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Abstract: This paper addresses the issue of optimal sizing reliability applied to a fuel cell/battery 
hybrid system. This specific problem raises the global problem of strong coupling between 
hardware and control parameters. To tackle this matter, the proposed methodology uses nested 
optimization loops. Furthermore, to increase the optimal design relevance, a reliability assessment 
of the optimal sizing set is introduced. This new paradigm enables showing the early impact of the 
reliability criteria on design choices regarding energetic performance index. It leads to a smart 
design methodology permitting to avoid complexity and save computing time. It considerably helps 
design engineers set up the best hybridization rate and enables practicing tradeoffs, including 
reliability aspects in the early design stages. 

Keywords: optimal sizing; reliability assessment; design methodology; hybrid power source; fuel 
cell/battery 

 

1. Introduction 

The automotive industry is perpetually setting their focus on the development of alternative 
energy sources to reduce oil dependence, greenhouse gas emissions and noise pollution. In this 
context, powertrain electrification provides the most promising solution and allows the transition to 
new mobility services. In most cases, it uses more than one power source in order to improve the 
vehicle efficiency and reliability. Several hybrid architectures are under development to power the 
electric powertrain. The hybrid electric vehicle (HEV) uses different storage solutions and different 
energy sources, mainly fuel cells, batteries, flywheels and ultracapacitors [1–3]. The storage device is 
the key of a successful powertrain electrification since it enhances the system capability with both 
high power and high energy densities. 

Hybridization unfortunately increases the complexity of the drivetrain, involving further 
multiphysics and multidisciplinary problems with additional parameters and constraints, strong 
interaction and interdependence between the system constituents, new driving modes, etc. In order 
to deal with the full complexity of the system, many performance indices must be integrated [3–6]. 
The project designer has to consider the most suitable components, their optimal size, and the related 
energy management strategy. It is, therefore, an industrial challenge to optimize the design of such a 
system. 

In this context, developing a suitable engineering methodology has received a significant 
amount of attention. In the literature, the numerous works dedicated to achieve an efficient HEV 
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design can be subdivided into two categories: empirical approaches and computational approaches 
[6]. The former are mainly based on experience feedback using the designer’s expertise. They also 
include reasoning and direct analytic processes forming a sequence of design steps. These approaches 
have proved their effectiveness and performances for simple and conventional cases. However, 
facing a complexity increase requires using computational techniques. They use algorithmic 
processes mainly based on optimization routines. The standard approach provides a limited and 
restricted solution around an operating point of the typical range of the system; the rated one is 
commonly used. In order to improve its performance, several works have considered a wide range 
of operating points [7,8]. They generally use a systematic approach either based on a sequential 
process based on several individual optimizations or relying a multi-objective optimization [9–14]. 
Their performances are impacted by the trade-off between formulation complexity, computational 
time and exploration capabilities. 

A set of new approaches are emerging [15–18] based on combined and mixed methods concepts 
to address the increasing complexity of the system, by considering the major parameters affecting the 
system performances. They can be classified in three categories: iterative, simultaneous and nested 
(bi-level) approaches. Regarding interaction between sizing and control designs, several works have 
demonstrated the relevance and performance of simultaneous and nested approaches [19,20]. 

Simultaneous approaches optimize both the sizing and control variables in the same 
optimization formulation, which gives rise to complex analytical structures and presents a challenge 
to practical resolution (formulation, computation time, type of problems). Conversely, nested ones 
maintain decomposition principles using dynamic coupling to ensure system optimality. They enable 
quick, practical and simple implementation. Moreover, a new nested methodology for complex 
system design has been suggested, able to tackle large search spaces [17]. It simultaneously tunes and 
designs the energy management and component sizing by optimizing the main powertrain 
parameters in conformity with the specifications. Technically, it uses two nested loops, combining 
the particle swarm optimization (PSO) technique’s performance [21,22] and the rapid Pontryagin 
optimal control algorithm (PMP Pontryagin’s Minimum Principle) [23–25]. The former permits 
addressing vast search spaces for design component parameters while the latter enables considering 
energy management behaviour. This strategy achieves faster convergence to the global optimal 
design solution and provides a good accuracy and robustness. 

