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AC resistance and leakage inductance estimation for planar
transformers with parallel connected windings

Lucas Pniak1,2, Loïc Quéval2, Bertrand Revol1, Jean-Sylvio Ngoua Teu1, Cyrille Gautier1 and Olivier Béthoux2

Abstract— Regarding the ever-increasing switching frequency
of power converters, there is a lack of tools to perform
a quick and effective optimization of the high frequency
transformers embedded in isolated power converters. Indeed,
at high operating frequency, the geometry of the core and
windings deeply impacts the overall transformer performance.
Specifically, assessing accurately the current distribution in
parallel connected windings is a challenging and key issue.
Winding parallelization, frequently implemented in low voltage
and high current applications so as to decrease Joule losses, may
be an ineffective solution because of skin and proximity effects.
They create an unbalanced current distribution in the parallel
connected windings, which greatly impacts the AC resistance
and leakage inductance of the transformer. The present article
proposes an innovative frequency analytical model permitting
to simply and accurately compute the current distribution in
the transformer windings, the AC resistance, and the leak-
age inductance. The proposed approach is comprehensively
presented, validated using both measurements and 2D finite
element analysis and analyzed giving guidelines to engineers
designing high frequency transformers.

NOMENCLATURE

α Wave number.
∆ Relative skin depth, e/δ.
δ Skin depth at the fundamental frequency.
E Electric field (RMS).
H, H Magnetic field (RMS).
j Current density (RMS).
Q̇, Q̇ Current (RMS).
Lµ Magnetizing inductance matrix.
Llk Leakage inductance matrix.
R Resistance matrix.
µ0 Permeability of free space, 4π × 10−7 H/m.
µr Relative permeability of the core material.
ω Angular frequency.
σ Conductivity of the conductors material.
dm Mean length of a field line in the magnetic core.
e Thickness of a conductor layers.
e0 Air gap.
Eµ Magnetizing energy.
Elk Leakage magnetic energy.
eik Thickness of the kth insulation layer.
hc Width of a conductor layers.
j (−1)1/2.
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Lc Mean length of conductor layers.
LAC AC leakage inductance.
N Number of conductor layers.
PJ Joule losses.
RAC AC resistance.
Sf Effective flux area of the core.

I. INTRODUCTION

Like the automotive sector, the aeronautics sector and
in particular the equipment manufacturers are currently un-
dergoing profound changes to achieve carbon neutrality in
aviation by 2050. These developments concern, among many
other aspects, the on-board electrical systems for which the
aim is to improve efficiency and reduce weight, while ensur-
ing greater flexibility. The network architectures envisaged
for the turbomachines hybridization and continuous on-board
generation (270 V, 540 V, etc.) must ensure interconnections
with key conventional networks (i.e. 28 V). Isolated modular
DC / DC converters (DAB, LLC, etc.) are currently being
studied to achieve these interconnections [1]. Using fast
components (e.g. GaN) in these topologies enables to reach
attractive power densities (> 2 kW/kg) [2]. In these isolated
power structures, designing the high-frequency transformer
(100 kHz to 1 MHz) may be a challenging issue.

Thanks to their low profile, good thermal characteristics,
high manufacturing repeatability and accuracy and possibly
predictable parasitic elements [3], [4], [5], [6], [7], planar
transformers (Fig. 1) meet the demanding expectations of
modern power electronics, specifically regarding switching
frequency and power density [8], [9]. In many applications,
the high power and low voltage requirements imply using
parallel connected windings in order to limit the AC copper
losses and enhance the transformer thermal behavior.

Fig. 1: A planar high frequency power transformer.



At high frequencies, the skin and proximity effects in-
crease Joule losses, and also may unbalance the current
distribution in parallel connected windings. This imbalance
can either have a negative or positive impact on the AC Joule
losses depending on the considered operating frequency and
winding geometry. In both cases, it significantly impacts
the transformer performance. The designer has to accurately
assess this current sharing in order to find the optimal
transformer design and determine the two main macroscopic
transformer parameters, i.e. AC resistance and leakage in-
ductance.

