
HAL Id: hal-03835136
https://hal.science/hal-03835136

Preprint submitted on 31 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fluid-rigid body interaction using the finite element
method and ale formulation : framework,

implementation and benchmarking
Luca Berti, Vincent Chabannes, Laetitia Giraldi, Christophe Prud’Homme

To cite this version:
Luca Berti, Vincent Chabannes, Laetitia Giraldi, Christophe Prud’Homme. Fluid-rigid body inter-
action using the finite element method and ale formulation : framework, implementation and bench-
marking. 2022. �hal-03835136�

https://hal.science/hal-03835136
https://hal.archives-ouvertes.fr

FLUID-RIGID BODY INTERACTION USING THE FINITE ELEMENT
METHOD AND ALE FORMULATION: FRAMEWORK,

IMPLEMENTATION AND BENCHMARKING

Luca Berti
Cemosis, IRMA UMR 7501, CNRS

Université de Strasbourg, France
berti@math.unistra.fr

Vincent Chabannes
Cemosis, IRMA UMR 7501, CNRS

Université de Strasbourg, France
chabannes@math.unistra.fr

Laetitia Giraldi
CALISTO team, INRIA

Université Côte d’Azur, France
laetitia.giraldi@inria.fr

Christophe Prud’homme
Cemosis, IRMA UMR 7501, CNRS

Université de Strasbourg, France
prudhomm@math.unistra.fr

ABSTRACT

We consider the problem of moving rigid bodies in a Newtonian fluid. The fluid-solid problem
is solved using the finite element method, and the solution is based on the Arbitrary-Lagrangian-
Eulerian description of the fluid with conforming treatment of moving interfaces. Numerical exper-
iments are discussed, and the results are validated with the literature. The results are obtained with
the Feel++ open source library [17].

Introduction

The simulation of moving rigid particles immersed in a fluid is a fundamental component in numerical simulations of
industrial systems like fluidised bed reactors [9] or oil wells [18]. Recovering the motion of rigid bodies is also a first
step in the numerical simulation of deformable immersed bodies, e.g. biological organisms or swimming robots.

Different methods have been proposed to simulate moving rigid bodies in a fluid, as various difficulties are associated
to this problem.

When the Reynolds number is high and the fluid is turbulent, in order to capture the vortices and their effects on the
immersed object, spectral methods are often used, since they solve accurately the different modes that appear in the
flow [19, 2, 21]. Even when the flow is laminar and the Reynolds number is low, spectral methods are effective (see
for instance [15], where the authors investigate the sedimentation of particles with different shapes). Other approaches
allowing to solve the fluid-solid interaction problem are the Lattice Boltzmann method, where the discrete Boltzmann
equations are solved to obtain the fluid velocity distribution [23], or the finite volume method [3].

In order to follow the motion of the immersed object, different coupling strategies have been devised. The immersed
boundary method is one of the possible approaches [16, 20]. It represents the object via an implicit equation, and then
recovers its displacement by using penalty methods on a fixed grid. In [11], an extension of the immersed boundary
method (penalized immersed boundary method) is proposed to handle the motion of massive rigid bodies. In this case,
the rigid body is represented by two components, linked together with springs of large stiffness: the first component,
which interacts with the fluid, is massless, and it transfers the fluid forces and torques to the second massive component,
which instead moves as if it was in vacuum.

In this paper, we focus on the Arbitrary-Lagrangian-Eulerian formulation of the fluid problem [5], and we solve it
using the finite element method. This approach was also proposed in [13, 12] to study the motion of multiple rigid
particles in a Navier-Stokes flow. It consists in partially decoupling the motion of the fluid domain from the motion

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

of the fluid continuum to follow the motion of the solid and to deform the mesh in agreement with the motion of
the latter. This choice leads us to address questions of mesh adaptation, interpolation between meshes and interface
discretization in order to ensure the conformity of the fluid-solid interface and good accuracy of our results. The
method presented below is validated on benchmarks and examples from the literature, and its implementation is open
source in the Feel++ GitHub repository1[17].

1 Rigid body moving in a fluid

1.1 Mathematical formulation

The fluid model In this article, we consider rigid bodies immersed in a Newtonian incompressible fluid where the
fluid-solid interface is fitted and conforming, and the motion of the fluid domain is described using the Arbitrary-
Lagrangian-Eulerian (ALE) frame [8].

LetFt ⊆ Rd, d ∈ {2, 3}, denote the domain occupied by the fluid at time t, where t ∈ [0, T]. LetAt : F0 → Ft be the
ALE map relating the current fluid domain with the reference domain, defined as At(X) = A(t,X) = X + x(t,X)
with x(t,X) the domain’s displacement from its reference position. Let u : Ft× [0, T]→ Rd and p : Ft× [0, T]→ R
the fluid velocity and (hydrostatic) pressure. Let ρf and µ be the fluid constant density and dynamic viscosity.

Using the ALE frame, the evolution of the fluid continuum is partially decoupled from the evolution of the domain
and the ALE time derivative is substituted to the Eulerian one ∂tu as ∂tu = ∂tu|A− (∂tx ·∇)u = ∂tu|x− (uA ·∇)u.
The first term corresponds to the time variation of the fluid’s velocity as seen from the ALE frame, while the second
accounts for the relative velocity between the fluid continuum and the ALE frame.

The Navier-Stokes equations in moving domain, describing the evolution of the incompressible fluid continuum, are

ρf∂tu|A + ρf

(
(u− uA) · ∇

)
u = −∇p+ µ∆u, in Ft,

∇ · u = 0, in Ft.
(1)

The rigid body equations The dynamics of a rigid body is described by the motion of its center of mass and the
evolution of its orientation. In the cases we will consider, the motion is caused by gravity and fluid stresses, that act as
the external forces Fe and torques Te in the Newton and Euler equations describing the time evolution of the center of
mass and body orientation.

