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Abstract: X-ray grating-based techniques often lead to artifacts in the phase retrieval process
of phase objects presenting very fast spatial transitions or sudden jumps, especially in the field
of non-destructive testing and evaluation. In this paper, we present a method that prevents the
emergence of artifacts by building an interferogram corrected from any variations of intensity
of the object and given as input in the phase extraction process. For illustration, this method is
applied to a carbon fiber specimen imaged by a microfocus X-ray tube and a single 2D grating. A
significant reduction of artifacts has been obtained, by a factor higher than 10. This evaluation has
been performed thanks to the Confidence Map tool, a recently developed method that estimates
the error distribution from the data sets.

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement

1. Introduction

One of the most used techniques to measure the phase shift of the wavefront in X-rays consists
in introducing a modulator between the source and the detector that produces a reference
intensity pattern. This pattern is distorted when the wavefront is aberrant, which is the case after
adding a phase object into the optical path. The reference intensity pattern can be randomly
or regularly distributed: speckle-based techniques [1, 2] use randomly distributed intensity
pattern while grating-based techniques [3–9] use regularly distributed intensity pattern, that
we call interferogram. Among the regular 2D grating based devices, multi-lateral shearing
interferometers (MLSI) offer the benefit of simultaneously measuring the phase shift of the
wavefront in multiple orientations [10–12]. In X-ray phase imaging using MLSI, complex phase
objects with abrupt intensity transitions such as edges or splits, can be strenuous to be phase
sampled by the grating. In the particular case where the transitions of the object evolve faster
than the period of the interferogram, artifacts arise in the phase image. Classically, apodization
technique could be performed in order to reduce artifacts however lowering the spatial resolution
of the phase image [13]. Another recent approach [14] has proposed to combine several images
acquired while spatially shifting the grating in an effort to reduce artifacts and enhance the spatial
resolution, however this method is only applicable in the case of low-acutance phase images. Here
we propose a preventive approach that reduces accurately artifacts in high-acutance phase images
while keeping the spatial resolution unchanged, called MARIO forMethod of Artifacts Reduction
from the Intensity of the Object. After introducing the problems in section 2 based on simulated
data, we present the formalism of this new process in section 3, and demonstrate its interest on
experimental data in section 4. Since the proposed technique is somewhat cumbersome, as it
requires the acquisition of an additional image, we evaluate its interest in a quantitative way by
using the Confidence Map, a tool that we introduced in our previous work [15].
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2. Influence of abrupt phase and attenuation transition in retrieval process:
illustration using MLSI technique

Based on a wavefront approach, simulated data presented in Figure 1 (a,b) summarize the
MLSI procedure. Using a monochromatic divergent point source at 17.48 keV (Mo K𝛼 line,
of wavelength 𝜆 = 7.0929 10−11 m) with a detection plan made of 2048 × 2048 squared pixels
of 6.5 × 6.5 µm2, Figure 1 (a) presents the image of a 2D-checkerboard phase grating with
orthogonal period 𝑝 = 12 µm and a [0 − 𝜋] shift at Mo K𝛼. This image is called the reference
interferogram 𝐼𝑟𝑒 𝑓 . The second image, 𝐼𝑚𝑜𝑑 (Figure 1 (b)) is produced with the same grating
parameters in addition to a canonical object, here a ball of radius of 750 µm made of PMMA
material. Finally, Figure 1 (c) presents the image of the PMMA ball 𝐼𝑜𝑏 𝑗 without the grating,
produced with the same object parameters. The source-detector distance is 𝑑𝑠𝑑 = 60 cm for a
grating and object magnification factor of 𝐺𝑔 = 5 and 𝐺𝑜 = 7 respectively. Since the MLSI
uses a periodic modulator, phase retrieval is classically performed according to the Fourier
formalism and compares the phase shift between 𝐼𝑟𝑒 𝑓 and 𝐼𝑚𝑜𝑑 by studying in their spectrum
variations induced by the object. All corresponding Fourier transforms modulus are presented in
Figure 1 (d,e,f).
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Fig. 1. (a) Simulated single grating image with (b) a PMMA ball and (c) without the
grating. (d,e,f) Corresponding Fourier transform modulus. The Fourier transforms
of 𝐼𝑟𝑒 𝑓 (d) contains the 12 harmonics from the grating (denoted 𝐻𝑘,𝑙 with 𝑘, 𝑙 ∈
{0;±1;±2}). The Fourier transform of 𝐼𝑜𝑏 𝑗 (f) contains a central harmonic 𝐻0,0
holding the absorption and edge overshoot information of the PMMA ball. Its main
frequency range is wide (denoted by the yellow dotted circle). The Fourier transform of
𝐼𝑚𝑜𝑑 (e) results in an overlap between the modulated 𝐻𝑘,𝑙 and 𝐻0,0. In the extraction
window of 𝐻−1,1 and 𝐻1,1 (see red and blue square), extra frequencies from 𝐻0,0 are
taken into account.