Many methods have been used to solve this electromag-
netic problem. 2D or 3D Finite Element Analysis (FEA)
simulations [10], [11], [12], [13], [14] provide a very accu-
rate estimation of the magnetic field and current distribution,
at the cost of a substantial computation time. Enabling
a reduced computation time, analytical methods based on
lumped circuit models such as Modular Layer Model (MLM)
[15], transmission lines in 1D [16], [17] or 2D [18] also
show precise results on a wide frequency band. Implementing
these techniques requires a SPICE solver and a software tool
to generate SPICE netlist. Finally, a 1D analytical model
[19] based on Dowell’s hypothesis [20] uses the Maxwell-
Faraday theorem on well-chosen closed paths to determine
the winding turns electromotive forces as intermediate vari-
ables, then deduce the current distribution and ultimately
infer AC resistance and leakage inductance as macroscopic
energetic parameters. The intermediate calculations make the
resolution complex and give no insight in the understanding
of the energy phenomena to be optimized.

The present paper proposes an innovative analytical 1D
frequency-domain electromagnetic model for planar trans-
formers that may have windings connected in parallel.
Based on an energetic approach of system dynamics (Euler-
Lagrange), this model directly uses the well-known expres-
sions of the AC Joule losses [21] and leakage magnetic
energy [22], [23] to build the linear system governing the
current distribution. It avoids to solve the Maxwell-Faraday
equations and the associated integral calculation proposed
by Wei Chen [19] and does not require a software tool to
generate SPICE netlist [15]. The suggested method can be
implemented in an automatic tool and enables the accurate
computation of the AC resistance and leakage inductance of
any winding configuration in a short computation time.

The paper is organized as follows. Section II describes the
electromagnetic problem and recalls the Joule power losses
and magnetic energies calculation. Section III introduces
the procedure for applying Euler-Lagrange equations to the
transformer. Computing the energy and power loss functions
permits to derive the linear system governing the current
distribution, which is the main contribution of the paper.
Finally, section IV compares Finite Element Analysis (FEA)
simulations and experimental results with the proposed
method results in order to validate the suggested approach.
Using the energetic approach, the studied examples are fully
analyzed and discussed to provide a clear insight into the
physics at stake in the transformer.

II. ENERGY ANALYSIS OF THE TRANSFORMER

A. Definition of the electromagnetic problem

As shown in Fig. 2, a planar transformer composed of
N conductor layers and a magnetic core is considered. An
index k, k ∈ [1, N ], and a domain Ωk are assigned to each
conductor layer. Ωk corresponds to the cross section in the
(x,z) plane. The currents Q̇k flow through them generating a
magnetic field H in the winding window. The very specific
geometry of the planar transformer enables the following
hypothesis:

i) The core permeability is very high. The magnetic field
strength inside the core is negligible compared to the
leakage magnetic field in the winding window.

ii) The air gap is small enough or far enough from the
conductor layers. The fringing effect is neglected.

iii) The conductor width is much greater than its thickness
or than the one of the insulation layers. Thus, end effect
is neglected and the magnetic field is assumed parallel to
the conductor layers. Additionally, an invariance along
the z-axis is assumed in the conductor layers.

iv) The model is 2D. An invariance along the y-axis is
assumed. The effect of coil heads is neglected.

v) The conductor layers, the insulation layers and the
magnetic material are considered linear, homogeneous
and isotropic. Core losses are neglected since only short-
circuit tests are considered in this paper.

vi) The problem is studied in a harmonic way and in steady
state.

vii) The problem is Magneto-Quasi-Static (MQS) [24].

B. Magnetic field distribution in the winding window

1) In the insulation layers: Considering hypothesis i),
Ampère theorem applied to the closed paths Γk, k ∈
[1, N+ 1], defined on Fig. 2, shows that the magnetic field H
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Fig. 2: Definition of the geometric parameters, the currents,
the magnetic field in the insulation layers, and of the local
coordinate system for each conductor layer Ωk, k ∈ [1, N ].
The dashed line is the symmetry plane.



is uniform in each insulation layers. For each insulation layer
k, the magnitude of this field is denoted Hk. The equations
resulting from Ampère’s theorem highlight the link between
Hk and Q̇k and can be written as follows :

H1 = 0, (1)

∀k ∈ [2, N + 1], hcHk = −
k−1∑
i=1

Q̇i, (2)

where hc is the conductor width.
2) In the conductor layers: Considering hypothesis v) and

vii),

∇×E = −µ0
∂H

∂t
(3)

∇×H = j (4)
j = σE, (5)

where σ the conductor conductivity. Based on hypothesis
iii), the magnetic field H only has a z-component. Using
Equation (3) it implies that the electric field strength E only
has a y-component. The invariance hypothesis along the y-
and z-axis iv) and iii) implies that both fields E and H are
only function of x. Thus, Equations (3)-(5) become in the
kth conductor layer:

dEyk

dxk
= −jωµ0Hzk (6)