Let S ⊂ Rd be the domain occupied by the rigid solid, ρ ∈ R>0 its density and m =
∫
S ρ its mass. Let xCM =

m−1
∫
S ρx be its center of mass, I =

∫
S ρ(x − xCM) ⊗ (x − xCM) its inertia tensor. Let U : [0, T] → Rd and

ω : [0, T] → Rd∗ , where d∗ = 1 if d = 2 or d∗ = 3 if d = 3, be the linear and angular velocity of the rigid body as
seen from the laboratory frame, Fe ∈ Rd, Te ∈ Rd∗ be the external forces and torques acting on the body. Let θ ∈ Θ,
where Θ = [−π, π] if d = 2, or Θ = [−π, π]× [0, π]× [0, π/2] if d = 3, be the angles that provide the orientation of
the body. Let R(θ) : Θ→ Rd×d be the orthogonal matrix describing the change of reference frame between the body
frame and the laboratory frame. The Newton and Euler equations, describing the dynamics of a three-dimensional
rigid body, are

m
d

dt
U = Fe −

∫
∂S
−p~n+ 2µ(∇u+∇uT)~n,

d

dt
(RIRTω) = Te −

∫
∂S

[−p~n+ 2µ(∇u+∇uT)~n]× (x− xCM),

(2)

where
d

dt
θi = ωi, for i ∈ {x, y, z},

R = Rz(θz)Ry(θy)Rx(θx),
(3)

and R(θi) denotes the rotation matrix around axis i ∈ {x, y, z} of angle θi. In the two-dimensional case, I can be
considered as a scalar quantity and R(θ) has the form

R(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, (4)

1https://github.com/feelpp/feelpp.

2

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

while in the three-dimensional case

Rz(θz) =

[
cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

]
, Ry(θy) =

[
cos(θy) 0 sin(θy)

0 1 0
− sin(θy) 0 cos(θy)

]
,

Rx(θx) =

[
1 0 0
0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

]
. (5)

Fluid-solid interaction The interaction between the fluid and the rigid body is described by two continuity condi-
tions: the matching of the fluid and rigid body velocity at the common interface, and the transmission of fluid forces
and torques to the immersed solid. The first condition translates as

u = U + ω × (x− xCM) on ∂Ft ∩ ∂S, (6)

while the second requires that, in absence of any other external forces,

m
d

dt
U =

∫
∂S
p~n− 2µ(∇u+∇uT)~n,

d

dt
(RIRTω) =

∫
∂S

[p~n− 2µ(∇u+∇uT)~n]× (x− xCM), (7)

where ~n is the unit outward normal to ∂S. The velocity at the body’s interface is also needed to compute the displace-
ment x(t,X) in the definition of At(X). In order to find x(t,X) we solve

∇ · ([1 + τ(X)]∇Xx(t,X)) = 0 in F0,

x(t,X) = g(t,X) in ∂F0,
(8)

where g(t,X) =
∫ t

0
U + ω × (X −XCM) is the rigid displacement of S and τ(X) is a space-dependent coefficient

whose definition is reported to subsection 1.2, where we discuss the discretized problem. In this last equations one
sees how the rigid body impacts the motion of the fluid domain, and that satisfying the coupling condition will require
to iterate between the solution of the fluid equations and the geometry of the fluid domain.

Variational formulation The variational formulation of equations (1)-(2)-(8) is proposed in this paragraph to illus-
trate the choice of test functions that avoids the numerical computation of fluid stresses at the boundary of the solid.
The formulation will also be the starting point for the finite element discretization of the problem.

Following [12], let us consider the trial functions u ∈ [H1(Ft)]d, p ∈ L2(Ft), U ∈ [L2([0, T])]d, ω ∈ [L2([0, T])]d
∗
,

and test functions ũ ∈ [H1(Ft)]d, p̃ ∈ L2(Ft), Ũ ∈ [L2([0, T])]d, ω̃ ∈ [L2([0, T])]d
∗

such that ũ = Ũ+ω̃×(x−xCM)
on ∂S. By encoding velocity continuity at the interface in the test space, the following equality holds∫

∂S
[−p~n+ 2µ(∇u+∇uT)~n] · ũdS =∫

∂S
[−p~n+ 2µ(∇u+∇uT)~n] · Ũ dS +

∫
∂S

[−p~n+ 2µ(∇u+∇uT)~n] · [ω̃ × (x− xCM)] dS, (9)

which relates the boundary terms containing fluid stresses in the fluid momentum, Newton and Euler equations. The
numerical computation of these boundary integrals is avoided thanks to the previous equality, as they can be substituted
by the volume integrals of the corresponding equations, that is∫

Ft
ρf

(
∂tu|A + (u− uA) · ∇u

)
· ũ dx+ 2µ

∫
Ft

[(∇u+∇uT)] : [(∇ũ+∇ũT)] dx−
∫
Ft

p∇ · ũ dx

+m
dU

dt
· Ũ +

d[R(t)IR(t)Tω]

dt
· ω̃ = 0. (10)

The variational formulation of (8) reads: find x ∈ [H1(F0)]d such that, for all φ ∈ [H1(F0)]d, the following equation
holds ∫

F0

([1 + τ(X)]∇Xx(t,X)) : ∇φ(X) = 0, (11)

and x(t,X) =
∫ t

0
U + ω × (X −XCM) on ∂S.

3

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

1.2 Numerical method

Let T0 be the triangulation discretizing the fluid domain F0 at time t = 0, which coincides with the computational
domain F0. Since the computational domain Ft is moving according to the ALE maps At, also the triangulation will
be moving according to a discrete approximation of the ALE maps, that we denote Ath. For each time instant tn,
0 ≤ n ≤ nT , in which the time interval [0, T] is discretized, it is possible to define the triangulation Ttn = Atnh (T0).