The Fourier transform of the reference interferogram (Figure 1 (d)) contains harmonics denoted



𝐻𝑘,𝑙 with (𝑘, 𝑙) ∈ Z2 since the signal 𝐼𝑟𝑒 𝑓 is periodic along several orientations and can be
decomposed into a sum of sinusoidal functions oriented along the same directions. Their
expression can be retrieved by taking the auto-correlation of the diffracted orders generated
by the MLSI [10]. Here, the simulated grating diffracts over 5 orders leading to 12 principal
harmonics in the Fourier plan: 𝐻±1,±1, 𝐻0,±2,𝐻±2,0, 𝐻±2,±2, carrying redundant information of
the wavefront gradient. On the other hand, the Fourier transform of the PMMA ball (Figure 1 (f))
contains a central harmonic denoted 𝐻0,0 holding the absorption and edge overshoot information
of the object. The frequency extension of 𝐻0,0 is wide in the Fourier plan (see the yellow circle)
since the intensity of the PMMA ball evolves fast, especially at its edges. The Fourier transform
of the modulated interferogram 𝐼𝑚𝑜𝑑 (Figure 1 (e)) thus results in a frequency overlap between
𝐻0,0 and all modulated harmonics 𝐻𝑘,𝑙 of the grating.

To retrieve the phase gradient 𝐺𝑘,𝑙 (Figure 2 (a,b)), one has to perform the argument of the
inverse Fourier transform of 𝐻𝑘,𝑙 on an extraction window centered at the carrier frequency 𝑓𝑘,𝑙
(see corresponding red and blue rectangles in Figure 1 (e)). The size of the extraction window is
given by the space between two consecutive harmonics in the Fourier plan [16]. The Fourier
derivative theorem is then applied to retrieve the phase image 𝜙𝑘,𝑙 (Figure 2 (c)) from a couple of
two orthogonal gradients (𝐺𝑘,𝑙 , 𝐺−𝑙,𝑘). In this example, the extraction support of the harmonics
𝐻𝑘,𝑙 are composed of the true signal and the residual signal from 𝐻0,0, denoted 𝑅𝑒𝑠𝐻0,0 . These
extra frequencies in the extraction window lead to artifacts in the gradient estimation 𝐺𝑘,𝑙 . Such
artifacts arise in the gradients images 𝐺−1,1, 𝐺1,1 at the edge of the PMMA ball (Figure 2 (a,b)),
materialized by phase jumps (also called phase dislocations) and affecting the final phase image
(Figure 2 (c)). A similar behavior is observed for each other phase gradient measured by the
MLSI.
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Fig. 2. (a) Gradient 𝐺−1,1 and (b) gradient 𝐺1,1 showing artifacts at the edge of the
object, region where the edge intensity overshoot evolves faster than the interferogram
periodicity. (c) Phase retrieved 𝜙1,1 from the gradients 𝐺−1,1 and 𝐺1,1 showing the
influence of the artifacts from 𝐺−1,1 and 𝐺1,1.

3. Reduction of artifacts in the phase gradients estimation

Artifacts in phase gradient images arise as soon as frequencies from two or more harmonics
overlap in the Fourier plan. The major contributor to the frequency overlap is the central
harmonic 𝐻0,0 since its amplitude is the highest in X-ray imaging. Thus, we propose to build
an interferogram 𝐼𝑐𝑜𝑟𝑟 that does not hold any intensity information from the sample in order
to minimize the amplitude of 𝐻0,0. This can be done simply by subtracting the modulated
interferogram 𝐼𝑚𝑜𝑑 by the attenuation image of the sample 𝐼𝑜𝑏 𝑗 . The new interferogram 𝐼𝑐𝑜𝑟𝑟 is
built according to the following expression:

𝐼𝑐𝑜𝑟𝑟 (𝑥, 𝑦) = 𝐼𝑚𝑜𝑑 (𝑥, 𝑦) − 𝛼𝐼𝑜𝑏 𝑗 (𝑥, 𝑦) + 𝛽 , (1)



where 𝛼 ≤ 1 is a constant that normalizes the dynamics of the attenuation image 𝐼𝑜𝑏 𝑗 to match
the dynamics of 𝐼𝑚𝑜𝑑 , and 𝛽 > 0 is a constant for readjusting the dynamics of 𝐼𝑐𝑜𝑟𝑟 around the
mean gray value of the initial interferogram 𝐼𝑚𝑜𝑑 . The expression of 𝛼 and 𝛽 is given below :