For electrical vehicle (EV) applications, the reliability is a key constraint. Most of design 
processes integrate reliability assessments in the post-design phase, i.e., during the control scheme’s 
synthesis [3,26–28]. At this late step, it becomes difficult to eliminate all risk of unfeasibility. Practical 
remedies to this issue include either the development of optimal control together with degraded 
modes monitoring [27–31] or the use of an oversized system. None of these solutions provides a really 
efficient solution and ensures the system reliability in real-time operating conditions. In recent works 
[27,28], degraded modes of the power management system have been introduced to optimize fuel 
cell/battery hybrid system availability and reliability. These studies have shown that the battery 
degradation and its lifetime reduction highly depends on the considered sizing. Consequently, to 
increase the optimal design relevance and match to industrial challenges, a reliability assessment 
process has to be introduced at the same level as the design approach. This new paradigm enables 
showing the early impact of the reliability criteria on design choices regarding energetic performance 
index. 

To put this notion to the test, the present work considers a fuel cell hybrid vehicle (FCHV) which 
is one of the attractive HEV architectures. It combines the most appropriate technologies for vehicles 
nowadays, a hydrogen fuel cell PEMFC (proton exchange membrane fuel cell) with a Li-ion battery. 
The fuel cell is controlled to ensure the required energy supply, whereas the transient power 
requirement and braking energy are provided by the battery. Subsequently, the battery operates 
under harsh and severe conditions and its durability has to be closely considered [1,3]. Hence, a 
battery reliability assessment is considered. The battery is modelled according to Wöhler damage 
representation. The battery state of health (SOH) is represented by a linear trend extrapolation which 
can be easily integrated into the optimization approach and respect computation time constraints. It 
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constitutes a major advance compared with the current standard approaches which commonly 
introduce reliability constraints once the whole system is designed [32,33]. The latter leads to complex 
implementations based on extensive tests and, thus, expensive and time-consuming processes. 
Conversely, the suggested approach is based on a linear trend extrapolation of battery SOH enabling 
to study in the early steps of design how the reliability aspect may impact the hybrid power system 
sizing. Additionally, the present study also aims at finding new recommendations regarding the cost 
functions and the constraints of the design optimization approach. 

The rest of this paper is organized as follows. Section 2 presents the proposed optimal design 
approach, the studied use case (fuel cell/battery hybrid system) and its related requirements. Section 
3 introduces the extrapolation of lifetime modelling of the system under study and the proposed 
battery reliability assessment. This is followed by a detailed description of the reliability process 
integration in the next section. Section 5 gives the simulation results and discussion. Finally, the last 
section provides the conclusion and perspectives. 

2. Optimization Sizing Approach 

2.1. Principle of Sizing Approach 

The optimal design aims at setting the value of the key parameters influencing system design 
based on one or more performance indices. Considering the interdependence between sizing and 
control parameters, the combined methodology is appropriate. The proposed approach is built on 
nested optimizations as presented in Figure 1. This global methodology is detailed in [17]. 

 
Figure 1. Overview of the suggested design optimization. 

It relies on a two-level optimization scheme; the external loop permits to optimize the 
architecture sizing which means that it enables to define the optimal powertrain parameters with 
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respect to the hybrid architecture specifications. PSO technique use permits to address large design 
space while leading to a simple and time-saving calculation implementation [21,22]. 

The control tuning parameters is considered; by introducing an energy consumption criterion in 
the internal loop (Figure 1), enabling to optimize the consumption of the designed architecture 
according to the total driving cycle. For this issue, the PMP based optimal control is introduced with 
the ability to compute and optimize a single trajectory of the cost function called the Hamilton 
function. This leads to reduced computational time and accelerates the convergence, even for large 
design space exploration, which is a key figure for the proposed approach [23–25]. 

Unlike conventional methodologies, the new proposed paradigm allows to maximize the space 
design exploration for more potential design candidates, and offering the best trade-off between 
computing time and optimal design. 

In summary, the proposed approach uses two nested optimization loops: the external one 
searches the main optimal parameters of the architecture sizing according to the specifications 
(constraints and criteria) defined by the expert user, while the internal loop makes the external 
criterion using the energy management optimization. This internal loop evaluates the energetic 
performance of each tested architecture sizing, which provides the cost function of the external loop. 
Figure 2 illustrates the workflow involved for the proposed design approach. 

 
Figure 2. Workflow implementing the proposed nested optimization approach. 
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The selected system is a parallel hybrid fuel cell/battery source including a DC/DC converter for 
each source. It offers a high freedom degrees that is relevant and suited for optimal design (sizing 
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and energy management) [34]. Figure 3 illustrates the functional diagram of this architecture, with 
the fuel cell as the main energy source and the battery as the auxiliary power source. The vehicle 
specifications considered are related to a city car, similar to a Renault ZOE. 