Let unh and pnh denote the discrete approximations of the velocity and pressure fields at time tn. The discrete approxi-
mation spaces for the fluid variables are now defined: as the domain is time dependent, the functional spaces are time
dependent as well via the discrete ALE maps. In particular, they are related to the discrete approximation spaces on
the reference domain via Ath. The velocity and pressure spaces are, respectively,

V th = {v : Ft → Rd, v = v̂ ◦ (Ath)−1, v̂ ∈ [H1(F0)]d ∩ [PN (F0)]d}
Qth = {p : Ft → R, p = p̂ ◦ (Ath)−1, p̂ ∈ PN−1(F0)}.

(12)

We choose the Taylor-Hood finite element spaces V th −Qth with N = 2 for our finite element simulations. Therefore,
the velocity is discretized using continuous piecewise quadratic finite elements, and the pressure is discretized using
continuous piecewise affine finite elements. The discrete variational formulation of the Navier-Stokes equations at
time tn+1 requires finding (un+1

h , pn+1
h) ∈ V

tn+1

h × Qtn+1

h , (Un+1, ωn+1) ∈ Rd × Rd∗ such that, for all (ũ, p̃) ∈
V
tn+1

h ×Qtn+1

h , (Ũ , ω̃) ∈ Rd × Rd∗∫
Ftn+1

ρf∂tu
n+1
h |A · ũ+

∫
Ftn+1

ρf ((un+1
h − uAn+1

h) · ∇xun+1
h) · ũ+

d[R(t)IR(t)Tω]

dt

n+1

· ω̃ +m
dU

dt

n+1

· Ũ

+ 2µ

∫
Ftn+1

[(∇un+1
h +∇un+1,T

h)] : [(∇ũ+∇ũT)] dx−
∫
Ftn+1

pn+1
h ∇x · ũ =

∫
Ftn+1

fn+1 · ũ, (13)

∫
Ftn+1

p̃∇x · un+1
h = 0. (14)

Let us now denote the degrees of freedom that belong to the boundary of the rigid body by the subscript Γ as uΓ, pΓ

and the others by the subscript I as uI , pI .

As we have previously said, boundary terms of the form
∫
∂S(−pI + 2µD(u))~n · ũ dS are never computed in the

assembly of the system matrix. Instead of building the finite element basis spanning the constrained test space of
(ũ, Ũ , ω̃) ∈ [H1(Ftn+1)]d × Rd × Rd∗ that satisfies boundary conditions u = U + ω × (x − xCM) on ∂S, we first
use the standard finite element bases to discretize equations (13)-(14), getting

AII AIΓ 0 0 BTI
AΓI AΓΓ 0 0 BTΓ

0 0 T 0 0
0 0 0 M 0
BI BΓ 0 0 0

uI
uΓ

U
ω
p

 =

0
0
0
0
0

 , (15)

where

AJK =

∫
Ftn+1

ρf (∂tu
n+1
h |A)J · ũK +

∫
Ftn+1

ρf ((un+1
h − uAn+1

h) · ∇xun+1
h)J · ũK+

2µ

∫
Ftn+1

D(un+1
h)J : D(ũK) dx, for J,K ∈ {I,Γ}

BI = −
∫
Ftn+1

pn+1
h ∇ · ũI dx BΓ = −

∫
Ftn+1

pn+1
h ∇ · ũΓ dx,

T = mI, M = RnIn(Rn)T .

Then, the operator

P =

I 0 0
0 P̃U P̃ω
0 I 0
0 0 I

 ,
4

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

that satisfies the equation
(uI , uΓ, U, ω)T = P (uI , U, ω)T

is built, as it performs the change of finite element basis from the standard Lagrange basis to the one satisfying
ũ = Ũ + ω̃ × (x − xCM) on ∂S. In the previous matrix, P̃U and P̃ω are the interpolation operators that enable the
expression of uΓ as a function of U and ω. In order to detail them, let us define the spaces

V0 = {v ∈ C0(∂Sh), v
∣∣
E
∈ [P0(E)]d ∀E ∈ ∂Sh},

V1 = {v ∈ C0(∂Sh), v
∣∣
E
∈ [P1(E)]d ∀E ∈ ∂Sh}.

Let us define the polynomial space [PN (∂Sh)]d, where N = 2 is the local polynomial degree of the fluid velocity
approximation. The operator P̃U

∣∣ : [PN (∂Sh)]d → V0 is defined by∫
∂Sh

u · ϕdx =

∫
∂Sh

U · ϕdx, ∀ϕ ∈ V0, (16)

and the operator P̃ω
∣∣ : [PN (∂Sh)]d → V1 is defined in an analogous manner by∫

∂Sh

u · ϕdx =

∫
∂Sh

ω × (x− xCM) · ϕdx, ∀ϕ ∈ V1. (17)

After extending the operator P to P in order to include the pressure degrees of freedom,

P =

I 0 0 0
0 P̃U P̃ω 0
0 I 0 0
0 0 I 0
0 0 0 I

 ,
it is possible to compute the matrix expressing the coupled fluid-rigid body problem by conjugation with P