𝛼 =
< 𝐼𝑚𝑜𝑑 (𝑥, 𝑦) >Ω

< 𝐼𝑜𝑏 𝑗 (𝑥, 𝑦) >Ω

, (2a)

𝛽 =< 𝐼𝑟𝑒 𝑓 (𝑥, 𝑦) >Ω
, (2b)

where Ω refers to a same region of interest {𝑥𝑖 , 𝑦 𝑗 } in each image, defined in an area outside
the sample; < □ >

Ω
corresponds to the mean gray value of a given intensity inside Ω. The new

interferogram 𝐼𝑐𝑜𝑟𝑟 is then compared to the reference one 𝐼𝑟𝑒 𝑓 and phase retrieval is performed
conventionally. Figure 3 illustrates the construction of the new interferogram 𝐼𝑐𝑜𝑟𝑟 and the phase
gradient extraction process.
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Fig. 3. Illustration of the construction of the corrected interferogram 𝐼𝑐𝑜𝑟𝑟 (see
equation 1) and of the phase gradient extraction process. ℱ refers to the Fourier
transform and Ω𝑖 refers to a region of interest in each image used to calculate the mean
intensity value of 𝐼𝑟𝑒 𝑓 , 𝐼𝑚𝑜𝑑 and 𝐼𝑜𝑏 𝑗 from which 𝛼 and 𝛽 are derived.

Figure 4 presents the phase retrieval results after performing the proposed MARIO. Compared
to the images presented in Figure 2, the amplitude of the artifacts is significantly reduced in the
gradient images (Figure 4 (a,b)) leading to a better restitution of the edges of the ball in the phase
image (Figure 4 (c)).
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Fig. 4. (a) Gradient 𝐺−1,1 and (b) gradient 𝐺1,1 obtained after applying the proposed
MARIO process. (c) Phase retrieved 𝜙1,1 from the gradients𝐺−1,1 and𝐺1,1. Compared
to the images shown in Figure 2, artifacts are significantly reduced.

The gain of the proposed MARIO is evaluated by comparing the retrieved phase 𝜙𝑟 and the
theoretical phase 𝜙𝑡 of the same PMMA ball at 17.48 keV. The phase residual is therefore the
difference at each point (𝑥, 𝑦) between 𝜙𝑡 and 𝜙𝑟 . The Root Mean Square Error (𝑅𝑀𝑆𝐸) is then



performed:

𝑅𝑀𝑆𝐸 =
1
𝑁

√√√𝑁−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

(
𝜙𝑡 (𝑥, 𝑦) − 𝜙𝑟 (𝑥, 𝑦)

)2
, (3)

where 𝑁 denotes the number of points of the phase image along each axis. The 𝑅𝑀𝑆𝐸

of the raw phase image 𝜙1,1 retrieved with the raw gradients (𝐺−1,1, 𝐺1,1) (see Figure 2) is
equal to 𝑅𝑀𝑆𝐸 (𝜙1,1) = 2.73 πrad. After performing the proposed MARIO (see Figure 4),
𝑅𝑀𝑆𝐸 (𝜙1,1) = 0.12 πrad that is a reduction of the phase error by 22.0. Analogously, the
𝑅𝑀𝑆𝐸 of the raw phase image 𝜙2,0 retrieved with the raw gradients (𝐺0,2, 𝐺2,0) (not displayed
for better succinctness) is equal to 𝑅𝑀𝑆𝐸 (𝜙2,0) = 1.84 πrad. After performing the proposed
MARIO, 𝑅𝑀𝑆𝐸 (𝜙2,0) = 0.18 πrad that is a gain of 10.0.

