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In this paper, the issue of designing and tuning a standard three-term PID controller is addressed.

To achieve this goal, both the basics of linear controllers and the key principles of the PID controller are described. Subsequently, two popular design approaches are studied and then illustrated in a specific use case. The paper ends with a global conclusion including guidelines on extra material to address implementation issues.

INTRODUCTION

Many plants require automatic control in order to enforce specific system variables to meet the related reference values in real time. To achieve this goal, engineers need to design feedback controls of dynamic systems. It contributes to stabilize an intrinsically unstable system and enables an effective reference tracking by rejecting, at any time, system and environment uncertainties [START_REF] Bolton | Instrumentation and Control Systems[END_REF].

Energetic Macroscopic Representation, which is a graphic formalism developed for multi physics system [START_REF] Bouscayrol | Graphic Formalism for the Control of Energetic Multiphysics Systems[END_REF], is one very efficient tool to define a relevant control structure to any plant. Based on the plant model, it permits first to define the maximal control structure of the studied system and then, considering the sensors constraints, deduce the practical control structure [EEEPE 40011] [START_REF] Bouscayrol | Control structures for multi-machine multi-converter systems with upstream coupling[END_REF][START_REF] Pera | Maximal and Practical Control Structure of a PEM fuel cell system based on Energetic Macroscopic Representation[END_REF].

Designing each identified control loops comes into the realm of control systems design. This scientific field offers numerous feedback control laws. One of these solutions is the Proportional-Integral-Derivative (PID) controller which benefits from a high cost/performance ratio [START_REF] Bolton | Instrumentation and Control Systems[END_REF]. As this classic three-term controller proves to be used in most industrial applications, it is crucial for electrical engineers to master its basic principles.

The present article aims at providing the basics of PID control so that the reader could successfully tune the 3-term controller parameters in any specific use case. The suggested tuning methods are explained by way of a practical example.

The paper is organized as follows. Section 2 explains the frequency loop-shaping requirements that the selected analog controller has to meet so as to ensure high stability margin, high damping ratio (close to 1), low tracking errors and small sensitivity regarding noises and system model uncertainties. It then gives the PID controller structure and outlines the main role of each terms.

Section 3 briefly describes the studied case and defines the related control design specifications.

Section 4 addresses the control tuning using the dominant poles cancellation method. Section 5 presents an alternative approach based on the frequency-response design method. Finally, section 6 draws conclusions and perspectives of the suggested approaches, mentioning practical implementation issues such as sensitivity assessment, computer aided design, integrative antiwindup strategy, feedforward terms and digital control law enabling using microcontrollers.

CONTROLLER DESIGN OUTLINES AND PID CONTROL BASICS

As shown in figure 1, an elementary feedback control is composed of 3 blocks:

1. A plant (also called system), consisting of an actuator, a process and a sensor.

2.

A comparator computing the error 𝜀𝜀(𝑡𝑡) between the reference signal 𝑦𝑦 𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡) and the controlled one 𝑦𝑦(𝑡𝑡).

3.

A controller aiming at providing in real time the control variable 𝑢𝑢(𝑡𝑡) so that the measured variable 𝑦𝑦(𝑡𝑡) accurately follows its reference value 𝑦𝑦 𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡). Note that the variable being tracked is the sensor output and not the physical quantity at stake. In some cases, such as temperature or pressure controls, the slow dynamics of the sensor requires the use of a larger phase margin specification to prevent the real variable to face unexpected transient overshoot.

To analytically define the controller structure and adjust its settings, the designer needs a dynamic model of the plant. In the case where the plant mathematical description is a linear differential equation, Laplace transform is used and both the studied system and the controller are described by transfer functions: 𝐻𝐻 𝑃𝑃 (𝑠𝑠) and 𝐶𝐶(𝑠𝑠), respectively.

Fig. 1: block diagram of a feedback control.