PT

AII AIΓ 0 0 BTI
AΓI AΓΓ 0 0 BTΓ

0 0 T 0 0
0 0 0 M 0
BI BΓ 0 0 0

P =

AII AIΓP̃U AIΓP̃ω BTI

P̃TUAΓI P̃TUAΓΓP̃U + T P̃TUAΓΓP̃ω P̃TUB
T
Γ

P̃Tω AΓI P̃Tω AΓΓP̃U P̃Tω AΓΓP̃ω +M P̃Tω B
T
Γ

BI BΓP̃U BΓP̃ω 0

 ,
and the right-hand side of the coupled problem by multiplying it by PT

PT

0
0
Fe
Me

0

 . (18)

As the rigid body moves, the geometry of the fluid domain changes. In our framework we supposed the interface
between the solid and fluid domains to be conforming, and the evolution of the fluid domain to be described in the
ALE frame. In the case of small mesh deformations, equation (11) is solved using piecewise linear continuous finite
elements over the triangulated reference fluid domain F̂ht0 , where t0 is the reference time, i.e. the latest time instant in
which remeshing has been realised. Let us define the finite element spaces

Xh
φ̄ = {φ

∣∣φ ∈ [H1(F̂ht0)]d ∩ [P1(F̂ht0)]d, φ = φ̄ on ∂F̂ht0},

Xh
0 = {φ

∣∣φ ∈ [H1
0 (F̂ht0)]d ∩ [P1(F̂ht0)]d}.

(19)

The computational domain Fhtn+1
= Atn+1

h (F̂ht0) is obtained by computing the discrete ALE map Atn+1

h (X) =

X +
∑tn+1

t=t0
φth(Xt) via the solution of∫

Fh
0

(1 + τ(X))∇φtn+1

h (X) : ∇v dx = 0, ∀v ∈ Xh
0 ,

φ
tn+1

h = φ̄tn+1 , on ∂F̂ht0 .
(20)

5

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

Here φ̄tn+1(Xt0) =
∫ tn+1

tn
U + ω × (Xt0 + φtn(Xt0) − XCM

t0 − φtn(XCM
t0)) dt and τ is a piecewise constant

coefficient, defined on each element e of the domain’s discretization as τ
∣∣
e

= (1 − Vmin/Vmax)/(Ve/Vmax), where
Vmax, Vmin and Ve are the volumes of the largest, smallest and current element of the domain discretization [10].
This discontinuous coefficient takes large values for elements of smaller volume, so that the mesh deformation is
mainly supported on larger elements. The time integration of φ̄tn+1 is performed numerically in two steps: first, the
contributions coming from the linear velocity are integrated to compute the new center of mass φ̄tn+1

1 (XCM
t0)

θn+1 = (tn+1 − tn)ωn + θn, Rn+1 = R(θn+1),

φ̄
tn+1

1 (Xt0) = (tn+1 − tn)Un;
(21)

second, the orientation of the body is computed using the new center of mass

φ̄tn+1(Xt0) ≈ R(θn+1)(Xt0 + φ
tn+1

1 (Xt0) − φ
tn+1

1 (XCM
t0)) + φ

tn+1

1 (XCM
t0) − Xt0 . (22)

Rigid body velocities U and ω are approximated at tn since their values at tn+1 are computed during the solution of
the fluid problem on Fhtn+1

. Few fixed point iterations are performed at each time step to ensure the convergence of
the body’s position.

2 Computational aspects

Mesh management The ALE formulation of the problem with conforming interface forces us to monitor the quality
of the mesh, since following the motion of the rigid bodies deforms the triangulation of the fluid’s computational
domain. Mesh quality is computed for each two dimensional simplex, using the fair measure

q2D =
4
√

3A

|e1|2 + |e2|2 + |e3|2
, (23)

that depends on the area A of the simplex, and the measures of its edges |ei|, i ∈ {1, 2, 3} [7]. For a regular simplex
q2D = 1, and in general q2D ≤ 1.

Until the minimum of the mesh quality field falls below a certain threshold value (0.4 in the simulations that we will
present), the mesh is just deformed by extending the boundary deformation inside the computational domain. Since
remeshing is a computationally expensive task, we exploit few techniques to maintain a good mesh quality as long as
possible. The first one was already discussed above: when computing the ALE map, a piecewise constant coefficient
τ(X) is prescribed to distribute most of the domain deformation on larger simplexes; in conjunction to this, a mesh
size of increasing value, smaller on the boundary of the solid and larger on the boundaries of the fluid domain, can
be prescribed. This second technique has a twofold advantage: a better description of the flow in proximity of the
body and a larger simplex deformation far from the immersed solid, which delays remeshing further. In our case,
the computation of the variable mesh size is based on the Fast Marching Method for the computation of the distance
function from the immersed body [14].

When mesh quality falls below the prescribed threshold, a remeshing procedure is initiated. Our implementation relies
on Mmg2 and parMmg software for mesh adaptation, in sequential and parallel respectively [4]. We choose to keep
the same interface and volume discretization for the immersed solid, in order to ease the interpolation of the fluid
solution onto the new geometry and keep the volume and surface measures constant across the simulation. Every
time the mesh is reconstructed, the current fluid velocity u(t, x), pressure p(t, x) and displacement x(t,X) fields are
interpolated onto the new computational domain. Moreover, depending on the order n of the time stepping scheme,
also the previous n − 1 approximations of the velocity field are interpolated on the computational domains at the
appropriate time instants.