−dHzk

dxk
= σEyk

, (7)

giving the Helmoltz differential equation:

d2Hzk

dx2
k

= jωµ0σHzk . (8)

Its general solution is

Hzk(xk) = H1ke
αxk +H2ke

−αxk , (9)

where α is the complex wave number,

α =
√
jωµ0σ =

1 + j

δ
(10)

and δ the skin depth,

δ =

√
2

µ0σω
. (11)

H1k and H2k are integration constants that can be evaluated
from the boundary conditions (see inset in Fig. 2):

Hzk(xk = 0) = Hk, (12)
Hzk(xk = ec) = Hk+1, (13)

where ec is the conductor thickness. It derives :

H1k =
Hk+1 −Hke

−αec

eαec − e−αec
, (14)

H2k =
Hke

αec −Hk+1

eαec − e−αec
. (15)

Finally, in the kth conductor, the magnetic field distribution
is expressed as follows:

Hzk(xk) =
Hk+1 −Hke

−αec

eαec − e−αec
eαxk+

Hke
αec −Hk+1

eαec − e−αec
e−αxk

(16)
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Fig. 3: Definition of the Ampère closed path used to calculate
the magnetising energy in the transformer core.

C. Joule losses, leakage energy and magnetizing energy
Combining the magnetic field in the conductors (16) and

equations (1) and (2), the total Joule losses PJ and the
total magnetic leakage energy Elk (stored in the winding
window) are calculated as functions of the currents vector
Q̇ = [Q̇1, ..., Q̇N ]T . These relations are published in the
scientific literature [21], [22]. They are detailed and rewritten
in matrix form in the appendix . This leads to the following
equations:

PJ = Q̇†RQ̇, (17)

Elk =
1

2
Q̇†LlkQ̇ (18)

where R and Llk are N ×N resistance and leakage induc-
tance matrix, respectively, and † is the transpose conjugate
operator.

The magnetizing energy, which is stored in the magnetic
core and the air gap, represents the magnetic coupling be-
tween the windings. The application of the Ampere theorem
on the closed path ζ defined on Fig. 3 gives the magnetic
induction amplitude Bc along the path:

Bc =

(
µ0

dm

µr
+ e0

)
N∑

k=1

Q̇k. (19)

with dm the mean length of a magnetic field line, e0 the air
gap thickness and µr the relative permeability of the core.
The magnetizing energy can then be calculated by integration
of the magnetic energy density in the core and the air gap:

Eµ =
µ0Sf

2
(

dm

µr
+ e0

)
∣∣∣∣∣

N∑
k=1

Q̇k

∣∣∣∣∣
2

=
1

2
Q̇†LµQ̇, (20)

with Sf the effective flux area of the core and Lµ the
magnetizing inductance matrix:

Lµ =
µ0Sf(

dm

µr
+ e0

)


1 . . . 1
...

. . .
...

1 . . . 1



N×N

. (21)



D. AC resistance and leakage inductance

AC resistance RAC and AC leakage inductance LAC

are defined from PJ and Elk, respectively. Consequently,
they both depend (through the variable Q̇) on the current
distribution in the parallel connected windings. Considering
that a current I0 flows through one of the windings, RAC

and LAC (referred to that winding) are expressed as follows
:

RAC =
PJ

I20
=

Q̇†RQ̇

I20
, (22)

and,

LAC =
2Elk

I20
=

Q̇†LlkQ̇

I20
. (23)

Thus, to estimate the RAC and LAC values, the unknown
vector Q̇ must be identified.

E. An energetic resolution method

In 2003, Wei Chen proposed the only method allowing to
explicitly and analytically express the system of equations
verified by the currents flowing through the parallel con-
nected windings [19]. The system of linear equations in Q̇
is constructed by solving the Faraday theorem locally on N
well-chosen contours. This implies in particular to integrate
the magnetic flux density on the surfaces associated to these
contours. This represents a significant additional physical
modeling effort, useless to address the current objectives,
i.e. Rac and Lac assessment.

The present paper suggests a more global approach based
on an energy resolution method. It enables to construct the
linear system on Q̇ only using the losses and stored energies
in the transformer, i.e. PJ , Elk and Eµ (Equations (17),
(18) and (20)). For this purpose, the Lagrangian equations of
the systems dynamics, detailed in the section III, enable to
do without the complex resolution of the Maxwell-Faraday
law proposed by Wei Chen. Conversely the suggested en-
ergy approach permits to fully exploit the RAC and LAC

expressions, which are well-established and, by definition,
mandatory.