4. Application on experimental image

After demonstrating the MARIO process on a model case, we apply the method on an experimental
case, the X-ray imaging of a Carbon Fiber Reinforced Polymer (CFRP). This sample, manufactured
in a controlled laboratory environment as model for lightning damage experiment [17], is made of
sixteen plys of aligned carbon fibers with a diameter of 12 ± 3 µm (successive plys are oriented at
-45◦; +45◦) surrounded by Epoxy resin. This sample is particularly well adapted to highlight the
influence of fast transitions on the phase retrieval process for two reasons: central holes with very
steep edges and a high resolution structure linked to the weaving. The sample is imaged using the
MLSI bench shown in Figure 5. It is composed of a single 2D checkerboard grating manufactured
by the Microworks company. The 𝜋-phase shift of the grating is induced by Gold material of
3.49 µm thickness deposited on a polymer substrate. The X-ray source is a divergent microfocus
tube (Feinfocus FXE-160.51) of a measured spot size of 5.5 µm with a solid transmitted Tungsten
anode imaged by a sCMOS high resolution detector (Hamamatsu C12819-102-U) with a Gadox
scintillator of thickness of 20 µm. Here, 𝑑𝑠𝑑 = 57 cm giving a grating magnification of 𝐺𝑔 = 3.3
and an object magnification of 𝐺𝑜 = 2.3. The grating orthogonal period and the pixel size of the
detector remain unchanged from the simulation study.

Fig. 5. CFRP sample with the imaged region denoted by the red dashed line rectangle
(left). Experimental bench with a microfocus X-ray source, 2D-gratings, CFRP sample
and a high-resolution detector (right).

Experimental data are presented in Figure 6, acquired in a specific area of the CFRP (spotted
by the red dashed line rectangle in Figure 5). The left column (Figure 6 (a,d)) presents the image
of the CFRP and its Fourier transform modulus. The distribution of the central harmonic 𝐻0,0
in the Fourier plan reveals two regions: the first one is linked to the absorption of the carbon



𝐼𝑜𝑏𝑗

500 µm

(a)

𝐼𝑚𝑜𝑑

500 µm

(b)

𝐼𝑐𝑜𝑟𝑟

500 µm

(c)

𝐻0,0

(d)

𝐻1,1𝐻−1,1

(e)

𝐻1,1𝐻−1,1

(f)

Fig. 6. (a) Raw image of the CFRP sample alone. (b) Raw image of the grating and the
CFRP sample without and (c) with the application of the MARIO process. Bottom row,
the corresponding Fourier transform. The green and yellow arrows in (d) relate to the
spectral distribution of respectively the edge intensity overshoot and the absorption of
the CFRP. This leads in (e) to a frequency overlap with the harmonics of the grating. In
(f), the influence of the CFRP spectral distribution has been minimized according to
the MARIO process.

fibers, oriented at -45◦; +45◦ (see orange arrow in Figure 6 (d)). Since they induce fast intensity
transitions, it results in a wide distribution in the Fourier plan. The second region (see green
arrow) is linked to the edge intensity overshoot of the CFRP (see zoom box in Figure 6 (a)) and
is also of wide spectral distribution.

The middle column (Figure 6 (b,e)) presents the image of the CFRP acquired after placing
the grating into the optical path (see zoom box in Figure 6 (b)) and its associated Fourier
transform modulus. The harmonics 𝐻𝑘,𝑙 of the grating are distributed in the same way as for the
simulation study. A frequency overlap between the harmonics 𝐻𝑘,𝑙 and the central harmonic 𝐻0,0
is noticeable. Moreover, the amplitude of the 𝐻𝑘,𝑙 harmonics is lower than that the amplitude of
𝐻0,0 since the fringe intensity contrast is lower than the sample intensity contrast.

The right column (Figure 6 (c,f)) presents the interferogram 𝐼𝑐𝑜𝑟𝑟 corrected by the MARIO
process and its associated Fourier transform modulus. The attenuation of the sample as well
as its edge intensity overshoot has been removed, highlighted by a more uniform gray level in
the zoom box in Figure 6 (c). In the associated Fourier transform image, the amplitude of 𝐻0,0
is minimized while maintaining the amplitude of all harmonics 𝐻𝑘,𝑙 unaffected. It should also
be noted that subtracting the intensity of the object in the interferogram does not enhance the
fringes contrast in the areas where the attenuation of the object is the highest, keeping the phase
measurement more sensitive to the noise in these regions.

The corrected interferogram 𝐼𝑐𝑜𝑟𝑟 is then given as an input in the phase retrieval process.