Preconditioning There are two types of preconditioners we have explored for the solution of the coupled fluid and
rigid body problem: monolithic preconditioners and block preconditioners. In the first group we considered LU
preconditioning from the MUMPS library. For larger problems, especially in 3d, the computational effort associated
to the use of this solver becomes prohibitive and other solvers, based on block preconditioning and more adapted to the
fluid-structure problems at hand, are preferred. In this second group, we considered preconditioners based on algebraic
factorisation with different preconditioning strategies on each of the blocks, ranging from algebraic multigrid to LU
factorization. These preconditioning strategies are extensively described in [6].

2https://www.mmgtools.org

6

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

1.2 1.4 1.6 1.8 2 2.2

2.1

2.12

2.14

2.16

2.18

·10−5

hmax

V

1.2 1.4 1.6 1.8 2 2.2

4.04

4.06

4.08

4.1

·10−5

hmax

F
or
ce

Figure 1: Translational velocity of a sphere subject to gravity (left) and associated drag force (right). The computed
values are in blue, the theoretical value is in green. The value being obtained is in line with the prediction of (24) for
ρs = 10−3, ρf = 10−6, g = 9.81, R = 0.1, µ = 1, and it converges to the theoretical value as the mesh is refined.

3 Performance and verification on the falling sphere case

In this section, we evaluate the performance of our numerical method on the classical example of the sedimentation
of a sphere in Stokes regime, where no inertial effects are present. We evaluate its settling velocity V and fluid forces
F , and compare them to the analytical formulas that are valid in this regime. The first one we consider is the Stokes
formula F = 6πµRV , relating drag force and linear velocity of a sphere, where R is the radius of the body, V its
velocity, µ is the viscosity of the fluid. When specialized to a settling sphere under gravity, the formula can be inverted
to compute the settling velocity as

V =
2(ρs − ρf)gR2

9µ
, (24)

where ρs and ρf are the sphere and fluid densities, respectively, and g is the gravity acceleration.
We use these relationships as benchmarks for the fluid-rigid-body coupling solver to assess both the value of the linear
velocity and of the fluid forces. Homogeneous Dirichlet boundary conditions are imposed on the external boundaries
of the computational domain, together with zero average pressure using a Lagrange multiplier and gravity as the
driving force. The results are reported in Figure 1, which shows the values of the settling velocity (left figure) and
the drag force (right figure) converging to their analytical values when refining the domain discretization. In Table 1
we report the geometrical characteristics of the mesh we used, namely the number of elements, points and degrees of
freedom. An analysis of the preconditioning strategies is also carried out: Table 2 reports the comparison of an LU
preconditioning strategy with block preconditioning. The numbers refer to the ratio between the average time for the
solution of a single time-step with LU preconditioning, where the preconditioner is constructed at every time-step, and
the selected strategy. Table 2, on the left, shows that preconditioning based on algebraic factorisation can provide faster
solution than a simple LU preconditioning. However, the performance of the preconditioner depends on the solution
strategy for each of the blocks: we can see that choosing LU factorisation for the velocity block (FSLU−Pmm−GAMG

1
) gives similar results to LU factorisation on the whole matrix. On the other hand, if an algebraic multigrid solver, like
GAMG, is chosen for the velocity block (FSGAMG−Pmm−jacobi

1), a larger speed-up is obtained. Table 2, on the right,
shows that the number of Krylov iterations, necessary to solve the algebraic system, depend strongly on the way that
degrees of freedom are split into blocks. In fact, when putting in the same block the degrees of freedom relative to fluid
and rigid-body velocities (choice FS1), while leaving pressure degrees of freedom in a separate block, the number of
Krylov iterations is of the order of unity; on the other hand, if the first block contains only the fluid velocities, and
rigid-body velocities are put in the second block together with pressure degrees of freedom, the number of iterations
necessary to solve the algebraic system grows considerably.

7

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

Mesh Nu Np Nelements hmax
M0 163773 7277 48340 2.22947
M1 250350 11015 78867 1.96095
M2 1044645 44096 298478 1.18534

Table 1: Mesh characteristics for the falling sphere example.

Mesh LU FSLU−Pmm−GAMG
1 FSGAMG−Pmm−jacobi

1
M0 1 0.86 0.65
M1 1 0.61 1.18
M2 1 1.031 5.2

Mesh LU FS1 FS2

M0 - 3 23
M1 - 7 21
M2 - 3 12

Table 2: Comparison of the preconditioning strategies onN = 24 processors. On the left, numbers represent the ratios
of average solution time tLU/tprec. The block preconditioning approach proves more effective than LU precondition-
ing with more refined meshes. On the right, the number of iterations of the Krylov subspace solver is reported. This
table shows that the number of iterations depends strongly on how the degrees of freedom are split into blocks.

4 Test cases

We compare the results of the algorithm presented above with various results from the literature. The testcases we
consider concern single rigid bodies moving under gravity: as two-dimensional cases we consider a circle and ellipse
subject to gravity and as a three-dimensional case we consider a falling spheroid under gravity.

4.1 Falling ellipse

In this section we consider an example of elliptical body falling under the effect of gravity. This benchmark was
presented in [23].

Let us define the characteristic length of the domain as L = 0.4 cm. We consider an ellipse of semi-axes a = L/4
and b = L/8 evolving in the rectangular cavity [0, L] × [0, 7L] filled with fluid. At time t = 0 s, the center of the
ellipse is located at (0.5L, 6L) and the major semi-axis a forms an angle of π/4 with the horizontal direction. The
fluid density is ρ = 1 g/cm3, the kinematic viscosity is µ = 0.01 cm2/s and the ellipse density is ρs = 1.1 g/cm3.
The gravity acceleration is g = 980 cm/s2. Homogeneous Dirichlet boundary conditions are applied on the walls and
the bottom of the cavity, while homogeneous Neumann conditions are applied on the top. Our results are obtained
with a time-step ∆t = 0.001 s, , a second order BDF scheme and with mesh size h ≈ 0.01. The resulting mesh is
composed of about 18600 points and 36500 elements.