III. PROCEDURE FOR APPLYING THE EULER-LAGRANGE
DYNAMICS EQUATIONS TO THE TRANSFORMER

The Euler-Lagrange equations are fundamental laws of
system dynamics. They apply to any type of physical sys-
tem: mechanical, electrical or electromechanical. The Euler-
Lagrange equations for electrical systems are well estab-
lished in the literature [25], [26]. In this paper, they are only
applied to the "planar transformer" electrical system to obtain
its dynamic equations and thus the current distribution in the
parallel windings. For more details on the physical meaning
and the demonstration of the Euler-Lagrange equations from
the principle of least action, the reader can consult the
following references [26], [27], [28], [29]. The general form
of Euler-Lagrange equations for electrical systems is [25]:

d
dt

(
∂L
∂Q̇

)
− ∂L

∂Q = −∂D
∂Q̇

+Aλ+ U

AT Q̇ = I,
(24)

where:
• QT = [Q1 . . . QN ] represents the N coordinates of the

system state. In the case of an electromagnetic system,
Q corresponds to the electrical charge and its time
derivative Q̇ is the electric current.

• L(Q, Q̇), the system lagrangian is a scalar function
defined as the difference between the kinetic energy of
the system T (Q, Q̇) (magnetic energy) and its potential
energy V(Q) (electric energy):

L(Q, Q̇) = T (Q, Q̇)− V(Q). (25)

Physical details on the link between kinetic and mag-
netic energy, and potential and electric energy are given
in [26].

• D(Q̇) is the Rayleigh dissipation function. It is defined
as half of the power dissipated by friction, which, in
this case, corresponds here to the Joule losses.

• The generalized force vector UT = [U1, . . . ,UN ] in-
cludes the non-conservative forces (i.e. voltage sources)
apart from the friction forces (i.e. Joule effect).

• The matrices AT and I represent the m internal con-
straints on the coordinates such as series connection of
turns and currents sources (given in I). Their developed
form is given below:∑

k

alkQ̇k + Il = 0, l ∈ [1,m], (26)

with,

AT = (alk) size m×N

I = (Il) size m× 1.
(27)

• λ is a vector composed of m additional unknowns. It
enables to obtain a linear system with N+m unknowns
and N + m equations according to the mathematical
method of Lagrange multiplier. In the case of transform-
ers, λ coordinates physically correspond to the unknown
internal voltages (voltages at the terminals of the series-
connected turns) that guarantee the constraints imposed
to the system (same current in these specific turns).
More details on Lagrange multiplier are given in [30],
[31].

In this article, this energy formulation is only used as a
mathematical tool to build the linear system on Q̇. Its
application on the concrete example of a transformer shows
how systematic and straightforward this method can be. The
procedure is detailed below.

A. Calculate the Lagrangian L
In this study, the electric energy, which is related to the

capacitive coupling between winding turns, is negligible
at the operating frequencies of the transformer. And this
model does not attempt to account for capacitive effects
at higher frequencies. The potential energy function is then
zero, V(Q) = 0, and the Lagrangian scalar function is limited
to the sum of the kinetic energies Elk and Eµ :

L(Q, Q̇) = T (Q, Q̇) =
1

2
Q̇† (Lµ + Llk) Q̇. (28)



B. Calculate the dissipation function D
The dissipation function is defined as half of the power

dissipated by friction, i.e. the Joule losses:

D(Q̇) =
1

2
Q̇†RQ̇. (29)

C. Define the voltage sources in U
One or more winding turns may be connected to a voltage

source. If so, the complex amplitude of this voltage source
is specified in a force vector U , size N , in the corresponding
line(s).

D. Build the constraint matrix AT and I
The AT matrix represents the m equations constraining the

dynamic of the state variables. In the transformer case, these
equations only reflects the electrical connections between
the series connected winding turns. Indeed, the currents
in the turns connected in parallel are not constrained by
definition. Noting S a winding with series connected turns,
the following constraint equations must be considered :

∀{i, j} ∈ S2, Q̇i = Q̇j (30)

Any current sources are represented in the I vector. A
concrete example is detailed in section IV.