Experimental results are presented in Figure 7, without (top row) and with (bottom row) the
MARIO process. Since the harmonics 𝐻−1,1 and 𝐻1,1 have the highest signal-to-noise ratio in
the Fourier plan, they are used to display the phase gradients 𝐺−1,1 and 𝐺1,1. In the raw phase
gradients images (Figure 7 (a,b)), artifacts arise at the edges of the hole (see green arrows).
Moreover, artifacts from the oriented carbon fibers (-45◦; +45◦) arise throughout the sample,
evolving in the direction of the measured gradient (see orange arrows in Figure 7 (a,b)). In the
phase image (Figure 7 (c)), these artifacts induce a textured aspect of the sample where slowly
evolving gray level variations give a mottled appearance. In the gradients images processed by
MARIO (Figure 7 (d,e)), edge artifacts as well as carbon fibers artifacts are significantly reduced,
cleaning the phase image from nearly all dislocations (Figure 7 (f)).
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Fig. 7. Top row, uncorrected experimental results: (a) gradient 𝐺−1,1 and (b) gradient
𝐺1,1. (c) Phase image 𝜙1,1 retrieved from the gradients in (a,b). The green arrows point
the edge artifacts while the orange arrows point the artifacts in the object. Bottom row:
corresponding corrected images by the MARIO process. All artifacts are significantly
reduced in the gradients and phase images.

The gain of the proposed MARIO on experimental data is evaluated by performing the
Confidence Map [15]. This method gives an estimation of the experimental errors for any phase
image retrieved by a gradient-based device, taking advantage of the fact that the MLSI measures
at least two orthogonal gradients simultaneously. So, it is possible to calculate a phase derivative
closure map by applying the curl operator. As we assume that the wavefront issued from the
sample is a continuous surface, the value of the phase derivative closure map should be equal to
zero in all points. However in real conditions, this calculation is different from zero and suffer
from several errors contributions: noise 𝜖𝑛, under-sampling 𝜖𝑢 or dislocations 𝜖𝑑 . By analyzing
the histogram of the phase derivative closure map, each error type is assigned a threshold value.
The Confidence Map is built and colors the error pixels according to their type. For instance,
phase dislocations are displayed with red pixels, under-sampling errors with blue pixels and
noise with cyan pixels. Therefore, the Confidence Map alerts the observer of the presence of



artifacts that could affect his interpretation of the image. Figure 8 (a) presents the Confidence
Map of the CFRP raw phase image superimposed to the phase image (see Figure 7 (c)). 𝜖𝑑 alerts
are displayed here in red, 𝜖𝑢 in blue, and 𝜖𝑛 are not displayed for better visualization. These
results are the same as the ones presented in our previous work [15]. Figure 8 (b) presents the
Confidence Map of the CFRP phase image after performing MARIO process; a clear reduction
of the phase dislocation alerts 𝜖𝑑 as well as the under-sampling alerts 𝜖𝑢 are observed inside
and at the edge of the sample. For better visualization, a short footage is given as supplemental
materials. The percentage of dislocation alerts over the phase image, defined as the ratio between
the red pixel amount and the total pixel amount of the image, is equal to 𝜖𝑑 = 3.2% before any
treatment. This ratio decreases to 0.2% after the applying the MARIO process. In the meantime,
the percentage of under-sampling alerts decreases from 𝜖𝑢 = 30.8% to 0.7%, concluding on the
significant improvement of the phase image quality. The associated gains are listed in table 1.

(a) (b)

Fig. 8. (a) CFRP raw phase image (see Figure 7 (c)) superimposed to its associated
Confidence Map. The under-sampling alerts 𝜖𝑢 are displayed in blue and phase
dislocation alerts 𝜖𝑑 are displayed in red. (b) CFRP phase image processed by MARIO
(see Figure 7 (f)) superimposed to its associated Confidence Map. A clear reduction of
the alerts is noticeable (see Table 1).

Under-sampling alerts 𝜖𝑢 (%) Dislocation alerts 𝜖𝑑 (%)

Without MARIO 30.8 3.2

With MARIO 0.7 0.2

Gain 44.0 16.0

Table 1. Table of the Confidence Map values of the CFRP phase image before and after
MARIO and associated gains.

5. Conclusion

In this paper, artifacts in phase images have been studied through the Fourier formalism. We
have demonstrated that they are mainly related to the extension of the central harmonic which
originates from the attenuation and edge intensity overshoot of the object. These additional



frequencies overlap with the modulated harmonics of the grating, making the phase retrieval
process less robust. This observation has led to the generation of a preventive computing
approach, aiming at removing the parasitic frequencies from the grating ones. We call it Method
of Artifacts Reduction from the Intensity of the Object (MARIO). We have applied this method in
the case of a Carbon Fiber Reinforced Polymer (CFRP) used in the aeronautic field and we have
demonstrated quantitatively, thanks to the Confidence Map, that the quality of the phase image
could be significantly improved, removing efficiently nearly all artifacts in the image. Even if this
results is a heavier process due to the acquisition of an additional image, the significant reduction
of artifacts makes it a particularly suitable tool for the non-destructive testing and evaluation field,
which is often interested in complex objects with abrupt transitions or high resolution texture.
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