 
Figure 3. Parallel hybrid power source architecture. 

The FCEV demand power is computed according to the longitudinal dynamics equation of the 
vehicle considering the vehicle speed V and forces due to vehicle acceleration, drag and friction, and 
road slope, as follows: 

 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝐶𝐶𝑟𝑟 𝑀𝑀 𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) 𝑉𝑉(𝑡𝑡) + 𝑀𝑀 𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼) 𝑉𝑉(𝑡𝑡) + 𝑀𝑀
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑉𝑉(𝑡𝑡) +
1
2
𝜌𝜌 𝑆𝑆 𝐶𝐶𝑥𝑥 𝑉𝑉3(𝑡𝑡)  (1) 

where PDem is power demand, Cr and Cx are the friction and aerodynamic coefficients, respectively, ρ 
is the air density, S is the front surface area, M is vehicle mass, g is gravity acceleration and α is slope 
of the road. 

In order to consider the randomness feature of real driving cycle (stochastic characteristic), 
different road conditions are discussed including WLTC, US Highway and US 06. 

3. System Reliability Approach 

This study concerns the reliability assessment of fuel cell/battery hybrid power source. This 
powertrain configuration aims at letting the fuel cell provide the main energy autonomy and the 
battery provide transient power demand. The focus is made on battery storage device, which is 
mainly impacted by durability concerns in a typical automotive application [26]. It is considered that 
the fuel cell, whose performance depends mainly on membrane behaviour (gas pressure and velocity, 
thermal and water management, etc.) is well managed and operates under low dynamics conditions, 
which is a positive factor for its lifetime [35]. Battery degradation leads to capacity loss and internal 
resistance increase, which limit the energy availability and the power capability, respectively. State 
of health (SOH) reflects the battery degradation along its lifetime. This indicator enables to obtain an 
appropriate reliability impact figure which can be integrated into the optimization approach. The 
SOH equation is defined in Equation (2): 

𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶

𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
  (2) 

where SOH is BAT state of health, CBAT,C and CBAT,Init are the current and initial battery capacities, 
respectively. 

Lithium-ion battery performances decline with use and time. Their lifetime degradation is a 
complex process and subject to different factors and mechanisms (electrical, thermal, humidity, 
mechanical and chemical parameters). Among these, the thermal aspect mainly drives the aging 
effects [36–41]. Technically, various studies have shown that the main effects on battery expected 
lifetime are: the calendar aging effect and the cycling effect [41,42]. 

First, the calendar aging effect [36,37] mainly depends of the storage conditions as the ambient 
temperature and the battery state of charge (SOC). The SOC equation is defined in (3): 
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𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑆𝑆𝑆𝑆𝑆𝑆0 +
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� 𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑𝑑𝑑  (3) 

where SOC and SOC0 are, respectively, the current and initial state of charge. ηBAT, CBAT and iBAT are 
battery efficiency, capacity and current, respectively. 

Second, the cycling aging is related to several elements depending on battery usage [38,39,43] 
and energy management optimization (power sharing). The main stress factors are the number of 
cycles, the depth of discharge (DOD), the battery temperature and the average demanded power. 

Considering different studies in literature [38–43], usually battery aging and SOH are evaluated 
according to calendar and cycling extensive tests to establish physical modelling or empirical 
modelling. For example, in [4,44], the degradation factors of the Li-ion battery are estimated using a 
semi-empirical model according to the manufacturer’s data, by considering the instantaneous 
capacity loss evolution as a function of rated current. To model the battery degradation mechanism, 
Leng et al. [45] and Zou et al. [46] propose an analytical and electrical models, respectively. They both 
consider the influence of the operating temperature on the batteries lifetime for HEVs. Zou et al. [46] 
and Ecker et al. [47] performed a set of experiments to estimate the key aging factors affecting 
batteries lifetime. 

These different solutions are complex and require specific experiment tests, leading to an 
expensive and time-consuming process. Moreover, they do not adequately take into account 
stochastic automotive driving cycle. Accordingly they are not suitable for a good design approach. 

The major test data provided by studies in [38,39,46,47] were obtained using the following 
procedures: 

- For the DOD study the cycle was a CCCV (constant current constant voltage) charge at 1C, 
followed by a 30 min break and then a CC (constant current) discharge to the desired DOD at 
1C and, finally, a 5 min break. The details of this procedure is presented in [38,39]. 

- For the C-rate study, the cycle was a 100% DOD performed at a different C-rate in a continuous 
fashion. For more details, see [38,39]. 