E. Derive L and D to get the linear system on Q̇

The equation system on Q̇ derives from the Euler-
Lagrange equations (24). First, the scalar functions L and D
are derived using the matrix derivation rules and considering
that Lµ, Llk and R are symmetric matrix:

∂L
∂Q̇

=
1

2

∂
[
Q̇†(Lµ + Llk)Q̇

]
∂Q̇

= (Lµ + Llk)Q̇, (31)

∂L
∂Q

= 0, (32)

∂D
∂Q̇

=
1

2

∂
[
Q̇†RQ̇

]
∂Q̇

= RQ̇. (33)

Thus, the Euler-Lagrange equations (24) applied to the planar
transformer in harmonic regime are reduced to a linear
system of N +m equations and N +m unknowns: (R + jω(Lµ + Llk))Q̇ = Aλ+ U

AT Q̇ = I.
(34)

Where the unknown vector X(N+m)×1 is defined as,

X =

[
Q̇
λ

]
. (35)

Finally the linear system is expressed in matrix form (36):[
(R + jω(Lµ + Llk)) −A

AT (0)m×m

]
X =

[
U
I

]
. (36)

IV. CASE STUDY AND VALIDATION

A. Case-study description

Fig.1 shows the planar transformer that has been manufac-
tured. It is composed of an E-I magnetic core and a ten-layer
PCB. The physical and geometrical parameters are presented
in Table I. In the ten-layer PCB, the five first layers A are
series connected to form a five-turn primary winding and
the last five layers B are parallel connected to form a one-
turn secondary winding. This winding configuration is called
non-interleaved and is noted as follows :

A−A−A−A−A−B −B −B −B −B

All the 5 secondary layers B are connected in parallel,
meaning that the secondary current flow is not constrained
in these layers. Conversely, the primary winding is connected
to a voltage source U0 and all its winding turns A are
connected in series, meaning that the primary current flow is
constrained by the equations (30). From these considerations
can be deduced the linear system of constraints (37) and the
voltage source vector, i.e. the matrix A, I and U .

AT︷ ︸︸ ︷
1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0

 Q̇ =

I︷ ︸︸ ︷
0
0
0
0

,

(37)
and,

U =
[
U0 0 . . . 0

]T
(38)

B. Results and validation

A short-circuit test on secondary winding is considered
to validate the model. Fig. 4a and 4b show the results of
AC resistance and leakage inductance measurements, both
referred to the primary side. They were carried out with an
impedance analyzer Keysight E4990A (Fig. 5), the primary
side being connected to the impedance analyzer while the

TABLE I: Transformer parameters

Parameter Symbol Value
Voltage ratio - 5
Conductor thickness ec 190 µm
Insulator thickness ei see below (*)
Conductor width hc 19.5 mm
Coil mean turn length Lc 176 mm
Core type - E58/11/38
Core material - Ferrite 3C95
Core initial permeability µr 3000
Air gap e0 180 µm
Effective flux area Sf 310 mm²

(*) ei gathers the N + 1 insulator thicknesses between
winding turns defined in Fig. 2, in millimeter : 5 - 0.31 -
0.22 - 0.33 - 0.22 - 0.33 - 0.22 - 0.33 - 0.22 - 0.31 - 5



103 104 105 106 107

Frequency (Hz)

10-2

10-1

R
es

is
ta

nc
e 

(
)

Measure
Model
FEA
Measurement uncertainty

(a) AC resistance RAC vs. frequency

103 104 105 106 107

Frequency (Hz)

200

250

300

350

400

450

Le
ak

ag
e 

in
du

ct
an

ce
 (n

H
)

Measure
Model
FEA
Measurement uncertainty

(b) Leakage inductance LAC vs. frequency

Fig. 4: Comparison between measure, 2D FEA simulations and the analytical model for the non-interleaved configuration :
A-A-A-A-A-B-B-B-B-B. The blue colored zones corresponds to the accuracy of the measuring instruments.

secondary side is shorted. The impedance measurement ac-
curacy, extracted from the analyzer datasheet, is represented
as well. At low frequencies, i.e. between 1 kHz and 5 kHz,
the analyzer accuracy is not specified. Nonetheless, the DC
resistance value was confirmed with a digital low resistance
ohmmeter (Megger DLRO10HD).
RAC and LAC are also computed using the proposed an-

alytical model and a Finite Element Analysis (FEA) carried
out in 2D using FEMM software. For comparison purposes,
these computation results are displayed in the same graphs
(Fig. 4a and 4b).

Fig. 5: Photograph of the experimental set-up.

The analytical model estimations of both RAC and LAC

are consistent with both measurements and FEA simulations
over the whole frequency range. However, a few minor
deviations can be observed and explained:

• Above a few MHz, the transformer behavior is influ-
enced by a resonance occurring at 30 MHz. This ex-
plains the deviation in the measured leakage inductance.