Loop-shaping

The controller is designed to meet the 

𝐻𝐻 𝐶𝐶𝑂𝑂 (𝑠𝑠) = 𝑌𝑌(𝑠𝑠) 𝑌𝑌 𝑟𝑟𝑟𝑟𝑟𝑟 (𝑠𝑠) = 𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑠𝑠) 1 + 𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑠𝑠) (1) 
Hence, it derives that:

|𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑗𝑗𝑗𝑗)| ≫ 1 → 𝐻𝐻 𝐶𝐶𝑂𝑂 (𝑗𝑗𝑗𝑗) ≅ 𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑗𝑗𝑗𝑗) 𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑗𝑗𝑗𝑗) = 1 |𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑗𝑗𝑗𝑗)| ≪ 1 → 𝐻𝐻 𝐶𝐶𝑂𝑂 (𝑗𝑗𝑗𝑗) ≅ 𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑗𝑗𝑗𝑗) 1 = 𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑗𝑗𝑗𝑗) (2) 
Consequently, to comply with the feedback specification, the key ideas of the loop-shaping are: • In practice, a phase margin value more than 60° combined with a gain margin value above a 10 to 15 dB threshold usually enables to limit step overshoot below 10% and ensure attractive robustness with respect to plant parameter uncertainties.

• Moreover, based on a pure integrator behavior (𝑗𝑗 0 𝑠𝑠 ⁄ ), a rough estimate of the 5% settling time tST,5% versus the cross-frequency is provided by: Next sub-section shows that the PID controller is a simple and usually efficient option to address these 3 feedback control challenges.

𝑡𝑡 𝑆𝑆𝑆𝑆,5% ≅ 3 𝑗𝑗 𝑋𝑋 (3) 3. 
Fig. 2: Open-loop frequency requirements for efficient feedback control.

PID controller basics

The PID controller is defined by the time-domain equation:

𝑢𝑢(𝑡𝑡) = 𝐾𝐾 𝑃𝑃 �𝜀𝜀(𝑡𝑡) + 1 𝑇𝑇 𝐼𝐼 � 𝜀𝜀(𝜏𝜏). 𝑑𝑑𝜏𝜏 𝑡𝑡 0 + 𝑇𝑇 𝐷𝐷 𝑑𝑑𝜀𝜀 𝑑𝑑𝑡𝑡 (𝑡𝑡)� (4) 
which, in Laplace transform, is:

𝐶𝐶 𝑃𝑃𝐼𝐼𝐷𝐷 (𝑠𝑠) = 𝑈𝑈(𝑠𝑠) 𝜀𝜀(𝑠𝑠) = 𝐾𝐾 𝑃𝑃 �1 + 1 𝑇𝑇 𝐼𝐼 𝑠𝑠 + 𝑇𝑇 𝐷𝐷 𝑠𝑠� = 𝐾𝐾 𝑃𝑃 � 1 + 𝑇𝑇 𝐼𝐼 𝑠𝑠 + 𝑇𝑇 𝐼𝐼 𝑇𝑇 𝐷𝐷 𝑠𝑠 2 𝑇𝑇 𝐼𝐼 𝑠𝑠 � (5) 
The PID transfer function combines 3 independent additional terms:

1. The proportional term (𝐾𝐾 𝑃𝑃 ) which acts at any frequency and hence permits to adjust the cross frequency 𝑗𝑗 𝑋𝑋 and consequently the settling time 𝑡𝑡 𝑆𝑆𝑆𝑆,5% , 2. The integral term (𝐾𝐾 𝑃𝑃 𝑇𝑇 𝐼𝐼 𝑠𝑠 ⁄ ) which mainly acts at low frequency (𝑗𝑗 < 1 𝑇𝑇 𝐼𝐼 ⁄ ) providing a high gain and hence a high LF accuracy combined with an attractive rejection of model uncertainties. This term also introduces a possibly destabilizing 90°phase delay. Note that the derivative term is a non-causal element and most importantly provides high gain at HF which may amplify sensor noise. Therefore, the derivative term may be filtered in the high frequency domain as shown by the following adapted transfer function:

𝐶𝐶 𝑃𝑃𝐼𝐼𝐷𝐷,𝑟𝑟 (𝑠𝑠) = 𝑈𝑈(𝑠𝑠) 𝜀𝜀(𝑠𝑠) = 𝐾𝐾 𝑃𝑃 �1 + 1 𝑇𝑇 𝐼𝐼 𝑠𝑠 + 𝑇𝑇 𝐷𝐷 𝑠𝑠 1 + (𝑇𝑇 𝐷𝐷 𝑅𝑅 ⁄ )𝑠𝑠 � ( 6 
)
where 𝑅𝑅 is usually selected in the 

USE CASE

Many approaches permit tuning the 3 parameters of the PID controller to fulfill the feedback control requirements [START_REF] Rames | PID tuning rules for SOPDT systems: Review and some new results[END_REF]. The present article focuses on two main ways of addressing this issue and implements them on a practical use case to validate the suggested strategies.