The center of mass of the ellipse describes an oscillatory trajectory as the solid settles on the bottom of the cavity;
during the fall, the orientation of the body changes as well in an oscillatory manner. Figures 2 collect the initial
geometry of the problem (on the left) and the comparison of our results regarding the trajectory and orientation of the
elliptical body with [23]. Our results (blue continuous line) are in good agreement with the reference (black dots).
Both the trajectory of the center of mass and the angular dynamics show an accurate approximation of the reference
results.

4.2 Falling cylinder

In this section we consider a two dimensional cylinder falling under gravity in a confined environment and compare our
results with [22]. The computational domain is a rectangle of [0, 2]× [0, 6] cm filled with fluid. The radius of the body
is R = 0.125 cm and, at t = 0 s, the center of mass of the cylinder is located at (1, 4). Figure 3 presents a schematic
representation of the testcase. The fluid density is ρ = 1 g/cm3, the fluid viscosity is µ = 0.1 g/(cm · s) and the solid
density is ρs = 1.25 g/cm3. The gravity acceleration is g = 980 cm/s2 also in this case. As before, homogeneous
Dirichlet boundary conditions are applied on the bottom and lateral walls, while homogeneous Neumann conditions
are imposed on the top of the cavity. Our results are obtained with a time-step of ∆t = 0.001 s, a second order BDF
scheme and a mesh size h ≈ 0.06. The initial mesh is composed of approximately 5700 nodes and 11200 elements.

We compare our results to [22], which display the time evolution of four quantities: the coordinate yCM of the
center of mass of the body, the y component of the body velocity U , the Reynolds number and the kinetic energy
of the solid. These two aggregated quantities are computed, respectively, as Re = 2Rρs

√
U2
x + U2

y /µ and Ek =

0.5ρsπR
2(U2

x + U2
y). Figure 4 reports the comparison between our results (blue continuous line) and [22] (black

8

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

(a)

(b)ρs

(c)

(d)

(0, 0) (L, 0)

(L, 7L)(0, 7L)

g

ρ, µ

x/L
y
/L

θ/π

y
/L

(a) t = 0 (b) t = 0.5s (c) t = 1.0s (d) t = 1.5s

Figure 2: On the left, schematic representation of different configurations of the falling ellipse, starting in the tilted
position. On the left, trajectory and orientation of the elliptical particle. The continuous line corresponds to our results,
while the black dots correspond to results taken from [23]. The positions and orientations corresponding to the starred
values are represented in the left figure.

9

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

Rρs

g

ρ, µ

(0, 0) (2, 0)

(2, 6)(0, 6)

(a) t = 0 (b) t = 0.24s (c) t = 0.48s (d) t = 0.72s

Figure 3: Schematic representation of the falling cylinder benchmark and streamlines at four different time instants.

dots), showing a good agreement between the two. A slight overestimation of the falling velocity Uy is the reason why
the matching is not perfect. This small difference is amplified in the kinetic energy plot, because Ek ∝ U2

y .

4.3 Three-dimensional spheroid

In this section we consider the simulation of a falling three-dimensional spheroid in a cylindrical domain. Following
[15], three non-dimensional parameters are identified and used to describe the flow and particle properties: the aspect
ratio is defined by χ = d/a, where a is the axis length of the spheroid in the local zloc direction and d is its diameter
in the local xloc − yloc plane; the density ratio is denoted by ρ̃ = ρf/ρs between the fluid and the particle; the Galileo
number is given by Ga = Ugd/ν, where Ug =

√
(ρ̃− 1)g/d2(π/χ)(d3/6) is a gravitational velocity scale defined

for heavy particles and ν is the kinematic viscosity of the fluid. The gravitational velocity was taken to be Ug = 1, so
that the kinematic viscosity ν = 1/Ga. In Figure 5 the parametrization is shown.

The case considered here corresponds to the triplet (χ,Ga, ρ̃) = (1.5, 150, 2.14), which produces a vertical oscillating
regime. However, differently from [15], our problem was cast in the global reference frame (and not in the spheroid’s
local reference frame), which led to a different settling path and behaviour as the spheroid approached the walls of
the cylindrical domain. The radius of the computational cylinder in which the spheroid falls down was fixed to be
Rc = 5.34d and its height was taken to be h = 75d in order to avoid contact with the walls and observe its settling
behavior during a time window of 40 s. In figure 6 we plot the settling velocity and the z coordinate of the spheroid’s
center of mass. Despite the different approaches, the results are similar to those obtained in [15].

Conclusions

In this paper we presented a mathematical and numerical formulation for the solution of Navier-Stokes equations in
moving domain with immersed, moving rigid bodies. Our description is based on the ALE formulation of the fluid
equations, coupled with the Newton-Euler equations for rigid body motion. The computational aspects involved in the
numerical solution of the problem are discussed, especially mesh adaptation and the preconditioning strategies.