• A discrepancy between measurement and 2D models
(both analytical and FEA) can be noticed in Fig. 4a

around 1 MHz. These 2D models cannot represent
perfectly the actual 3D transformer (Fig. 1). Many
elements such as winding ends, vias or connectors are
not considered.

Note that FEA simulations have also been conducted and
compared to the analytical model for many other winding
configurations and geometries. Corresponding results are
shown in Figure 6 for the following three configurations:
A-B-A-B-A-B-A-B-A-B (fully interleaved), A-B-B-A-A-B-
B-A-A-B (partially interleaved 1) and A-A-B-B-B-A-A-A-
B-B (partially interleaved 2). AC resistance and leakage
inductance estimation match just as well as the ones in Fig.
4a and 4b, which validates the proposed analytical model. No
significant deviation can be highlighted for the AC resistance,
while the analytical model always overestimates the AC
leakage inductance by a few percent compared to the finite
element simulations. This may be due to the fact that in
the analytical model the field is assumed to be completely
confined between the conductors. In reality, it spreads out a
little at the edges, between the winding and the ferrite, which
slightly reduces the amplitude of the magnetic field in the
insulating layers and thus the leakage energy.

C. Analysis and discussions

In addition to its accuracy, the suggested analytical model
provides an alternative understanding of the skin and prox-
imity effects, as well as the current distribution in parallel
connected winding turns. The following observations are
based on Fig. 7a and 7b which respectively depict the Joule
loss density in the conductor layers and the magnetic energy
density distribution in the winding window at different
frequencies, respectively.

First, Fig. 7b reveals the magnetic coupling between
the transformer windings since the magnetic field ends up
canceling after the tenth turn. This means that the sum of
the currents is zero, which is expected in a transformer. The
equation (20) indicates that a cancellation of the sum of the
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Fig. 7: Joule losses density distribution and magnetic leakage energy density distribution at different frequencies. The 10
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currents also corresponds to the cancellation of the magne-
tizing energy. Thus, it appears that the induced currents in
the secondary winding tend to cancel and therefore minimize
the magnetizing energy.

Second, in Fig. 7a, note that at low frequencies, the current
density tends to be uniform in all the turns, which minimizes
the Joule losses and thus RAC . On the contrary, at high
frequencies, the current density is highly localized on the
turns horizontal edges, in such a way that tends to minimise
the magnetic energy in the winding window and thus LAC .
At intermediate frequencies, the current density distribution
seems to be a compromise between minimizing the AC
resistance and minimizing the AC leakage inductance.

These observations are consistent with Euler-Lagrange
equations of dynamics which are based on the principle

of least action. In electromagnetism and more precisely
in electronics, this principle states that the current fol-
lows the path of least impedance. The linear system (36)
mathematically reflects this principle. Its formulation is
analogous to minimizing the transformer impedance under
linear constraints and using Lagrange multipliers method, a
standard minimization method [31]. In the present industrial
context where the need for high frequency transformers
with high current parallel connected windings is rising, this
least impedance principle can help designing the windings
and choosing the appropriate configuration. The following
general recommendations can be deduced and followed.

D. Design recommendation

To optimize the use of materials and limit the power losses,
the current must be as uniform as possible in the copper



layers. Two levels for improvement can be identified. First,
the copper layers thickness e must be chosen in accordance
with the skin depth δ. A relative skin depth ∆ = e/δ of
1 to 1,5 is a standard choice [32]. Second, the AC leakage
inductance should be kept small so that RAC ∼ jωLAC at
the operating frequency. Thus, the current density distribution
is governed by the minimization of Joule losses and remains
uniform.

The main lever to reduce the leakage inductance is to
interleave the windings, which is well known in the literature
[23]. Figure 8 shows the leakage magnetic energy density
in the winding window for the four winding configurations
considered in this paper. These curves are plotted for a
frequency of 300 kHz, giving a relative skin depth of 1.6. It is
clear that the more interleaved the windings are, the lower the
magnetic energy density in the insulation layers, and thus the
lower the leakage inductance. Table II lists the corresponding
inductance values and the normalized AC resistance. For this
transformer, which geometry is defined in Table I, the fully
interleaved configuration generates 10 times less losses than
the non-interleaved, a huge gain.