Adopted use case

The mathematical description of the process at stake is a third order linear differential equation. Its related transfer function can be described by:

𝐻𝐻 𝑃𝑃 (s) = 𝐻𝐻 𝑃𝑃,0 (1 + 2𝑚𝑚 𝑎𝑎 𝜏𝜏 𝑎𝑎 𝑠𝑠 + 𝜏𝜏 𝑎𝑎 2 𝑠𝑠 2 ) • (1 + 𝜏𝜏 𝑏𝑏 𝑠𝑠) (7) 
Where the dynamic model settings are given in Tab. 1.

Tab 

1ST APPROACH: ZERO-POLE CANCELLATION COMBINED WITH KP TUNING

1 st Strategy outlines

The first adopted strategy is to simplify the open-loop transfer function. For this purpose, 𝑇𝑇 𝐼𝐼 and 𝑇𝑇 𝐷𝐷 are adjusted so that the 2 polynomial roots of the PID transfer function could cancel the plant dominant poles (i.e. LF poles). Then, the third parameter 𝐾𝐾 𝑃𝑃 is tuned to fulfill the feedback specification as best as possible.

1 st strategy implementation

In the present case, the plant function has 3 poles divided into a complex conjugate pair such as 2 � and a distinct HF real pole, namely 𝑝𝑝 3 = -1 𝜏𝜏 𝑏𝑏 ⁄ . Hence, setting 𝑇𝑇 𝐼𝐼 = 2𝑚𝑚 𝑎𝑎 𝜏𝜏 𝑎𝑎 and 𝑇𝑇 𝐷𝐷 = 𝜏𝜏 𝑎𝑎 2𝑚𝑚 𝑎𝑎 ⁄ permits to achieve the zero-pole cancellation approach.

𝑝𝑝 1,2 = -1 𝜏𝜏 𝑎𝑎 ⁄ �𝑚𝑚 𝑎𝑎 ± 𝑗𝑗�1 -𝑚𝑚 𝑎𝑎
Therefore, it derives the following open-loop transfer function:

𝐻𝐻 𝑂𝑂𝑂𝑂,1 (s) = 𝐾𝐾 𝑃𝑃 • 𝐻𝐻 𝑃𝑃,0 𝑇𝑇 𝐼𝐼 𝑠𝑠 • (1 + 𝜏𝜏 𝑏𝑏 𝑠𝑠) (8) 
Where the only tuning parameter is the proportional gain 𝐾𝐾 𝑃𝑃 .

Subsequently, the closed-loop transfer function is expressed as a unit static gain second-order system.

𝐻𝐻 𝐶𝐶𝑂𝑂,1 (s) = 1 1 + 𝑇𝑇 𝐼𝐼 𝐾𝐾 𝑃𝑃 𝐻𝐻 𝑃𝑃,0 𝑠𝑠 + 𝑇𝑇 𝐼𝐼 𝜏𝜏 𝑏𝑏 𝐾𝐾 𝑃𝑃 𝐻𝐻 𝑃𝑃,0 𝑠𝑠 2 (9) 
Its natural frequency and damping ratio are both defined using the 𝐾𝐾 𝑃𝑃 gain. Based on second-order characteristics or using a software tool, an adequate value is computed enabling to fulfil the settling time and overshoot requirements.

In sum, Tab 3 shows the settings defined by this first approach while figure 4 

2ND APPROACH: FREQUENCY COMPENSATION

Essential features of the 2 nd strategy

The second suggested strategy consists in compensating the plant frequency response to achieve a global open-loop transfer function suitable with the feedback specification. For this purpose, 𝑇𝑇 𝐷𝐷 is adjusted to enhance the phase margin while 𝐾𝐾 𝑃𝑃 setting enables to get the open-loop cross frequency 𝑗𝑗 𝑋𝑋 consistent with the settling time demand. 𝑇𝑇 𝐼𝐼 parameter is set to achieve the specification without impacting the stability margins.