Our numerical results are benchmarked with results from the literature, and a good agreement is found. The code
is open source [17] and the configuration files of the benchmarks are available as well [1]. The testcases that were
considered validate our fluid-solid interaction solver for moving rigid bodies. This validation is a first step towards
the construction of a computational tool simulating swimming and the motion of deformable bodies in fluids. In an

10

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

Time [s]

E
k

[g
cm

2
/
s2

]

Time [s]

R
e

T ime [s]

U
y

[c
m
/
s]

Time [s]

y
C
M

[c
m

]

Figure 4: Time evolution of different quantities relative to the confined cylinder example. From the top left: kinetic
linear energy, Reynolds number, vertical component of the linear velocity and y coordinate of the cylinder’s center of
mass. The blue continuous line corresponds to our results, while the black dots correspond to results from [22]. The
starred values correspond to the time instants t = 0, 0.24, 0.48, 0.72s.

yloc

xloc

zloc

xloc, yloc

d

a/2

d/2

z

x

y ~g

Figure 5: On the left, parametrization of the 3D spheroid in its local reference frame. On the right, global reference
frame and gravity vector.

11

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

Time [s]

z
C
M

Time [s]

U
z

Figure 6: Trajectory in the z direction of the center of mass and z component of the linear velocity for the 3d freely
falling spheroid testcase.

upcoming paper we will turn to the simulation of swimming bodies with prescribed deformation strategies and to the
coupling with elasticity models.

Acknowledgements

The authors acknowledge the financial support of Labex Irmia, ITI Irmia++ and the French Agence Nationale de
la Recherche (ANR), under grant ANR-21-CE45-0013 (project NEMO). The authors also thank Yannick Hoarau,
Thibaut Metivet and Jan Dušek for the fruitful discussions and the data they provided.

Reproducibility

The benchmarks described in this paper are publicly available in the Github repository [1] and can be reproduced by
following the instructions.

A Implementation details

The results presented in this paper were obtained via the Finite Element Embedded Library in C++ called Feel++ [17].
Feel++ allows to use a very wide range of advanced methods for numerical simulations and provides a mathematical
kernel for solving partial differential equations using arbitrary order Galerkin methods, together with a set of mono
and multi-physics toolboxes. A collection of Python modules wrapping the library and its multi-physics toolboxes
is also available. In this section we will briefly present the classes that compose the fluid mechanics toolbox, the
configuration and results files.

A.1 The fluid mechanics toolbox

The fluid mechanics toolbox is an application that solves the Stokes and Navier-Stokes equations in moving domain
using the Arbitrary-Lagrangian-Eulerian formalism. In its present state [17], it encompasses the possibility to sim-
ulate fluid flows around moving objects or inside domains with deforming boundaries. The FluidMechanics base
class extends four fundamental classes, namely ModelBase, which handles the execution of the toolbox at its lowest
level (creating folders for data, and the interface for parallel computations); ModelAlgebraic and ModelNumerical,
which contain the algebraic data structures used to solve the discrete problem, to accomplish the post-processing and
time-stepping; ModelPhysics, which provides the data structures that specify the physics of the problem (e.g. ma-
terial properties, turbulence models). The FluidMechanics class fills the general interface proposed by the previous
fundamental classes with the variational problem coming from the discretisation of the Navier-Stokes equations. An
UML diagram is provided in Figure 7 to appreciate the dependencies of the class. Additional classes are interfaced
with FluidMechanics to enable the simulation of fluids in moving domain (MeshALE), the simulation of rigid bodies

12

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

ModelBase

ModelAlgebraic

ModelNumerical ModelPhysics

FluidMechanicsFluidMechanics

Figure 7: UML diagram of the FluidMechanics class.

Body
M mass
M massCenter
M momentOfInertia bodyFrame
M rigidRotationAngles

computeMomentOfInertia inertialFrame

BodyBoundaryCondition
M body
M fieldTranslationalVelocity
M fieldAngularVelocity

updateDisplacement
updateMatrixPTilde angular

BodyArticulation
M body1
M body2

initLagrangeMultiplier
areConnected
setTranslationalVelocityExpr

NBodyArticulated
M rigidRotationAngles
M massCenter
articulations
momentOfInertia inertialFrame

Figure 8: Synthetic UML diagrams for the classes that handle the simulation of rigid body motion inside
FluidMechanics. The Body class collects the variables describing the position of the body and its dynamical prop-
erties, as well as the routines to update them. BodyBoundaryCondition contains the variables that describe the rigid
and deformation velocity of the body, while NBodyArticulated allows to describe a body which is made of several
Body components, connected and moving relatively to each other as prescribed in BodyArticulation.

(Body, BodyBoundaryCondition), the simulation of articulated bodies (BodyArticulation, NBodyArticulated).
Synthetic information about the relevant methods and attributes of these classes are provided in Figure 8.

A.2 Launching the tests

The numerical results in this paper can be reproduced by following the instructions contained in the repository. The
fluid toolbox is initialised and executed, and at each time step the mesh quality measure (23) is computed by the
function etaQ, and if its minimum falls below a predefined threshold, the computational domain is rebuilt. In order to
have a conforming interface between the solid and the fluid, the user prescribes the surface and volume markers to be
kept by the remeshing algorithm.

13

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

A.3 Configuration and results files

Fluid mechanics simulations are parametrized by three configuration files: a geometry file, describing the computa-
tional domain and characterised by the .geo extension; a .json file, prescribing the quantitative information about
the problem, namely the fluid model, the material properties and the boundary conditions; a .ini file, that contains the
location of the other configuration files, parametrizes the algebraic solver and the time-stepping algorithm. In order
to differentiate between Dirichlet boundary conditions at fluid-particle interfaces and on external boundaries, the json
configuration file has a specific section body to treat the first case. In this section, linear or angular velocities can
also be prescribed at the surface of the object, but the simplest case is reported in Listing 1, where only the boundary
condition u = U + ω × (x− xCM) is prescribed on ∂Ft ∩ ∂S.

