized by their length, width and thickness. For this reason, BoP are
represented as vectors of dimension 47, where the ith element encodes how
many pieces of lumber of type i are present in the BoP. The machine learning
prediction task is, therefore, modeled as a multi-output regression problem.
Considering that the measure described equation 4 is initially designed for
single output regression problems, in practice a collection of 47 measures mi
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where used, one for every type of lumber, and their sum m(X) =
∑47

i=1 mi(X)
was used.

To simulate a stream for experimental purpose, the dataset is ordered at
random. The first 500 elements are used to initialize the RF model. Inter-
arrival time in the stream were sampled from an exponential distribution
with average λ = 1 and simulation time were sampled from an exponential
distribution with rate µ = 1

10 so that the average simulation time is in average
10 time greater than the average inter-arrival time. Several values of the
budget were tested.

At the end of the stream, the total stream time and accumulated simulation
time are collected to estimate the effective simulation budget. The fraction
of the stream sent to the simulation model is also collected. Two evaluation
scores are additionally collected. The first one is the ML regret:

1

n

n∑
l=1

l(ŷML,l, yl) (5)

with n the number of data items in the stream, yl the label of the lth

arriving item, and ŷML,l its prediction performed by the ML model whether
it is sent to the simulator or not. This score evaluates the performance of the
ML model if it were used for every prediction.

Similarly, the coupling regret is defined as:

1

n

n∑
l=1

l(ŷML,l, yl)(1− 1{ToSimul(Xl)}) (6)

and measures the performance of the hybridization. The performances of
the proposed dispatching function will, additionally, be compared with the
performances of a random dispatching requesting simulation depending on
the result of a collection of i.i.d Bernoulli variables of parameter α. The ML
model was retrained every time 100 new labeled items, or, in average, every
400 new arrivals.

To average out the impact of the exact ordering of a stream, and time
sampling, this will be repeated 50 times with different random seeds.

4.2 Results

Results for three different values of the budget 1, 2.5 and 4 are presented in
table 1. In particular, this means that, according to section 3, the use of the
simulation model should be requested for approximately 10%, 25% and 40% of
the logs from the stream to predict their BoP. This is, indeed what is observed
in practice and is recorded in the column "simulated ratio". Additionally, the
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respective targeted asymptotic budgets are respected, as can be seen from
the observed accumulated simulation times.

budget Method simulation
time ratio

simulated
ratio ML regret coupling

regret

1
Random
method 1.01 (0.10) 0.10 (0.01) 3.25 (0.13) 2.92 (0.12)

AL-based
method 1.12 (0.07) 0.11 (0.004) 3.17 (0.10) 2.59 (0.08)

2.5
Random
method 2.49 (0.17) 0.25 (0.01) 3.16 (0.09) 2.38 (0.09)

AL-based
method 2.46 (0.15) 0.25 (0.004) 3.07 (0.07) 2.03 (0.06)

4
Random
method 4.00 (0.21) 0.40 (0.01) 3.09 (0.08) 1.85 (0.07)

AL-based
method 3.96 (0.17) 0.39 (0.01) 3.01 (0.06) 1.52 (0.05)

Table 1 Average and standard error over the 50 experiments of the simulation time over
stream time, ratio of the stream sent to the simulator, and regrets

It is interesting to notice that the ML regret, which evaluates the perfor-
mance of the ML model if it were used for all predictions, is always slightly
lower for the AL-based method than for the random method. It is, indeed, the
initial objective of AL methods to improve the performances of ML models
by guiding the selection of data items that should be labeled rather than
sampling at random. Performing Welsh t-test to compare the averaged ML
regrets over the various repetition of the experiment yields p-values of 0.001
for b = 1, 1.4× 10−7 for b = 2.5 and 1.8× 10−7 for b = 4. In every case, the
null hypothesis of equality of the samples means can, therefore, be rejected.
Despite being small, this difference is, therefore, considered statistically sig-
nificant, w.r.t the repetition of the experiment. This includes randomness of
the stream order, simulation time and inter-arrival time. It should be notice
that the randomness from the original data collection process itself is not
considered by the test. These ML regrets remain, however, high with respect
to the average number of products in a basket, at 4.6, and the quadratic error
obtained by a predictor predicting always the average BoP over the dataset,
at 8.3. This might be partly caused by the small size of the datasets used to
train these predictors.

Coupling regrets are, of course, always lower than ML regret, due to a
fraction of the prediction being requested from the simulator and, therefore,
considered to be exact. Once again, however, the coupling regret of the AL-
based method is lower than the one of the random method, to a greater
extent than what was already observed in the case of the ML regret. In
particular, the regret is reduced by 11% for b = 1, 15% for b = 2.5 and 18%
b = 4. Therefore, the sampling variance measure used in the AL-base method
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appears efficient at anticipating predictions from the ML model with higher
loss, and requesting predictions from the simulation model instead.

5 Conclusion
Many challenges remain in the development of DS in general, and sawmill DS
in particular. The development of methods to allow an efficient usage of com-
putational resources balancing computational cost with analytic performances
appears, in particular, important for both economic and sustainability reason.
To this end, the development of DS based on hybrid simulation-ML models
able to benefit from the advantages of both technologies while compensating
their drawback.

This study introduces a method, based on AL, to couple a computation-
ally intensive sawmill simulator with a less precise but fast ML model to
predict BoP of wood logs. The main objective is to make the best use of
the computational resources allocated to the simulation model by requested
simulations only for these logs for which the ML model predictions appear the
least certain according to some statistical measure. During experiments, this
proposed method demonstrated reductions of the simulation ML couple regret
ranging from 11% to 18% depending on the simulation budget. Additionally,
to use the simulation results to improve the performances of the ML model
itself demonstrate a slightly better effect with the proposed AL-based method
than with a random dispatching of the prediction toward the simulator.

However, several limits exist to the results presented in this paper. Firstly,
more experiments need to be run to assess the impact of various parameters,
in particular the average simulation time and stream arrival rate. Secondly,
the respect of the simulation budget is asymptotic and based on statistical
assumptions, including stationary of the data stream. This mean, in particular,
that this budget may be temporarily exceeded, and increase significantly if
drifts were to happen in the stream. Therefore modifications of the proposed
strategy enforcing the budget to always remain between acceptable bounds
appear particularly important. Additionally, many more utility measures have
been proposed in the AL literature. Further works comparing different such
methods will therefore be necessary.
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