However, there is a trade-off between the leakage in-
ductance and the parasitic capacitance of the windings,
especially for planar technology. Reducing the leakage in-
ductance usually means increasing the parasitic capacitance,
and the latter can seriously affect the magnetic performance
of the component [3], [9]. Also, in some specific cases, the
inductance function is integrated in the transformer. A precise
value of the leakage inductance is then desired. For these
reasons, the fully interleaved configuration is not always the
solution. It is necessary to find the configuration that fits
the specifications, the one that minimizes the Joule losses
while respecting all the constraints. It is in this optimization
process that the presented analytical model shows its value.
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Fig. 8: Magnetic leakage energy density distribution for
different winding configurations at 300 kHz. It is normalised
in comparison with the energy density generated by one
winding turn crossed by a current I0. The 10 copper layers
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TABLE II: Configurations comparison at 300 kHz.

Configuration RAC/RDC Lf (nH)

Fully interleaved 1.16 12.1
Partially interleaved 1 1.44 24.6
Partially interleaved 2 2.53 43.5
Non-interleaved 11.0 271

E. User’s guide to the method

Below are the steps to follow to numerically solve the
linear system (36) and estimate the AC resistance and
leakage inductance of a planar transformer using the ana-
lytical equations presented in this paper. These steps can be
integrated into an automatic tool.

• Choose any numerical calculation platform.
• Define the geometrical parameters of the transformer

(length, width, thickness of conductor layers . . . ), the
material properties (permittivity, conductivity) and the
test frequency.

• Code the matrices R, Llk, and Lµ using the formulas
given in Equations (48), (55) and (21) to get their
numerical value. Note that P, AJ , BJ , ∆, Alk, Blk

are given by Equations (39),(42), (43), (44), (51) and
(52).

• Define your winding configuration, identify the posi-
tion of the series-connected turns and construct the
constraint matrix A and the voltage source vector U
following the approach described in the IV-A section.

• From these matrices, construct and solve numerically
the linear system (36). At this stage, the current flowing
through all the turns is known.

• Deduce the value of the AC resistance and AC induc-
tance using the equations (22) and (23). Note that the
current I0 is the current flowing through the primary
winding.

• Finally, check that the effects of the parasitic capac-
itance are negligible: the resonance frequency of this
capacitance with the leakage inductance must be much
higher than the frequency at which RAC and LAC

have been calculated. This parasitic capacitance can
for example be estimated using the analytical model
proposed by Ouyang [9].

Note that this model is quite suitable for multi-winding
transformers. The procedure to follow is similar to the two-
winding case. It consists in defining the series connected
turns in the constraint matrix A. Then, one of the windings
is loaded by a voltage source (to be entered in the vector U ).
The others are either open-circuited (zero current constraint
to be added in A), or short-circuited (no constraint to be
added).

For example, the case study presented in this article deals
with a transformer with a secondary winding comprising 5
turns connected in parallel and short-circuited. It could be
equally considered as 5 windings made of one short-circuited



turn. These two views are equivalent and are processed in
the same way.

V. CONCLUSION

In high turns ratio transformers, high currents flow into
the low-voltage winding. Connecting several identical turns
in parallel is a standard solution to share the current and
reduce the Joule losses. Unfortunately, in AC, the currents
in these parallel turns are not necessarily well balanced. This
phenomenon is particularly marked at high frequencies, such
as those currently used in isolated DC/DC power supplies
(100 kHz to 1 MHz). The challenge is to provide the engineer
with an efficient analytical tool, allowing him to quickly
access a near-optimal design. This solution can then be
refined with a 3D simulation tool and the manufacture of
a prototype.

Based on an energy approach, an innovative and original
tool is proposed. It enables the calculation of the currents
distribution in the parallel connected turns of a planar trans-
former as well as the two macroscopic parameters which are
the AC resistance RAC and the leakage inductance LAC ,
at different working frequencies. These two key parameters
determine the performance of the transformer in its envi-
ronment and enables to estimate whether or not the current
choice of geometrical parameters is optimal or not. Further-
more, note that this new technique gives an analytical answer
based only on the knowledge of the magnetic properties and
the geometrical dimensions of the core material, as well as
the geometrical design of the different turns in the winding
window.

This approach can be implemented in an automatic tool
and therefore enables quick answers with any type of
transformer and on any numerical calculation platform. The
related very short calculation time offers the ability to test
many different parameters or configurations and choose the
best design and sizing. Moreover, since the method is based
on general physical principles, it provides an explicit and
clear reading of the results found. Understanding the trade-
off between Joule losses and magnetic leakage energy stored
in the winding window guides the transformer designer in his
iterations, allowing him to quickly reach an optimal solution
integrating the other design constraints.