Listing 1: Body section in the .json configuration file

1 "BoundaryConditions":
2 {
3 "fluid":
4 {
5 ...,
6 "body":
7 {
8 "bodyName":
9 {

10 "markers":"SurfaceMarkers",
11 "materials":{"names":"RigidBodyMaterial"}
12

13 }
14 }
15 }
16 }

The data that describe the motion of the rigid body (the coordinates of the center of mass, the orientation angles, the
moment of inertia, the net fluid forces and torques) are collected in a csv file and are preceded by the name of the body
itself.

References

[1] Supplementary material: https://github.com/feelpp/article.fluid rigid body ale.
[2] S. ALLENDE, C. HENRY, AND J. BEC, Stretching and buckling of small elastic fibers in turbulence, Physical

review letters, 121 (2018), p. 154501.
[3] F. AUGUSTE AND J. MAGNAUDET, Path oscillations and enhanced drag of light rising spheres, Journal of Fluid

Mechanics, 841 (2018), pp. 228–266.
[4] C. DAPOGNY, C. DOBRZYNSKI, AND P. FREY, Three-dimensional adaptive domain remeshing, implicit domain

meshing, and applications to free and moving boundary problems, Journal of Computational Physics, 262 (2014),
pp. 358–378.

[5] J. DONEA, A. HUERTA, J.-P. PONTHOT, AND A. RODRÍGUEZ-FERRAN, Arbitrary lagrangian-eulerian meth-
ods, Encyclopedia of computational mechanics, (2004).

[6] H. ELMAN, D. SILVESTER, AND A. WATHEN, Finite Elements and Fast Iterative Solvers: with Applications in
Incompressible Fluid Dynamics, Oxford University Press, June 2014.

[7] D. A. FIELD, Qualitative measures for initial meshes, International Journal for Numerical Methods in Engineer-
ing, 47 (2000), pp. 887–906.

[8] L. FORMAGGIA AND A. QUARTERONI, eds., Cardiovascular mathematics: modeling and simulation of the
circulatory system, no. 1 in MS & A : modeling, simulation & applications, Springer, Milano, 2009.

[9] K. KAFUI, C. THORNTON, AND M. ADAMS, Discrete particle-continuum fluid modelling of gas–solid fluidised
beds, Chemical Engineering Science, 57 (2002), pp. 2395–2410.

[10] H. KANCHI AND A. MASUD, A 3D adaptive mesh moving scheme, International Journal for Numerical Methods
in Fluids, 54 (2007), pp. 923–944.

14

Fluid-rigid body interaction using the finite element method and ALE formulation: framework,
implementation and benchmarking

[11] Y. KIM AND C. S. PESKIN, A penalty immersed boundary method for a rigid body in fluid, Physics of Fluids,
28 (2016), p. 033603.

[12] B. MAURY, Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains, Journal of Computational
Physics, 156 (1999), pp. 325–351.

[13] B. MAURY AND R. GLOWINSKI, Fluid-particle flow: a symmetric formulation, Comptes Rendus de l’Académie
des Sciences - Series I - Mathematics, 324 (1997), pp. 1079–1084.

[14] T. METIVET, V. CHABANNES, M. ISMAIL, AND C. PRUD’HOMME, High-Order Finite-Element Framework
for the Efficient Simulation of Multifluid Flows, Mathematics, 6 (2018), p. 203.

[15] M. MORICHE, M. UHLMANN, AND J. DUŠEK, A single oblate spheroid settling in unbounded ambient fluid: a
benchmark for simulations in steady and unsteady wake regimes, 2020.

[16] C. S. PESKIN, The immersed boundary method, Acta numerica, 11 (2002), pp. 479–517.
[17] C. PRUD’HOMME, V. CHABANNES, T. METIVET, R. HILD, TROPHIME, A. SAMAKE, T. SAIGRE, P. RICKA,

AND L. BERTI, feelpp/feelpp; doi: 10.5281/zenodo.5718297.
[18] A. RAKHIMZHANOVA, C. THORNTON, Y. AMANBEK, AND Y. ZHAO, Numerical simulations of sand produc-

tion in oil wells using the CFD-DEM-IBM approach, Journal of Petroleum Science and Engineering, 208 (2022),
p. 109529.

[19] A. G. TOMBOULIDES AND S. A. ORSZAG, Numerical investigation of transitional and weak turbulent flow
past a sphere, Journal of Fluid Mechanics, 416 (2000), pp. 45–73.

[20] M. UHLMANN, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal
of Computational Physics, 209 (2005), pp. 448–476.

[21] M. UHLMANN AND J. DUŠEK, The motion of a single heavy sphere in ambient fluid: A benchmark for interface-
resolved particulate flow simulations with significant relative velocities, International Journal of Multiphase
Flow, 59 (2014), pp. 221–243.

[22] D. WAN AND S. TUREK, Direct numerical simulation of particulate flow via multigrid FEM techniques and the
fictitious boundary method, International Journal for Numerical Methods in Fluids, 51 (2006), pp. 531–566.

[23] Z. XIA, K. W. CONNINGTON, S. RAPAKA, P. YUE, J. J. FENG, AND S. CHEN, Flow patterns in the sedimen-
tation of an elliptical particle, Journal of Fluid Mechanics, 625 (2009), pp. 249–272.

15

	Rigid body moving in a fluid
	Mathematical formulation
	Numerical method

	Computational aspects
	Performance and verification on the falling sphere case
	Test cases
	Falling ellipse
	Falling cylinder
	Three-dimensional spheroid

	Implementation details
	The fluid mechanics toolbox
	Launching the tests
	Configuration and results files