2 nd strategy implementation

Refering to eq. 3, a rough estimate of the desired cross frequency is:

𝑗𝑗 𝑋𝑋 ≅ 3 𝑡𝑡 𝑆𝑆𝑆𝑆,5% = 30 𝑟𝑟𝑑𝑑𝑑𝑑. 𝑠𝑠 -1 .
At this specific frequency, the plant phase is only: 𝜑𝜑 𝑃𝑃 (𝑗𝑗 𝑋𝑋 ) = -187°. With a view to attaining the 8 4

Closed-loop (b)

Open-loop (a) OS% ≈ 0.7% stability and overshoot objectives, a phase margin of no less than 60°is required. Also, a 67° phase compensation is needed. Additionally, the global gain should be 0 𝑑𝑑𝑑𝑑 at the selected cross frequency. Adopting the standard ratio 𝑇𝑇 𝐼𝐼 𝑇𝑇 𝐷𝐷 ⁄ = 4 (suggested by Ziegler and Nichols [START_REF] Ziegler | Optimum settings for automatic controllers[END_REF] or Åström et Hägglund [START_REF] Åström | Revisiting the Ziegler-Nichols step response method for PID control[END_REF] in their heuristic methods) and referring to the PID controller frequency response plotted in Figure 3, lead to adopt the parameter pair (𝐾𝐾 𝑃𝑃 , 𝑇𝑇 𝐷𝐷 ) as: (11.2 , 0.1). The choice of 𝑇𝑇 𝐼𝐼 = 4𝑇𝑇 𝐷𝐷 = 0.4 𝑠𝑠 enables keeping attractive transient behavior while achieving zero steady state error.

Tab 4 sums up the settings defined by this second method while figure 5 shows the feedback time response regarding a step reference. Note that the actual settling time is around the desired value but slightly higher than it. This is caused by the approximate relationship between the desired settling time and the tuned cross frequency (Eq. 3). If needed, and based on this first settings, the PID parameters can be adjusted. 

CONCLUSION AND PERSPECTIVES

This paper aims at providing the key elements to design and tune the PID controller which remains the most commonly used control technique. Firstly, it explains the crucial concepts enabling to develop this controller in any use case. Second, it describes two of the standard approaches used to tune the 3-term controller. To make the document easier to understand and reuse, each approach is developed using the same specific example.

This basic material should facilitate the extensive understanding of PID control, which is a broad scientific and technologic area addressed in numerous scientific books. In addition, on certain matters progress is still being made by research labs over the world. To go further, partial remaining issues are:

1. The robustness of the feedback control performance. For instance, in case where the effective natural frequency is 20% lower than expected, the first approach is more impacted than the second since the optimal zero-pole cancellation is not effective anymore. Figure 6 illustrates the current step response of each method in this peculiar case. 4. When the model characteristics are well known, it is effective to add feedforward terms which would limit the action of the PID controller and hence reduce its deviation. For instance, the steady state control value deduced both from the plant model and the reference value is an appropriate feed-forward term [START_REF] Visioli | Practical PID Control[END_REF]. Indeed, it may induce a larger overshoot than expected using the selected phase margin and damping ratio. Hence, in alternative PID structures, the integrator term still acts on the error variable 𝜀𝜀 while the proportional and derivative terms only acts on the output variable 𝑦𝑦. 

1 .

 1 At Low Frequency (LF), a high open-loop gain |𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑗𝑗𝑗𝑗)|, above LF boundary, implies a closed-loop gain value close to unity and hence a high steady state accuracy and an efficient tracking of LF reference signal even considering model uncertainties.

2 .

 2 At medium frequency (MF), i.e. in the transition band [𝑗𝑗 𝑋𝑋 3 ⁄ , 3𝑗𝑗 𝑋𝑋 ] around the crossfrequency 𝑗𝑗 𝑋𝑋 where |𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑗𝑗𝑗𝑗 𝑋𝑋 )| = 1, it is crucial that the MF slope is as close to -20 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ⁄ as possible to ensure large stability margins.

  At High Frequency (HF), a low open-loop gain |𝐻𝐻 𝑂𝑂𝑂𝑂 (𝑗𝑗𝑗𝑗)|, below HF boundary, implies a low closed-loop gain value and hence a proper filtering of sensor noise as well as a suitable mitigation of the unmodelled fast dynamics of the plant.