Against this background, both calendar and cycling test data provided by studies in [38,39,46,47] 
are analysed to establish mathematical relationships between the monitored parameters influencing 
battery aging, such as temperature, SOC and rated current. It allows an extrapolation for reliability 
assessment. First, the SOH evolution could be modelled using the number of cycles and the related 
electrical operating conditions. It reveals to be a relevant metric to assess the ageing rate of a lithium-
ion battery (Figures 4 and 5). It uses the concept of the Wohler curve describing the relation between 
stress level and the number of cycles to failure. This criteria has initially been introduced for 
mechanical fatigue concerns and later widely adopted in varied fields of application. This makes 
possible the estimation of the residual lifetime (SOH change) by identifying the remaining number 
of cycles. 
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Figure 4. Battery lifetime data at various rated current. 

 
Figure 5. Battery lifetime data at various DOD. 

For EV application, the end-of-life (EOL) of a battery is related to capacity performance and can 
be determined until loss of battery capacity reaches 20% which leads to a certain number of cycles 
[4,48,49]. The experimental data demonstrates that the SOH stays relatively stable and exhibits a 
quasi-linear behaviour for different operating condition until EOL is reached (Figures 4 and 5). Thus, 
there is obviously a proportional relationship between the number of cycles and DOD level as well 
as the rated current, with the same trend as illustrated in Figures 6 and 7. The SOH model is thus 
expressed through the following equations and remains valid until EOL; Equation (4) is defined for 
a given rated current and Equation (5) is defined for a given DOD obtained from the experimental 
process. 

�
𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷(%)  =  100 −  
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𝛾𝛾

 ∙ 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐷𝐷𝐷𝐷𝐷𝐷
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  (4) 

�𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼(%) = 100 −  
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝛿𝛿 

∙ 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼
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where SOHDOD and SOHIc are state of health as a function of DOD and rated current, respectively. 
NCycle, DOD and NCycle,Ic are number of cycles according to a DOD level and a ratted current, 
respectively. Crate is charging/discharge current. α, β, γ, δ, ρ and σ are fitting parameters. 

The study is carried with full range variation of the SOC from 20% to 90%, which leads to a DOD 
of 70%. 

 
Figure 6. A linear trend extrapolation of SOH according to DOD variation. 

 

Figure 7. A linear trend extrapolation of SOH according to rated current variation. 

It is important to extend this degradation model developed under specific experimental 
operating conditions to real-life driving conditions. For this purpose, a similar principle is applied to 
describe the SOH. It assumes that the variation of the stress factors follows its average values until 
EOL is reached. In this framework, the idea is to link the battery’s entire lifetime to the energy 
exchanged by the battery until EOL. To cover up the dynamic of the operating conditions, the 
exchanged energy is weighted by a degradation degree coefficient. This is later deduced from the 
SOH test dataset. 

In sum, the reliability assessment is obtained by estimating the residual lifetime, depicted by the 
weighted of cumulative energy exchanged according to the power density of cycle. Figure 8 shows 
the different steps of the proposed reliability assessment approach. 

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

N
um

be
r o

f C
yc

le
s

DoD (%)

Affine Extrapolation

0

500

1000

1500

2000

2500

3000

3500

4000

0 0,5 1 1,5 2 2,5

N
um

be
r o

f C
yl

ce
s

Rated Current

Affine Extrapolation



Energies 2020, 13, x FOR PEER REVIEW 9 of 18 

 

 
Figure 8. Reliability assessment approach. 

First, the total exchange energy is cumulated by simple counting for the considered driving cycle 
(WLTC) and calculated by: 
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 (6) 

where EBAT and PBAT are battery cumulated energy and power, respectively. EBAT,Tot,Init and NCycle,Init are 
total initial battery energy and number of cycle, respectively. TS is sample time. 

Then, a power density histogram is introduced and can be set according to various power levels 
(from 10% to 100% in increments of 10%). This is accomplished by counting the energy exchanged 
for each power level normalized to the available energy of cycle. 