APPENDIX

ENERGY CALCULATIONS

A. Transfer matrix between magnetic field and current

In the literature, many articles give the analytical expres-
sion of the Joule losses and/or of the total leakage energy
stored in the winding window [20], [21], [22], [23]. They
are calculated considering the same assumptions as those
presented in the present paper, and have been validated by
FEA simulations and/or experimentally [17], [19], [22], [23].
Most of the time, they are first calculated as a function of the
magnetic field amplitude Hk in the insulation layers which is
mathematically easier. Next, a variable change is performed
to get the expressions of the power losses and the leakage en-
ergy as a function of the current flowing in the winding turns.

Obviously, this paper follows a similar approach. A transfer
matrix P enables to define the relationship between vectors
H = [H1, ...,HN+1]

T and Q̇. This matrix corresponds to
equations (1) and (2) :

H = PQ̇, where P = − 1

hc


0 . . . 0
1 (0)
...

. . .
1 . . . 1


(N+1)×(N)

.

(39)

B. Joule losses PJ

The Joule losses Pk in the kth copper layer is,

Pk = Lc

∫∫
Ωk

σ|Ey|2dxkdzk =
Lchc

σ

∫ e

0

∣∣∣∣dHz

dx

∣∣∣∣2 dxk,

(40)
The total Joule losses PJ can be calculated by inserting
Equation (9) in Equation (40), then solving the integral and
summing the contribution of all copper layers,

PJ =
N∑

k=1

Lchc

σδ

[
AJ (∆)

(
|Hk|2 + |Hk+1|2

)
−BJ (∆)ℜ (H∗

kHk+1)

] (41)

where,

AJ (∆) =
sinh (2∆) + sin (2∆)

cosh (2∆)− cos (2∆)
, (42)

BJ (∆) = 4
cos (∆) sinh (∆) + cosh (∆) sin (∆)

cosh (2∆)− cos (2∆)
(43)

∆ = e/δ. (44)

Noticing that,
|Hk|2 = HkH

∗
k , (45)

that,

ℜ (H∗
kHk+1) =

1

2

(
H∗

kHk+1 +HkH
∗
k+1

)
, (46)

and using the transfer matrix P given in Equation (39), PJ

can be expressed in a matrix form:

PJ = Q̇†RQ̇, (47)

where † is the transpose conjugate operator and R is an N×
N matrix which has the following form:

R =
Lchc

σδ
P†


AJ −BJ

2 (0)
−BJ

2 2AJ −BJ

2
. . . . . . . . .

−BJ

2 2AJ −BJ

2

(0) −BJ

2 AJ


︸ ︷︷ ︸

Size (N+1)×(N+1)

P.

(48)



C. Leakage magnetic energy Elk

1) In the copper layers: The leakage magnetic energy
Elk,ck in the kth conductor layer is,

Elk,ck = Lc

∫
Ωk

µ0|Hz|2

2
dΩk =

µ0Lchf

2

∫ e

0

|Hzk(x)|2dx
(49)

The total leakage magnetic energy Elk,c in the conductor
layers can be calculated by solving the integral and summing
the contribution of all copper layers :

Elk,c =
Lchc

2σδω

N∑
k=1

[
Am (∆)

(
|Hk|2 + |Hk+1|2

)
−Bm (∆)ℜ (H∗

kHk+1)

] (50)

where,

Alk (∆) =
sinh (2∆)− sin (2∆)

cosh (2∆)− cos (2∆)
(51)

Blk (∆) = 4
cos (∆) sinh (∆)− cosh (∆) sin (∆)

cosh (2∆)− cos (2∆)
. (52)

2) In the insulation layers: The magnetic field being
uniform inside the isolation layers, the magnetic energy
Elk,iso inside the insulation layers is more easily expressed
:

Elk,iso =

N+1∑
k=1

µ0Lchfeik
2

|Hk|2 (53)

3) The total magnetic leakage energy: The total magnetic
leakage energy can be expressed as a matrix product:

Elk =
1

2
Q̇†LlkQ̇, (54)

where Llk = P†MP is a N ×N matrix, and M is an (N +
1)× (N + 1) matrix defined as follows :

M =
Lchc

σδω


Alk −Blk

2 (0)

−Blk

2 2Alk −Blk

2
. . . . . . . . .

−Blk

2 2Alk −Blk

2

(0) −Blk

2 Alk



+µ0Lchc


ei1 (0)

ei2
. . .

(0) eiN+1


(55)
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