Fig. 3 :

 3 Fig. 3: PID controller frequency response 𝑪𝑪(𝒋𝒋𝒋𝒋) based on 𝑲𝑲 𝑷𝑷 = 𝟏𝟏

Tab. 3 :Fig. 4 :

 34 Fig. 4: Step response of the plant in (a) open-loop (dashed line) and (b) in closed-loop tuned

Tab. 4 :Tab. 4 :Fig. 5 :

 445 Fig. 5: Step response of the plant in

5 .

 5 Keeping the closed-loop characteristic equation (and hence the same closed-loop poles), alternative PID structures may be introduced to modify the zeros of the closed loop transfer function. Consequently, it impacts the transient response. The key idea is to avoid the initial pulse in the control signal 𝑢𝑢 induced by the step change in the reference variable 𝑦𝑦 𝑟𝑟𝑟𝑟𝑟𝑟 .

6 .

 6 Discrete PID. Modern PID controller are usually implemented in a digital system such as a microcontroller or a FPGA device[EEEPE 40029]. Digital control requires some specific techniques to at least adapt the continuous control law. In case of specific requirements, defining the correct algebraic equation is an extensive issue based on a deep theory[START_REF] Franklin | Digital Control of Dynamic Systems[END_REF][START_REF] Godoy | RST-controller design: a rational teaching method based on two diophantine equations[END_REF].

Fig. 6 :

 6 Fig. 6: Sensitivity of the closed-loop step response

  The derivative term (𝐾𝐾 𝑃𝑃 𝑇𝑇 𝐷𝐷 𝑠𝑠) which mainly acts at high frequency 𝑗𝑗 > 1 𝑇𝑇 𝐷𝐷 ⁄ providing a stabilizing 90° phase lead which enables to adjust a cross frequency combined with large phase and gain margins.

	3.		
	Low frequency boundary		-Measurement noise attenuation -Fast neglected dynamics rejection
	-Model uncertainties rejection -Steady state error mitigation	x	High frequency boundary
	Transition band ≥ 1 decade	
	Pass band		Stop band
	0°-		
	90°-		-Ensuring large stability margins -Fulfilling the desired settling time
	180°ω	

Tab. 2: the desired feedback specification.

  

		.1: Dynamic model settings	
	𝐻𝐻 𝑃𝑃,0	𝜏𝜏 𝑎𝑎	𝑚𝑚 𝑎𝑎	𝜏𝜏 𝑏𝑏
	0.70	159.2 ms	0.55	15.9 ms
	Tab. 1: dynamic model settings.	
	3.2. Feedback control specification		
	The feedback control goal is threefold (Tab 2).		
	Tab.2: Feedback control specification	
	𝜀𝜀 ∞	𝑡𝑡 𝑆𝑆𝑆𝑆,5%	OS%	
	0.0	100.0 ms	10.0 %	

1. First, obtaining a zero steady state error 𝜀𝜀 ∞ , 2. Second, achieving a settling time 𝑡𝑡 𝑆𝑆𝑆𝑆,5% of the step response on 100 𝑚𝑚𝑠𝑠 time scale, 3. Third, having an overshoot (OS%) in step response lower than 10%.

  2. The extensive use of computer-aided control systems design software tools. Once the PID control guidelines are fully understood and assimilated, these tools can provide optimized settings [EEEPE 40006]. For instance, Linear Quadratic Regulator (LQR) theory can be successfully used to design optimal PID controllers which is an attractive way to address the feedback control sensitivity with respect to noise and parameter uncertainties[START_REF] Das | LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index[END_REF][START_REF] Tamizi | An easy to implement and robust design control method dedicated to multi-cell converters using inter cell transformers[END_REF].

3. The practical saturation of the control variable due to actuator limitation. Whenever the control value reaches its threshold, the plant is in open-loop while the integrator keeps integrating, gradually providing a huge value. It results in large overshoots and possibly unstable response. This phenomenon is known as integrator windup. Many strategies, called anti-windup techniques, can mitigate this problem

[START_REF] Da Silva | Analysis of Anti-windup Techniques in PID Control of Processes with Measurement Noise[END_REF]

.