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖=1…10 =
(∑𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖  × 𝑇𝑇𝑆𝑆)

𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵
∙ 100  (7) 

This enables to identify a vector of power distribution (VPD) for a specific driving cycle, the 
WLTC one is given by: 
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= [ 25% 18% 17% 15% 11% 9% 4% 1% 0% 0% ]  

(8) 

Finally, each power distribution level is weighted as a result of the variation of dynamic 
operating conditions (power level/rated current) according to the lifetime experimental data. For this 
use case, a linear regression is considered, which can be customized depending on the results data 
(for example non-linear trend). A weighting vector (WV) is thus achieved and expressed as: 
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Finally, there remains to assess the degradation degree coefficient related to the total exchange 
energy. It symbolizes the degradation degree (D) of the battery calculated as follows: 

𝐷𝐷 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑊𝑊𝑊𝑊 ∙  𝑉𝑉𝑉𝑉𝑉𝑉)  (10) 

Total battery degradation is expressed as a percentage value for lifetime loss (LLoss) or consumed 
energy. This procedure is repeated until depletion, which means EOL conditions, through the 
following equation: 
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The approach’s flexibility enables direct adaptation to different battery technologies by updating 
their lifetime data. It produces very fast results with sufficient accuracy suitable for the optimisation 
sizing approach. The following section considers reliability process integration to analyse its impact 
on the hybrid power system sizing based on an energy performance index. 

4. Reliability Process Integration 

A reliability process integration is introduced to assess the reliability impact on the sizing of the 
hybrid power system under the energy performance index. This process supports the proposed 
reliability assessment approach and a reliability assessment of the set of solutions. 

Figure 9 represents the reliability process integration using the following steps: 

- Design optimization step: the proposed combined design approach gives a consistent set of 
solutions whatever the driving cycle. The mapping of designed solutions is depicted by a bowl 
shape surface. It shows clearly a trade-off between component sizing and energy saving. The 
hybrid system design is mainly affected by the load average power and the load power 
dynamics. 

- Reliability assessment step: For each driving cycle, the set of design solutions is assessed for 
reliability using lifetime loss rate. To this end, the linear trend extrapolation of battery SOH is 
considered, as explained before. 

 
Figure 9. Reliability process integration. 
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design engineers to set up the best hybridization rate and enables them to practice trade-offs, 
including reliability aspects, in the early steps of the design. 

5. Results and Analysis 
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environment (R2018a, MathWorks, Natick, USA). A map of different sets of solutions, for different 
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using different time responses. The results maps are obtained considering the system’s parameters 
in Table 1. 

Table 1. Methodology and vehicle parameters. 

Parameter Value Parameter Value 
Particles number and Iteration 30, 100 Vehicle mass (kg) 1428 

Values to design PFC, CBAT Air density (kg·m−3) 1.2 
Search field: PFC, CBAT 1–50 kW and 1–10 kWh Friction coefficient 0.012 

Fuel cell, battery models PEMFC static, Li-Ion model Aerodynamic coefficient 0.29 
SOCMin, SOCMax 15%, 90% Front surface area (m2) 2.69 

γ, α, β 1400, −20, 1700 δ, ρ, σ 125, −1600, 4400 

Figure 10 presents sizing solutions considering the reliability effect under WLTC and US 
highway using the same fuel cell dynamic (10 s). The aim is to see how the developed approach 
considers the variation of operating conditions (sensitivity of the approach). Overall, the design 
approach makes an appropriate sizing; the FC is very closely to the system autonomy by ensuring 
the load average. Conversely, battery capacity attends dynamic behaviour given by the energy 
deviation. This deviation impacts the battery thermal behaviour (cycling effect), which is directly 
calculated using the mathematical model presented previously and correlated to the dynamic driving 
cycle. The WLTC driving power presents many transitory phases (numerous and intense) implying 
a significant impact on battery lifetime (deep cycling). On the contrary, the US highway certification 
cycle has less impact on the battery lifetime because of a lower dynamic range (driving mode). 
Technically, the standard deviation of the battery exchanged energy is significantly different between 
the WLTC cycle and the US highway one: 1.2 kWh and 0.36 kWh, respectively. Similarly this trend is 
reflected in the value of the lifetime loss which is in roughly three times larger in the WLTC mapping 
(Figure 10b,d), for example, for sizing architecture (PFC = 20 KW, CBatt = 3 KWh), the lifetime losses are: 
0.01 % for US highway and 0.032 % for WLTC. 

 
Figure 10. Design results considering lifetime loss (KW/h or %) according to US Highway and WLTC 
driving cycle. (a) Result mapping with battery lifetime loss (KW/h), US Highway and FC dynamic 10 
s. (b) Result mapping with battery lifetime loss (%), US Highway and FC dynamic 10 s. (c) Result 
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mapping with battery lifetime loss (KW/h), WLTC and FC dynamic 10 s. (d) Result mapping with 
battery lifetime loss (%), WLTC and FC dynamic 10 s. 

In order to introduce more flexibility about hybridization rate, three different FC response times 
(1 s, 5 s, 10 s) are considered while using the same certification driving cycle (namely US 06) as 
illustrated in Figure 11. The surface shape of this sizing solution is slightly influenced by the FC 
dynamics. The lifetime loss remains relatively low according to the battery dynamic behaviour Figure 
11b,d,f, indicating that the design approach makes the best trade-off towards this requirement. For 
example, for sizing architecture (PFC = 20 KW, CBatt = 3 KWh), the life time losses are: 0.009% for FC 
dynamic 1 s, 0.01% for FC dynamic 5 s and 0.0115% for FC dynamic 10 s 

In sum, for the optimal zone, the results show that, to meet reliability constraints, the designer 
applies a slight oversizing of the battery compared to the energy constraint solution. This behaviour 
is proved by the global ramp of the mapping, which decreases, with the increase of the battery 
capacity. In addition, the sizing of the FC also influences the battery reliability with a bowl effect in 
accordance with the optimal FC power value. These results show the antagonistic behaviour of the 
reliability objective towards the energy saving one. 

These different effects show that the key challenge is to simultaneously take into account several 
objectives in a global design approach. Indeed, the fuel consumption criterion tends to decrease the 
battery sizing in order to limit the embedded mass while the reliability criterion leads to increase this 
sizing so as to enhance the power capability, thus reducing the battery degradation and its lifetime 
loss. These results of this approach enables to decide between several proposed sizes. 

To evaluate the representativeness of the obtained results, time simulation tests of the proposed 
powertrain are carried out using a standard WLTC drive cycle. With a distance of 23 km, the WLTC 
provides a specific consumption around 0.72 kg/100 km, considering the optimized architecture 
illustrated in Table 2. This performance is highly encouraging, since it is very close to the standard 
driving cycle of electric vehicles, which proves the relevance of suggested approach. 

Table 2. Optimization results—WLTC. 

Variable Value 
Fuel cell power 30 kW 
Battery power 19.5 kW 
Battery capacity 6.5 kWh 
Hydrogen consumption 0.72 kg/100 km 
Computation Time 900 s 
Battery lifetime—Number of cycles WLTC 10,000 
Battery lifetime—Total exchanged energy 4500 kWh 

Figure 12 presents the optimal fuel cell/battery system response with the key variable 
waveforms: the load power (PLoad), the relative FC power, the state of charge (SOC) and the FC 
efficiency. Obviously, the FC is requested between 15% and 50% of its rated power, which belongs to 
the best range of FC energy efficiency, thanks to the energetic strategy, which makes use of the FC in 
its best range. 
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dynamic 10 s. 

The SOC trajectory tends to follow the vehicle dynamic behaviour and reaches the required final 
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Figure 12. Testing of the optimized system on the WLTC standard cycle. 

6. Conclusions 

To be more suited to industrial challenges, the current study addresses the reliability process 
integration into the design approach based on an energetic performance index. 

The proposed approach considers a linear trend extrapolation of battery SOH based on data test 
analyses, in order to avoid the limits of conventional approaches: complexity, expensive and time-
consuming implementation. It produces very fast results with sufficient accuracy suitable for the 
optimization sizing approach. This makes it possible to consider different driving cycles and 
operating conditions. 

The results show a correlation between energy constraint and reliability impact. Battery lifetime 
loss is influenced by the dynamic range, dependent on the driving cycle. Therefore, to meet the 
reliability constraint, the designer applies a battery oversizing compared to a solution limited to a 
single energy constraint. However, the results reflect a global trend; it should be considered in a 
relative way and not in an absolute one which represents the main limit of the present approach. 

This work shows the relevance of a multi-objective approach in a design process because of the 
growing complexity of considering several conflicting or non-conflicting objectives. 

Based on this approach, future work will consider including the reliability effect at the same 
level as the energy one. This multi-objective optimization will permit a simultaneous approach and 
enable making the best trade-offs with respect to the specifications. 
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SOH  

Hybrid Electric Vehicle 
Particle Swarm Optimization 
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US Highway 
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DOD 
CCCV 
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Worldwide Harmonized Light Vehicles Test Cycles 
Highway United States Test Cycle 
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Depth of Discharge 
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Battery capacity, Maximum, Minimum, (Ah) 
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Fuel cell and Battery efficiency, (%) 
Hamiltonian function 
Co-state, Lagrange multiplier 
Power demand, (W) 
Friction and aerodynamic coefficients 
Air density, (kg.m−3) 
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Gravity acceleration, (m.s−2) 
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Battery current, (A) 
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